~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/bpf/btf.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /* Copyright (c) 2018 Facebook */
  3 
  4 #include <uapi/linux/btf.h>
  5 #include <uapi/linux/bpf.h>
  6 #include <uapi/linux/bpf_perf_event.h>
  7 #include <uapi/linux/types.h>
  8 #include <linux/seq_file.h>
  9 #include <linux/compiler.h>
 10 #include <linux/ctype.h>
 11 #include <linux/errno.h>
 12 #include <linux/slab.h>
 13 #include <linux/anon_inodes.h>
 14 #include <linux/file.h>
 15 #include <linux/uaccess.h>
 16 #include <linux/kernel.h>
 17 #include <linux/idr.h>
 18 #include <linux/sort.h>
 19 #include <linux/bpf_verifier.h>
 20 #include <linux/btf.h>
 21 #include <linux/btf_ids.h>
 22 #include <linux/bpf.h>
 23 #include <linux/bpf_lsm.h>
 24 #include <linux/skmsg.h>
 25 #include <linux/perf_event.h>
 26 #include <linux/bsearch.h>
 27 #include <linux/kobject.h>
 28 #include <linux/sysfs.h>
 29 
 30 #include <net/netfilter/nf_bpf_link.h>
 31 
 32 #include <net/sock.h>
 33 #include <net/xdp.h>
 34 #include "../tools/lib/bpf/relo_core.h"
 35 
 36 /* BTF (BPF Type Format) is the meta data format which describes
 37  * the data types of BPF program/map.  Hence, it basically focus
 38  * on the C programming language which the modern BPF is primary
 39  * using.
 40  *
 41  * ELF Section:
 42  * ~~~~~~~~~~~
 43  * The BTF data is stored under the ".BTF" ELF section
 44  *
 45  * struct btf_type:
 46  * ~~~~~~~~~~~~~~~
 47  * Each 'struct btf_type' object describes a C data type.
 48  * Depending on the type it is describing, a 'struct btf_type'
 49  * object may be followed by more data.  F.e.
 50  * To describe an array, 'struct btf_type' is followed by
 51  * 'struct btf_array'.
 52  *
 53  * 'struct btf_type' and any extra data following it are
 54  * 4 bytes aligned.
 55  *
 56  * Type section:
 57  * ~~~~~~~~~~~~~
 58  * The BTF type section contains a list of 'struct btf_type' objects.
 59  * Each one describes a C type.  Recall from the above section
 60  * that a 'struct btf_type' object could be immediately followed by extra
 61  * data in order to describe some particular C types.
 62  *
 63  * type_id:
 64  * ~~~~~~~
 65  * Each btf_type object is identified by a type_id.  The type_id
 66  * is implicitly implied by the location of the btf_type object in
 67  * the BTF type section.  The first one has type_id 1.  The second
 68  * one has type_id 2...etc.  Hence, an earlier btf_type has
 69  * a smaller type_id.
 70  *
 71  * A btf_type object may refer to another btf_type object by using
 72  * type_id (i.e. the "type" in the "struct btf_type").
 73  *
 74  * NOTE that we cannot assume any reference-order.
 75  * A btf_type object can refer to an earlier btf_type object
 76  * but it can also refer to a later btf_type object.
 77  *
 78  * For example, to describe "const void *".  A btf_type
 79  * object describing "const" may refer to another btf_type
 80  * object describing "void *".  This type-reference is done
 81  * by specifying type_id:
 82  *
 83  * [1] CONST (anon) type_id=2
 84  * [2] PTR (anon) type_id=0
 85  *
 86  * The above is the btf_verifier debug log:
 87  *   - Each line started with "[?]" is a btf_type object
 88  *   - [?] is the type_id of the btf_type object.
 89  *   - CONST/PTR is the BTF_KIND_XXX
 90  *   - "(anon)" is the name of the type.  It just
 91  *     happens that CONST and PTR has no name.
 92  *   - type_id=XXX is the 'u32 type' in btf_type
 93  *
 94  * NOTE: "void" has type_id 0
 95  *
 96  * String section:
 97  * ~~~~~~~~~~~~~~
 98  * The BTF string section contains the names used by the type section.
 99  * Each string is referred by an "offset" from the beginning of the
100  * string section.
101  *
102  * Each string is '\0' terminated.
103  *
104  * The first character in the string section must be '\0'
105  * which is used to mean 'anonymous'. Some btf_type may not
106  * have a name.
107  */
108 
109 /* BTF verification:
110  *
111  * To verify BTF data, two passes are needed.
112  *
113  * Pass #1
114  * ~~~~~~~
115  * The first pass is to collect all btf_type objects to
116  * an array: "btf->types".
117  *
118  * Depending on the C type that a btf_type is describing,
119  * a btf_type may be followed by extra data.  We don't know
120  * how many btf_type is there, and more importantly we don't
121  * know where each btf_type is located in the type section.
122  *
123  * Without knowing the location of each type_id, most verifications
124  * cannot be done.  e.g. an earlier btf_type may refer to a later
125  * btf_type (recall the "const void *" above), so we cannot
126  * check this type-reference in the first pass.
127  *
128  * In the first pass, it still does some verifications (e.g.
129  * checking the name is a valid offset to the string section).
130  *
131  * Pass #2
132  * ~~~~~~~
133  * The main focus is to resolve a btf_type that is referring
134  * to another type.
135  *
136  * We have to ensure the referring type:
137  * 1) does exist in the BTF (i.e. in btf->types[])
138  * 2) does not cause a loop:
139  *      struct A {
140  *              struct B b;
141  *      };
142  *
143  *      struct B {
144  *              struct A a;
145  *      };
146  *
147  * btf_type_needs_resolve() decides if a btf_type needs
148  * to be resolved.
149  *
150  * The needs_resolve type implements the "resolve()" ops which
151  * essentially does a DFS and detects backedge.
152  *
153  * During resolve (or DFS), different C types have different
154  * "RESOLVED" conditions.
155  *
156  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
157  * members because a member is always referring to another
158  * type.  A struct's member can be treated as "RESOLVED" if
159  * it is referring to a BTF_KIND_PTR.  Otherwise, the
160  * following valid C struct would be rejected:
161  *
162  *      struct A {
163  *              int m;
164  *              struct A *a;
165  *      };
166  *
167  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
168  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
169  * detect a pointer loop, e.g.:
170  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
171  *                        ^                                         |
172  *                        +-----------------------------------------+
173  *
174  */
175 
176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
180 #define BITS_ROUNDUP_BYTES(bits) \
181         (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
182 
183 #define BTF_INFO_MASK 0x9f00ffff
184 #define BTF_INT_MASK 0x0fffffff
185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
187 
188 /* 16MB for 64k structs and each has 16 members and
189  * a few MB spaces for the string section.
190  * The hard limit is S32_MAX.
191  */
192 #define BTF_MAX_SIZE (16 * 1024 * 1024)
193 
194 #define for_each_member_from(i, from, struct_type, member)              \
195         for (i = from, member = btf_type_member(struct_type) + from;    \
196              i < btf_type_vlen(struct_type);                            \
197              i++, member++)
198 
199 #define for_each_vsi_from(i, from, struct_type, member)                         \
200         for (i = from, member = btf_type_var_secinfo(struct_type) + from;       \
201              i < btf_type_vlen(struct_type);                                    \
202              i++, member++)
203 
204 DEFINE_IDR(btf_idr);
205 DEFINE_SPINLOCK(btf_idr_lock);
206 
207 enum btf_kfunc_hook {
208         BTF_KFUNC_HOOK_COMMON,
209         BTF_KFUNC_HOOK_XDP,
210         BTF_KFUNC_HOOK_TC,
211         BTF_KFUNC_HOOK_STRUCT_OPS,
212         BTF_KFUNC_HOOK_TRACING,
213         BTF_KFUNC_HOOK_SYSCALL,
214         BTF_KFUNC_HOOK_FMODRET,
215         BTF_KFUNC_HOOK_CGROUP_SKB,
216         BTF_KFUNC_HOOK_SCHED_ACT,
217         BTF_KFUNC_HOOK_SK_SKB,
218         BTF_KFUNC_HOOK_SOCKET_FILTER,
219         BTF_KFUNC_HOOK_LWT,
220         BTF_KFUNC_HOOK_NETFILTER,
221         BTF_KFUNC_HOOK_KPROBE,
222         BTF_KFUNC_HOOK_MAX,
223 };
224 
225 enum {
226         BTF_KFUNC_SET_MAX_CNT = 256,
227         BTF_DTOR_KFUNC_MAX_CNT = 256,
228         BTF_KFUNC_FILTER_MAX_CNT = 16,
229 };
230 
231 struct btf_kfunc_hook_filter {
232         btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
233         u32 nr_filters;
234 };
235 
236 struct btf_kfunc_set_tab {
237         struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
238         struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
239 };
240 
241 struct btf_id_dtor_kfunc_tab {
242         u32 cnt;
243         struct btf_id_dtor_kfunc dtors[];
244 };
245 
246 struct btf_struct_ops_tab {
247         u32 cnt;
248         u32 capacity;
249         struct bpf_struct_ops_desc ops[];
250 };
251 
252 struct btf {
253         void *data;
254         struct btf_type **types;
255         u32 *resolved_ids;
256         u32 *resolved_sizes;
257         const char *strings;
258         void *nohdr_data;
259         struct btf_header hdr;
260         u32 nr_types; /* includes VOID for base BTF */
261         u32 types_size;
262         u32 data_size;
263         refcount_t refcnt;
264         u32 id;
265         struct rcu_head rcu;
266         struct btf_kfunc_set_tab *kfunc_set_tab;
267         struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
268         struct btf_struct_metas *struct_meta_tab;
269         struct btf_struct_ops_tab *struct_ops_tab;
270 
271         /* split BTF support */
272         struct btf *base_btf;
273         u32 start_id; /* first type ID in this BTF (0 for base BTF) */
274         u32 start_str_off; /* first string offset (0 for base BTF) */
275         char name[MODULE_NAME_LEN];
276         bool kernel_btf;
277         __u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */
278 };
279 
280 enum verifier_phase {
281         CHECK_META,
282         CHECK_TYPE,
283 };
284 
285 struct resolve_vertex {
286         const struct btf_type *t;
287         u32 type_id;
288         u16 next_member;
289 };
290 
291 enum visit_state {
292         NOT_VISITED,
293         VISITED,
294         RESOLVED,
295 };
296 
297 enum resolve_mode {
298         RESOLVE_TBD,    /* To Be Determined */
299         RESOLVE_PTR,    /* Resolving for Pointer */
300         RESOLVE_STRUCT_OR_ARRAY,        /* Resolving for struct/union
301                                          * or array
302                                          */
303 };
304 
305 #define MAX_RESOLVE_DEPTH 32
306 
307 struct btf_sec_info {
308         u32 off;
309         u32 len;
310 };
311 
312 struct btf_verifier_env {
313         struct btf *btf;
314         u8 *visit_states;
315         struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
316         struct bpf_verifier_log log;
317         u32 log_type_id;
318         u32 top_stack;
319         enum verifier_phase phase;
320         enum resolve_mode resolve_mode;
321 };
322 
323 static const char * const btf_kind_str[NR_BTF_KINDS] = {
324         [BTF_KIND_UNKN]         = "UNKNOWN",
325         [BTF_KIND_INT]          = "INT",
326         [BTF_KIND_PTR]          = "PTR",
327         [BTF_KIND_ARRAY]        = "ARRAY",
328         [BTF_KIND_STRUCT]       = "STRUCT",
329         [BTF_KIND_UNION]        = "UNION",
330         [BTF_KIND_ENUM]         = "ENUM",
331         [BTF_KIND_FWD]          = "FWD",
332         [BTF_KIND_TYPEDEF]      = "TYPEDEF",
333         [BTF_KIND_VOLATILE]     = "VOLATILE",
334         [BTF_KIND_CONST]        = "CONST",
335         [BTF_KIND_RESTRICT]     = "RESTRICT",
336         [BTF_KIND_FUNC]         = "FUNC",
337         [BTF_KIND_FUNC_PROTO]   = "FUNC_PROTO",
338         [BTF_KIND_VAR]          = "VAR",
339         [BTF_KIND_DATASEC]      = "DATASEC",
340         [BTF_KIND_FLOAT]        = "FLOAT",
341         [BTF_KIND_DECL_TAG]     = "DECL_TAG",
342         [BTF_KIND_TYPE_TAG]     = "TYPE_TAG",
343         [BTF_KIND_ENUM64]       = "ENUM64",
344 };
345 
346 const char *btf_type_str(const struct btf_type *t)
347 {
348         return btf_kind_str[BTF_INFO_KIND(t->info)];
349 }
350 
351 /* Chunk size we use in safe copy of data to be shown. */
352 #define BTF_SHOW_OBJ_SAFE_SIZE          32
353 
354 /*
355  * This is the maximum size of a base type value (equivalent to a
356  * 128-bit int); if we are at the end of our safe buffer and have
357  * less than 16 bytes space we can't be assured of being able
358  * to copy the next type safely, so in such cases we will initiate
359  * a new copy.
360  */
361 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE     16
362 
363 /* Type name size */
364 #define BTF_SHOW_NAME_SIZE              80
365 
366 /*
367  * The suffix of a type that indicates it cannot alias another type when
368  * comparing BTF IDs for kfunc invocations.
369  */
370 #define NOCAST_ALIAS_SUFFIX             "___init"
371 
372 /*
373  * Common data to all BTF show operations. Private show functions can add
374  * their own data to a structure containing a struct btf_show and consult it
375  * in the show callback.  See btf_type_show() below.
376  *
377  * One challenge with showing nested data is we want to skip 0-valued
378  * data, but in order to figure out whether a nested object is all zeros
379  * we need to walk through it.  As a result, we need to make two passes
380  * when handling structs, unions and arrays; the first path simply looks
381  * for nonzero data, while the second actually does the display.  The first
382  * pass is signalled by show->state.depth_check being set, and if we
383  * encounter a non-zero value we set show->state.depth_to_show to
384  * the depth at which we encountered it.  When we have completed the
385  * first pass, we will know if anything needs to be displayed if
386  * depth_to_show > depth.  See btf_[struct,array]_show() for the
387  * implementation of this.
