~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/auditsc.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /* auditsc.c -- System-call auditing support
  3  * Handles all system-call specific auditing features.
  4  *
  5  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
  6  * Copyright 2005 Hewlett-Packard Development Company, L.P.
  7  * Copyright (C) 2005, 2006 IBM Corporation
  8  * All Rights Reserved.
  9  *
 10  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
 11  *
 12  * Many of the ideas implemented here are from Stephen C. Tweedie,
 13  * especially the idea of avoiding a copy by using getname.
 14  *
 15  * The method for actual interception of syscall entry and exit (not in
 16  * this file -- see entry.S) is based on a GPL'd patch written by
 17  * okir@suse.de and Copyright 2003 SuSE Linux AG.
 18  *
 19  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
 20  * 2006.
 21  *
 22  * The support of additional filter rules compares (>, <, >=, <=) was
 23  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
 24  *
 25  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
 26  * filesystem information.
 27  *
 28  * Subject and object context labeling support added by <danjones@us.ibm.com>
 29  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
 30  */
 31 
 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 33 
 34 #include <linux/init.h>
 35 #include <asm/types.h>
 36 #include <linux/atomic.h>
 37 #include <linux/fs.h>
 38 #include <linux/namei.h>
 39 #include <linux/mm.h>
 40 #include <linux/export.h>
 41 #include <linux/slab.h>
 42 #include <linux/mount.h>
 43 #include <linux/socket.h>
 44 #include <linux/mqueue.h>
 45 #include <linux/audit.h>
 46 #include <linux/personality.h>
 47 #include <linux/time.h>
 48 #include <linux/netlink.h>
 49 #include <linux/compiler.h>
 50 #include <asm/unistd.h>
 51 #include <linux/security.h>
 52 #include <linux/list.h>
 53 #include <linux/binfmts.h>
 54 #include <linux/highmem.h>
 55 #include <linux/syscalls.h>
 56 #include <asm/syscall.h>
 57 #include <linux/capability.h>
 58 #include <linux/fs_struct.h>
 59 #include <linux/compat.h>
 60 #include <linux/ctype.h>
 61 #include <linux/string.h>
 62 #include <linux/uaccess.h>
 63 #include <linux/fsnotify_backend.h>
 64 #include <uapi/linux/limits.h>
 65 #include <uapi/linux/netfilter/nf_tables.h>
 66 #include <uapi/linux/openat2.h> // struct open_how
 67 #include <uapi/linux/fanotify.h>
 68 
 69 #include "audit.h"
 70 
 71 /* flags stating the success for a syscall */
 72 #define AUDITSC_INVALID 0
 73 #define AUDITSC_SUCCESS 1
 74 #define AUDITSC_FAILURE 2
 75 
 76 /* no execve audit message should be longer than this (userspace limits),
 77  * see the note near the top of audit_log_execve_info() about this value */
 78 #define MAX_EXECVE_AUDIT_LEN 7500
 79 
 80 /* max length to print of cmdline/proctitle value during audit */
 81 #define MAX_PROCTITLE_AUDIT_LEN 128
 82 
 83 /* number of audit rules */
 84 int audit_n_rules;
 85 
 86 /* determines whether we collect data for signals sent */
 87 int audit_signals;
 88 
 89 struct audit_aux_data {
 90         struct audit_aux_data   *next;
 91         int                     type;
 92 };
 93 
 94 /* Number of target pids per aux struct. */
 95 #define AUDIT_AUX_PIDS  16
 96 
 97 struct audit_aux_data_pids {
 98         struct audit_aux_data   d;
 99         pid_t                   target_pid[AUDIT_AUX_PIDS];
100         kuid_t                  target_auid[AUDIT_AUX_PIDS];
101         kuid_t                  target_uid[AUDIT_AUX_PIDS];
102         unsigned int            target_sessionid[AUDIT_AUX_PIDS];
103         u32                     target_sid[AUDIT_AUX_PIDS];
104         char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
105         int                     pid_count;
106 };
107 
108 struct audit_aux_data_bprm_fcaps {
109         struct audit_aux_data   d;
110         struct audit_cap_data   fcap;
111         unsigned int            fcap_ver;
112         struct audit_cap_data   old_pcap;
113         struct audit_cap_data   new_pcap;
114 };
115 
116 struct audit_tree_refs {
117         struct audit_tree_refs *next;
118         struct audit_chunk *c[31];
119 };
120 
121 struct audit_nfcfgop_tab {
122         enum audit_nfcfgop      op;
123         const char              *s;
124 };
125 
126 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
127         { AUDIT_XT_OP_REGISTER,                 "xt_register"              },
128         { AUDIT_XT_OP_REPLACE,                  "xt_replace"               },
129         { AUDIT_XT_OP_UNREGISTER,               "xt_unregister"            },
130         { AUDIT_NFT_OP_TABLE_REGISTER,          "nft_register_table"       },
131         { AUDIT_NFT_OP_TABLE_UNREGISTER,        "nft_unregister_table"     },
132         { AUDIT_NFT_OP_CHAIN_REGISTER,          "nft_register_chain"       },
133         { AUDIT_NFT_OP_CHAIN_UNREGISTER,        "nft_unregister_chain"     },
134         { AUDIT_NFT_OP_RULE_REGISTER,           "nft_register_rule"        },
135         { AUDIT_NFT_OP_RULE_UNREGISTER,         "nft_unregister_rule"      },
136         { AUDIT_NFT_OP_SET_REGISTER,            "nft_register_set"         },
137         { AUDIT_NFT_OP_SET_UNREGISTER,          "nft_unregister_set"       },
138         { AUDIT_NFT_OP_SETELEM_REGISTER,        "nft_register_setelem"     },
139         { AUDIT_NFT_OP_SETELEM_UNREGISTER,      "nft_unregister_setelem"   },
140         { AUDIT_NFT_OP_GEN_REGISTER,            "nft_register_gen"         },
141         { AUDIT_NFT_OP_OBJ_REGISTER,            "nft_register_obj"         },
142         { AUDIT_NFT_OP_OBJ_UNREGISTER,          "nft_unregister_obj"       },
143         { AUDIT_NFT_OP_OBJ_RESET,               "nft_reset_obj"            },
144         { AUDIT_NFT_OP_FLOWTABLE_REGISTER,      "nft_register_flowtable"   },
145         { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,    "nft_unregister_flowtable" },
146         { AUDIT_NFT_OP_SETELEM_RESET,           "nft_reset_setelem"        },
147         { AUDIT_NFT_OP_RULE_RESET,              "nft_reset_rule"           },
148         { AUDIT_NFT_OP_INVALID,                 "nft_invalid"              },
149 };
150 
151 static int audit_match_perm(struct audit_context *ctx, int mask)
152 {
153         unsigned n;
154 
155         if (unlikely(!ctx))
156                 return 0;
157         n = ctx->major;
158 
159         switch (audit_classify_syscall(ctx->arch, n)) {
160         case AUDITSC_NATIVE:
161                 if ((mask & AUDIT_PERM_WRITE) &&
162                      audit_match_class(AUDIT_CLASS_WRITE, n))
163                         return 1;
164                 if ((mask & AUDIT_PERM_READ) &&
165                      audit_match_class(AUDIT_CLASS_READ, n))
166                         return 1;
167                 if ((mask & AUDIT_PERM_ATTR) &&
168                      audit_match_class(AUDIT_CLASS_CHATTR, n))
169                         return 1;
170                 return 0;
171         case AUDITSC_COMPAT: /* 32bit on biarch */
172                 if ((mask & AUDIT_PERM_WRITE) &&
173                      audit_match_class(AUDIT_CLASS_WRITE_32, n))
174                         return 1;
175                 if ((mask & AUDIT_PERM_READ) &&
176                      audit_match_class(AUDIT_CLASS_READ_32, n))
177                         return 1;
178                 if ((mask & AUDIT_PERM_ATTR) &&
179                      audit_match_class(AUDIT_CLASS_CHATTR_32, n))
180                         return 1;
181                 return 0;
182         case AUDITSC_OPEN:
183                 return mask & ACC_MODE(ctx->argv[1]);
184         case AUDITSC_OPENAT:
185                 return mask & ACC_MODE(ctx->argv[2]);
186         case AUDITSC_SOCKETCALL:
187                 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
188         case AUDITSC_EXECVE:
189                 return mask & AUDIT_PERM_EXEC;
190         case AUDITSC_OPENAT2:
191                 return mask & ACC_MODE((u32)ctx->openat2.flags);
192         default:
193                 return 0;
194         }
195 }
196 
197 static int audit_match_filetype(struct audit_context *ctx, int val)
198 {
199         struct audit_names *n;
200         umode_t mode = (umode_t)val;
201 
202         if (unlikely(!ctx))
203                 return 0;
204 
205         list_for_each_entry(n, &ctx->names_list, list) {
206                 if ((n->ino != AUDIT_INO_UNSET) &&
207                     ((n->mode & S_IFMT) == mode))
208                         return 1;
209         }
210 
211         return 0;
212 }
213 
214 /*
215  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
216  * ->first_trees points to its beginning, ->trees - to the current end of data.
217  * ->tree_count is the number of free entries in array pointed to by ->trees.
218  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
219  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
220  * it's going to remain 1-element for almost any setup) until we free context itself.
221  * References in it _are_ dropped - at the same time we free/drop aux stuff.