388  *
389  * Another problem is we want to ensure the data for display is safe to
390  * access.  To support this, the anonymous "struct {} obj" tracks the data
391  * object and our safe copy of it.  We copy portions of the data needed
392  * to the object "copy" buffer, but because its size is limited to
393  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
394  * traverse larger objects for display.
395  *
396  * The various data type show functions all start with a call to
397  * btf_show_start_type() which returns a pointer to the safe copy
398  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
399  * raw data itself).  btf_show_obj_safe() is responsible for
400  * using copy_from_kernel_nofault() to update the safe data if necessary
401  * as we traverse the object's data.  skbuff-like semantics are
402  * used:
403  *
404  * - obj.head points to the start of the toplevel object for display
405  * - obj.size is the size of the toplevel object
406  * - obj.data points to the current point in the original data at
407  *   which our safe data starts.  obj.data will advance as we copy
408  *   portions of the data.
409  *
410  * In most cases a single copy will suffice, but larger data structures
411  * such as "struct task_struct" will require many copies.  The logic in
412  * btf_show_obj_safe() handles the logic that determines if a new
413  * copy_from_kernel_nofault() is needed.
414  */
415 struct btf_show {
416         u64 flags;
417         void *target;   /* target of show operation (seq file, buffer) */
418         __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
419         const struct btf *btf;
420         /* below are used during iteration */
421         struct {
422                 u8 depth;
423                 u8 depth_to_show;
424                 u8 depth_check;
425                 u8 array_member:1,
426                    array_terminated:1;
427                 u16 array_encoding;
428                 u32 type_id;
429                 int status;                     /* non-zero for error */
430                 const struct btf_type *type;
431                 const struct btf_member *member;
432                 char name[BTF_SHOW_NAME_SIZE];  /* space for member name/type */
433         } state;
434         struct {
435                 u32 size;
436                 void *head;
437                 void *data;
438                 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
439         } obj;
440 };
441 
442 struct btf_kind_operations {
443         s32 (*check_meta)(struct btf_verifier_env *env,
444                           const struct btf_type *t,
445                           u32 meta_left);
446         int (*resolve)(struct btf_verifier_env *env,
447                        const struct resolve_vertex *v);
448         int (*check_member)(struct btf_verifier_env *env,
449                             const struct btf_type *struct_type,
450                             const struct btf_member *member,
451                             const struct btf_type *member_type);
452         int (*check_kflag_member)(struct btf_verifier_env *env,
453                                   const struct btf_type *struct_type,
454                                   const struct btf_member *member,
455                                   const struct btf_type *member_type);
456         void (*log_details)(struct btf_verifier_env *env,
457                             const struct btf_type *t);
458         void (*show)(const struct btf *btf, const struct btf_type *t,
459                          u32 type_id, void *data, u8 bits_offsets,
460                          struct btf_show *show);
461 };
462 
463 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
464 static struct btf_type btf_void;
465 
466 static int btf_resolve(struct btf_verifier_env *env,
467                        const struct btf_type *t, u32 type_id);
468 
469 static int btf_func_check(struct btf_verifier_env *env,
470                           const struct btf_type *t);
471 
472 static bool btf_type_is_modifier(const struct btf_type *t)
473 {
474         /* Some of them is not strictly a C modifier
475          * but they are grouped into the same bucket
476          * for BTF concern:
477          *   A type (t) that refers to another
478          *   type through t->type AND its size cannot
479          *   be determined without following the t->type.
480          *
481          * ptr does not fall into this bucket
482          * because its size is always sizeof(void *).
483          */
484         switch (BTF_INFO_KIND(t->info)) {
485         case BTF_KIND_TYPEDEF:
486         case BTF_KIND_VOLATILE:
487         case BTF_KIND_CONST:
488         case BTF_KIND_RESTRICT:
489         case BTF_KIND_TYPE_TAG:
490                 return true;
491         }
492 
493         return false;
494 }
495 
496 bool btf_type_is_void(const struct btf_type *t)
497 {
498         return t == &btf_void;
499 }
500 
501 static bool btf_type_is_fwd(const struct btf_type *t)
502 {
503         return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
504 }
505 
506 static bool btf_type_is_datasec(const struct btf_type *t)
507 {
508         return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
509 }
510 
511 static bool btf_type_is_decl_tag(const struct btf_type *t)
512 {
513         return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
514 }
515 
516 static bool btf_type_nosize(const struct btf_type *t)
517 {
518         return btf_type_is_void(t) || btf_type_is_fwd(t) ||
519                btf_type_is_func(t) || btf_type_is_func_proto(t) ||
520                btf_type_is_decl_tag(t);
521 }
522 
523 static bool btf_type_nosize_or_null(const struct btf_type *t)
524 {
525         return !t || btf_type_nosize(t);
526 }
527 
528 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
529 {
530         return btf_type_is_func(t) || btf_type_is_struct(t) ||
531                btf_type_is_var(t) || btf_type_is_typedef(t);
532 }
533 
534 bool btf_is_vmlinux(const struct btf *btf)
535 {
536         return btf->kernel_btf && !btf->base_btf;
537 }
538 
539 u32 btf_nr_types(const struct btf *btf)
540 {
541         u32 total = 0;
542 
543         while (btf) {
544                 total += btf->nr_types;
545                 btf = btf->base_btf;
546         }
547 
548         return total;
549 }
550 
551 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
552 {
553         const struct btf_type *t;
554         const char *tname;
555         u32 i, total;
556 
557         total = btf_nr_types(btf);
558         for (i = 1; i < total; i++) {
559                 t = btf_type_by_id(btf, i);
560                 if (BTF_INFO_KIND(t->info) != kind)
561                         continue;
562 
563                 tname = btf_name_by_offset(btf, t->name_off);
564                 if (!strcmp(tname, name))
565                         return i;
566         }
567 
568         return -ENOENT;
569 }
570 
571 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
572 {
573         struct btf *btf;
574         s32 ret;
575         int id;
576 
577         btf = bpf_get_btf_vmlinux();
578         if (IS_ERR(btf))
579                 return PTR_ERR(btf);
580         if (!btf)
581                 return -EINVAL;
582 
583         ret = btf_find_by_name_kind(btf, name, kind);
584         /* ret is never zero, since btf_find_by_name_kind returns
585          * positive btf_id or negative error.
586          */
587         if (ret > 0) {
588                 btf_get(btf);
589                 *btf_p = btf;
590                 return ret;
591         }
592 
593         /* If name is not found in vmlinux's BTF then search in module's BTFs */
594         spin_lock_bh(&btf_idr_lock);
595         idr_for_each_entry(&btf_idr, btf, id) {
596                 if (!btf_is_module(btf))
597                         continue;
598                 /* linear search could be slow hence unlock/lock
599                  * the IDR to avoiding holding it for too long
600                  */
601                 btf_get(btf);
602                 spin_unlock_bh(&btf_idr_lock);
603                 ret = btf_find_by_name_kind(btf, name, kind);
604                 if (ret > 0) {
605                         *btf_p = btf;
606                         return ret;
607                 }
608                 btf_put(btf);
609                 spin_lock_bh(&btf_idr_lock);
610         }
611         spin_unlock_bh(&btf_idr_lock);
612         return ret;
613 }
614 
615 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
616                                                u32 id, u32 *res_id)
617 {
618         const struct btf_type *t = btf_type_by_id(btf, id);
619 
620         while (btf_type_is_modifier(t)) {
621                 id = t->type;
622                 t = btf_type_by_id(btf, t->type);
623         }
624 
625         if (res_id)
626                 *res_id = id;
627 
628         return t;
629 }
630 
631 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
632                                             u32 id, u32 *res_id)
633 {
634         const struct btf_type *t;
635 
636         t = btf_type_skip_modifiers(btf, id, NULL);
637         if (!btf_type_is_ptr(t))
638                 return NULL;
639 
640         return btf_type_skip_modifiers(btf, t->type, res_id);
641 }
642 
643 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
644                                                  u32 id, u32 *res_id)
645 {
646         const struct btf_type *ptype;
647 
648         ptype = btf_type_resolve_ptr(btf, id, res_id);
649         if (ptype && btf_type_is_func_proto(ptype))
650                 return ptype;
651 
652         return NULL;
653 }
654 
655 /* Types that act only as a source, not sink or intermediate
656  * type when resolving.
657  */
658 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
659 {
660         return btf_type_is_var(t) ||
661                btf_type_is_decl_tag(t) ||
662                btf_type_is_datasec(t);
663 }
664 
665 /* What types need to be resolved?
666  *
667  * btf_type_is_modifier() is an obvious one.
668  *
669  * btf_type_is_struct() because its member refers to
670  * another type (through member->type).
671  *
672  * btf_type_is_var() because the variable refers to
673  * another type. btf_type_is_datasec() holds multiple
674  * btf_type_is_var() types that need resolving.
675  *
676  * btf_type_is_array() because its element (array->type)
677  * refers to another type.  Array can be thought of a
678  * special case of struct while array just has the same
679  * member-type repeated by array->nelems of times.
680  */
681 static bool btf_type_needs_resolve(const struct btf_type *t)
682 {
683         return btf_type_is_modifier(t) ||
684                btf_type_is_ptr(t) ||
685                btf_type_is_struct(t) ||
686                btf_type_is_array(t) ||
687                btf_type_is_var(t) ||
688                btf_type_is_func(t) ||
689                btf_type_is_decl_tag(t) ||
690                btf_type_is_datasec(t);
691 }
692 
693 /* t->size can be used */
694 static bool btf_type_has_size(const struct btf_type *t)
695 {
696         switch (BTF_INFO_KIND(t->info)) {
697         case BTF_KIND_INT:
698         case BTF_KIND_STRUCT:
699         case BTF_KIND_UNION:
700         case BTF_KIND_ENUM:
701         case BTF_KIND_DATASEC:
702         case BTF_KIND_FLOAT:
703         case BTF_KIND_ENUM64:
704                 return true;
705         }
706 
707         return false;
708 }
709 
710 static const char *btf_int_encoding_str(u8 encoding)
711 {
712         if (encoding == 0)
713                 return "(none)";
714         else if (encoding == BTF_INT_SIGNED)
715                 return "SIGNED";
716         else if (encoding == BTF_INT_CHAR)
717                 return "CHAR";
718         else if (encoding == BTF_INT_BOOL)
719                 return "BOOL";
720         else
721                 return "UNKN";
722 }
723 
724 static u32 btf_type_int(const struct btf_type *t)
725 {
726         return *(u32 *)(t + 1);
727 }
728 
729 static const struct btf_array *btf_type_array(const struct btf_type *t)
730 {
731         return (const struct btf_array *)(t + 1);
732 }
733 
734 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
735 {
736         return (const struct btf_enum *)(t + 1);
737 }
738 
739 static const struct btf_var *btf_type_var(const struct btf_type *t)
740 {
741         return (const struct btf_var *)(t + 1);
742 }
743 
744 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
745 {
746         return (const struct btf_decl_tag *)(t + 1);
747 }
748 
749 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
750 {
751         return (const struct btf_enum64 *)(t + 1);
752 }
753 
754 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
755 {
756         return kind_ops[BTF_INFO_KIND(t->info)];
757 }
758 
759 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
760 {
761         if (!BTF_STR_OFFSET_VALID(offset))
762                 return false;
763 
764         while (offset < btf->start_str_off)
765                 btf = btf->base_btf;
766 
767         offset -= btf->start_str_off;
768         return offset < btf->hdr.str_len;
769 }
770 
771 static bool __btf_name_char_ok(char c, bool first)
772 {
773         if ((first ? !isalpha(c) :
774                      !isalnum(c)) &&
775             c != '_' &&
776             c != '.')
777                 return false;
778         return true;
779 }
780 
781 const char *btf_str_by_offset(const struct btf *btf, u32 offset)
782 {
783         while (offset < btf->start_str_off)
784                 btf = btf->base_btf;
785 
786         offset -= btf->start_str_off;
787         if (offset < btf->hdr.str_len)
788                 return &btf->strings[offset];
789 
790         return NULL;
791 }
792 
793 static bool __btf_name_valid(const struct btf *btf, u32 offset)
794 {
795         /* offset must be valid */
796         const char *src = btf_str_by_offset(btf, offset);
797         const char *src_limit;
798 
799         if (!__btf_name_char_ok(*src, true))
800                 return false;
801 
802         /* set a limit on identifier length */
803         src_limit = src + KSYM_NAME_LEN;
804         src++;
805         while (*src && src < src_limit) {
806                 if (!__btf_name_char_ok(*src, false))
807                         return false;
808                 src++;
809         }
810 
811         return !*src;
812 }
813 
814 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
815 {
816         return __btf_name_valid(btf, offset);
817 }
818 
819 /* Allow any printable character in DATASEC names */
820 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
821 {
822         /* offset must be valid */
823         const char *src = btf_str_by_offset(btf, offset);
824         const char *src_limit;
825 
826         if (!*src)
827                 return false;
828 
829         /* set a limit on identifier length */
830         src_limit = src + KSYM_NAME_LEN;
831         while (*src && src < src_limit) {
832                 if (!isprint(*src))
833                         return false;
834                 src++;
835         }
836 
837         return !*src;
838 }
839 
840 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
841 {
842         const char *name;
843 
844         if (!offset)
845                 return "(anon)";
846 
847         name = btf_str_by_offset(btf, offset);
848         return name ?: "(invalid-name-offset)";
849 }
850 
851 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
852 {
853         return btf_str_by_offset(btf, offset);
854 }
855 
856 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
857 {
858         while (type_id < btf->start_id)
859                 btf = btf->base_btf;
860 
861         type_id -= btf->start_id;
862         if (type_id >= btf->nr_types)
863                 return NULL;
864         return btf->types[type_id];
865 }
866 EXPORT_SYMBOL_GPL(btf_type_by_id);
867 
868 /*
869  * Regular int is not a bit field and it must be either
870  * u8/u16/u32/u64 or __int128.