222  */
223 
224 static void audit_set_auditable(struct audit_context *ctx)
225 {
226         if (!ctx->prio) {
227                 ctx->prio = 1;
228                 ctx->current_state = AUDIT_STATE_RECORD;
229         }
230 }
231 
232 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
233 {
234         struct audit_tree_refs *p = ctx->trees;
235         int left = ctx->tree_count;
236 
237         if (likely(left)) {
238                 p->c[--left] = chunk;
239                 ctx->tree_count = left;
240                 return 1;
241         }
242         if (!p)
243                 return 0;
244         p = p->next;
245         if (p) {
246                 p->c[30] = chunk;
247                 ctx->trees = p;
248                 ctx->tree_count = 30;
249                 return 1;
250         }
251         return 0;
252 }
253 
254 static int grow_tree_refs(struct audit_context *ctx)
255 {
256         struct audit_tree_refs *p = ctx->trees;
257 
258         ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
259         if (!ctx->trees) {
260                 ctx->trees = p;
261                 return 0;
262         }
263         if (p)
264                 p->next = ctx->trees;
265         else
266                 ctx->first_trees = ctx->trees;
267         ctx->tree_count = 31;
268         return 1;
269 }
270 
271 static void unroll_tree_refs(struct audit_context *ctx,
272                       struct audit_tree_refs *p, int count)
273 {
274         struct audit_tree_refs *q;
275         int n;
276 
277         if (!p) {
278                 /* we started with empty chain */
279                 p = ctx->first_trees;
280                 count = 31;
281                 /* if the very first allocation has failed, nothing to do */
282                 if (!p)
283                         return;
284         }
285         n = count;
286         for (q = p; q != ctx->trees; q = q->next, n = 31) {
287                 while (n--) {
288                         audit_put_chunk(q->c[n]);
289                         q->c[n] = NULL;
290                 }
291         }
292         while (n-- > ctx->tree_count) {
293                 audit_put_chunk(q->c[n]);
294                 q->c[n] = NULL;
295         }
296         ctx->trees = p;
297         ctx->tree_count = count;
298 }
299 
300 static void free_tree_refs(struct audit_context *ctx)
301 {
302         struct audit_tree_refs *p, *q;
303 
304         for (p = ctx->first_trees; p; p = q) {
305                 q = p->next;
306                 kfree(p);
307         }
308 }
309 
310 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
311 {
312         struct audit_tree_refs *p;
313         int n;
314 
315         if (!tree)
316                 return 0;
317         /* full ones */
318         for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
319                 for (n = 0; n < 31; n++)
320                         if (audit_tree_match(p->c[n], tree))
321                                 return 1;
322         }
323         /* partial */
324         if (p) {
325                 for (n = ctx->tree_count; n < 31; n++)
326                         if (audit_tree_match(p->c[n], tree))
327                                 return 1;
328         }
329         return 0;
330 }
331 
332 static int audit_compare_uid(kuid_t uid,
333                              struct audit_names *name,
334                              struct audit_field *f,
335                              struct audit_context *ctx)
336 {
337         struct audit_names *n;
338         int rc;
339 
340         if (name) {
341                 rc = audit_uid_comparator(uid, f->op, name->uid);
342                 if (rc)
343                         return rc;
344         }
345 
346         if (ctx) {
347                 list_for_each_entry(n, &ctx->names_list, list) {
348                         rc = audit_uid_comparator(uid, f->op, n->uid);
349                         if (rc)
350                                 return rc;
351                 }
352         }
353         return 0;
354 }
355 
356 static int audit_compare_gid(kgid_t gid,
357                              struct audit_names *name,
358                              struct audit_field *f,
359                              struct audit_context *ctx)
360 {
361         struct audit_names *n;
362         int rc;
363 
364         if (name) {
365                 rc = audit_gid_comparator(gid, f->op, name->gid);
366                 if (rc)
367                         return rc;
368         }
369 
370         if (ctx) {
371                 list_for_each_entry(n, &ctx->names_list, list) {
372                         rc = audit_gid_comparator(gid, f->op, n->gid);
373                         if (rc)
374                                 return rc;
375                 }
376         }
377         return 0;
378 }
379 
380 static int audit_field_compare(struct task_struct *tsk,
381                                const struct cred *cred,
382                                struct audit_field *f,
383                                struct audit_context *ctx,
384                                struct audit_names *name)
385 {
386         switch (f->val) {
387         /* process to file object comparisons */
388         case AUDIT_COMPARE_UID_TO_OBJ_UID:
389                 return audit_compare_uid(cred->uid, name, f, ctx);
390         case AUDIT_COMPARE_GID_TO_OBJ_GID:
391                 return audit_compare_gid(cred->gid, name, f, ctx);
392         case AUDIT_COMPARE_EUID_TO_OBJ_UID:
393                 return audit_compare_uid(cred->euid, name, f, ctx);
394         case AUDIT_COMPARE_EGID_TO_OBJ_GID:
395                 return audit_compare_gid(cred->egid, name, f, ctx);
396         case AUDIT_COMPARE_AUID_TO_OBJ_UID:
397                 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
398         case AUDIT_COMPARE_SUID_TO_OBJ_UID:
399                 return audit_compare_uid(cred->suid, name, f, ctx);
400         case AUDIT_COMPARE_SGID_TO_OBJ_GID:
401                 return audit_compare_gid(cred->sgid, name, f, ctx);
402         case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
403                 return audit_compare_uid(cred->fsuid, name, f, ctx);
404         case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
405                 return audit_compare_gid(cred->fsgid, name, f, ctx);
406         /* uid comparisons */
407         case AUDIT_COMPARE_UID_TO_AUID:
408                 return audit_uid_comparator(cred->uid, f->op,
409                                             audit_get_loginuid(tsk));
410         case AUDIT_COMPARE_UID_TO_EUID:
411                 return audit_uid_comparator(cred->uid, f->op, cred->euid);
412         case AUDIT_COMPARE_UID_TO_SUID:
413                 return audit_uid_comparator(cred->uid, f->op, cred->suid);
414         case AUDIT_COMPARE_UID_TO_FSUID:
415                 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
416         /* auid comparisons */
417         case AUDIT_COMPARE_AUID_TO_EUID:
418                 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
419                                             cred->euid);
420         case AUDIT_COMPARE_AUID_TO_SUID:
421                 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422                                             cred->suid);
423         case AUDIT_COMPARE_AUID_TO_FSUID:
424                 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
425                                             cred->fsuid);
426         /* euid comparisons */
427         case AUDIT_COMPARE_EUID_TO_SUID:
428                 return audit_uid_comparator(cred->euid, f->op, cred->suid);
429         case AUDIT_COMPARE_EUID_TO_FSUID:
430                 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
431         /* suid comparisons */
432         case AUDIT_COMPARE_SUID_TO_FSUID:
433                 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
434         /* gid comparisons */
435         case AUDIT_COMPARE_GID_TO_EGID:
436                 return audit_gid_comparator(cred->gid, f->op, cred->egid);
437         case AUDIT_COMPARE_GID_TO_SGID:
438                 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
439         case AUDIT_COMPARE_GID_TO_FSGID:
440                 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
441         /* egid comparisons */
442         case AUDIT_COMPARE_EGID_TO_SGID:
443                 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
444         case AUDIT_COMPARE_EGID_TO_FSGID:
445                 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
446         /* sgid comparison */
447         case AUDIT_COMPARE_SGID_TO_FSGID:
448                 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
449         default:
450                 WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
451                 return 0;
452         }
453         return 0;
454 }
455 
456 /* Determine if any context name data matches a rule's watch data */
457 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
458  * otherwise.
459  *
460  * If task_creation is true, this is an explicit indication that we are
461  * filtering a task rule at task creation time.  This and tsk == current are
462  * the only situations where tsk->cred may be accessed without an rcu read lock.
463  */
464 static int audit_filter_rules(struct task_struct *tsk,
465                               struct audit_krule *rule,
466                               struct audit_context *ctx,
467                               struct audit_names *name,
468                               enum audit_state *state,
469                               bool task_creation)
470 {
471         const struct cred *cred;
472         int i, need_sid = 1;
473         u32 sid;
474         unsigned int sessionid;
475 
476         if (ctx && rule->prio <= ctx->prio)
477                 return 0;
478 
479         cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
480 
481         for (i = 0; i < rule->field_count; i++) {
482                 struct audit_field *f = &rule->fields[i];
483                 struct audit_names *n;
484                 int result = 0;
485                 pid_t pid;
486 
487                 switch (f->type) {
488                 case AUDIT_PID:
489                         pid = task_tgid_nr(tsk);
490                         result = audit_comparator(pid, f->op, f->val);
491                         break;
492                 case AUDIT_PPID:
493                         if (ctx) {
494                                 if (!ctx->ppid)
495                                         ctx->ppid = task_ppid_nr(tsk);
496                                 result = audit_comparator(ctx->ppid, f->op, f->val);
497                         }
498                         break;
499                 case AUDIT_EXE:
500                         result = audit_exe_compare(tsk, rule->exe);
501                         if (f->op == Audit_not_equal)
502                                 result = !result;
503                         break;
504                 case AUDIT_UID:
505                         result = audit_uid_comparator(cred->uid, f->op, f->uid);
506                         break;
507                 case AUDIT_EUID:
508                         result = audit_uid_comparator(cred->euid, f->op, f->uid);
509                         break;
510                 case AUDIT_SUID:
511                         result = audit_uid_comparator(cred->suid, f->op, f->uid);
512                         break;
513                 case AUDIT_FSUID:
514                         result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
515                         break;
516                 case AUDIT_GID:
517                         result = audit_gid_comparator(cred->gid, f->op, f->gid);
518                         if (f->op == Audit_equal) {
519                                 if (!result)
520                                         result = groups_search(cred->group_info, f->gid);
521                         } else if (f->op == Audit_not_equal) {
522                                 if (result)
523                                         result = !groups_search(cred->group_info, f->gid);
524                         }
525                         break;
526                 case AUDIT_EGID:
527                         result = audit_gid_comparator(cred->egid, f->op, f->gid);
528                         if (f->op == Audit_equal) {
529                                 if (!result)
530                                         result = groups_search(cred->group_info, f->gid);
531                         } else if (f->op == Audit_not_equal) {
532                                 if (result)
533                                         result = !groups_search(cred->group_info, f->gid);
534                         }
535                         break;
536                 case AUDIT_SGID:
537                         result = audit_gid_comparator(cred->sgid, f->op, f->gid);
538                         break;
539                 case AUDIT_FSGID:
540                         result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
541                         break;
542                 case AUDIT_SESSIONID:
543                         sessionid = audit_get_sessionid(tsk);
544                         result = audit_comparator(sessionid, f->op, f->val);
545                         break;
546                 case AUDIT_PERS:
547                         result = audit_comparator(tsk->personality, f->op, f->val);
548                         break;
549                 case AUDIT_ARCH:
550                         if (ctx)
551                                 result = audit_comparator(ctx->arch, f->op, f->val);
552                         break;
553 
554                 case AUDIT_EXIT:
555                         if (ctx && ctx->return_valid != AUDITSC_INVALID)
556                                 result = audit_comparator(ctx->return_code, f->op, f->val);
557                         break;
558                 case AUDIT_SUCCESS:
559                         if (ctx && ctx->return_valid != AUDITSC_INVALID) {
560                                 if (f->val)
561                                         result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
562                                 else
563                                         result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
564                         }
565                         break;
566                 case AUDIT_DEVMAJOR:
567                         if (name) {
568                                 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
569                                     audit_comparator(MAJOR(name->rdev), f->op, f->val))
570                                         ++result;
571                         } else if (ctx) {
572                                 list_for_each_entry(n, &ctx->names_list, list) {
573                                         if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
574                                             audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
575                                                 ++result;
576                                                 break;
577                                         }
578                                 }
579                         }
580                         break;
581                 case AUDIT_DEVMINOR:
582                         if (name) {
583                                 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
584                                     audit_comparator(MINOR(name->rdev), f->op, f->val))
585                                         ++result;
586                         } else if (ctx) {
587                                 list_for_each_entry(n, &ctx->names_list, list) {
588                                         if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
589                                             audit_comparator(MINOR(n->rdev), f->op, f->val)) {
590                                                 ++result;
591                                                 break;
592                                         }
593                                 }
594                         }
595                         break;
596                 case AUDIT_INODE:
597                         if (name)
598                                 result = audit_comparator(name->ino, f->op, f->val);
599                         else if (ctx) {
600                                 list_for_each_entry(n, &ctx->names_list, list) {
601                                         if (audit_comparator(n->ino, f->op, f->val)) {
602                                                 ++result;
603                                                 break;
604                                         }
605                                 }
606                         }
607                         break;
608                 case AUDIT_OBJ_UID:
609                         if (name) {
610                                 result = audit_uid_comparator(name->uid, f->op, f->uid);
611                         } else if (ctx) {
612                                 list_for_each_entry(n, &ctx->names_list, list) {
613                                         if (audit_uid_comparator(n->uid, f->op, f->uid)) {
614                                                 ++result;
615                                                 break;
616                                         }
617                                 }
618                         }
619                         break;
620                 case AUDIT_OBJ_GID:
621                         if (name) {
622                                 result = audit_gid_comparator(name->gid, f->op, f->gid);
623                         } else if (ctx) {
624                                 list_for_each_entry(n, &ctx->names_list, list) {
625                                         if (audit_gid_comparator(n->gid, f->op, f->gid)) {
626                                                 ++result;
627                                                 break;
628                                         }
629                                 }
630                         }
631                         break;
632                 case AUDIT_WATCH:
633                         if (name) {
634                                 result = audit_watch_compare(rule->watch,
635                                                              name->ino,
636                                                              name->dev);
637                                 if (f->op == Audit_not_equal)
638                                         result = !result;
639                         }
640                         break;
641                 case AUDIT_DIR:
642                         if (ctx) {
643                                 result = match_tree_refs(ctx, rule->tree);
644                                 if (f->op == Audit_not_equal)
645                                         result = !result;
646                         }
647                         break;
648                 case AUDIT_LOGINUID:
649                         result = audit_uid_comparator(audit_get_loginuid(tsk),
650                                                       f->op, f->uid);
651                         break;
652                 case AUDIT_LOGINUID_SET:
653                         result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
654                         break;
655                 case AUDIT_SADDR_FAM:
656                         if (ctx && ctx->sockaddr)
657                                 result = audit_comparator(ctx->sockaddr->ss_family,
658                                                           f->op, f->val);
659                         break;
660                 case AUDIT_SUBJ_USER:
661                 case AUDIT_SUBJ_ROLE:
662                 case AUDIT_SUBJ_TYPE:
663                 case AUDIT_SUBJ_SEN:
664                 case AUDIT_SUBJ_CLR:
665                         /* NOTE: this may return negative values indicating
666                            a temporary error.  We simply treat this as a
667                            match for now to avoid losing information that
668                            may be wanted.   An error message will also be
669                            logged upon error */
670                         if (f->lsm_rule) {
671                                 if (need_sid) {
672                                         /* @tsk should always be equal to
673                                          * @current with the exception of
674                                          * fork()/copy_process() in which case
675                                          * the new @tsk creds are still a dup
676                                          * of @current's creds so we can still
677                                          * use security_current_getsecid_subj()
678                                          * here even though it always refs
679                                          * @current's creds
680                                          */
681                                         security_current_getsecid_subj(&sid);
682                                         need_sid = 0;
683                                 }
684                                 result = security_audit_rule_match(sid, f->type,
685                                                                    f->op,
686                                                                    f->lsm_rule);
687                         }
688                         break;
689                 case AUDIT_OBJ_USER:
690                 case AUDIT_OBJ_ROLE:
691                 case AUDIT_OBJ_TYPE:
692                 case AUDIT_OBJ_LEV_LOW:
693                 case AUDIT_OBJ_LEV_HIGH:
694                         /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
695                            also applies here */
696                         if (f->lsm_rule) {
697                                 /* Find files that match */
698                                 if (name) {
699                                         result = security_audit_rule_match(
700                                                                 name->osid,
701                                                                 f->type,
702                                                                 f->op,
703                                                                 f->lsm_rule);
704                                 } else if (ctx) {
705                                         list_for_each_entry(n, &ctx->names_list, list) {
706                                                 if (security_audit_rule_match(
707                                                                 n->osid,
708                                                                 f->type,
709                                                                 f->op,
710                                                                 f->lsm_rule)) {
711                                                         ++result;
712                                                         break;
713                                                 }
714                                         }
715                                 }
716                                 /* Find ipc objects that match */
717                                 if (!ctx || ctx->type != AUDIT_IPC)
718                                         break;
719                                 if (security_audit_rule_match(ctx->ipc.osid,
720                                                               f->type, f->op,
721                                                               f->lsm_rule))
722                                         ++result;
723                         }
724                         break;
725                 case AUDIT_ARG0:
726                 case AUDIT_ARG1:
727                 case AUDIT_ARG2:
728                 case AUDIT_ARG3:
729                         if (ctx)
730                                 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
731                         break;
732                 case AUDIT_FILTERKEY:
733                         /* ignore this field for filtering */
734                         result = 1;
735                         break;
736                 case AUDIT_PERM:
737                         result = audit_match_perm(ctx, f->val);
738                         if (f->op == Audit_not_equal)
739                                 result = !result;
740                         break;
741                 case AUDIT_FILETYPE:
742                         result = audit_match_filetype(ctx, f->val);
743                         if (f->op == Audit_not_equal)
744                                 result = !result;
745                         break;
746                 case AUDIT_FIELD_COMPARE:
747                         result = audit_field_compare(tsk, cred, f, ctx, name);
748                         break;
749                 }
750                 if (!result)
751                         return 0;
752         }
753 
754         if (ctx) {
755                 if (rule->filterkey) {
756                         kfree(ctx->filterkey);
757                         ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
758                 }
759                 ctx->prio = rule->prio;
760         }
761         switch (rule->action) {
762         case AUDIT_NEVER:
763                 *state = AUDIT_STATE_DISABLED;
764                 break;
765         case AUDIT_ALWAYS:
766                 *state = AUDIT_STATE_RECORD;
767                 break;
768         }
769         return 1;
770 }
771 
772 /* At process creation time, we can determine if system-call auditing is
773  * completely disabled for this task.  Since we only have the task
774  * structure at this point, we can only check uid and gid.
775  */
776 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
777 {
778         struct audit_entry *e;
779         enum audit_state   state;
780 
781         rcu_read_lock();
782         list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
783                 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
784                                        &state, true)) {
785                         if (state == AUDIT_STATE_RECORD)
786                                 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
787                         rcu_read_unlock();
788                         return state;
789                 }
790         }
791         rcu_read_unlock();
792         return AUDIT_STATE_BUILD;
793 }
794 
795 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
796 {
797         int word, bit;
798 
799         if (val > 0xffffffff)
800                 return false;
801 
802         word = AUDIT_WORD(val);
803         if (word >= AUDIT_BITMASK_SIZE)
804                 return false;
805 
806         bit = AUDIT_BIT(val);
807 
808         return rule->mask[word] & bit;
809 }
810 
811 /**
812  * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
813  * @tsk: associated task
814  * @ctx: audit context
815  * @list: audit filter list
816  * @name: audit_name (can be NULL)
817  * @op: current syscall/uring_op
818  *
819  * Run the udit filters specified in @list against @tsk using @ctx,
820  * @name, and @op, as necessary; the caller is responsible for ensuring
821  * that the call is made while the RCU read lock is held. The @name
822  * parameter can be NULL, but all others must be specified.
823  * Returns 1/true if the filter finds a match, 0/false if none are found.
824  */
825 static int __audit_filter_op(struct task_struct *tsk,
826                            struct audit_context *ctx,
827                            struct list_head *list,
828                            struct audit_names *name,
829                            unsigned long op)
830 {
831         struct audit_entry *e;
832         enum audit_state state;
833 
834         list_for_each_entry_rcu(e, list, list) {
835                 if (audit_in_mask(&e->rule, op) &&
836                     audit_filter_rules(tsk, &e->rule, ctx, name,
837                                        &state, false)) {
838                         ctx->current_state = state;
839                         return 1;
840                 }
841         }
842         return 0;
843 }
844 
845 /**
846  * audit_filter_uring - apply filters to an io_uring operation
847  * @tsk: associated task
848  * @ctx: audit context
849  */
850 static void audit_filter_uring(struct task_struct *tsk,
851                                struct audit_context *ctx)
852 {
853         if (auditd_test_task(tsk))
854                 return;
855 
856         rcu_read_lock();
857         __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
858                         NULL, ctx->uring_op);
859         rcu_read_unlock();
860 }
861 
862 /* At syscall exit time, this filter is called if the audit_state is
863  * not low enough that auditing cannot take place, but is also not
864  * high enough that we already know we have to write an audit record
865  * (i.e., the state is AUDIT_STATE_BUILD).
866  */
867 static void audit_filter_syscall(struct task_struct *tsk,
868                                  struct audit_context *ctx)
869 {
870         if (auditd_test_task(tsk))
871                 return;
872 
873         rcu_read_lock();
874         __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
875                         NULL, ctx->major);
876         rcu_read_unlock();
877 }
878 
879 /*
880  * Given an audit_name check the inode hash table to see if they match.
881  * Called holding the rcu read lock to protect the use of audit_inode_hash
882  */
883 static int audit_filter_inode_name(struct task_struct *tsk,
884                                    struct audit_names *n,
885                                    struct audit_context *ctx)
886 {
887         int h = audit_hash_ino((u32)n->ino);
888         struct list_head *list = &audit_inode_hash[h];
889 
890         return __audit_filter_op(tsk, ctx, list, n, ctx->major);
891 }
892 
893 /* At syscall exit time, this filter is called if any audit_names have been
894  * collected during syscall processing.  We only check rules in sublists at hash
895  * buckets applicable to the inode numbers in audit_names.
896  * Regarding audit_state, same rules apply as for audit_filter_syscall().
897  */
898 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
899 {
900         struct audit_names *n;
901 
902         if (auditd_test_task(tsk))
903                 return;
904 
905         rcu_read_lock();
906 
907         list_for_each_entry(n, &ctx->names_list, list) {
908                 if (audit_filter_inode_name(tsk, n, ctx))
909                         break;
910         }
911         rcu_read_unlock();
912 }
913 
914 static inline void audit_proctitle_free(struct audit_context *context)
915 {
916         kfree(context->proctitle.value);
917         context->proctitle.value = NULL;
918         context->proctitle.len = 0;
919 }
920 
921 static inline void audit_free_module(struct audit_context *context)
922 {
923         if (context->type == AUDIT_KERN_MODULE) {
924                 kfree(context->module.name);
925                 context->module.name = NULL;
926         }
927 }
928 static inline void audit_free_names(struct audit_context *context)
929 {
930         struct audit_names *n, *next;
931 
932         list_for_each_entry_safe(n, next, &context->names_list, list) {
933                 list_del(&n->list);
934                 if (n->name)
935                         putname(n->name);
936                 if (n->should_free)
937                         kfree(n);
938         }
939         context->name_count = 0;
940         path_put(&context->pwd);
941         context->pwd.dentry = NULL;
942         context->pwd.mnt = NULL;
943 }
944 
945 static inline void audit_free_aux(struct audit_context *context)
946 {
947         struct audit_aux_data *aux;
948 
949         while ((aux = context->aux)) {
950                 context->aux = aux->next;
951                 kfree(aux);
952         }
953         context->aux = NULL;
954         while ((aux = context->aux_pids)) {
955                 context->aux_pids = aux->next;
956                 kfree(aux);
957         }
958         context->aux_pids = NULL;
959 }
960 
961 /**
962  * audit_reset_context - reset a audit_context structure
963  * @ctx: the audit_context to reset
964  *
965  * All fields in the audit_context will be reset to an initial state, all
966  * references held by fields will be dropped, and private memory will be
967  * released.  When this function returns the audit_context will be suitable
968  * for reuse, so long as the passed context is not NULL or a dummy context.
969  */
970 static void audit_reset_context(struct audit_context *ctx)
971 {
972         if (!ctx)
973                 return;
974 
975         /* if ctx is non-null, reset the "ctx->context" regardless */
976         ctx->context = AUDIT_CTX_UNUSED;
977         if (ctx->dummy)
978                 return;
979 
980         /*
981          * NOTE: It shouldn't matter in what order we release the fields, so
982          *       release them in the order in which they appear in the struct;
983          *       this gives us some hope of quickly making sure we are
984          *       resetting the audit_context properly.
985          *
986          *       Other things worth mentioning:
987          *       - we don't reset "dummy"
988          *       - we don't reset "state", we do reset "current_state"
989          *       - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
990          *       - much of this is likely overkill, but play it safe for now
991          *       - we really need to work on improving the audit_context struct
992          */
993 
994         ctx->current_state = ctx->state;
995         ctx->serial = 0;
996         ctx->major = 0;
997         ctx->uring_op = 0;
998         ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
999         memset(ctx->argv, 0, sizeof(ctx->argv));
1000         ctx->return_code = 0;
1001         ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1002         ctx->return_valid = AUDITSC_INVALID;
1003         audit_free_names(ctx);
1004         if (ctx->state != AUDIT_STATE_RECORD) {
1005                 kfree(ctx->filterkey);
1006                 ctx->filterkey = NULL;
1007         }
1008         audit_free_aux(ctx);
1009         kfree(ctx->sockaddr);
1010         ctx->sockaddr = NULL;
1011         ctx->sockaddr_len = 0;
1012         ctx->ppid = 0;
1013         ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1014         ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1015         ctx->personality = 0;
1016         ctx->arch = 0;
1017         ctx->target_pid = 0;
1018         ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1019         ctx->target_sessionid = 0;
1020         ctx->target_sid = 0;
1021         ctx->target_comm[0] = '\0';
1022         unroll_tree_refs(ctx, NULL, 0);
1023         WARN_ON(!list_empty(&ctx->killed_trees));
1024         audit_free_module(ctx);
1025         ctx->fds[0] = -1;
1026         ctx->type = 0; /* reset last for audit_free_*() */
1027 }
1028 
1029 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1030 {
1031         struct audit_context *context;
1032 
1033         context = kzalloc(sizeof(*context), GFP_KERNEL);
1034         if (!context)
1035                 return NULL;
1036         context->context = AUDIT_CTX_UNUSED;
1037         context->state = state;
1038         context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1039         INIT_LIST_HEAD(&context->killed_trees);
1040         INIT_LIST_HEAD(&context->names_list);
1041         context->fds[0] = -1;
1042         context->return_valid = AUDITSC_INVALID;
1043         return context;
1044 }
1045 
1046 /**
1047  * audit_alloc - allocate an audit context block for a task
1048  * @tsk: task
1049  *
1050  * Filter on the task information and allocate a per-task audit context
1051  * if necessary.  Doing so turns on system call auditing for the
1052  * specified task.  This is called from copy_process, so no lock is
1053  * needed.