871  */
872 static bool btf_type_int_is_regular(const struct btf_type *t)
873 {
874         u8 nr_bits, nr_bytes;
875         u32 int_data;
876 
877         int_data = btf_type_int(t);
878         nr_bits = BTF_INT_BITS(int_data);
879         nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
880         if (BITS_PER_BYTE_MASKED(nr_bits) ||
881             BTF_INT_OFFSET(int_data) ||
882             (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
883              nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
884              nr_bytes != (2 * sizeof(u64)))) {
885                 return false;
886         }
887 
888         return true;
889 }
890 
891 /*
892  * Check that given struct member is a regular int with expected
893  * offset and size.
894  */
895 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
896                            const struct btf_member *m,
897                            u32 expected_offset, u32 expected_size)
898 {
899         const struct btf_type *t;
900         u32 id, int_data;
901         u8 nr_bits;
902 
903         id = m->type;
904         t = btf_type_id_size(btf, &id, NULL);
905         if (!t || !btf_type_is_int(t))
906                 return false;
907 
908         int_data = btf_type_int(t);
909         nr_bits = BTF_INT_BITS(int_data);
910         if (btf_type_kflag(s)) {
911                 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
912                 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
913 
914                 /* if kflag set, int should be a regular int and
915                  * bit offset should be at byte boundary.
916                  */
917                 return !bitfield_size &&
918                        BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
919                        BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
920         }
921 
922         if (BTF_INT_OFFSET(int_data) ||
923             BITS_PER_BYTE_MASKED(m->offset) ||
924             BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
925             BITS_PER_BYTE_MASKED(nr_bits) ||
926             BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
927                 return false;
928 
929         return true;
930 }
931 
932 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
933 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
934                                                        u32 id)
935 {
936         const struct btf_type *t = btf_type_by_id(btf, id);
937 
938         while (btf_type_is_modifier(t) &&
939                BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
940                 t = btf_type_by_id(btf, t->type);
941         }
942 
943         return t;
944 }
945 
946 #define BTF_SHOW_MAX_ITER       10
947 
948 #define BTF_KIND_BIT(kind)      (1ULL << kind)
949 
950 /*
951  * Populate show->state.name with type name information.
952  * Format of type name is
953  *
954  * [.member_name = ] (type_name)
955  */
956 static const char *btf_show_name(struct btf_show *show)
957 {
958         /* BTF_MAX_ITER array suffixes "[]" */
959         const char *array_suffixes = "[][][][][][][][][][]";
960         const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
961         /* BTF_MAX_ITER pointer suffixes "*" */
962         const char *ptr_suffixes = "**********";
963         const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
964         const char *name = NULL, *prefix = "", *parens = "";
965         const struct btf_member *m = show->state.member;
966         const struct btf_type *t;
967         const struct btf_array *array;
968         u32 id = show->state.type_id;
969         const char *member = NULL;
970         bool show_member = false;
971         u64 kinds = 0;
972         int i;
973 
974         show->state.name[0] = '\0';
975 
976         /*
977          * Don't show type name if we're showing an array member;
978          * in that case we show the array type so don't need to repeat
979          * ourselves for each member.
980          */
981         if (show->state.array_member)
982                 return "";
983 
984         /* Retrieve member name, if any. */
985         if (m) {
986                 member = btf_name_by_offset(show->btf, m->name_off);
987                 show_member = strlen(member) > 0;
988                 id = m->type;
989         }
990 
991         /*
992          * Start with type_id, as we have resolved the struct btf_type *
993          * via btf_modifier_show() past the parent typedef to the child
994          * struct, int etc it is defined as.  In such cases, the type_id
995          * still represents the starting type while the struct btf_type *
996          * in our show->state points at the resolved type of the typedef.
997          */
998         t = btf_type_by_id(show->btf, id);
999         if (!t)
1000                 return "";
1001 
1002         /*
1003          * The goal here is to build up the right number of pointer and
1004          * array suffixes while ensuring the type name for a typedef
1005          * is represented.  Along the way we accumulate a list of
1006          * BTF kinds we have encountered, since these will inform later
1007          * display; for example, pointer types will not require an
1008          * opening "{" for struct, we will just display the pointer value.
1009          *
1010          * We also want to accumulate the right number of pointer or array
1011          * indices in the format string while iterating until we get to
1012          * the typedef/pointee/array member target type.
1013          *
1014          * We start by pointing at the end of pointer and array suffix
1015          * strings; as we accumulate pointers and arrays we move the pointer
1016          * or array string backwards so it will show the expected number of
1017          * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
1018          * and/or arrays and typedefs are supported as a precaution.
1019          *
1020          * We also want to get typedef name while proceeding to resolve
1021          * type it points to so that we can add parentheses if it is a
1022          * "typedef struct" etc.
1023          */
1024         for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1025 
1026                 switch (BTF_INFO_KIND(t->info)) {
1027                 case BTF_KIND_TYPEDEF:
1028                         if (!name)
1029                                 name = btf_name_by_offset(show->btf,
1030                                                                t->name_off);
1031                         kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1032                         id = t->type;
1033                         break;
1034                 case BTF_KIND_ARRAY:
1035                         kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1036                         parens = "[";
1037                         if (!t)
1038                                 return "";
1039                         array = btf_type_array(t);
1040                         if (array_suffix > array_suffixes)
1041                                 array_suffix -= 2;
1042                         id = array->type;
1043                         break;
1044                 case BTF_KIND_PTR:
1045                         kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1046                         if (ptr_suffix > ptr_suffixes)
1047                                 ptr_suffix -= 1;
1048                         id = t->type;
1049                         break;
1050                 default:
1051                         id = 0;
1052                         break;
1053                 }
1054                 if (!id)
1055                         break;
1056                 t = btf_type_skip_qualifiers(show->btf, id);
1057         }
1058         /* We may not be able to represent this type; bail to be safe */
1059         if (i == BTF_SHOW_MAX_ITER)
1060                 return "";
1061 
1062         if (!name)
1063                 name = btf_name_by_offset(show->btf, t->name_off);
1064 
1065         switch (BTF_INFO_KIND(t->info)) {
1066         case BTF_KIND_STRUCT:
1067         case BTF_KIND_UNION:
1068                 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1069                          "struct" : "union";
1070                 /* if it's an array of struct/union, parens is already set */
1071                 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1072                         parens = "{";
1073                 break;
1074         case BTF_KIND_ENUM:
1075         case BTF_KIND_ENUM64:
1076                 prefix = "enum";
1077                 break;
1078         default:
1079                 break;
1080         }
1081 
1082         /* pointer does not require parens */
1083         if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1084                 parens = "";
1085         /* typedef does not require struct/union/enum prefix */
1086         if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1087                 prefix = "";
1088 
1089         if (!name)
1090                 name = "";
1091 
1092         /* Even if we don't want type name info, we want parentheses etc */
1093         if (show->flags & BTF_SHOW_NONAME)
1094                 snprintf(show->state.name, sizeof(show->state.name), "%s",
1095                          parens);
1096         else
1097                 snprintf(show->state.name, sizeof(show->state.name),
1098                          "%s%s%s(%s%s%s%s%s%s)%s",
1099                          /* first 3 strings comprise ".member = " */
1100                          show_member ? "." : "",
1101                          show_member ? member : "",
1102                          show_member ? " = " : "",
1103                          /* ...next is our prefix (struct, enum, etc) */
1104                          prefix,
1105                          strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1106                          /* ...this is the type name itself */
1107                          name,
1108                          /* ...suffixed by the appropriate '*', '[]' suffixes */
1109                          strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1110                          array_suffix, parens);
1111 
1112         return show->state.name;
1113 }
1114 
1115 static const char *__btf_show_indent(struct btf_show *show)
1116 {
1117         const char *indents = "                                ";
1118         const char *indent = &indents[strlen(indents)];
1119 
1120         if ((indent - show->state.depth) >= indents)
1121                 return indent - show->state.depth;
1122         return indents;
1123 }
1124 
1125 static const char *btf_show_indent(struct btf_show *show)
1126 {
1127         return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1128 }
1129 
1130 static const char *btf_show_newline(struct btf_show *show)
1131 {
1132         return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1133 }
1134 
1135 static const char *btf_show_delim(struct btf_show *show)
1136 {
1137         if (show->state.depth == 0)
1138                 return "";
1139 
1140         if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1141                 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1142                 return "|";
1143 
1144         return ",";
1145 }
1146 
1147 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1148 {
1149         va_list args;
1150 
1151         if (!show->state.depth_check) {
1152                 va_start(args, fmt);
1153                 show->showfn(show, fmt, args);
1154                 va_end(args);
1155         }
1156 }
1157 
1158 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1159  * format specifiers to the format specifier passed in; these do the work of
1160  * adding indentation, delimiters etc while the caller simply has to specify
1161  * the type value(s) in the format specifier + value(s).
1162  */
1163 #define btf_show_type_value(show, fmt, value)                                  \
1164         do {                                                                   \
1165                 if ((value) != (__typeof__(value))0 ||                         \
1166                     (show->flags & BTF_SHOW_ZERO) ||                           \
1167                     show->state.depth == 0) {                                  \
1168                         btf_show(show, "%s%s" fmt "%s%s",                      \
1169                                  btf_show_indent(show),                        \
1170                                  btf_show_name(show),                          \
1171                                  value, btf_show_delim(show),                  \
1172                                  btf_show_newline(show));                      \
1173                         if (show->state.depth > show->state.depth_to_show)     \
1174                                 show->state.depth_to_show = show->state.depth; \
1175                 }                                                              \
1176         } while (0)
1177 
1178 #define btf_show_type_values(show, fmt, ...)                                   \
1179         do {                                                                   \
1180                 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1181                          btf_show_name(show),                                  \
1182                          __VA_ARGS__, btf_show_delim(show),                    \
1183                          btf_show_newline(show));                              \
1184                 if (show->state.depth > show->state.depth_to_show)             \
1185                         show->state.depth_to_show = show->state.depth;         \
1186         } while (0)
1187 
1188 /* How much is left to copy to safe buffer after @data? */
1189 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1190 {
1191         return show->obj.head + show->obj.size - data;
1192 }
1193 
1194 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1195 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1196 {
1197         return data >= show->obj.data &&
1198                (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1199 }
1200 
1201 /*
1202  * If object pointed to by @data of @size falls within our safe buffer, return
1203  * the equivalent pointer to the same safe data.  Assumes
1204  * copy_from_kernel_nofault() has already happened and our safe buffer is
1205  * populated.
1206  */
1207 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1208 {
1209         if (btf_show_obj_is_safe(show, data, size))
1210                 return show->obj.safe + (data - show->obj.data);
1211         return NULL;
1212 }
1213 
1214 /*
1215  * Return a safe-to-access version of data pointed to by @data.
1216  * We do this by copying the relevant amount of information
1217  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1218  *
1219  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1220  * safe copy is needed.
1221  *
1222  * Otherwise we need to determine if we have the required amount
1223  * of data (determined by the @data pointer and the size of the
1224  * largest base type we can encounter (represented by
1225  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1226  * that we will be able to print some of the current object,
1227  * and if more is needed a copy will be triggered.
1228  * Some objects such as structs will not fit into the buffer;
1229  * in such cases additional copies when we iterate over their
1230  * members may be needed.
1231  *
1232  * btf_show_obj_safe() is used to return a safe buffer for
1233  * btf_show_start_type(); this ensures that as we recurse into
1234  * nested types we always have safe data for the given type.
1235  * This approach is somewhat wasteful; it's possible for example
1236  * that when iterating over a large union we'll end up copying the
1237  * same data repeatedly, but the goal is safety not performance.
1238  * We use stack data as opposed to per-CPU buffers because the
1239  * iteration over a type can take some time, and preemption handling
1240  * would greatly complicate use of the safe buffer.
1241  */
1242 static void *btf_show_obj_safe(struct btf_show *show,
1243                                const struct btf_type *t,
1244                                void *data)
1245 {
1246         const struct btf_type *rt;
1247         int size_left, size;
1248         void *safe = NULL;
1249 
1250         if (show->flags & BTF_SHOW_UNSAFE)
1251                 return data;
1252 
1253         rt = btf_resolve_size(show->btf, t, &size);
1254         if (IS_ERR(rt)) {
1255                 show->state.status = PTR_ERR(rt);
1256                 return NULL;
1257         }
1258 
1259         /*
1260          * Is this toplevel object? If so, set total object size and
1261          * initialize pointers.  Otherwise check if we still fall within
1262          * our safe object data.
1263          */
1264         if (show->state.depth == 0) {
1265                 show->obj.size = size;
1266                 show->obj.head = data;
1267         } else {
1268                 /*
1269                  * If the size of the current object is > our remaining
1270                  * safe buffer we _may_ need to do a new copy.  However
1271                  * consider the case of a nested struct; it's size pushes
1272                  * us over the safe buffer limit, but showing any individual
1273                  * struct members does not.  In such cases, we don't need
1274                  * to initiate a fresh copy yet; however we definitely need
1275                  * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1276                  * in our buffer, regardless of the current object size.
1277                  * The logic here is that as we resolve types we will
1278                  * hit a base type at some point, and we need to be sure
1279                  * the next chunk of data is safely available to display
1280                  * that type info safely.  We cannot rely on the size of
1281                  * the current object here because it may be much larger
1282                  * than our current buffer (e.g. task_struct is 8k).
1283                  * All we want to do here is ensure that we can print the
1284                  * next basic type, which we can if either
1285                  * - the current type size is within the safe buffer; or
1286                  * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1287                  *   the safe buffer.
1288                  */
1289                 safe = __btf_show_obj_safe(show, data,
1290                                            min(size,
1291                                                BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1292         }
1293 
1294         /*
1295          * We need a new copy to our safe object, either because we haven't
1296          * yet copied and are initializing safe data, or because the data
1297          * we want falls outside the boundaries of the safe object.
1298          */
1299         if (!safe) {
1300                 size_left = btf_show_obj_size_left(show, data);
1301                 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1302                         size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1303                 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1304                                                               data, size_left);
1305                 if (!show->state.status) {
1306                         show->obj.data = data;
1307                         safe = show->obj.safe;
1308                 }
1309         }
1310 
1311         return safe;
1312 }
1313 
1314 /*
1315  * Set the type we are starting to show and return a safe data pointer
1316  * to be used for showing the associated data.