1054  */
1055 int audit_alloc(struct task_struct *tsk)
1056 {
1057         struct audit_context *context;
1058         enum audit_state     state;
1059         char *key = NULL;
1060 
1061         if (likely(!audit_ever_enabled))
1062                 return 0;
1063 
1064         state = audit_filter_task(tsk, &key);
1065         if (state == AUDIT_STATE_DISABLED) {
1066                 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1067                 return 0;
1068         }
1069 
1070         context = audit_alloc_context(state);
1071         if (!context) {
1072                 kfree(key);
1073                 audit_log_lost("out of memory in audit_alloc");
1074                 return -ENOMEM;
1075         }
1076         context->filterkey = key;
1077 
1078         audit_set_context(tsk, context);
1079         set_task_syscall_work(tsk, SYSCALL_AUDIT);
1080         return 0;
1081 }
1082 
1083 static inline void audit_free_context(struct audit_context *context)
1084 {
1085         /* resetting is extra work, but it is likely just noise */
1086         audit_reset_context(context);
1087         audit_proctitle_free(context);
1088         free_tree_refs(context);
1089         kfree(context->filterkey);
1090         kfree(context);
1091 }
1092 
1093 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1094                                  kuid_t auid, kuid_t uid, unsigned int sessionid,
1095                                  u32 sid, char *comm)
1096 {
1097         struct audit_buffer *ab;
1098         char *ctx = NULL;
1099         u32 len;
1100         int rc = 0;
1101 
1102         ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1103         if (!ab)
1104                 return rc;
1105 
1106         audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1107                          from_kuid(&init_user_ns, auid),
1108                          from_kuid(&init_user_ns, uid), sessionid);
1109         if (sid) {
1110                 if (security_secid_to_secctx(sid, &ctx, &len)) {
1111                         audit_log_format(ab, " obj=(none)");
1112                         rc = 1;
1113                 } else {
1114                         audit_log_format(ab, " obj=%s", ctx);
1115                         security_release_secctx(ctx, len);
1116                 }
1117         }
1118         audit_log_format(ab, " ocomm=");
1119         audit_log_untrustedstring(ab, comm);
1120         audit_log_end(ab);
1121 
1122         return rc;
1123 }
1124 
1125 static void audit_log_execve_info(struct audit_context *context,
1126                                   struct audit_buffer **ab)
1127 {
1128         long len_max;
1129         long len_rem;
1130         long len_full;
1131         long len_buf;
1132         long len_abuf = 0;
1133         long len_tmp;
1134         bool require_data;
1135         bool encode;
1136         unsigned int iter;
1137         unsigned int arg;
1138         char *buf_head;
1139         char *buf;
1140         const char __user *p = (const char __user *)current->mm->arg_start;
1141 
1142         /* NOTE: this buffer needs to be large enough to hold all the non-arg
1143          *       data we put in the audit record for this argument (see the
1144          *       code below) ... at this point in time 96 is plenty */
1145         char abuf[96];
1146 
1147         /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1148          *       current value of 7500 is not as important as the fact that it
1149          *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1150          *       room if we go over a little bit in the logging below */
1151         WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1152         len_max = MAX_EXECVE_AUDIT_LEN;
1153 
1154         /* scratch buffer to hold the userspace args */
1155         buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1156         if (!buf_head) {
1157                 audit_panic("out of memory for argv string");
1158                 return;
1159         }
1160         buf = buf_head;
1161 
1162         audit_log_format(*ab, "argc=%d", context->execve.argc);
1163 
1164         len_rem = len_max;
1165         len_buf = 0;
1166         len_full = 0;
1167         require_data = true;
1168         encode = false;
1169         iter = 0;
1170         arg = 0;
1171         do {
1172                 /* NOTE: we don't ever want to trust this value for anything
1173                  *       serious, but the audit record format insists we
1174                  *       provide an argument length for really long arguments,
1175                  *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1176                  *       to use strncpy_from_user() to obtain this value for
1177                  *       recording in the log, although we don't use it
1178                  *       anywhere here to avoid a double-fetch problem */
1179                 if (len_full == 0)
1180                         len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1181 
1182                 /* read more data from userspace */
1183                 if (require_data) {
1184                         /* can we make more room in the buffer? */
1185                         if (buf != buf_head) {
1186                                 memmove(buf_head, buf, len_buf);
1187                                 buf = buf_head;
1188                         }
1189 
1190                         /* fetch as much as we can of the argument */
1191                         len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1192                                                     len_max - len_buf);
1193                         if (len_tmp == -EFAULT) {
1194                                 /* unable to copy from userspace */
1195                                 send_sig(SIGKILL, current, 0);
1196                                 goto out;
1197                         } else if (len_tmp == (len_max - len_buf)) {
1198                                 /* buffer is not large enough */
1199                                 require_data = true;
1200                                 /* NOTE: if we are going to span multiple
1201                                  *       buffers force the encoding so we stand
1202                                  *       a chance at a sane len_full value and
1203                                  *       consistent record encoding */
1204                                 encode = true;
1205                                 len_full = len_full * 2;
1206                                 p += len_tmp;
1207                         } else {
1208                                 require_data = false;
1209                                 if (!encode)
1210                                         encode = audit_string_contains_control(
1211                                                                 buf, len_tmp);
1212                                 /* try to use a trusted value for len_full */
1213                                 if (len_full < len_max)
1214                                         len_full = (encode ?
1215                                                     len_tmp * 2 : len_tmp);
1216                                 p += len_tmp + 1;
1217                         }
1218                         len_buf += len_tmp;
1219                         buf_head[len_buf] = '\0';
1220 
1221                         /* length of the buffer in the audit record? */
1222                         len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1223                 }
1224 
1225                 /* write as much as we can to the audit log */
1226                 if (len_buf >= 0) {
1227                         /* NOTE: some magic numbers here - basically if we
1228                          *       can't fit a reasonable amount of data into the
1229                          *       existing audit buffer, flush it and start with
1230                          *       a new buffer */
1231                         if ((sizeof(abuf) + 8) > len_rem) {
1232                                 len_rem = len_max;
1233                                 audit_log_end(*ab);
1234                                 *ab = audit_log_start(context,
1235                                                       GFP_KERNEL, AUDIT_EXECVE);
1236                                 if (!*ab)
1237                                         goto out;
1238                         }
1239 
1240                         /* create the non-arg portion of the arg record */
1241                         len_tmp = 0;
1242                         if (require_data || (iter > 0) ||
1243                             ((len_abuf + sizeof(abuf)) > len_rem)) {
1244                                 if (iter == 0) {
1245                                         len_tmp += snprintf(&abuf[len_tmp],
1246                                                         sizeof(abuf) - len_tmp,
1247                                                         " a%d_len=%lu",
1248                                                         arg, len_full);
1249                                 }
1250                                 len_tmp += snprintf(&abuf[len_tmp],
1251                                                     sizeof(abuf) - len_tmp,
1252                                                     " a%d[%d]=", arg, iter++);
1253                         } else
1254                                 len_tmp += snprintf(&abuf[len_tmp],
1255                                                     sizeof(abuf) - len_tmp,
1256                                                     " a%d=", arg);
1257                         WARN_ON(len_tmp >= sizeof(abuf));
1258                         abuf[sizeof(abuf) - 1] = '\0';
1259 
1260                         /* log the arg in the audit record */
1261                         audit_log_format(*ab, "%s", abuf);
1262                         len_rem -= len_tmp;
1263                         len_tmp = len_buf;
1264                         if (encode) {
1265                                 if (len_abuf > len_rem)
1266                                         len_tmp = len_rem / 2; /* encoding */
1267                                 audit_log_n_hex(*ab, buf, len_tmp);
1268                                 len_rem -= len_tmp * 2;
1269                                 len_abuf -= len_tmp * 2;
1270                         } else {
1271                                 if (len_abuf > len_rem)
1272                                         len_tmp = len_rem - 2; /* quotes */
1273                                 audit_log_n_string(*ab, buf, len_tmp);
1274                                 len_rem -= len_tmp + 2;
1275                                 /* don't subtract the "2" because we still need
1276                                  * to add quotes to the remaining string */
1277                                 len_abuf -= len_tmp;
1278                         }
1279                         len_buf -= len_tmp;
1280                         buf += len_tmp;
1281                 }
1282 
1283                 /* ready to move to the next argument? */
1284                 if ((len_buf == 0) && !require_data) {
1285                         arg++;
1286                         iter = 0;
1287                         len_full = 0;
1288                         require_data = true;
1289                         encode = false;
1290                 }
1291         } while (arg < context->execve.argc);
1292 
1293         /* NOTE: the caller handles the final audit_log_end() call */
1294 
1295 out:
1296         kfree(buf_head);
1297 }
1298 
1299 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1300                           kernel_cap_t *cap)
1301 {
1302         if (cap_isclear(*cap)) {
1303                 audit_log_format(ab, " %s=0", prefix);
1304                 return;
1305         }
1306         audit_log_format(ab, " %s=%016llx", prefix, cap->val);
1307 }
1308 
1309 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1310 {
1311         if (name->fcap_ver == -1) {
1312                 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1313                 return;
1314         }
1315         audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1316         audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1317         audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1318                          name->fcap.fE, name->fcap_ver,
1319                          from_kuid(&init_user_ns, name->fcap.rootid));
1320 }
1321 
1322 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1323 {
1324         const struct audit_ntp_data *ntp = &context->time.ntp_data;
1325         const struct timespec64 *tk = &context->time.tk_injoffset;
1326         static const char * const ntp_name[] = {
1327                 "offset",
1328                 "freq",
1329                 "status",
1330                 "tai",
1331                 "tick",
1332                 "adjust",
1333         };
1334         int type;
1335 
1336         if (context->type == AUDIT_TIME_ADJNTPVAL) {
1337                 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1338                         if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1339                                 if (!*ab) {
1340                                         *ab = audit_log_start(context,
1341                                                         GFP_KERNEL,
1342                                                         AUDIT_TIME_ADJNTPVAL);
1343                                         if (!*ab)
1344                                                 return;
1345                                 }
1346                                 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1347                                                  ntp_name[type],
1348                                                  ntp->vals[type].oldval,
1349                                                  ntp->vals[type].newval);
1350                                 audit_log_end(*ab);
1351                                 *ab = NULL;
1352                         }
1353                 }
1354         }
1355         if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1356                 if (!*ab) {
1357                         *ab = audit_log_start(context, GFP_KERNEL,
1358                                               AUDIT_TIME_INJOFFSET);
1359                         if (!*ab)
1360                                 return;
1361                 }
1362                 audit_log_format(*ab, "sec=%lli nsec=%li",
1363                                  (long long)tk->tv_sec, tk->tv_nsec);
1364                 audit_log_end(*ab);
1365                 *ab = NULL;
1366         }
1367 }
1368 
1369 static void show_special(struct audit_context *context, int *call_panic)
1370 {
1371         struct audit_buffer *ab;
1372         int i;
1373 
1374         ab = audit_log_start(context, GFP_KERNEL, context->type);
1375         if (!ab)
1376                 return;
1377 
1378         switch (context->type) {
1379         case AUDIT_SOCKETCALL: {
1380                 int nargs = context->socketcall.nargs;
1381 
1382                 audit_log_format(ab, "nargs=%d", nargs);
1383                 for (i = 0; i < nargs; i++)
1384                         audit_log_format(ab, " a%d=%lx", i,
1385                                 context->socketcall.args[i]);
1386                 break; }
1387         case AUDIT_IPC: {
1388                 u32 osid = context->ipc.osid;
1389 
1390                 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1391                                  from_kuid(&init_user_ns, context->ipc.uid),
1392                                  from_kgid(&init_user_ns, context->ipc.gid),
1393                                  context->ipc.mode);
1394                 if (osid) {
1395                         char *ctx = NULL;
1396                         u32 len;
1397 
1398                         if (security_secid_to_secctx(osid, &ctx, &len)) {
1399                                 audit_log_format(ab, " osid=%u", osid);
1400                                 *call_panic = 1;
1401                         } else {
1402                                 audit_log_format(ab, " obj=%s", ctx);
1403                                 security_release_secctx(ctx, len);
1404                         }
1405                 }
1406                 if (context->ipc.has_perm) {
1407                         audit_log_end(ab);
1408                         ab = audit_log_start(context, GFP_KERNEL,
1409                                              AUDIT_IPC_SET_PERM);
1410                         if (unlikely(!ab))
1411                                 return;
1412                         audit_log_format(ab,
1413                                 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1414                                 context->ipc.qbytes,
1415                                 context->ipc.perm_uid,
1416                                 context->ipc.perm_gid,
1417                                 context->ipc.perm_mode);
1418                 }
1419                 break; }
1420         case AUDIT_MQ_OPEN:
1421                 audit_log_format(ab,
1422                         "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1423                         "mq_msgsize=%ld mq_curmsgs=%ld",
1424                         context->mq_open.oflag, context->mq_open.mode,
1425                         context->mq_open.attr.mq_flags,
1426                         context->mq_open.attr.mq_maxmsg,
1427                         context->mq_open.attr.mq_msgsize,
1428                         context->mq_open.attr.mq_curmsgs);
1429                 break;
1430         case AUDIT_MQ_SENDRECV:
1431                 audit_log_format(ab,
1432                         "mqdes=%d msg_len=%zd msg_prio=%u "
1433                         "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1434                         context->mq_sendrecv.mqdes,
1435                         context->mq_sendrecv.msg_len,
1436                         context->mq_sendrecv.msg_prio,
1437                         (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1438                         context->mq_sendrecv.abs_timeout.tv_nsec);
1439                 break;
1440         case AUDIT_MQ_NOTIFY:
1441                 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1442                                 context->mq_notify.mqdes,
1443                                 context->mq_notify.sigev_signo);
1444                 break;
1445         case AUDIT_MQ_GETSETATTR: {
1446                 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1447 
1448                 audit_log_format(ab,
1449                         "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1450                         "mq_curmsgs=%ld ",
1451                         context->mq_getsetattr.mqdes,
1452                         attr->mq_flags, attr->mq_maxmsg,
1453                         attr->mq_msgsize, attr->mq_curmsgs);
1454                 break; }
1455         case AUDIT_CAPSET:
1456                 audit_log_format(ab, "pid=%d", context->capset.pid);
1457                 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1458                 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1459                 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1460                 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1461                 break;
1462         case AUDIT_MMAP:
1463                 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1464                                  context->mmap.flags);
1465                 break;
1466         case AUDIT_OPENAT2:
1467                 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1468                                  context->openat2.flags,
1469                                  context->openat2.mode,
1470                                  context->openat2.resolve);
1471                 break;
1472         case AUDIT_EXECVE:
1473                 audit_log_execve_info(context, &ab);
1474                 break;
1475         case AUDIT_KERN_MODULE:
1476                 audit_log_format(ab, "name=");
1477                 if (context->module.name) {
1478                         audit_log_untrustedstring(ab, context->module.name);
1479                 } else
1480                         audit_log_format(ab, "(null)");
1481 
1482                 break;
1483         case AUDIT_TIME_ADJNTPVAL:
1484         case AUDIT_TIME_INJOFFSET:
1485                 /* this call deviates from the rest, eating the buffer */
1486                 audit_log_time(context, &ab);
1487                 break;
1488         }
1489         audit_log_end(ab);
1490 }
1491 
1492 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1493 {
1494         char *end = proctitle + len - 1;
1495 
1496         while (end > proctitle && !isprint(*end))
1497                 end--;
1498 
1499         /* catch the case where proctitle is only 1 non-print character */
1500         len = end - proctitle + 1;
1501         len -= isprint(proctitle[len-1]) == 0;
1502         return len;
1503 }
1504 
1505 /*
1506  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1507  * @context: audit_context for the task
1508  * @n: audit_names structure with reportable details
1509  * @path: optional path to report instead of audit_names->name
1510  * @record_num: record number to report when handling a list of names
1511  * @call_panic: optional pointer to int that will be updated if secid fails
1512  */
1513 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1514                     const struct path *path, int record_num, int *call_panic)
1515 {
1516         struct audit_buffer *ab;
1517 
1518         ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1519         if (!ab)
1520                 return;
1521 
1522         audit_log_format(ab, "item=%d", record_num);
1523 
1524         if (path)
1525                 audit_log_d_path(ab, " name=", path);
1526         else if (n->name) {
1527                 switch (n->name_len) {
1528                 case AUDIT_NAME_FULL:
1529                         /* log the full path */
1530                         audit_log_format(ab, " name=");
1531                         audit_log_untrustedstring(ab, n->name->name);
1532                         break;
1533                 case 0:
1534                         /* name was specified as a relative path and the
1535                          * directory component is the cwd
1536                          */
1537                         if (context->pwd.dentry && context->pwd.mnt)
1538                                 audit_log_d_path(ab, " name=", &context->pwd);
1539                         else
1540                                 audit_log_format(ab, " name=(null)");
1541                         break;
1542                 default:
1543                         /* log the name's directory component */
1544                         audit_log_format(ab, " name=");
1545                         audit_log_n_untrustedstring(ab, n->name->name,
1546                                                     n->name_len);
1547                 }
1548         } else
1549                 audit_log_format(ab, " name=(null)");
1550 
1551         if (n->ino != AUDIT_INO_UNSET)
1552                 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1553                                  n->ino,
1554                                  MAJOR(n->dev),
1555                                  MINOR(n->dev),
1556                                  n->mode,
1557                                  from_kuid(&init_user_ns, n->uid),
1558                                  from_kgid(&init_user_ns, n->gid),
1559                                  MAJOR(n->rdev),
1560                                  MINOR(n->rdev));
1561         if (n->osid != 0) {
1562                 char *ctx = NULL;
1563                 u32 len;
1564 
1565                 if (security_secid_to_secctx(
1566                         n->osid, &ctx, &len)) {
1567                         audit_log_format(ab, " osid=%u", n->osid);
1568                         if (call_panic)
1569                                 *call_panic = 2;
1570                 } else {
1571                         audit_log_format(ab, " obj=%s", ctx);
1572                         security_release_secctx(ctx, len);
1573                 }
1574         }
1575 
1576         /* log the audit_names record type */
1577         switch (n->type) {
1578         case AUDIT_TYPE_NORMAL:
1579                 audit_log_format(ab, " nametype=NORMAL");
1580                 break;
1581         case AUDIT_TYPE_PARENT:
1582                 audit_log_format(ab, " nametype=PARENT");
1583                 break;
1584         case AUDIT_TYPE_CHILD_DELETE:
1585                 audit_log_format(ab, " nametype=DELETE");
1586                 break;
1587         case AUDIT_TYPE_CHILD_CREATE:
1588                 audit_log_format(ab, " nametype=CREATE");
1589                 break;
1590         default:
1591                 audit_log_format(ab, " nametype=UNKNOWN");
1592                 break;
1593         }
1594 
1595         audit_log_fcaps(ab, n);
1596         audit_log_end(ab);
1597 }
1598 
1599 static void audit_log_proctitle(void)
1600 {
1601         int res;
1602         char *buf;
1603         char *msg = "(null)";
1604         int len = strlen(msg);
1605         struct audit_context *context = audit_context();
1606         struct audit_buffer *ab;
1607 
1608         ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1609         if (!ab)
1610                 return; /* audit_panic or being filtered */
1611 
1612         audit_log_format(ab, "proctitle=");
1613 
1614         /* Not  cached */
1615         if (!context->proctitle.value) {
1616                 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1617                 if (!buf)
1618                         goto out;
1619                 /* Historically called this from procfs naming */
1620                 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1621                 if (res == 0) {
1622                         kfree(buf);
1623                         goto out;
1624                 }
1625                 res = audit_proctitle_rtrim(buf, res);
1626                 if (res == 0) {
1627                         kfree(buf);
1628                         goto out;
1629                 }
1630                 context->proctitle.value = buf;
1631                 context->proctitle.len = res;
1632         }
1633         msg = context->proctitle.value;
1634         len = context->proctitle.len;
1635 out:
1636         audit_log_n_untrustedstring(ab, msg, len);
1637         audit_log_end(ab);
1638 }
1639 
1640 /**
1641  * audit_log_uring - generate a AUDIT_URINGOP record
1642  * @ctx: the audit context
1643  */
1644 static void audit_log_uring(struct audit_context *ctx)
1645 {
1646         struct audit_buffer *ab;
1647         const struct cred *cred;
1648 
1649         ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1650         if (!ab)
1651                 return;
1652         cred = current_cred();
1653         audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1654         if (ctx->return_valid != AUDITSC_INVALID)
1655                 audit_log_format(ab, " success=%s exit=%ld",
1656                                  (ctx->return_valid == AUDITSC_SUCCESS ?
1657                                   "yes" : "no"),
1658                                  ctx->return_code);
1659         audit_log_format(ab,
1660                          " items=%d"
1661                          " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1662                          " fsuid=%u egid=%u sgid=%u fsgid=%u",
1663                          ctx->name_count,
1664                          task_ppid_nr(current), task_tgid_nr(current),
1665                          from_kuid(&init_user_ns, cred->uid),
1666                          from_kgid(&init_user_ns, cred->gid),
1667                          from_kuid(&init_user_ns, cred->euid),
1668                          from_kuid(&init_user_ns, cred->suid),
1669                          from_kuid(&init_user_ns, cred->fsuid),
1670                          from_kgid(&init_user_ns, cred->egid),
1671                          from_kgid(&init_user_ns, cred->sgid),
1672                          from_kgid(&init_user_ns, cred->fsgid));
1673         audit_log_task_context(ab);
1674         audit_log_key(ab, ctx->filterkey);
1675         audit_log_end(ab);
1676 }
1677 
1678 static void audit_log_exit(void)
1679 {
1680         int i, call_panic = 0;
1681         struct audit_context *context = audit_context();
1682         struct audit_buffer *ab;
1683         struct audit_aux_data *aux;
1684         struct audit_names *n;
1685 
1686         context->personality = current->personality;
1687 
1688         switch (context->context) {
1689         case AUDIT_CTX_SYSCALL:
1690                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1691                 if (!ab)
1692                         return;
1693                 audit_log_format(ab, "arch=%x syscall=%d",
1694                                  context->arch, context->major);
1695                 if (context->personality != PER_LINUX)
1696                         audit_log_format(ab, " per=%lx", context->personality);
1697                 if (context->return_valid != AUDITSC_INVALID)
1698                         audit_log_format(ab, " success=%s exit=%ld",
1699                                          (context->return_valid == AUDITSC_SUCCESS ?
1700                                           "yes" : "no"),
1701                                          context->return_code);
1702                 audit_log_format(ab,
1703                                  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1704                                  context->argv[0],
1705                                  context->argv[1],
1706                                  context->argv[2],
1707                                  context->argv[3],
1708                                  context->name_count);
1709                 audit_log_task_info(ab);
1710                 audit_log_key(ab, context->filterkey);
1711                 audit_log_end(ab);
1712                 break;
1713         case AUDIT_CTX_URING:
1714                 audit_log_uring(context);
1715                 break;
1716         default:
1717                 BUG();
1718                 break;
1719         }
1720 
1721         for (aux = context->aux; aux; aux = aux->next) {
1722 
1723                 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1724                 if (!ab)
1725                         continue; /* audit_panic has been called */
1726 
1727                 switch (aux->type) {
1728 
1729                 case AUDIT_BPRM_FCAPS: {
1730                         struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1731 
1732                         audit_log_format(ab, "fver=%x", axs->fcap_ver);
1733                         audit_log_cap(ab, "fp", &axs->fcap.permitted);
1734                         audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1735                         audit_log_format(ab, " fe=%d", axs->fcap.fE);
1736                         audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1737                         audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1738                         audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1739                         audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1740                         audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1741                         audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1742                         audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1743                         audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1744                         audit_log_format(ab, " frootid=%d",
1745                                          from_kuid(&init_user_ns,
1746                                                    axs->fcap.rootid));
1747                         break; }
1748 
1749                 }
1750                 audit_log_end(ab);
1751         }
1752 
1753         if (context->type)
1754                 show_special(context, &call_panic);
1755 
1756         if (context->fds[0] >= 0) {
1757                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1758                 if (ab) {
1759                         audit_log_format(ab, "fd0=%d fd1=%d",
1760                                         context->fds[0], context->fds[1]);
1761                         audit_log_end(ab);
1762                 }
1763         }
1764 
1765         if (context->sockaddr_len) {
1766                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1767                 if (ab) {
1768                         audit_log_format(ab, "saddr=");
1769                         audit_log_n_hex(ab, (void *)context->sockaddr,
1770                                         context->sockaddr_len);
1771                         audit_log_end(ab);
1772                 }
1773         }
1774 
1775         for (aux = context->aux_pids; aux; aux = aux->next) {
1776                 struct audit_aux_data_pids *axs = (void *)aux;
1777 
1778                 for (i = 0; i < axs->pid_count; i++)
1779                         if (audit_log_pid_context(context, axs->target_pid[i],
1780                                                   axs->target_auid[i],
1781                                                   axs->target_uid[i],
1782                                                   axs->target_sessionid[i],
1783                                                   axs->target_sid[i],
1784                                                   axs->target_comm[i]))
1785                                 call_panic = 1;
1786         }
1787 
1788         if (context->target_pid &&
1789             audit_log_pid_context(context, context->target_pid,
1790                                   context->target_auid, context->target_uid,
1791                                   context->target_sessionid,
1792                                   context->target_sid, context->target_comm))
1793                         call_panic = 1;
1794 
1795         if (context->pwd.dentry && context->pwd.mnt) {
1796                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1797                 if (ab) {
1798                         audit_log_d_path(ab, "cwd=", &context->pwd);
1799                         audit_log_end(ab);
1800                 }
1801         }
1802 
1803         i = 0;
1804         list_for_each_entry(n, &context->names_list, list) {
1805                 if (n->hidden)
1806                         continue;
1807                 audit_log_name(context, n, NULL, i++, &call_panic);
1808         }
1809 
1810         if (context->context == AUDIT_CTX_SYSCALL)
1811                 audit_log_proctitle();
1812 
1813         /* Send end of event record to help user space know we are finished */
1814         ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1815         if (ab)
1816                 audit_log_end(ab);
1817         if (call_panic)
1818                 audit_panic("error in audit_log_exit()");
1819 }
1820 
1821 /**
1822  * __audit_free - free a per-task audit context
1823  * @tsk: task whose audit context block to free
1824  *
1825  * Called from copy_process, do_exit, and the io_uring code
1826  */
1827 void __audit_free(struct task_struct *tsk)
1828 {
1829         struct audit_context *context = tsk->audit_context;
1830 
1831         if (!context)
1832                 return;
1833 
1834         /* this may generate CONFIG_CHANGE records */
1835         if (!list_empty(&context->killed_trees))
1836                 audit_kill_trees(context);
1837 
1838         /* We are called either by do_exit() or the fork() error handling code;
1839          * in the former case tsk == current and in the latter tsk is a
1840          * random task_struct that doesn't have any meaningful data we
1841          * need to log via audit_log_exit().
1842          */
1843         if (tsk == current && !context->dummy) {
1844                 context->return_valid = AUDITSC_INVALID;
1845                 context->return_code = 0;
1846                 if (context->context == AUDIT_CTX_SYSCALL) {
1847                         audit_filter_syscall(tsk, context);
1848                         audit_filter_inodes(tsk, context);
1849                         if (context->current_state == AUDIT_STATE_RECORD)
1850                                 audit_log_exit();
1851                 } else if (context->context == AUDIT_CTX_URING) {
1852                         /* TODO: verify this case is real and valid */
1853                         audit_filter_uring(tsk, context);
1854                         audit_filter_inodes(tsk, context);
1855                         if (context->current_state == AUDIT_STATE_RECORD)
1856                                 audit_log_uring(context);
1857                 }
1858         }
1859 
1860         audit_set_context(tsk, NULL);
1861         audit_free_context(context);
1862 }
1863 
1864 /**
1865  * audit_return_fixup - fixup the return codes in the audit_context
1866  * @ctx: the audit_context
1867  * @success: true/false value to indicate if the operation succeeded or not
1868  * @code: operation return code
1869  *
1870  * We need to fixup the return code in the audit logs if the actual return
1871  * codes are later going to be fixed by the arch specific signal handlers.