1317  */
1318 static void *btf_show_start_type(struct btf_show *show,
1319                                  const struct btf_type *t,
1320                                  u32 type_id, void *data)
1321 {
1322         show->state.type = t;
1323         show->state.type_id = type_id;
1324         show->state.name[0] = '\0';
1325 
1326         return btf_show_obj_safe(show, t, data);
1327 }
1328 
1329 static void btf_show_end_type(struct btf_show *show)
1330 {
1331         show->state.type = NULL;
1332         show->state.type_id = 0;
1333         show->state.name[0] = '\0';
1334 }
1335 
1336 static void *btf_show_start_aggr_type(struct btf_show *show,
1337                                       const struct btf_type *t,
1338                                       u32 type_id, void *data)
1339 {
1340         void *safe_data = btf_show_start_type(show, t, type_id, data);
1341 
1342         if (!safe_data)
1343                 return safe_data;
1344 
1345         btf_show(show, "%s%s%s", btf_show_indent(show),
1346                  btf_show_name(show),
1347                  btf_show_newline(show));
1348         show->state.depth++;
1349         return safe_data;
1350 }
1351 
1352 static void btf_show_end_aggr_type(struct btf_show *show,
1353                                    const char *suffix)
1354 {
1355         show->state.depth--;
1356         btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1357                  btf_show_delim(show), btf_show_newline(show));
1358         btf_show_end_type(show);
1359 }
1360 
1361 static void btf_show_start_member(struct btf_show *show,
1362                                   const struct btf_member *m)
1363 {
1364         show->state.member = m;
1365 }
1366 
1367 static void btf_show_start_array_member(struct btf_show *show)
1368 {
1369         show->state.array_member = 1;
1370         btf_show_start_member(show, NULL);
1371 }
1372 
1373 static void btf_show_end_member(struct btf_show *show)
1374 {
1375         show->state.member = NULL;
1376 }
1377 
1378 static void btf_show_end_array_member(struct btf_show *show)
1379 {
1380         show->state.array_member = 0;
1381         btf_show_end_member(show);
1382 }
1383 
1384 static void *btf_show_start_array_type(struct btf_show *show,
1385                                        const struct btf_type *t,
1386                                        u32 type_id,
1387                                        u16 array_encoding,
1388                                        void *data)
1389 {
1390         show->state.array_encoding = array_encoding;
1391         show->state.array_terminated = 0;
1392         return btf_show_start_aggr_type(show, t, type_id, data);
1393 }
1394 
1395 static void btf_show_end_array_type(struct btf_show *show)
1396 {
1397         show->state.array_encoding = 0;
1398         show->state.array_terminated = 0;
1399         btf_show_end_aggr_type(show, "]");
1400 }
1401 
1402 static void *btf_show_start_struct_type(struct btf_show *show,
1403                                         const struct btf_type *t,
1404                                         u32 type_id,
1405                                         void *data)
1406 {
1407         return btf_show_start_aggr_type(show, t, type_id, data);
1408 }
1409 
1410 static void btf_show_end_struct_type(struct btf_show *show)
1411 {
1412         btf_show_end_aggr_type(show, "}");
1413 }
1414 
1415 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1416                                               const char *fmt, ...)
1417 {
1418         va_list args;
1419 
1420         va_start(args, fmt);
1421         bpf_verifier_vlog(log, fmt, args);
1422         va_end(args);
1423 }
1424 
1425 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1426                                             const char *fmt, ...)
1427 {
1428         struct bpf_verifier_log *log = &env->log;
1429         va_list args;
1430 
1431         if (!bpf_verifier_log_needed(log))
1432                 return;
1433 
1434         va_start(args, fmt);
1435         bpf_verifier_vlog(log, fmt, args);
1436         va_end(args);
1437 }
1438 
1439 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1440                                                    const struct btf_type *t,
1441                                                    bool log_details,
1442                                                    const char *fmt, ...)
1443 {
1444         struct bpf_verifier_log *log = &env->log;
1445         struct btf *btf = env->btf;
1446         va_list args;
1447 
1448         if (!bpf_verifier_log_needed(log))
1449                 return;
1450 
1451         if (log->level == BPF_LOG_KERNEL) {
1452                 /* btf verifier prints all types it is processing via
1453                  * btf_verifier_log_type(..., fmt = NULL).
1454                  * Skip those prints for in-kernel BTF verification.
1455                  */
1456                 if (!fmt)
1457                         return;
1458 
1459                 /* Skip logging when loading module BTF with mismatches permitted */
1460                 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1461                         return;
1462         }
1463 
1464         __btf_verifier_log(log, "[%u] %s %s%s",
1465                            env->log_type_id,
1466                            btf_type_str(t),
1467                            __btf_name_by_offset(btf, t->name_off),
1468                            log_details ? " " : "");
1469 
1470         if (log_details)
1471                 btf_type_ops(t)->log_details(env, t);
1472 
1473         if (fmt && *fmt) {
1474                 __btf_verifier_log(log, " ");
1475                 va_start(args, fmt);
1476                 bpf_verifier_vlog(log, fmt, args);
1477                 va_end(args);
1478         }
1479 
1480         __btf_verifier_log(log, "\n");
1481 }
1482 
1483 #define btf_verifier_log_type(env, t, ...) \
1484         __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1485 #define btf_verifier_log_basic(env, t, ...) \
1486         __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1487 
1488 __printf(4, 5)
1489 static void btf_verifier_log_member(struct btf_verifier_env *env,
1490                                     const struct btf_type *struct_type,
1491                                     const struct btf_member *member,
1492                                     const char *fmt, ...)
1493 {
1494         struct bpf_verifier_log *log = &env->log;
1495         struct btf *btf = env->btf;
1496         va_list args;
1497 
1498         if (!bpf_verifier_log_needed(log))
1499                 return;
1500 
1501         if (log->level == BPF_LOG_KERNEL) {
1502                 if (!fmt)
1503                         return;
1504 
1505                 /* Skip logging when loading module BTF with mismatches permitted */
1506                 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1507                         return;
1508         }
1509 
1510         /* The CHECK_META phase already did a btf dump.
1511          *
1512          * If member is logged again, it must hit an error in
1513          * parsing this member.  It is useful to print out which
1514          * struct this member belongs to.
1515          */
1516         if (env->phase != CHECK_META)
1517                 btf_verifier_log_type(env, struct_type, NULL);
1518 
1519         if (btf_type_kflag(struct_type))
1520                 __btf_verifier_log(log,
1521                                    "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1522                                    __btf_name_by_offset(btf, member->name_off),
1523                                    member->type,
1524                                    BTF_MEMBER_BITFIELD_SIZE(member->offset),
1525                                    BTF_MEMBER_BIT_OFFSET(member->offset));
1526         else
1527                 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1528                                    __btf_name_by_offset(btf, member->name_off),
1529                                    member->type, member->offset);
1530 
1531         if (fmt && *fmt) {
1532                 __btf_verifier_log(log, " ");
1533                 va_start(args, fmt);
1534                 bpf_verifier_vlog(log, fmt, args);
1535                 va_end(args);
1536         }
1537 
1538         __btf_verifier_log(log, "\n");
1539 }
1540 
1541 __printf(4, 5)
1542 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1543                                  const struct btf_type *datasec_type,
1544                                  const struct btf_var_secinfo *vsi,
1545                                  const char *fmt, ...)
1546 {
1547         struct bpf_verifier_log *log = &env->log;
1548         va_list args;
1549 
1550         if (!bpf_verifier_log_needed(log))
1551                 return;
1552         if (log->level == BPF_LOG_KERNEL && !fmt)
1553                 return;
1554         if (env->phase != CHECK_META)
1555                 btf_verifier_log_type(env, datasec_type, NULL);
1556 
1557         __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1558                            vsi->type, vsi->offset, vsi->size);
1559         if (fmt && *fmt) {
1560                 __btf_verifier_log(log, " ");
1561                 va_start(args, fmt);
1562                 bpf_verifier_vlog(log, fmt, args);
1563                 va_end(args);
1564         }
1565 
1566         __btf_verifier_log(log, "\n");
1567 }
1568 
1569 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1570                                  u32 btf_data_size)
1571 {
1572         struct bpf_verifier_log *log = &env->log;
1573         const struct btf *btf = env->btf;
1574         const struct btf_header *hdr;
1575 
1576         if (!bpf_verifier_log_needed(log))
1577                 return;
1578 
1579         if (log->level == BPF_LOG_KERNEL)
1580                 return;
1581         hdr = &btf->hdr;
1582         __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1583         __btf_verifier_log(log, "version: %u\n", hdr->version);
1584         __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1585         __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1586         __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1587         __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1588         __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1589         __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1590         __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1591 }
1592 
1593 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1594 {
1595         struct btf *btf = env->btf;
1596 
1597         if (btf->types_size == btf->nr_types) {
1598                 /* Expand 'types' array */
1599 
1600                 struct btf_type **new_types;
1601                 u32 expand_by, new_size;
1602 
1603                 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1604                         btf_verifier_log(env, "Exceeded max num of types");
1605                         return -E2BIG;
1606                 }
1607 
1608                 expand_by = max_t(u32, btf->types_size >> 2, 16);
1609                 new_size = min_t(u32, BTF_MAX_TYPE,
1610                                  btf->types_size + expand_by);
1611 
1612                 new_types = kvcalloc(new_size, sizeof(*new_types),
1613                                      GFP_KERNEL | __GFP_NOWARN);
1614                 if (!new_types)
1615                         return -ENOMEM;
1616 
1617                 if (btf->nr_types == 0) {
1618                         if (!btf->base_btf) {
1619                                 /* lazily init VOID type */
1620                                 new_types[0] = &btf_void;
1621                                 btf->nr_types++;
1622                         }
1623                 } else {
1624                         memcpy(new_types, btf->types,
1625                                sizeof(*btf->types) * btf->nr_types);
1626                 }
1627 
1628                 kvfree(btf->types);
1629                 btf->types = new_types;
1630                 btf->types_size = new_size;
1631         }
1632 
1633         btf->types[btf->nr_types++] = t;
1634 
1635         return 0;
1636 }
1637 
1638 static int btf_alloc_id(struct btf *btf)
1639 {
1640         int id;
1641 
1642         idr_preload(GFP_KERNEL);
1643         spin_lock_bh(&btf_idr_lock);
1644         id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1645         if (id > 0)
1646                 btf->id = id;
1647         spin_unlock_bh(&btf_idr_lock);
1648         idr_preload_end();
1649 
1650         if (WARN_ON_ONCE(!id))
1651                 return -ENOSPC;
1652 
1653         return id > 0 ? 0 : id;
1654 }
1655 
1656 static void btf_free_id(struct btf *btf)
1657 {
1658         unsigned long flags;
1659 
1660         /*
1661          * In map-in-map, calling map_delete_elem() on outer
1662          * map will call bpf_map_put on the inner map.
1663          * It will then eventually call btf_free_id()
1664          * on the inner map.  Some of the map_delete_elem()
1665          * implementation may have irq disabled, so
1666          * we need to use the _irqsave() version instead
1667          * of the _bh() version.
1668          */
1669         spin_lock_irqsave(&btf_idr_lock, flags);
1670         idr_remove(&btf_idr, btf->id);
1671         spin_unlock_irqrestore(&btf_idr_lock, flags);
1672 }
1673 
1674 static void btf_free_kfunc_set_tab(struct btf *btf)
1675 {
1676         struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1677         int hook;
1678 
1679         if (!tab)
1680                 return;
1681         for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1682                 kfree(tab->sets[hook]);
1683         kfree(tab);
1684         btf->kfunc_set_tab = NULL;
1685 }
1686 
1687 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1688 {
1689         struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1690 
1691         if (!tab)
1692                 return;
1693         kfree(tab);
1694         btf->dtor_kfunc_tab = NULL;
1695 }
1696 
1697 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1698 {
1699         int i;
1700 
1701         if (!tab)
1702                 return;
1703         for (i = 0; i < tab->cnt; i++)
1704                 btf_record_free(tab->types[i].record);
1705         kfree(tab);
1706 }
1707 
1708 static void btf_free_struct_meta_tab(struct btf *btf)
1709 {
1710         struct btf_struct_metas *tab = btf->struct_meta_tab;
1711 
1712         btf_struct_metas_free(tab);
1713         btf->struct_meta_tab = NULL;
1714 }
1715 
1716 static void btf_free_struct_ops_tab(struct btf *btf)
1717 {
1718         struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1719         u32 i;
1720 
1721         if (!tab)
1722                 return;
1723 
1724         for (i = 0; i < tab->cnt; i++)
1725                 bpf_struct_ops_desc_release(&tab->ops[i]);
1726 
1727         kfree(tab);
1728         btf->struct_ops_tab = NULL;
1729 }
1730 
1731 static void btf_free(struct btf *btf)
1732 {
1733         btf_free_struct_meta_tab(btf);
1734         btf_free_dtor_kfunc_tab(btf);
1735         btf_free_kfunc_set_tab(btf);
1736         btf_free_struct_ops_tab(btf);
1737         kvfree(btf->types);
1738         kvfree(btf->resolved_sizes);
1739         kvfree(btf->resolved_ids);
1740         /* vmlinux does not allocate btf->data, it simply points it at
1741          * __start_BTF.