1872  */
1873 static void audit_return_fixup(struct audit_context *ctx,
1874                                int success, long code)
1875 {
1876         /*
1877          * This is actually a test for:
1878          * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1879          * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1880          *
1881          * but is faster than a bunch of ||
1882          */
1883         if (unlikely(code <= -ERESTARTSYS) &&
1884             (code >= -ERESTART_RESTARTBLOCK) &&
1885             (code != -ENOIOCTLCMD))
1886                 ctx->return_code = -EINTR;
1887         else
1888                 ctx->return_code  = code;
1889         ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1890 }
1891 
1892 /**
1893  * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1894  * @op: the io_uring opcode
1895  *
1896  * This is similar to audit_syscall_entry() but is intended for use by io_uring
1897  * operations.  This function should only ever be called from
1898  * audit_uring_entry() as we rely on the audit context checking present in that
1899  * function.
1900  */
1901 void __audit_uring_entry(u8 op)
1902 {
1903         struct audit_context *ctx = audit_context();
1904 
1905         if (ctx->state == AUDIT_STATE_DISABLED)
1906                 return;
1907 
1908         /*
1909          * NOTE: It's possible that we can be called from the process' context
1910          *       before it returns to userspace, and before audit_syscall_exit()
1911          *       is called.  In this case there is not much to do, just record
1912          *       the io_uring details and return.
1913          */
1914         ctx->uring_op = op;
1915         if (ctx->context == AUDIT_CTX_SYSCALL)
1916                 return;
1917 
1918         ctx->dummy = !audit_n_rules;
1919         if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1920                 ctx->prio = 0;
1921 
1922         ctx->context = AUDIT_CTX_URING;
1923         ctx->current_state = ctx->state;
1924         ktime_get_coarse_real_ts64(&ctx->ctime);
1925 }
1926 
1927 /**
1928  * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1929  * @success: true/false value to indicate if the operation succeeded or not
1930  * @code: operation return code
1931  *
1932  * This is similar to audit_syscall_exit() but is intended for use by io_uring
1933  * operations.  This function should only ever be called from
1934  * audit_uring_exit() as we rely on the audit context checking present in that
1935  * function.
1936  */
1937 void __audit_uring_exit(int success, long code)
1938 {
1939         struct audit_context *ctx = audit_context();
1940 
1941         if (ctx->dummy) {
1942                 if (ctx->context != AUDIT_CTX_URING)
1943                         return;
1944                 goto out;
1945         }
1946 
1947         audit_return_fixup(ctx, success, code);
1948         if (ctx->context == AUDIT_CTX_SYSCALL) {
1949                 /*
1950                  * NOTE: See the note in __audit_uring_entry() about the case
1951                  *       where we may be called from process context before we
1952                  *       return to userspace via audit_syscall_exit().  In this
1953                  *       case we simply emit a URINGOP record and bail, the
1954                  *       normal syscall exit handling will take care of
1955                  *       everything else.
1956                  *       It is also worth mentioning that when we are called,
1957                  *       the current process creds may differ from the creds
1958                  *       used during the normal syscall processing; keep that
1959                  *       in mind if/when we move the record generation code.
1960                  */
1961 
1962                 /*
1963                  * We need to filter on the syscall info here to decide if we
1964                  * should emit a URINGOP record.  I know it seems odd but this
1965                  * solves the problem where users have a filter to block *all*
1966                  * syscall records in the "exit" filter; we want to preserve
1967                  * the behavior here.
1968                  */
1969                 audit_filter_syscall(current, ctx);
1970                 if (ctx->current_state != AUDIT_STATE_RECORD)
1971                         audit_filter_uring(current, ctx);
1972                 audit_filter_inodes(current, ctx);
1973                 if (ctx->current_state != AUDIT_STATE_RECORD)
1974                         return;
1975 
1976                 audit_log_uring(ctx);
1977                 return;
1978         }
1979 
1980         /* this may generate CONFIG_CHANGE records */
1981         if (!list_empty(&ctx->killed_trees))
1982                 audit_kill_trees(ctx);
1983 
1984         /* run through both filters to ensure we set the filterkey properly */
1985         audit_filter_uring(current, ctx);
1986         audit_filter_inodes(current, ctx);
1987         if (ctx->current_state != AUDIT_STATE_RECORD)
1988                 goto out;
1989         audit_log_exit();
1990 
1991 out:
1992         audit_reset_context(ctx);
1993 }
1994 
1995 /**
1996  * __audit_syscall_entry - fill in an audit record at syscall entry
1997  * @major: major syscall type (function)
1998  * @a1: additional syscall register 1
1999  * @a2: additional syscall register 2
2000  * @a3: additional syscall register 3
2001  * @a4: additional syscall register 4
2002  *
2003  * Fill in audit context at syscall entry.  This only happens if the
2004  * audit context was created when the task was created and the state or
2005  * filters demand the audit context be built.  If the state from the
2006  * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2007  * then the record will be written at syscall exit time (otherwise, it
2008  * will only be written if another part of the kernel requests that it
2009  * be written).
2010  */
2011 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2012                            unsigned long a3, unsigned long a4)
2013 {
2014         struct audit_context *context = audit_context();
2015         enum audit_state     state;
2016 
2017         if (!audit_enabled || !context)
2018                 return;
2019 
2020         WARN_ON(context->context != AUDIT_CTX_UNUSED);
2021         WARN_ON(context->name_count);
2022         if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2023                 audit_panic("unrecoverable error in audit_syscall_entry()");
2024                 return;
2025         }
2026 
2027         state = context->state;
2028         if (state == AUDIT_STATE_DISABLED)
2029                 return;
2030 
2031         context->dummy = !audit_n_rules;
2032         if (!context->dummy && state == AUDIT_STATE_BUILD) {
2033                 context->prio = 0;
2034                 if (auditd_test_task(current))
2035                         return;
2036         }
2037 
2038         context->arch       = syscall_get_arch(current);
2039         context->major      = major;
2040         context->argv[0]    = a1;
2041         context->argv[1]    = a2;
2042         context->argv[2]    = a3;
2043         context->argv[3]    = a4;
2044         context->context = AUDIT_CTX_SYSCALL;
2045         context->current_state  = state;
2046         ktime_get_coarse_real_ts64(&context->ctime);
2047 }
2048 
2049 /**
2050  * __audit_syscall_exit - deallocate audit context after a system call
2051  * @success: success value of the syscall
2052  * @return_code: return value of the syscall
2053  *
2054  * Tear down after system call.  If the audit context has been marked as
2055  * auditable (either because of the AUDIT_STATE_RECORD state from
2056  * filtering, or because some other part of the kernel wrote an audit
2057  * message), then write out the syscall information.  In call cases,
2058  * free the names stored from getname().
2059  */
2060 void __audit_syscall_exit(int success, long return_code)
2061 {
2062         struct audit_context *context = audit_context();
2063 
2064         if (!context || context->dummy ||
2065             context->context != AUDIT_CTX_SYSCALL)
2066                 goto out;
2067 
2068         /* this may generate CONFIG_CHANGE records */
2069         if (!list_empty(&context->killed_trees))
2070                 audit_kill_trees(context);
2071 
2072         audit_return_fixup(context, success, return_code);
2073         /* run through both filters to ensure we set the filterkey properly */
2074         audit_filter_syscall(current, context);
2075         audit_filter_inodes(current, context);
2076         if (context->current_state != AUDIT_STATE_RECORD)
2077                 goto out;
2078 
2079         audit_log_exit();
2080 
2081 out:
2082         audit_reset_context(context);
2083 }
2084 
2085 static inline void handle_one(const struct inode *inode)
2086 {
2087         struct audit_context *context;
2088         struct audit_tree_refs *p;
2089         struct audit_chunk *chunk;
2090         int count;
2091 
2092         if (likely(!inode->i_fsnotify_marks))
2093                 return;
2094         context = audit_context();
2095         p = context->trees;
2096         count = context->tree_count;
2097         rcu_read_lock();
2098         chunk = audit_tree_lookup(inode);
2099         rcu_read_unlock();
2100         if (!chunk)
2101                 return;
2102         if (likely(put_tree_ref(context, chunk)))
2103                 return;
2104         if (unlikely(!grow_tree_refs(context))) {
2105                 pr_warn("out of memory, audit has lost a tree reference\n");
2106                 audit_set_auditable(context);
2107                 audit_put_chunk(chunk);
2108                 unroll_tree_refs(context, p, count);
2109                 return;
2110         }
2111         put_tree_ref(context, chunk);
2112 }
2113 
2114 static void handle_path(const struct dentry *dentry)
2115 {
2116         struct audit_context *context;
2117         struct audit_tree_refs *p;
2118         const struct dentry *d, *parent;
2119         struct audit_chunk *drop;
2120         unsigned long seq;
2121         int count;
2122 
2123         context = audit_context();
2124         p = context->trees;
2125         count = context->tree_count;
2126 retry:
2127         drop = NULL;
2128         d = dentry;
2129         rcu_read_lock();
2130         seq = read_seqbegin(&rename_lock);
2131         for (;;) {
2132                 struct inode *inode = d_backing_inode(d);
2133 
2134                 if (inode && unlikely(inode->i_fsnotify_marks)) {
2135                         struct audit_chunk *chunk;
2136 
2137                         chunk = audit_tree_lookup(inode);
2138                         if (chunk) {
2139                                 if (unlikely(!put_tree_ref(context, chunk))) {
2140                                         drop = chunk;
2141                                         break;
2142                                 }
2143                         }
2144                 }
2145                 parent = d->d_parent;
2146                 if (parent == d)
2147                         break;
2148                 d = parent;
2149         }
2150         if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
2151                 rcu_read_unlock();
2152                 if (!drop) {
2153                         /* just a race with rename */
2154                         unroll_tree_refs(context, p, count);
2155                         goto retry;
2156                 }
2157                 audit_put_chunk(drop);
2158                 if (grow_tree_refs(context)) {
2159                         /* OK, got more space */
2160                         unroll_tree_refs(context, p, count);
2161                         goto retry;
2162                 }
2163                 /* too bad */
2164                 pr_warn("out of memory, audit has lost a tree reference\n");
2165                 unroll_tree_refs(context, p, count);
2166                 audit_set_auditable(context);
2167                 return;
2168         }
2169         rcu_read_unlock();
2170 }
2171 
2172 static struct audit_names *audit_alloc_name(struct audit_context *context,
2173                                                 unsigned char type)
2174 {
2175         struct audit_names *aname;
2176 
2177         if (context->name_count < AUDIT_NAMES) {
2178                 aname = &context->preallocated_names[context->name_count];
2179                 memset(aname, 0, sizeof(*aname));
2180         } else {
2181                 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2182                 if (!aname)
2183                         return NULL;
2184                 aname->should_free = true;
2185         }
2186 
2187         aname->ino = AUDIT_INO_UNSET;
2188         aname->type = type;
2189         list_add_tail(&aname->list, &context->names_list);
2190 
2191         context->name_count++;
2192         if (!context->pwd.dentry)
2193                 get_fs_pwd(current->fs, &context->pwd);
2194         return aname;
2195 }
2196 
2197 /**
2198  * __audit_reusename - fill out filename with info from existing entry
2199  * @uptr: userland ptr to pathname
2200  *
2201  * Search the audit_names list for the current audit context. If there is an
2202  * existing entry with a matching "uptr" then return the filename
2203  * associated with that audit_name. If not, return NULL.
2204  */
2205 struct filename *
2206 __audit_reusename(const __user char *uptr)
2207 {
2208         struct audit_context *context = audit_context();
2209         struct audit_names *n;
2210 
2211         list_for_each_entry(n, &context->names_list, list) {
2212                 if (!n->name)
2213                         continue;
2214                 if (n->name->uptr == uptr) {
2215                         atomic_inc(&n->name->refcnt);
2216                         return n->name;
2217                 }
2218         }
2219         return NULL;
2220 }
2221 
2222 /**
2223  * __audit_getname - add a name to the list
2224  * @name: name to add
2225  *
2226  * Add a name to the list of audit names for this context.
2227  * Called from fs/namei.c:getname().
2228  */
2229 void __audit_getname(struct filename *name)
2230 {
2231         struct audit_context *context = audit_context();
2232         struct audit_names *n;
2233 
2234         if (context->context == AUDIT_CTX_UNUSED)
2235                 return;
2236 
2237         n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2238         if (!n)
2239                 return;
2240 
2241         n->name = name;
2242         n->name_len = AUDIT_NAME_FULL;
2243         name->aname = n;
2244         atomic_inc(&name->refcnt);
2245 }
2246 
2247 static inline int audit_copy_fcaps(struct audit_names *name,
2248                                    const struct dentry *dentry)
2249 {
2250         struct cpu_vfs_cap_data caps;
2251         int rc;
2252 
2253         if (!dentry)
2254                 return 0;
2255 
2256         rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
2257         if (rc)
2258                 return rc;
2259 
2260         name->fcap.permitted = caps.permitted;
2261         name->fcap.inheritable = caps.inheritable;
2262         name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2263         name->fcap.rootid = caps.rootid;
2264         name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2265                                 VFS_CAP_REVISION_SHIFT;
2266 
2267         return 0;
2268 }
2269 
2270 /* Copy inode data into an audit_names. */
2271 static void audit_copy_inode(struct audit_names *name,
2272                              const struct dentry *dentry,
2273                              struct inode *inode, unsigned int flags)
2274 {
2275         name->ino   = inode->i_ino;
2276         name->dev   = inode->i_sb->s_dev;
2277         name->mode  = inode->i_mode;
2278         name->uid   = inode->i_uid;
2279         name->gid   = inode->i_gid;
2280         name->rdev  = inode->i_rdev;
2281         security_inode_getsecid(inode, &name->osid);
2282         if (flags & AUDIT_INODE_NOEVAL) {
2283                 name->fcap_ver = -1;
2284                 return;
2285         }
2286         audit_copy_fcaps(name, dentry);
2287 }
2288 
2289 /**
2290  * __audit_inode - store the inode and device from a lookup
2291  * @name: name being audited
2292  * @dentry: dentry being audited
2293  * @flags: attributes for this particular entry
2294  */
2295 void __audit_inode(struct filename *name, const struct dentry *dentry,
2296                    unsigned int flags)
2297 {
2298         struct audit_context *context = audit_context();
2299         struct inode *inode = d_backing_inode(dentry);
2300         struct audit_names *n;
2301         bool parent = flags & AUDIT_INODE_PARENT;
2302         struct audit_entry *e;
2303         struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2304         int i;
2305 
2306         if (context->context == AUDIT_CTX_UNUSED)
2307                 return;
2308 
2309         rcu_read_lock();
2310         list_for_each_entry_rcu(e, list, list) {
2311                 for (i = 0; i < e->rule.field_count; i++) {
2312                         struct audit_field *f = &e->rule.fields[i];
2313 
2314                         if (f->type == AUDIT_FSTYPE
2315                             && audit_comparator(inode->i_sb->s_magic,
2316                                                 f->op, f->val)
2317                             && e->rule.action == AUDIT_NEVER) {
2318                                 rcu_read_unlock();
2319                                 return;
2320                         }
2321                 }
2322         }
2323         rcu_read_unlock();
2324 
2325         if (!name)
2326                 goto out_alloc;
2327 
2328         /*
2329          * If we have a pointer to an audit_names entry already, then we can
2330          * just use it directly if the type is correct.
2331          */
2332         n = name->aname;
2333         if (n) {
2334                 if (parent) {
2335                         if (n->type == AUDIT_TYPE_PARENT ||
2336                             n->type == AUDIT_TYPE_UNKNOWN)
2337                                 goto out;
2338                 } else {
2339                         if (n->type != AUDIT_TYPE_PARENT)
2340                                 goto out;
2341                 }
2342         }
2343 
2344         list_for_each_entry_reverse(n, &context->names_list, list) {
2345                 if (n->ino) {
2346                         /* valid inode number, use that for the comparison */
2347                         if (n->ino != inode->i_ino ||
2348                             n->dev != inode->i_sb->s_dev)
2349                                 continue;
2350                 } else if (n->name) {
2351                         /* inode number has not been set, check the name */
2352                         if (strcmp(n->name->name, name->name))
2353                                 continue;
2354                 } else
2355                         /* no inode and no name (?!) ... this is odd ... */
2356                         continue;
2357 
2358                 /* match the correct record type */
2359                 if (parent) {
2360                         if (n->type == AUDIT_TYPE_PARENT ||
2361                             n->type == AUDIT_TYPE_UNKNOWN)
2362                                 goto out;
2363                 } else {
2364                         if (n->type != AUDIT_TYPE_PARENT)
2365                                 goto out;
2366                 }
2367         }
2368 
2369 out_alloc:
2370         /* unable to find an entry with both a matching name and type */
2371         n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2372         if (!n)
2373                 return;
2374         if (name) {
2375                 n->name = name;
2376                 atomic_inc(&name->refcnt);
2377         }
2378 
2379 out:
2380         if (parent) {
2381                 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2382                 n->type = AUDIT_TYPE_PARENT;
2383                 if (flags & AUDIT_INODE_HIDDEN)
2384                         n->hidden = true;
2385         } else {
2386                 n->name_len = AUDIT_NAME_FULL;
2387                 n->type = AUDIT_TYPE_NORMAL;
2388         }
2389         handle_path(dentry);
2390         audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2391 }
2392 
2393 void __audit_file(const struct file *file)
2394 {
2395         __audit_inode(NULL, file->f_path.dentry, 0);
2396 }
2397 
2398 /**
2399  * __audit_inode_child - collect inode info for created/removed objects
2400  * @parent: inode of dentry parent
2401  * @dentry: dentry being audited
2402  * @type:   AUDIT_TYPE_* value that we're looking for
2403  *
2404  * For syscalls that create or remove filesystem objects, audit_inode
2405  * can only collect information for the filesystem object's parent.
2406  * This call updates the audit context with the child's information.
2407  * Syscalls that create a new filesystem object must be hooked after
2408  * the object is created.  Syscalls that remove a filesystem object
2409  * must be hooked prior, in order to capture the target inode during
2410  * unsuccessful attempts.
2411  */
2412 void __audit_inode_child(struct inode *parent,
2413                          const struct dentry *dentry,
2414                          const unsigned char type)
2415 {
2416         struct audit_context *context = audit_context();
2417         struct inode *inode = d_backing_inode(dentry);
2418         const struct qstr *dname = &dentry->d_name;
2419         struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2420         struct audit_entry *e;
2421         struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2422         int i;
2423 
2424         if (context->context == AUDIT_CTX_UNUSED)
2425                 return;
2426 
2427         rcu_read_lock();
2428         list_for_each_entry_rcu(e, list, list) {
2429                 for (i = 0; i < e->rule.field_count; i++) {
2430                         struct audit_field *f = &e->rule.fields[i];
2431 
2432                         if (f->type == AUDIT_FSTYPE
2433                             && audit_comparator(parent->i_sb->s_magic,
2434                                                 f->op, f->val)
2435                             && e->rule.action == AUDIT_NEVER) {
2436                                 rcu_read_unlock();
2437                                 return;
2438                         }
2439                 }
2440         }
2441         rcu_read_unlock();
2442 
2443         if (inode)
2444                 handle_one(inode);
2445 
2446         /* look for a parent entry first */
2447         list_for_each_entry(n, &context->names_list, list) {
2448                 if (!n->name ||
2449                     (n->type != AUDIT_TYPE_PARENT &&
2450                      n->type != AUDIT_TYPE_UNKNOWN))
2451                         continue;
2452 
2453                 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2454                     !audit_compare_dname_path(dname,
2455                                               n->name->name, n->name_len)) {
2456                         if (n->type == AUDIT_TYPE_UNKNOWN)
2457                                 n->type = AUDIT_TYPE_PARENT;
2458                         found_parent = n;
2459                         break;
2460                 }
2461         }
2462 
2463         cond_resched();
2464 
2465         /* is there a matching child entry? */
2466         list_for_each_entry(n, &context->names_list, list) {
2467                 /* can only match entries that have a name */
2468                 if (!n->name ||
2469                     (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2470                         continue;
2471 
2472                 if (!strcmp(dname->name, n->name->name) ||
2473                     !audit_compare_dname_path(dname, n->name->name,
2474                                                 found_parent ?
2475                                                 found_parent->name_len :
2476                                                 AUDIT_NAME_FULL)) {
2477                         if (n->type == AUDIT_TYPE_UNKNOWN)
2478                                 n->type = type;
2479                         found_child = n;
2480                         break;
2481                 }
2482         }
2483 
2484         if (!found_parent) {
2485                 /* create a new, "anonymous" parent record */
2486                 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2487                 if (!n)
2488                         return;
2489                 audit_copy_inode(n, NULL, parent, 0);
2490         }
2491 
2492         if (!found_child) {
2493                 found_child = audit_alloc_name(context, type);
2494                 if (!found_child)
2495                         return;
2496 
2497                 /* Re-use the name belonging to the slot for a matching parent
2498                  * directory. All names for this context are relinquished in
2499                  * audit_free_names() */
2500                 if (found_parent) {
2501                         found_child->name = found_parent->name;
2502                         found_child->name_len = AUDIT_NAME_FULL;
2503                         atomic_inc(&found_child->name->refcnt);
2504                 }
2505         }
2506 
2507         if (inode)
2508                 audit_copy_inode(found_child, dentry, inode, 0);
2509         else
2510                 found_child->ino = AUDIT_INO_UNSET;
2511 }
2512 EXPORT_SYMBOL_GPL(__audit_inode_child);
2513 
2514 /**
2515  * auditsc_get_stamp - get local copies of audit_context values
2516  * @ctx: audit_context for the task
2517  * @t: timespec64 to store time recorded in the audit_context
2518  * @serial: serial value that is recorded in the audit_context
2519  *
2520  * Also sets the context as auditable.
2521  */
2522 int auditsc_get_stamp(struct audit_context *ctx,
2523                        struct timespec64 *t, unsigned int *serial)
2524 {
2525         if (ctx->context == AUDIT_CTX_UNUSED)
2526                 return 0;
2527         if (!ctx->serial)
2528                 ctx->serial = audit_serial();
2529         t->tv_sec  = ctx->ctime.tv_sec;
2530         t->tv_nsec = ctx->ctime.tv_nsec;
2531         *serial    = ctx->serial;
2532         if (!ctx->prio) {
2533                 ctx->prio = 1;
2534                 ctx->current_state = AUDIT_STATE_RECORD;
2535         }
2536         return 1;
2537 }
2538 
2539 /**
2540  * __audit_mq_open - record audit data for a POSIX MQ open
2541  * @oflag: open flag
2542  * @mode: mode bits
2543  * @attr: queue attributes
2544  *
2545  */
2546 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2547 {
2548         struct audit_context *context = audit_context();
2549 
2550         if (attr)
2551                 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2552         else
2553                 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2554 
2555         context->mq_open.oflag = oflag;
2556         context->mq_open.mode = mode;
2557 
2558         context->type = AUDIT_MQ_OPEN;
2559 }
2560 
2561 /**
2562  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2563  * @mqdes: MQ descriptor
2564  * @msg_len: Message length
2565  * @msg_prio: Message priority
2566  * @abs_timeout: Message timeout in absolute time
2567  *
2568  */
2569 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2570                         const struct timespec64 *abs_timeout)
2571 {
2572         struct audit_context *context = audit_context();
2573         struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2574 
2575         if (abs_timeout)
2576                 memcpy(p, abs_timeout, sizeof(*p));
2577         else
2578                 memset(p, 0, sizeof(*p));
2579 
2580         context->mq_sendrecv.mqdes = mqdes;
2581         context->mq_sendrecv.msg_len = msg_len;
2582         context->mq_sendrecv.msg_prio = msg_prio;
2583 
2584         context->type = AUDIT_MQ_SENDRECV;
2585 }
2586 
2587 /**
2588  * __audit_mq_notify - record audit data for a POSIX MQ notify
2589  * @mqdes: MQ descriptor
2590  * @notification: Notification event
2591  *
2592  */
2593 
2594 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2595 {
2596         struct audit_context *context = audit_context();
2597 
2598         if (notification)
2599                 context->mq_notify.sigev_signo = notification->sigev_signo;
2600         else
2601                 context->mq_notify.sigev_signo = 0;
2602 
2603         context->mq_notify.mqdes = mqdes;
2604         context->type = AUDIT_MQ_NOTIFY;
2605 }
2606 
2607 /**
2608  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2609  * @mqdes: MQ descriptor
2610  * @mqstat: MQ flags
2611  *
2612  */
2613 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2614 {
2615         struct audit_context *context = audit_context();
2616 
2617         context->mq_getsetattr.mqdes = mqdes;
2618         context->mq_getsetattr.mqstat = *mqstat;
2619         context->type = AUDIT_MQ_GETSETATTR;
2620 }
2621 
2622 /**
2623  * __audit_ipc_obj - record audit data for ipc object
2624  * @ipcp: ipc permissions
2625  *
2626  */
2627 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2628 {
2629         struct audit_context *context = audit_context();
2630 
2631         context->ipc.uid = ipcp->uid;
2632         context->ipc.gid = ipcp->gid;
2633         context->ipc.mode = ipcp->mode;
2634         context->ipc.has_perm = 0;
2635         security_ipc_getsecid(ipcp, &context->ipc.osid);
2636         context->type = AUDIT_IPC;
2637 }
2638 
2639 /**
2640  * __audit_ipc_set_perm - record audit data for new ipc permissions
2641  * @qbytes: msgq bytes
2642  * @uid: msgq user id
2643  * @gid: msgq group id
2644  * @mode: msgq mode (permissions)
2645  *
2646  * Called only after audit_ipc_obj().