1742          */
1743         if (!btf_is_vmlinux(btf))
1744                 kvfree(btf->data);
1745         kvfree(btf->base_id_map);
1746         kfree(btf);
1747 }
1748 
1749 static void btf_free_rcu(struct rcu_head *rcu)
1750 {
1751         struct btf *btf = container_of(rcu, struct btf, rcu);
1752 
1753         btf_free(btf);
1754 }
1755 
1756 const char *btf_get_name(const struct btf *btf)
1757 {
1758         return btf->name;
1759 }
1760 
1761 void btf_get(struct btf *btf)
1762 {
1763         refcount_inc(&btf->refcnt);
1764 }
1765 
1766 void btf_put(struct btf *btf)
1767 {
1768         if (btf && refcount_dec_and_test(&btf->refcnt)) {
1769                 btf_free_id(btf);
1770                 call_rcu(&btf->rcu, btf_free_rcu);
1771         }
1772 }
1773 
1774 struct btf *btf_base_btf(const struct btf *btf)
1775 {
1776         return btf->base_btf;
1777 }
1778 
1779 const struct btf_header *btf_header(const struct btf *btf)
1780 {
1781         return &btf->hdr;
1782 }
1783 
1784 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
1785 {
1786         btf->base_btf = (struct btf *)base_btf;
1787         btf->start_id = btf_nr_types(base_btf);
1788         btf->start_str_off = base_btf->hdr.str_len;
1789 }
1790 
1791 static int env_resolve_init(struct btf_verifier_env *env)
1792 {
1793         struct btf *btf = env->btf;
1794         u32 nr_types = btf->nr_types;
1795         u32 *resolved_sizes = NULL;
1796         u32 *resolved_ids = NULL;
1797         u8 *visit_states = NULL;
1798 
1799         resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1800                                   GFP_KERNEL | __GFP_NOWARN);
1801         if (!resolved_sizes)
1802                 goto nomem;
1803 
1804         resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1805                                 GFP_KERNEL | __GFP_NOWARN);
1806         if (!resolved_ids)
1807                 goto nomem;
1808 
1809         visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1810                                 GFP_KERNEL | __GFP_NOWARN);
1811         if (!visit_states)
1812                 goto nomem;
1813 
1814         btf->resolved_sizes = resolved_sizes;
1815         btf->resolved_ids = resolved_ids;
1816         env->visit_states = visit_states;
1817 
1818         return 0;
1819 
1820 nomem:
1821         kvfree(resolved_sizes);
1822         kvfree(resolved_ids);
1823         kvfree(visit_states);
1824         return -ENOMEM;
1825 }
1826 
1827 static void btf_verifier_env_free(struct btf_verifier_env *env)
1828 {
1829         kvfree(env->visit_states);
1830         kfree(env);
1831 }
1832 
1833 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1834                                      const struct btf_type *next_type)
1835 {
1836         switch (env->resolve_mode) {
1837         case RESOLVE_TBD:
1838                 /* int, enum or void is a sink */
1839                 return !btf_type_needs_resolve(next_type);
1840         case RESOLVE_PTR:
1841                 /* int, enum, void, struct, array, func or func_proto is a sink
1842                  * for ptr
1843                  */
1844                 return !btf_type_is_modifier(next_type) &&
1845                         !btf_type_is_ptr(next_type);
1846         case RESOLVE_STRUCT_OR_ARRAY:
1847                 /* int, enum, void, ptr, func or func_proto is a sink
1848                  * for struct and array
1849                  */
1850                 return !btf_type_is_modifier(next_type) &&
1851                         !btf_type_is_array(next_type) &&
1852                         !btf_type_is_struct(next_type);
1853         default:
1854                 BUG();
1855         }
1856 }
1857 
1858 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1859                                  u32 type_id)
1860 {
1861         /* base BTF types should be resolved by now */
1862         if (type_id < env->btf->start_id)
1863                 return true;
1864 
1865         return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1866 }
1867 
1868 static int env_stack_push(struct btf_verifier_env *env,
1869                           const struct btf_type *t, u32 type_id)
1870 {
1871         const struct btf *btf = env->btf;
1872         struct resolve_vertex *v;
1873 
1874         if (env->top_stack == MAX_RESOLVE_DEPTH)
1875                 return -E2BIG;
1876 
1877         if (type_id < btf->start_id
1878             || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1879                 return -EEXIST;
1880 
1881         env->visit_states[type_id - btf->start_id] = VISITED;
1882 
1883         v = &env->stack[env->top_stack++];
1884         v->t = t;
1885         v->type_id = type_id;
1886         v->next_member = 0;
1887 
1888         if (env->resolve_mode == RESOLVE_TBD) {
1889                 if (btf_type_is_ptr(t))
1890                         env->resolve_mode = RESOLVE_PTR;
1891                 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1892                         env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1893         }
1894 
1895         return 0;
1896 }
1897 
1898 static void env_stack_set_next_member(struct btf_verifier_env *env,
1899                                       u16 next_member)
1900 {
1901         env->stack[env->top_stack - 1].next_member = next_member;
1902 }
1903 
1904 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1905                                    u32 resolved_type_id,
1906                                    u32 resolved_size)
1907 {
1908         u32 type_id = env->stack[--(env->top_stack)].type_id;
1909         struct btf *btf = env->btf;
1910 
1911         type_id -= btf->start_id; /* adjust to local type id */
1912         btf->resolved_sizes[type_id] = resolved_size;
1913         btf->resolved_ids[type_id] = resolved_type_id;
1914         env->visit_states[type_id] = RESOLVED;
1915 }
1916 
1917 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1918 {
1919         return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1920 }
1921 
1922 /* Resolve the size of a passed-in "type"
1923  *
1924  * type: is an array (e.g. u32 array[x][y])
1925  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1926  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1927  *             corresponds to the return type.
1928  * *elem_type: u32
1929  * *elem_id: id of u32
1930  * *total_nelems: (x * y).  Hence, individual elem size is
1931  *                (*type_size / *total_nelems)
1932  * *type_id: id of type if it's changed within the function, 0 if not
1933  *
1934  * type: is not an array (e.g. const struct X)
1935  * return type: type "struct X"
1936  * *type_size: sizeof(struct X)
1937  * *elem_type: same as return type ("struct X")
1938  * *elem_id: 0
1939  * *total_nelems: 1
1940  * *type_id: id of type if it's changed within the function, 0 if not
1941  */
1942 static const struct btf_type *
1943 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1944                    u32 *type_size, const struct btf_type **elem_type,
1945                    u32 *elem_id, u32 *total_nelems, u32 *type_id)
1946 {
1947         const struct btf_type *array_type = NULL;
1948         const struct btf_array *array = NULL;
1949         u32 i, size, nelems = 1, id = 0;
1950 
1951         for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1952                 switch (BTF_INFO_KIND(type->info)) {
1953                 /* type->size can be used */
1954                 case BTF_KIND_INT:
1955                 case BTF_KIND_STRUCT:
1956                 case BTF_KIND_UNION:
1957                 case BTF_KIND_ENUM:
1958                 case BTF_KIND_FLOAT:
1959                 case BTF_KIND_ENUM64:
1960                         size = type->size;
1961                         goto resolved;
1962 
1963                 case BTF_KIND_PTR:
1964                         size = sizeof(void *);
1965                         goto resolved;
1966 
1967                 /* Modifiers */
1968                 case BTF_KIND_TYPEDEF:
1969                 case BTF_KIND_VOLATILE:
1970                 case BTF_KIND_CONST:
1971                 case BTF_KIND_RESTRICT:
1972                 case BTF_KIND_TYPE_TAG:
1973                         id = type->type;
1974                         type = btf_type_by_id(btf, type->type);
1975                         break;
1976 
1977                 case BTF_KIND_ARRAY:
1978                         if (!array_type)
1979                                 array_type = type;
1980                         array = btf_type_array(type);
1981                         if (nelems && array->nelems > U32_MAX / nelems)
1982                                 return ERR_PTR(-EINVAL);
1983                         nelems *= array->nelems;
1984                         type = btf_type_by_id(btf, array->type);
1985                         break;
1986 
1987                 /* type without size */
1988                 default:
1989                         return ERR_PTR(-EINVAL);
1990                 }
1991         }
1992 
1993         return ERR_PTR(-EINVAL);
1994 
1995 resolved:
1996         if (nelems && size > U32_MAX / nelems)
1997                 return ERR_PTR(-EINVAL);
1998 
1999         *type_size = nelems * size;
2000         if (total_nelems)
2001                 *total_nelems = nelems;
2002         if (elem_type)
2003                 *elem_type = type;
2004         if (elem_id)
2005                 *elem_id = array ? array->type : 0;
2006         if (type_id && id)
2007                 *type_id = id;
2008 
2009         return array_type ? : type;
2010 }
2011 
2012 const struct btf_type *
2013 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
2014                  u32 *type_size)
2015 {
2016         return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
2017 }
2018 
2019 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
2020 {
2021         while (type_id < btf->start_id)
2022                 btf = btf->base_btf;
2023 
2024         return btf->resolved_ids[type_id - btf->start_id];
2025 }
2026 
2027 /* The input param "type_id" must point to a needs_resolve type */
2028 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
2029                                                   u32 *type_id)
2030 {
2031         *type_id = btf_resolved_type_id(btf, *type_id);
2032         return btf_type_by_id(btf, *type_id);
2033 }
2034 
2035 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
2036 {
2037         while (type_id < btf->start_id)
2038                 btf = btf->base_btf;
2039 
2040         return btf->resolved_sizes[type_id - btf->start_id];
2041 }
2042 
2043 const struct btf_type *btf_type_id_size(const struct btf *btf,
2044                                         u32 *type_id, u32 *ret_size)
2045 {
2046         const struct btf_type *size_type;
2047         u32 size_type_id = *type_id;
2048         u32 size = 0;
2049 
2050         size_type = btf_type_by_id(btf, size_type_id);
2051         if (btf_type_nosize_or_null(size_type))
2052                 return NULL;
2053 
2054         if (btf_type_has_size(size_type)) {
2055                 size = size_type->size;
2056         } else if (btf_type_is_array(size_type)) {
2057                 size = btf_resolved_type_size(btf, size_type_id);
2058         } else if (btf_type_is_ptr(size_type)) {
2059                 size = sizeof(void *);
2060         } else {
2061                 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2062                                  !btf_type_is_var(size_type)))
2063                         return NULL;
2064 
2065                 size_type_id = btf_resolved_type_id(btf, size_type_id);
2066                 size_type = btf_type_by_id(btf, size_type_id);
2067                 if (btf_type_nosize_or_null(size_type))
2068                         return NULL;
2069                 else if (btf_type_has_size(size_type))
2070                         size = size_type->size;
2071                 else if (btf_type_is_array(size_type))
2072                         size = btf_resolved_type_size(btf, size_type_id);
2073                 else if (btf_type_is_ptr(size_type))
2074                         size = sizeof(void *);
2075                 else
2076                         return NULL;
2077         }
2078 
2079         *type_id = size_type_id;
2080         if (ret_size)
2081                 *ret_size = size;
2082 
2083         return size_type;
2084 }
2085 
2086 static int btf_df_check_member(struct btf_verifier_env *env,
2087                                const struct btf_type *struct_type,
2088                                const struct btf_member *member,
2089                                const struct btf_type *member_type)
2090 {
2091         btf_verifier_log_basic(env, struct_type,
2092                                "Unsupported check_member");
2093         return -EINVAL;
2094 }
2095 
2096 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2097                                      const struct btf_type *struct_type,
2098                                      const struct btf_member *member,
2099                                      const struct btf_type *member_type)
2100 {
2101         btf_verifier_log_basic(env, struct_type,
2102                                "Unsupported check_kflag_member");
2103         return -EINVAL;
2104 }
2105 
2106 /* Used for ptr, array struct/union and float type members.
2107  * int, enum and modifier types have their specific callback functions.
2108  */
2109 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2110                                           const struct btf_type *struct_type,
2111                                           const struct btf_member *member,
2112                                           const struct btf_type *member_type)
2113 {
2114         if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2115                 btf_verifier_log_member(env, struct_type, member,
2116                                         "Invalid member bitfield_size");
2117                 return -EINVAL;
2118         }
2119 
2120         /* bitfield size is 0, so member->offset represents bit offset only.
2121          * It is safe to call non kflag check_member variants.
2122          */
2123         return btf_type_ops(member_type)->check_member(env, struct_type,
2124                                                        member,
2125                                                        member_type);
2126 }
2127 
2128 static int btf_df_resolve(struct btf_verifier_env *env,
2129                           const struct resolve_vertex *v)
2130 {
2131         btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2132         return -EINVAL;
2133 }
2134 
2135 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2136                         u32 type_id, void *data, u8 bits_offsets,
2137                         struct btf_show *show)
2138 {
2139         btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2140 }
2141 
2142 static int btf_int_check_member(struct btf_verifier_env *env,
2143                                 const struct btf_type *struct_type,
2144                                 const struct btf_member *member,
2145                                 const struct btf_type *member_type)
2146 {
2147         u32 int_data = btf_type_int(member_type);
2148         u32 struct_bits_off = member->offset;
2149         u32 struct_size = struct_type->size;
2150         u32 nr_copy_bits;
2151         u32 bytes_offset;
2152 
2153         if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2154                 btf_verifier_log_member(env, struct_type, member,
2155                                         "bits_offset exceeds U32_MAX");
2156                 return -EINVAL;
2157         }
2158 
2159         struct_bits_off += BTF_INT_OFFSET(int_data);
2160         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2161         nr_copy_bits = BTF_INT_BITS(int_data) +
2162                 BITS_PER_BYTE_MASKED(struct_bits_off);
2163 
2164         if (nr_copy_bits > BITS_PER_U128) {
2165                 btf_verifier_log_member(env, struct_type, member,
2166                                         "nr_copy_bits exceeds 128");
2167                 return -EINVAL;
2168         }
2169 
2170         if (struct_size < bytes_offset ||
2171             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2172                 btf_verifier_log_member(env, struct_type, member,
2173                                         "Member exceeds struct_size");
2174                 return -EINVAL;
2175         }
2176 
2177         return 0;
2178 }
2179 
2180 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2181                                       const struct btf_type *struct_type,
2182                                       const struct btf_member *member,
2183                                       const struct btf_type *member_type)
2184 {
2185         u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2186         u32 int_data = btf_type_int(member_type);
2187         u32 struct_size = struct_type->size;
2188         u32 nr_copy_bits;
2189 
2190         /* a regular int type is required for the kflag int member */
2191         if (!btf_type_int_is_regular(member_type)) {
2192                 btf_verifier_log_member(env, struct_type, member,
2193                                         "Invalid member base type");
2194                 return -EINVAL;
2195         }
2196 
2197         /* check sanity of bitfield size */
2198         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2199         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2200         nr_int_data_bits = BTF_INT_BITS(int_data);
2201         if (!nr_bits) {
2202                 /* Not a bitfield member, member offset must be at byte
2203                  * boundary.