2647  */
2648 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2649 {
2650         struct audit_context *context = audit_context();
2651 
2652         context->ipc.qbytes = qbytes;
2653         context->ipc.perm_uid = uid;
2654         context->ipc.perm_gid = gid;
2655         context->ipc.perm_mode = mode;
2656         context->ipc.has_perm = 1;
2657 }
2658 
2659 void __audit_bprm(struct linux_binprm *bprm)
2660 {
2661         struct audit_context *context = audit_context();
2662 
2663         context->type = AUDIT_EXECVE;
2664         context->execve.argc = bprm->argc;
2665 }
2666 
2667 
2668 /**
2669  * __audit_socketcall - record audit data for sys_socketcall
2670  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2671  * @args: args array
2672  *
2673  */
2674 int __audit_socketcall(int nargs, unsigned long *args)
2675 {
2676         struct audit_context *context = audit_context();
2677 
2678         if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2679                 return -EINVAL;
2680         context->type = AUDIT_SOCKETCALL;
2681         context->socketcall.nargs = nargs;
2682         memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2683         return 0;
2684 }
2685 
2686 /**
2687  * __audit_fd_pair - record audit data for pipe and socketpair
2688  * @fd1: the first file descriptor
2689  * @fd2: the second file descriptor
2690  *
2691  */
2692 void __audit_fd_pair(int fd1, int fd2)
2693 {
2694         struct audit_context *context = audit_context();
2695 
2696         context->fds[0] = fd1;
2697         context->fds[1] = fd2;
2698 }
2699 
2700 /**
2701  * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2702  * @len: data length in user space
2703  * @a: data address in kernel space
2704  *
2705  * Returns 0 for success or NULL context or < 0 on error.
2706  */
2707 int __audit_sockaddr(int len, void *a)
2708 {
2709         struct audit_context *context = audit_context();
2710 
2711         if (!context->sockaddr) {
2712                 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2713 
2714                 if (!p)
2715                         return -ENOMEM;
2716                 context->sockaddr = p;
2717         }
2718 
2719         context->sockaddr_len = len;
2720         memcpy(context->sockaddr, a, len);
2721         return 0;
2722 }
2723 
2724 void __audit_ptrace(struct task_struct *t)
2725 {
2726         struct audit_context *context = audit_context();
2727 
2728         context->target_pid = task_tgid_nr(t);
2729         context->target_auid = audit_get_loginuid(t);
2730         context->target_uid = task_uid(t);
2731         context->target_sessionid = audit_get_sessionid(t);
2732         security_task_getsecid_obj(t, &context->target_sid);
2733         memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2734 }
2735 
2736 /**
2737  * audit_signal_info_syscall - record signal info for syscalls
2738  * @t: task being signaled
2739  *
2740  * If the audit subsystem is being terminated, record the task (pid)
2741  * and uid that is doing that.
2742  */
2743 int audit_signal_info_syscall(struct task_struct *t)
2744 {
2745         struct audit_aux_data_pids *axp;
2746         struct audit_context *ctx = audit_context();
2747         kuid_t t_uid = task_uid(t);
2748 
2749         if (!audit_signals || audit_dummy_context())
2750                 return 0;
2751 
2752         /* optimize the common case by putting first signal recipient directly
2753          * in audit_context */
2754         if (!ctx->target_pid) {
2755                 ctx->target_pid = task_tgid_nr(t);
2756                 ctx->target_auid = audit_get_loginuid(t);
2757                 ctx->target_uid = t_uid;
2758                 ctx->target_sessionid = audit_get_sessionid(t);
2759                 security_task_getsecid_obj(t, &ctx->target_sid);
2760                 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2761                 return 0;
2762         }
2763 
2764         axp = (void *)ctx->aux_pids;
2765         if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2766                 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2767                 if (!axp)
2768                         return -ENOMEM;
2769 
2770                 axp->d.type = AUDIT_OBJ_PID;
2771                 axp->d.next = ctx->aux_pids;
2772                 ctx->aux_pids = (void *)axp;
2773         }
2774         BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2775 
2776         axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2777         axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2778         axp->target_uid[axp->pid_count] = t_uid;
2779         axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2780         security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2781         memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2782         axp->pid_count++;
2783 
2784         return 0;
2785 }
2786 
2787 /**
2788  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2789  * @bprm: pointer to the bprm being processed
2790  * @new: the proposed new credentials
2791  * @old: the old credentials
2792  *
2793  * Simply check if the proc already has the caps given by the file and if not
2794  * store the priv escalation info for later auditing at the end of the syscall
2795  *
2796  * -Eric
2797  */
2798 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2799                            const struct cred *new, const struct cred *old)
2800 {
2801         struct audit_aux_data_bprm_fcaps *ax;
2802         struct audit_context *context = audit_context();
2803         struct cpu_vfs_cap_data vcaps;
2804 
2805         ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2806         if (!ax)
2807                 return -ENOMEM;
2808 
2809         ax->d.type = AUDIT_BPRM_FCAPS;
2810         ax->d.next = context->aux;
2811         context->aux = (void *)ax;
2812 
2813         get_vfs_caps_from_disk(&nop_mnt_idmap,
2814                                bprm->file->f_path.dentry, &vcaps);
2815 
2816         ax->fcap.permitted = vcaps.permitted;
2817         ax->fcap.inheritable = vcaps.inheritable;
2818         ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2819         ax->fcap.rootid = vcaps.rootid;
2820         ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2821 
2822         ax->old_pcap.permitted   = old->cap_permitted;
2823         ax->old_pcap.inheritable = old->cap_inheritable;
2824         ax->old_pcap.effective   = old->cap_effective;
2825         ax->old_pcap.ambient     = old->cap_ambient;
2826 
2827         ax->new_pcap.permitted   = new->cap_permitted;
2828         ax->new_pcap.inheritable = new->cap_inheritable;
2829         ax->new_pcap.effective   = new->cap_effective;
2830         ax->new_pcap.ambient     = new->cap_ambient;
2831         return 0;
2832 }
2833 
2834 /**
2835  * __audit_log_capset - store information about the arguments to the capset syscall
2836  * @new: the new credentials
2837  * @old: the old (current) credentials
2838  *
2839  * Record the arguments userspace sent to sys_capset for later printing by the
2840  * audit system if applicable
2841  */
2842 void __audit_log_capset(const struct cred *new, const struct cred *old)
2843 {
2844         struct audit_context *context = audit_context();
2845 
2846         context->capset.pid = task_tgid_nr(current);
2847         context->capset.cap.effective   = new->cap_effective;
2848         context->capset.cap.inheritable = new->cap_effective;
2849         context->capset.cap.permitted   = new->cap_permitted;
2850         context->capset.cap.ambient     = new->cap_ambient;
2851         context->type = AUDIT_CAPSET;
2852 }
2853 
2854 void __audit_mmap_fd(int fd, int flags)
2855 {
2856         struct audit_context *context = audit_context();
2857 
2858         context->mmap.fd = fd;
2859         context->mmap.flags = flags;
2860         context->type = AUDIT_MMAP;
2861 }
2862 
2863 void __audit_openat2_how(struct open_how *how)
2864 {
2865         struct audit_context *context = audit_context();
2866 
2867         context->openat2.flags = how->flags;
2868         context->openat2.mode = how->mode;
2869         context->openat2.resolve = how->resolve;
2870         context->type = AUDIT_OPENAT2;
2871 }
2872 
2873 void __audit_log_kern_module(char *name)
2874 {
2875         struct audit_context *context = audit_context();
2876 
2877         context->module.name = kstrdup(name, GFP_KERNEL);
2878         if (!context->module.name)
2879                 audit_log_lost("out of memory in __audit_log_kern_module");
2880         context->type = AUDIT_KERN_MODULE;
2881 }
2882 
2883 void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
2884 {
2885         /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2886         switch (friar->hdr.type) {
2887         case FAN_RESPONSE_INFO_NONE:
2888                 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2889                           "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2890                           response, FAN_RESPONSE_INFO_NONE);
2891                 break;
2892         case FAN_RESPONSE_INFO_AUDIT_RULE:
2893                 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2894                           "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2895                           response, friar->hdr.type, friar->rule_number,
2896                           friar->subj_trust, friar->obj_trust);
2897         }
2898 }
2899 
2900 void __audit_tk_injoffset(struct timespec64 offset)
2901 {
2902         struct audit_context *context = audit_context();
2903 
2904         /* only set type if not already set by NTP */
2905         if (!context->type)
2906                 context->type = AUDIT_TIME_INJOFFSET;
2907         memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2908 }
2909 
2910 void __audit_ntp_log(const struct audit_ntp_data *ad)
2911 {
2912         struct audit_context *context = audit_context();
2913         int type;
2914 
2915         for (type = 0; type < AUDIT_NTP_NVALS; type++)
2916                 if (ad->vals[type].newval != ad->vals[type].oldval) {
2917                         /* unconditionally set type, overwriting TK */
2918                         context->type = AUDIT_TIME_ADJNTPVAL;
2919                         memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2920                         break;
2921                 }
2922 }
2923 
2924 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2925                        enum audit_nfcfgop op, gfp_t gfp)
2926 {
2927         struct audit_buffer *ab;
2928         char comm[sizeof(current->comm)];
2929 
2930         ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2931         if (!ab)
2932                 return;
2933         audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2934                          name, af, nentries, audit_nfcfgs[op].s);
2935 
2936         audit_log_format(ab, " pid=%u", task_pid_nr(current));
2937         audit_log_task_context(ab); /* subj= */
2938         audit_log_format(ab, " comm=");
2939         audit_log_untrustedstring(ab, get_task_comm(comm, current));
2940         audit_log_end(ab);
2941 }
2942 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2943 
2944 static void audit_log_task(struct audit_buffer *ab)
2945 {
2946         kuid_t auid, uid;
2947         kgid_t gid;
2948         unsigned int sessionid;
2949         char comm[sizeof(current->comm)];
2950 
2951         auid = audit_get_loginuid(current);
2952         sessionid = audit_get_sessionid(current);
2953         current_uid_gid(&uid, &gid);
2954 
2955         audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2956                          from_kuid(&init_user_ns, auid),
2957                          from_kuid(&init_user_ns, uid),
2958                          from_kgid(&init_user_ns, gid),
2959                          sessionid);
2960         audit_log_task_context(ab);
2961         audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2962         audit_log_untrustedstring(ab, get_task_comm(comm, current));
2963         audit_log_d_path_exe(ab, current->mm);
2964 }
2965 
2966 /**
2967  * audit_core_dumps - record information about processes that end abnormally
2968  * @signr: signal value
2969  *
2970  * If a process ends with a core dump, something fishy is going on and we
2971  * should record the event for investigation.
2972  */
2973 void audit_core_dumps(long signr)
2974 {
2975         struct audit_buffer *ab;
2976 
2977         if (!audit_enabled)
2978                 return;
2979 
2980         if (signr == SIGQUIT)   /* don't care for those */
2981                 return;
2982 
2983         ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2984         if (unlikely(!ab))
2985                 return;
2986         audit_log_task(ab);
2987         audit_log_format(ab, " sig=%ld res=1", signr);
2988         audit_log_end(ab);
2989 }
2990 
2991 /**
2992  * audit_seccomp - record information about a seccomp action
2993  * @syscall: syscall number
2994  * @signr: signal value
2995  * @code: the seccomp action
2996  *
2997  * Record the information associated with a seccomp action. Event filtering for
2998  * seccomp actions that are not to be logged is done in seccomp_log().
2999  * Therefore, this function forces auditing independent of the audit_enabled
3000  * and dummy context state because seccomp actions should be logged even when
3001  * audit is not in use.
3002  */
3003 void audit_seccomp(unsigned long syscall, long signr, int code)
3004 {
3005         struct audit_buffer *ab;
3006 
3007         ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
3008         if (unlikely(!ab))
3009                 return;
3010         audit_log_task(ab);
3011         audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3012                          signr, syscall_get_arch(current), syscall,
3013                          in_compat_syscall(), KSTK_EIP(current), code);
3014         audit_log_end(ab);
3015 }
3016 
3017 void audit_seccomp_actions_logged(const char *names, const char *old_names,
3018                                   int res)
3019 {
3020         struct audit_buffer *ab;
3021 
3022         if (!audit_enabled)
3023                 return;
3024 
3025         ab = audit_log_start(audit_context(), GFP_KERNEL,
3026                              AUDIT_CONFIG_CHANGE);
3027         if (unlikely(!ab))
3028                 return;
3029 
3030         audit_log_format(ab,
3031                          "op=seccomp-logging actions=%s old-actions=%s res=%d",
3032                          names, old_names, res);
3033         audit_log_end(ab);
3034 }
3035 
3036 struct list_head *audit_killed_trees(void)
3037 {
3038         struct audit_context *ctx = audit_context();
3039         if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3040                 return NULL;
3041         return &ctx->killed_trees;
3042 }
3043 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php