2204                  */
2205                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2206                         btf_verifier_log_member(env, struct_type, member,
2207                                                 "Invalid member offset");
2208                         return -EINVAL;
2209                 }
2210 
2211                 nr_bits = nr_int_data_bits;
2212         } else if (nr_bits > nr_int_data_bits) {
2213                 btf_verifier_log_member(env, struct_type, member,
2214                                         "Invalid member bitfield_size");
2215                 return -EINVAL;
2216         }
2217 
2218         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2219         nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2220         if (nr_copy_bits > BITS_PER_U128) {
2221                 btf_verifier_log_member(env, struct_type, member,
2222                                         "nr_copy_bits exceeds 128");
2223                 return -EINVAL;
2224         }
2225 
2226         if (struct_size < bytes_offset ||
2227             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2228                 btf_verifier_log_member(env, struct_type, member,
2229                                         "Member exceeds struct_size");
2230                 return -EINVAL;
2231         }
2232 
2233         return 0;
2234 }
2235 
2236 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2237                               const struct btf_type *t,
2238                               u32 meta_left)
2239 {
2240         u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2241         u16 encoding;
2242 
2243         if (meta_left < meta_needed) {
2244                 btf_verifier_log_basic(env, t,
2245                                        "meta_left:%u meta_needed:%u",
2246                                        meta_left, meta_needed);
2247                 return -EINVAL;
2248         }
2249 
2250         if (btf_type_vlen(t)) {
2251                 btf_verifier_log_type(env, t, "vlen != 0");
2252                 return -EINVAL;
2253         }
2254 
2255         if (btf_type_kflag(t)) {
2256                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2257                 return -EINVAL;
2258         }
2259 
2260         int_data = btf_type_int(t);
2261         if (int_data & ~BTF_INT_MASK) {
2262                 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2263                                        int_data);
2264                 return -EINVAL;
2265         }
2266 
2267         nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2268 
2269         if (nr_bits > BITS_PER_U128) {
2270                 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2271                                       BITS_PER_U128);
2272                 return -EINVAL;
2273         }
2274 
2275         if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2276                 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2277                 return -EINVAL;
2278         }
2279 
2280         /*
2281          * Only one of the encoding bits is allowed and it
2282          * should be sufficient for the pretty print purpose (i.e. decoding).
2283          * Multiple bits can be allowed later if it is found
2284          * to be insufficient.
2285          */
2286         encoding = BTF_INT_ENCODING(int_data);
2287         if (encoding &&
2288             encoding != BTF_INT_SIGNED &&
2289             encoding != BTF_INT_CHAR &&
2290             encoding != BTF_INT_BOOL) {
2291                 btf_verifier_log_type(env, t, "Unsupported encoding");
2292                 return -ENOTSUPP;
2293         }
2294 
2295         btf_verifier_log_type(env, t, NULL);
2296 
2297         return meta_needed;
2298 }
2299 
2300 static void btf_int_log(struct btf_verifier_env *env,
2301                         const struct btf_type *t)
2302 {
2303         int int_data = btf_type_int(t);
2304 
2305         btf_verifier_log(env,
2306                          "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2307                          t->size, BTF_INT_OFFSET(int_data),
2308                          BTF_INT_BITS(int_data),
2309                          btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2310 }
2311 
2312 static void btf_int128_print(struct btf_show *show, void *data)
2313 {
2314         /* data points to a __int128 number.
2315          * Suppose
2316          *     int128_num = *(__int128 *)data;
2317          * The below formulas shows what upper_num and lower_num represents:
2318          *     upper_num = int128_num >> 64;
2319          *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2320          */
2321         u64 upper_num, lower_num;
2322 
2323 #ifdef __BIG_ENDIAN_BITFIELD
2324         upper_num = *(u64 *)data;
2325         lower_num = *(u64 *)(data + 8);
2326 #else
2327         upper_num = *(u64 *)(data + 8);
2328         lower_num = *(u64 *)data;
2329 #endif
2330         if (upper_num == 0)
2331                 btf_show_type_value(show, "0x%llx", lower_num);
2332         else
2333                 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2334                                      lower_num);
2335 }
2336 
2337 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2338                              u16 right_shift_bits)
2339 {
2340         u64 upper_num, lower_num;
2341 
2342 #ifdef __BIG_ENDIAN_BITFIELD
2343         upper_num = print_num[0];
2344         lower_num = print_num[1];
2345 #else
2346         upper_num = print_num[1];
2347         lower_num = print_num[0];
2348 #endif
2349 
2350         /* shake out un-needed bits by shift/or operations */
2351         if (left_shift_bits >= 64) {
2352                 upper_num = lower_num << (left_shift_bits - 64);
2353                 lower_num = 0;
2354         } else {
2355                 upper_num = (upper_num << left_shift_bits) |
2356                             (lower_num >> (64 - left_shift_bits));
2357                 lower_num = lower_num << left_shift_bits;
2358         }
2359 
2360         if (right_shift_bits >= 64) {
2361                 lower_num = upper_num >> (right_shift_bits - 64);
2362                 upper_num = 0;
2363         } else {
2364                 lower_num = (lower_num >> right_shift_bits) |
2365                             (upper_num << (64 - right_shift_bits));
2366                 upper_num = upper_num >> right_shift_bits;
2367         }
2368 
2369 #ifdef __BIG_ENDIAN_BITFIELD
2370         print_num[0] = upper_num;
2371         print_num[1] = lower_num;
2372 #else
2373         print_num[0] = lower_num;
2374         print_num[1] = upper_num;
2375 #endif
2376 }
2377 
2378 static void btf_bitfield_show(void *data, u8 bits_offset,
2379                               u8 nr_bits, struct btf_show *show)
2380 {
2381         u16 left_shift_bits, right_shift_bits;
2382         u8 nr_copy_bytes;
2383         u8 nr_copy_bits;
2384         u64 print_num[2] = {};
2385 
2386         nr_copy_bits = nr_bits + bits_offset;
2387         nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2388 
2389         memcpy(print_num, data, nr_copy_bytes);
2390 
2391 #ifdef __BIG_ENDIAN_BITFIELD
2392         left_shift_bits = bits_offset;
2393 #else
2394         left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2395 #endif
2396         right_shift_bits = BITS_PER_U128 - nr_bits;
2397 
2398         btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2399         btf_int128_print(show, print_num);
2400 }
2401 
2402 
2403 static void btf_int_bits_show(const struct btf *btf,
2404                               const struct btf_type *t,
2405                               void *data, u8 bits_offset,
2406                               struct btf_show *show)
2407 {
2408         u32 int_data = btf_type_int(t);
2409         u8 nr_bits = BTF_INT_BITS(int_data);
2410         u8 total_bits_offset;
2411 
2412         /*
2413          * bits_offset is at most 7.
2414          * BTF_INT_OFFSET() cannot exceed 128 bits.
2415          */
2416         total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2417         data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2418         bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2419         btf_bitfield_show(data, bits_offset, nr_bits, show);
2420 }
2421 
2422 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2423                          u32 type_id, void *data, u8 bits_offset,
2424                          struct btf_show *show)
2425 {
2426         u32 int_data = btf_type_int(t);
2427         u8 encoding = BTF_INT_ENCODING(int_data);
2428         bool sign = encoding & BTF_INT_SIGNED;
2429         u8 nr_bits = BTF_INT_BITS(int_data);
2430         void *safe_data;
2431 
2432         safe_data = btf_show_start_type(show, t, type_id, data);
2433         if (!safe_data)
2434                 return;
2435 
2436         if (bits_offset || BTF_INT_OFFSET(int_data) ||
2437             BITS_PER_BYTE_MASKED(nr_bits)) {
2438                 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2439                 goto out;
2440         }
2441 
2442         switch (nr_bits) {
2443         case 128:
2444                 btf_int128_print(show, safe_data);
2445                 break;
2446         case 64:
2447                 if (sign)
2448                         btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2449                 else
2450                         btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2451                 break;
2452         case 32:
2453                 if (sign)
2454                         btf_show_type_value(show, "%d", *(s32 *)safe_data);
2455                 else
2456                         btf_show_type_value(show, "%u", *(u32 *)safe_data);
2457                 break;
2458         case 16:
2459                 if (sign)
2460                         btf_show_type_value(show, "%d", *(s16 *)safe_data);
2461                 else
2462                         btf_show_type_value(show, "%u", *(u16 *)safe_data);
2463                 break;
2464         case 8:
2465                 if (show->state.array_encoding == BTF_INT_CHAR) {
2466                         /* check for null terminator */
2467                         if (show->state.array_terminated)
2468                                 break;
2469                         if (*(char *)data == '\0') {
2470                                 show->state.array_terminated = 1;
2471                                 break;
2472                         }
2473                         if (isprint(*(char *)data)) {
2474                                 btf_show_type_value(show, "'%c'",
2475                                                     *(char *)safe_data);
2476                                 break;
2477                         }
2478                 }
2479                 if (sign)
2480                         btf_show_type_value(show, "%d", *(s8 *)safe_data);
2481                 else
2482                         btf_show_type_value(show, "%u", *(u8 *)safe_data);
2483                 break;
2484         default:
2485                 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2486                 break;
2487         }
2488 out:
2489         btf_show_end_type(show);
2490 }
2491 
2492 static const struct btf_kind_operations int_ops = {
2493         .check_meta = btf_int_check_meta,
2494         .resolve = btf_df_resolve,
2495         .check_member = btf_int_check_member,
2496         .check_kflag_member = btf_int_check_kflag_member,
2497         .log_details = btf_int_log,
2498         .show = btf_int_show,
2499 };
2500 
2501 static int btf_modifier_check_member(struct btf_verifier_env *env,
2502                                      const struct btf_type *struct_type,
2503                                      const struct btf_member *member,
2504                                      const struct btf_type *member_type)
2505 {
2506         const struct btf_type *resolved_type;
2507         u32 resolved_type_id = member->type;
2508         struct btf_member resolved_member;
2509         struct btf *btf = env->btf;
2510 
2511         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2512         if (!resolved_type) {
2513                 btf_verifier_log_member(env, struct_type, member,
2514                                         "Invalid member");
2515                 return -EINVAL;
2516         }
2517 
2518         resolved_member = *member;
2519         resolved_member.type = resolved_type_id;
2520 
2521         return btf_type_ops(resolved_type)->check_member(env, struct_type,
2522                                                          &resolved_member,
2523                                                          resolved_type);
2524 }
2525 
2526 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2527                                            const struct btf_type *struct_type,
2528                                            const struct btf_member *member,
2529                                            const struct btf_type *member_type)
2530 {
2531         const struct btf_type *resolved_type;
2532         u32 resolved_type_id = member->type;
2533         struct btf_member resolved_member;
2534         struct btf *btf = env->btf;
2535 
2536         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2537         if (!resolved_type) {
2538                 btf_verifier_log_member(env, struct_type, member,
2539                                         "Invalid member");
2540                 return -EINVAL;
2541         }
2542 
2543         resolved_member = *member;
2544         resolved_member.type = resolved_type_id;
2545 
2546         return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2547                                                                &resolved_member,
2548                                                                resolved_type);
2549 }
2550 
2551 static int btf_ptr_check_member(struct btf_verifier_env *env,
2552                                 const struct btf_type *struct_type,
2553                                 const struct btf_member *member,
2554                                 const struct btf_type *member_type)
2555 {
2556         u32 struct_size, struct_bits_off, bytes_offset;
2557 
2558         struct_size = struct_type->size;
2559         struct_bits_off = member->offset;
2560         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2561 
2562         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2563                 btf_verifier_log_member(env, struct_type, member,
2564                                         "Member is not byte aligned");
2565                 return -EINVAL;
2566         }
2567 
2568         if (struct_size - bytes_offset < sizeof(void *)) {
2569                 btf_verifier_log_member(env, struct_type, member,
2570                                         "Member exceeds struct_size");
2571                 return -EINVAL;
2572         }
2573 
2574         return 0;
2575 }
2576 
2577 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2578                                    const struct btf_type *t,
2579                                    u32 meta_left)
2580 {
2581         const char *value;
2582 
2583         if (btf_type_vlen(t)) {
2584                 btf_verifier_log_type(env, t, "vlen != 0");
2585                 return -EINVAL;
2586         }
2587 
2588         if (btf_type_kflag(t)) {
2589                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2590                 return -EINVAL;
2591         }
2592 
2593         if (!BTF_TYPE_ID_VALID(t->type)) {
2594                 btf_verifier_log_type(env, t, "Invalid type_id");
2595                 return -EINVAL;
2596         }
2597 
2598         /* typedef/type_tag type must have a valid name, and other ref types,
2599          * volatile, const, restrict, should have a null name.
2600          */
2601         if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2602                 if (!t->name_off ||
2603                     !btf_name_valid_identifier(env->btf, t->name_off)) {
2604                         btf_verifier_log_type(env, t, "Invalid name");
2605                         return -EINVAL;
2606                 }
2607         } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2608                 value = btf_name_by_offset(env->btf, t->name_off);
2609                 if (!value || !value[0]) {
2610                         btf_verifier_log_type(env, t, "Invalid name");
2611                         return -EINVAL;
2612                 }
2613         } else {
2614                 if (t->name_off) {
2615                         btf_verifier_log_type(env, t, "Invalid name");
2616                         return -EINVAL;
2617                 }
2618         }
2619 
2620         btf_verifier_log_type(env, t, NULL);
2621 
2622         return 0;
2623 }
2624 
2625 static int btf_modifier_resolve(struct btf_verifier_env *env,
2626                                 const struct resolve_vertex *v)
2627 {
2628         const struct btf_type *t = v->t;
2629         const struct btf_type *next_type;
2630         u32 next_type_id = t->type;
2631         struct btf *btf = env->btf;
2632 
2633         next_type = btf_type_by_id(btf, next_type_id);
2634         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2635                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2636                 return -EINVAL;
2637         }
2638 
2639         if (!env_type_is_resolve_sink(env, next_type) &&
2640             !env_type_is_resolved(env, next_type_id))
2641                 return env_stack_push(env, next_type, next_type_id);
2642 
2643         /* Figure out the resolved next_type_id with size.
2644          * They will be stored in the current modifier's
2645          * resolved_ids and resolved_sizes such that it can
2646          * save us a few type-following when we use it later (e.g. in
2647          * pretty print).
2648          */
2649         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2650                 if (env_type_is_resolved(env, next_type_id))
2651                         next_type = btf_type_id_resolve(btf, &next_type_id);
2652 
2653                 /* "typedef void new_void", "const void"...etc */
2654                 if (!btf_type_is_void(next_type) &&
2655                     !btf_type_is_fwd(next_type) &&
2656                     !btf_type_is_func_proto(next_type)) {
2657                         btf_verifier_log_type(env, v->t, "Invalid type_id");
2658                         return -EINVAL;
2659                 }
2660         }
2661 
2662         env_stack_pop_resolved(env, next_type_id, 0);
2663 
2664         return 0;
2665 }
2666 
2667 static int btf_var_resolve(struct btf_verifier_env *env,
2668                            const struct resolve_vertex *v)
2669 {
2670         const struct btf_type *next_type;
2671         const struct btf_type *t = v->t;
2672         u32 next_type_id = t->type;
2673         struct btf *btf = env->btf;
2674 
2675         next_type = btf_type_by_id(btf, next_type_id);
2676         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2677                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2678                 return -EINVAL;
2679         }
2680 
2681         if (!env_type_is_resolve_sink(env, next_type) &&
2682             !env_type_is_resolved(env, next_type_id))
2683                 return env_stack_push(env, next_type, next_type_id);
2684 
2685         if (btf_type_is_modifier(next_type)) {
2686                 const struct btf_type *resolved_type;
2687                 u32 resolved_type_id;
2688 
2689                 resolved_type_id = next_type_id;
2690                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2691 
2692                 if (btf_type_is_ptr(resolved_type) &&
2693                     !env_type_is_resolve_sink(env, resolved_type) &&
2694                     !env_type_is_resolved(env, resolved_type_id))
2695                         return env_stack_push(env, resolved_type,
2696                                               resolved_type_id);
2697         }
2698 
2699         /* We must resolve to something concrete at this point, no
2700          * forward types or similar that would resolve to size of
2701          * zero is allowed.
2702          */
2703         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2704                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2705                 return -EINVAL;
2706         }
2707 
2708         env_stack_pop_resolved(env, next_type_id, 0);
2709 
2710         return 0;
2711 }
2712 
2713 static int btf_ptr_resolve(struct btf_verifier_env *env,
2714                            const struct resolve_vertex *v)
2715 {
2716         const struct btf_type *next_type;
2717         const struct btf_type *t = v->t;
2718         u32 next_type_id = t->type;
2719         struct btf *btf = env->btf;
2720 
2721         next_type = btf_type_by_id(btf, next_type_id);
2722         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2723                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2724                 return -EINVAL;
2725         }
2726 
2727         if (!env_type_is_resolve_sink(env, next_type) &&
2728             !env_type_is_resolved(env, next_type_id))
2729                 return env_stack_push(env, next_type, next_type_id);
2730 
2731         /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2732          * the modifier may have stopped resolving when it was resolved
2733          * to a ptr (last-resolved-ptr).
2734          *
2735          * We now need to continue from the last-resolved-ptr to
2736          * ensure the last-resolved-ptr will not referring back to
2737          * the current ptr (t).
2738          */
2739         if (btf_type_is_modifier(next_type)) {
2740                 const struct btf_type *resolved_type;
2741                 u32 resolved_type_id;
2742 
2743                 resolved_type_id = next_type_id;
2744                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2745 
2746                 if (btf_type_is_ptr(resolved_type) &&
2747                     !env_type_is_resolve_sink(env, resolved_type) &&
2748                     !env_type_is_resolved(env, resolved_type_id))
2749                         return env_stack_push(env, resolved_type,
2750                                               resolved_type_id);
2751         }
2752 
2753         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2754                 if (env_type_is_resolved(env, next_type_id))
2755                         next_type = btf_type_id_resolve(btf, &next_type_id);
2756 
2757                 if (!btf_type_is_void(next_type) &&
2758                     !btf_type_is_fwd(next_type) &&
2759                     !btf_type_is_func_proto(next_type)) {
2760                         btf_verifier_log_type(env, v->t, "Invalid type_id");
2761                         return -EINVAL;
2762                 }
2763         }
2764 
2765         env_stack_pop_resolved(env, next_type_id, 0);
2766 
2767         return 0;
2768 }
2769 
2770 static void btf_modifier_show(const struct btf *btf,
2771                               const struct btf_type *t,
2772                               u32 type_id, void *data,
2773                               u8 bits_offset, struct btf_show *show)
2774 {
2775         if (btf->resolved_ids)
2776                 t = btf_type_id_resolve(btf, &type_id);
2777         else
2778                 t = btf_type_skip_modifiers(btf, type_id, NULL);
2779 
2780         btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2781 }
2782 
2783 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2784                          u32 type_id, void *data, u8 bits_offset,
2785                          struct btf_show *show)
2786 {
2787         t = btf_type_id_resolve(btf, &type_id);
2788 
2789         btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2790 }
2791 
2792 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2793                          u32 type_id, void *data, u8 bits_offset,
2794                          struct btf_show *show)
2795 {
2796         void *safe_data;
2797 
2798         safe_data = btf_show_start_type(show, t, type_id, data);
2799         if (!safe_data)
2800                 return;
2801 
2802         /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2803         if (show->flags & BTF_SHOW_PTR_RAW)
2804                 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2805         else
2806                 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2807         btf_show_end_type(show);
2808 }
2809 
2810 static void btf_ref_type_log(struct btf_verifier_env *env,
2811                              const struct btf_type *t)
2812 {
2813         btf_verifier_log(env, "type_id=%u", t->type);
2814 }
2815 
2816 static struct btf_kind_operations modifier_ops = {
2817         .check_meta = btf_ref_type_check_meta,
2818         .resolve = btf_modifier_resolve,
2819         .check_member = btf_modifier_check_member,
2820         .check_kflag_member = btf_modifier_check_kflag_member,
2821         .log_details = btf_ref_type_log,
2822         .show = btf_modifier_show,
2823 };
2824 
2825 static struct btf_kind_operations ptr_ops = {
2826         .check_meta = btf_ref_type_check_meta,
2827         .resolve = btf_ptr_resolve,
2828         .check_member = btf_ptr_check_member,
2829         .check_kflag_member = btf_generic_check_kflag_member,
2830         .log_details = btf_ref_type_log,
2831         .show = btf_ptr_show,
2832 };
2833 
2834 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2835                               const struct btf_type *t,
2836                               u32 meta_left)
2837 {
2838         if (btf_type_vlen(t)) {
2839                 btf_verifier_log_type(env, t, "vlen != 0");
2840                 return -EINVAL;
2841         }
2842 
2843         if (t->type) {
2844                 btf_verifier_log_type(env, t, "type != 0");
2845                 return -EINVAL;
2846         }
2847 
2848         /* fwd type must have a valid name */
2849         if (!t->name_off ||
2850             !btf_name_valid_identifier(env->btf, t->name_off)) {
2851                 btf_verifier_log_type(env, t, "Invalid name");
2852                 return -EINVAL;
2853         }
2854 
2855         btf_verifier_log_type(env, t, NULL);
2856 
2857         return 0;
2858 }
2859 
2860 static void btf_fwd_type_log(struct btf_verifier_env *env,
2861                              const struct btf_type *t)
2862 {
2863         btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2864 }
2865 
2866 static struct btf_kind_operations fwd_ops = {
2867         .check_meta = btf_fwd_check_meta,
2868         .resolve = btf_df_resolve,
2869         .check_member = btf_df_check_member,
2870         .check_kflag_member = btf_df_check_kflag_member,
2871         .log_details = btf_fwd_type_log,
2872         .show = btf_df_show,
2873 };
2874 
2875 static int btf_array_check_member(struct btf_verifier_env *env,
2876                                   const struct btf_type *struct_type,
2877                                   const struct btf_member *member,
2878                                   const struct btf_type *member_type)
2879 {
2880         u32 struct_bits_off = member->offset;
2881         u32 struct_size, bytes_offset;
2882         u32 array_type_id, array_size;
2883         struct btf *btf = env->btf;
2884 
2885         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2886                 btf_verifier_log_member(env, struct_type, member,
2887                                         "Member is not byte aligned");
2888                 return -EINVAL;
2889         }
2890 
2891         array_type_id = member->type;
2892         btf_type_id_size(btf, &array_type_id, &array_size);
2893         struct_size = struct_type->size;
2894         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2895         if (struct_size - bytes_offset < array_size) {
2896                 btf_verifier_log_member(env, struct_type, member,
2897                                         "Member exceeds struct_size");
2898                 return -EINVAL;
2899         }
2900 
2901         return 0;
2902 }
2903 
2904 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2905                                 const struct btf_type *t,
2906                                 u32 meta_left)
2907 {
2908         const struct btf_array *array = btf_type_array(t);
2909         u32 meta_needed = sizeof(*array);
2910 
2911         if (meta_left < meta_needed) {
2912                 btf_verifier_log_basic(env, t,
2913                                        "meta_left:%u meta_needed:%u",
2914                                        meta_left, meta_needed);
2915                 return -EINVAL;
2916         }
2917 
2918         /* array type should not have a name */
2919         if (t->name_off) {
2920                 btf_verifier_log_type(env, t, "Invalid name");
2921                 return -EINVAL;
2922         }
2923 
2924         if (btf_type_vlen(t)) {
2925                 btf_verifier_log_type(env, t, "vlen != 0");
2926                 return -EINVAL;
2927         }
2928 
2929         if (btf_type_kflag(t)) {
2930                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2931                 return -EINVAL;
2932         }
2933 
2934         if (t->size) {
2935                 btf_verifier_log_type(env, t, "size != 0");
2936                 return -EINVAL;
2937         }
2938 
2939         /* Array elem type and index type cannot be in type void,
2940          * so !array->type and !array->index_type are not allowed.
2941          */
2942         if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2943                 btf_verifier_log_type(env, t, "Invalid elem");
2944                 return -EINVAL;
2945         }
2946 
2947         if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2948                 btf_verifier_log_type(env, t, "Invalid index");
2949                 return -EINVAL;
2950         }
2951 
2952         btf_verifier_log_type(env, t, NULL);
2953 
2954         return meta_needed;
2955 }
2956 
2957 static int btf_array_resolve(struct btf_verifier_env *env,
2958                              const struct resolve_vertex *v)
2959 {
2960         const struct btf_array *array = btf_type_array(v->t);
2961         const struct btf_type *elem_type, *index_type;
2962         u32 elem_type_id, index_type_id;
2963         struct btf *btf = env->btf;
2964         u32 elem_size;
2965 
2966         /* Check array->index_type */
2967         index_type_id = array->index_type;
2968         index_type = btf_type_by_id(btf, index_type_id);
2969         if (btf_type_nosize_or_null(index_type) ||
2970             btf_type_is_resolve_source_only(index_type)) {
2971                 btf_verifier_log_type(env, v->t, "Invalid index");
2972                 return -EINVAL;
2973         }
2974 
2975         if (!env_type_is_resolve_sink(env, index_type) &&
2976             !env_type_is_resolved(env, index_type_id))
2977                 return env_stack_push(env, index_type, index_type_id);
2978 
2979         index_type = btf_type_id_size(btf, &index_type_id, NULL);
2980         if (!index_type || !btf_type_is_int(index_type) ||
2981             !btf_type_int_is_regular(index_type)) {
2982                 btf_verifier_log_type(env, v->t, "Invalid index");
2983                 return -EINVAL;
2984         }
2985 
2986         /* Check array->type */
2987         elem_type_id = array->type;
2988         elem_type = btf_type_by_id(btf, elem_type_id);
2989         if (btf_type_nosize_or_null(elem_type) ||
2990             btf_type_is_resolve_source_only(elem_type)) {
2991                 btf_verifier_log_type(env, v->t,
2992                                       "Invalid elem");
2993                 return -EINVAL;
2994         }
2995 
2996         if (!env_type_is_resolve_sink(env, elem_type) &&
2997             !env_type_is_resolved(env, elem_type_id))
2998                 return env_stack_push(env, elem_type, elem_type_id);
2999 
3000         elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3001         if (!elem_type) {
3002                 btf_verifier_log_type(env, v->t, "Invalid elem");
3003                 return -EINVAL;
3004         }
3005 
3006         if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
3007                 btf_verifier_log_type(env, v->t, "Invalid array of int");
3008                 return -EINVAL;
3009         }
3010 
3011         if (array->nelems && elem_size > U32_MAX / array->nelems) {
3012                 btf_verifier_log_type(env, v->t,
3013                                       "Array size overflows U32_MAX");
3014                 return -EINVAL;
3015         }
3016 
3017         env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
3018 
3019         return 0;
3020 }
3021 
3022 static void btf_array_log(struct btf_verifier_env *env,
3023                           const struct btf_type *t)
3024 {
3025         const struct btf_array *array = btf_type_array(t);
3026 
3027         btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
3028                          array->type, array->index_type, array->nelems);
3029 }
3030 
3031 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
3032                              u32 type_id, void *data, u8 bits_offset,
3033                              struct btf_show *show)
3034 {
3035         const struct btf_array *array = btf_type_array(t);
3036         const struct btf_kind_operations *elem_ops;
3037         const struct btf_type *elem_type;
3038         u32 i, elem_size = 0, elem_type_id;
3039         u16 encoding = 0;
3040 
3041         elem_type_id = array->type;
3042         elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
3043         if (elem_type && btf_type_has_size(elem_type))
3044                 elem_size = elem_type->size;
3045 
3046         if (elem_type && btf_type_is_int(elem_type)) {
3047                 u32 int_type = btf_type_int(elem_type);
3048 
3049                 encoding = BTF_INT_ENCODING(int_type);
3050 
3051                 /*
3052                  * BTF_INT_CHAR encoding never seems to be set for
3053                  * char arrays, so if size is 1 and element is
3054                  * printable as a char, we'll do that.
3055                  */
3056                 if (elem_size == 1)
3057                         encoding = BTF_INT_CHAR;
3058         }
3059 
3060         if (!btf_show_start_array_type(show, t, type_id, encoding, data))
3061                 return;
3062 
3063         if (!elem_type)
3064                 goto out;
3065         elem_ops = btf_type_ops(elem_type);
3066 
3067         for (i = 0; i < array->nelems; i++) {
3068 
3069                 btf_show_start_array_member(show);
3070 
3071                 elem_ops->show(btf, elem_type, elem_type_id, data,
3072                                bits_offset, show);
3073                 data += elem_size;
3074 
3075                 btf_show_end_array_member(show);
3076 
3077                 if (show->state.array_terminated)
3078                         break;
3079         }
3080 out:
3081         btf_show_end_array_type(show);
3082 }
3083 
3084 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3085                            u32 type_id, void *data, u8 bits_offset,
3086                            struct btf_show *show)
3087 {
3088         const struct btf_member *m = show->state.member;
3089 
3090         /*
3091          * First check if any members would be shown (are non-zero).
3092          * See comments above "struct btf_show" definition for more
3093          * details on how this works at a high-level.
3094          */
3095         if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3096                 if (!show->state.depth_check) {
3097                         show->state.depth_check = show->state.depth + 1;
3098                         show->state.depth_to_show = 0;
3099                 }
3100                 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3101                 show->state.member = m;
3102 
3103                 if (show->state.depth_check != show->state.depth + 1)
3104                         return;
3105                 show->state.depth_check = 0;
3106 
3107                 if (show->state.depth_to_show <= show->state.depth)
3108                         return;
3109                 /*
3110                  * Reaching here indicates we have recursed and found
3111                  * non-zero array member(s).
3112                  */
3113         }
3114         __btf_array_show(btf, t, type_id, data, bits_offset, show);
3115 }
3116 
3117 static struct btf_kind_operations array_ops = {
3118         .check_meta = btf_array_check_meta,
3119         .resolve = btf_array_resolve,
3120         .check_member = btf_array_check_member,
3121         .check_kflag_member = btf_generic_check_kflag_member,
3122         .log_details = btf_array_log,
3123         .show = btf_array_show,
3124 };
3125 
3126 static int btf_struct_check_member(struct btf_verifier_env *env,
3127                                    const struct btf_type *struct_type,
3128                                    const struct btf_member *member,
3129                                    const struct btf_type *member_type)
3130 {
3131         u32 struct_bits_off = member->offset;
3132         u32 struct_size, bytes_offset;
3133 
3134         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3135                 btf_verifier_log_member(env, struct_type, member,
3136                                         "Member is not byte aligned");
3137                 return -EINVAL;
3138         }
3139 
3140         struct_size = struct_type->size;
3141         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3142         if (struct_size - bytes_offset < member_type->size) {
3143                 btf_verifier_log_member(env, struct_type, member,
3144                                         "Member exceeds struct_size");
3145                 return -EINVAL;
3146         }
3147 
3148         return 0;
3149 }
3150 
3151 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3152                                  const struct btf_type *t,
3153                                  u32 meta_left)
3154 {
3155         bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3156         const struct btf_member *member;
3157         u32 meta_needed, last_offset;
3158         struct btf *btf = env->btf;
3159         u32 struct_size = t->size;
3160         u32 offset;
3161         u16 i;
3162 
3163         meta_needed = btf_type_vlen(t) * sizeof(*member);
3164         if (meta_left < meta_needed) {
3165                 btf_verifier_log_basic(env, t,
3166                                        "meta_left:%u meta_needed:%u",
3167                                        meta_left, meta_needed);
3168                 return -EINVAL;
3169         }
3170 
3171         /* struct type either no name or a valid one */
3172         if (t->name_off &&
3173             !btf_name_valid_identifier(env->btf, t->name_off)) {
3174                 btf_verifier_log_type(env, t, "Invalid name");
3175                 return -EINVAL;
3176         }
3177 
3178         btf_verifier_log_type(env, t, NULL);
3179 
3180         last_offset = 0;
3181         for_each_member(i, t, member) {
3182                 if (!btf_name_offset_valid(btf, member->name_off)) {
3183                         btf_verifier_log_member(env, t, member,
3184                                                 "Invalid member name_offset:%u",
3185                                                 member->name_off);
3186                         return -EINVAL;
3187                 }
3188 
3189                 /* struct member either no name or a valid one */
3190                 if (member->name_off &&
3191                     !btf_name_valid_identifier(btf, member->name_off)) {
3192                         btf_verifier_log_member(env, t, member, "Invalid name");
3193                         return -EINVAL;
3194                 }
3195                 /* A member cannot be in type void */
3196                 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3197                         btf_verifier_log_member(env, t, member,
3198                                                 "Invalid type_id");
3199                         return -EINVAL;
3200                 }
3201 
3202                 offset = __btf_member_bit_offset(t, member);
3203                 if (is_union && offset) {
3204                         btf_verifier_log_member(env, t, member,
3205                                                 "Invalid member bits_offset");
3206                         return -EINVAL;
3207                 }
3208 
3209                 /*
3210                  * ">" instead of ">=" because the last member could be
3211                  * "char a[0];"
3212                  */
3213                 if (last_offset > offset) {
3214                         btf_verifier_log_member(env, t, member,
3215                                                 "Invalid member bits_offset");
3216                         return -EINVAL;
3217                 }
3218 
3219                 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3220                         btf_verifier_log_member(env, t, member,
3221                                                 "Member bits_offset exceeds its struct size");
3222                         return -EINVAL;
3223                 }
3224 
3225                 btf_verifier_log_member(env, t, member, NULL);
3226                 last_offset = offset;
3227         }
3228 
3229         return meta_needed;
3230 }
3231 
3232 static int btf_struct_resolve(struct btf_verifier_env *env,
3233                               const struct resolve_vertex *v)
3234 {
3235         const struct btf_member *member;
3236         int err;
3237         u16 i;
3238 
3239         /* Before continue resolving the next_member,
3240          * ensure the last member is indeed resolved to a
3241          * type with size info.
3242          */
3243         if (v->next_member) {
3244                 const struct btf_type *last_member_type;
3245                 const struct btf_member *last_member;
3246                 u32 last_member_type_id;
3247 
3248                 last_member = btf_type_member(v->t) + v->next_member - 1;
3249                 last_member_type_id = last_member->type;
3250                 if (WARN_ON_ONCE(!env_type_is_resolved(env,
3251                                                        last_member_type_id)))
3252                         return -EINVAL;
3253 
3254                 last_member_type = btf_type_by_id(env->btf,
3255                                                   last_member_type_id);
3256                 if (btf_type_kflag(v->t))
3257                         err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3258                                                                 last_member,
3259                                                                 last_member_type);
3260                 else
3261                         err = btf_type_ops(last_member_type)->check_member(env, v->t,
3262                                                                 last_member,
3263                                                                 last_member_type);
3264                 if (err)
3265                         return err;
3266         }
3267 
3268         for_each_member_from(i, v->next_member, v->t, member) {
3269                 u32 member_type_id = member->type;
3270                 const struct btf_type *member_type = btf_type_by_id(env->btf,
3271                                                                 member_type_id);
3272 
3273                 if (btf_type_nosize_or_null(member_type) ||
3274                     btf_type_is_resolve_source_only(member_type)) {
3275                         btf_verifier_log_member(env, v->t, member,
3276                                                 "Invalid member");
3277                         return -EINVAL;
3278                 }
3279 
3280                 if (!env_type_is_resolve_sink(env, member_type) &&
3281                     !env_type_is_resolved(env, member_type_id)) {
3282                         env_stack_set_next_member(env, i + 1);
3283                         return env_stack_push(env, member_type, member_type_id);
3284                 }
3285 
3286                 if (btf_type_kflag(v->t))
3287                         err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3288                                                                             member,
3289                                                                             member_type);
3290                 else
3291                         err = btf_type_ops(member_type)->check_member(env, v->t,
3292                                                                       member,
3293                                                                       member_type);
3294                 if (err)
3295                         return err;
3296         }
3297 
3298         env_stack_pop_resolved(env, 0, 0);
3299 
3300         return 0;
3301 }
3302 
3303 static void btf_struct_log(struct btf_verifier_env *env,
3304                            const struct btf_type *t)
3305 {
3306         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3307 }
3308 
3309 enum {
3310         BTF_FIELD_IGNORE = 0,
3311         BTF_FIELD_FOUND  = 1,
3312 };
3313 
3314 struct btf_field_info {
3315         enum btf_field_type type;
3316         u32 off;
3317         union {
3318                 struct {
3319                         u32 type_id;
3320                 } kptr;
3321                 struct {
3322                         const char *node_name;
3323                         u32 value_btf_id;
3324                 } graph_root;
3325         };
3326 };
3327 
3328 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3329                            u32 off, int sz, enum btf_field_type field_type,
3330                            struct btf_field_info *info)
3331 {
3332         if (!__btf_type_is_struct(t))
3333                 return BTF_FIELD_IGNORE;
3334         if (t->size != sz)
3335                 return BTF_FIELD_IGNORE;
3336         info->type = field_type;
3337         info->off = off;
3338         return BTF_FIELD_FOUND;
3339 }
3340 
3341 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3342                          u32 off, int sz, struct btf_field_info *info)
3343 {
3344         enum btf_field_type type;
3345         u32 res_id;
3346 
3347         /* Permit modifiers on the pointer itself */
3348         if (btf_type_is_volatile(t))
3349                 t = btf_type_by_id(btf, t->type);
3350         /* For PTR, sz is always == 8 */
3351         if (!btf_type_is_ptr(t))
3352                 return BTF_FIELD_IGNORE;
3353         t = btf_type_by_id(btf, t->type);
3354 
3355         if (!btf_type_is_type_tag(t))
3356                 return BTF_FIELD_IGNORE;
3357         /* Reject extra tags */
3358         if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3359                 return -EINVAL;
3360         if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3361                 type = BPF_KPTR_UNREF;
3362         else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3363                 type = BPF_KPTR_REF;
3364         else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off)))
3365                 type = BPF_KPTR_PERCPU;
3366         else
3367                 return -EINVAL;
3368 
3369         /* Get the base type */
3370         t = btf_type_skip_modifiers(btf, t->type, &res_id);
3371         /* Only pointer to struct is allowed */
3372         if (!__btf_type_is_struct(t))
3373                 return -EINVAL;
3374 
3375         info->type = type;
3376         info->off = off;
3377         info->kptr.type_id = res_id;
3378         return BTF_FIELD_FOUND;
3379 }
3380 
3381 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3382                            int comp_idx, const char *tag_key, int last_id)
3383 {
3384         int len = strlen(tag_key);
3385         int i, n;
3386 
3387         for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3388                 const struct btf_type *t = btf_type_by_id(btf, i);
3389 
3390                 if (!btf_type_is_decl_tag(t))
3391                         continue;
3392                 if (pt != btf_type_by_id(btf, t->type))
3393                         continue;
3394                 if (btf_type_decl_tag(t)->component_idx != comp_idx)
3395                         continue;
3396                 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3397                         continue;
3398                 return i;
3399         }
3400         return -ENOENT;
3401 }
3402 
3403 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3404                                     int comp_idx, const char *tag_key)
3405 {
3406         const char *value = NULL;
3407         const struct btf_type *t;
3408         int len, id;
3409 
3410         id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0);
3411         if (id < 0)
3412                 return ERR_PTR(id);
3413 
3414         t = btf_type_by_id(btf, id);
3415         len = strlen(tag_key);
3416         value = __btf_name_by_offset(btf, t->name_off) + len;
3417 
3418         /* Prevent duplicate entries for same type */
3419         id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
3420         if (id >= 0)
3421                 return ERR_PTR(-EEXIST);
3422 
3423         return value;
3424 }
3425 
3426 static int
3427 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3428                     const struct btf_type *t, int comp_idx, u32 off,
3429                     int sz, struct btf_field_info *info,
3430                     enum btf_field_type head_type)
3431 {
3432         const char *node_field_name;
3433         const char *value_type;
3434         s32 id;
3435 
3436         if (!__btf_type_is_struct(t))
3437                 return BTF_FIELD_IGNORE;
3438         if (t->size != sz)
3439                 return BTF_FIELD_IGNORE;
3440         value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3441         if (IS_ERR(value_type))
3442                 return -EINVAL;
3443         node_field_name = strstr(value_type, ":");
3444         if (!node_field_name)
3445                 return -EINVAL;
3446         value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3447         if (!value_type)
3448                 return -ENOMEM;
3449         id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3450         kfree(value_type);
3451         if (id < 0)
3452                 return id;
3453         node_field_name++;
3454         if (str_is_empty(node_field_name))
3455                 return -EINVAL;
3456         info->type = head_type;
3457         info->off = off;
3458         info->graph_root.value_btf_id = id;
3459         info->graph_root.node_name = node_field_name;
3460         return BTF_FIELD_FOUND;
3461 }
3462 
3463 #define field_mask_test_name(field_type, field_type_str) \
3464         if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3465                 type = field_type;                                      \
3466                 goto end;                                               \
3467         }
3468 
3469 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type,
3470                               u32 field_mask, u32 *seen_mask,
3471                               int *align, int *sz)
3472 {
3473         int type = 0;
3474         const char *name = __btf_name_by_offset(btf, var_type->name_off);
3475 
3476         if (field_mask & BPF_SPIN_LOCK) {
3477                 if (!strcmp(name, "bpf_spin_lock")) {
3478                         if (*seen_mask & BPF_SPIN_LOCK)
3479                                 return -E2BIG;
3480                         *seen_mask |= BPF_SPIN_LOCK;
3481                         type = BPF_SPIN_LOCK;
3482                         goto end;
3483                 }
3484         }
3485         if (field_mask & BPF_TIMER) {
3486                 if (!strcmp(name, "bpf_timer")) {
3487                         if (*seen_mask & BPF_TIMER)
3488                                 return -E2BIG;
3489                         *seen_mask |= BPF_TIMER;
3490                         type = BPF_TIMER;
3491                         goto end;
3492                 }
3493         }
3494         if (field_mask & BPF_WORKQUEUE) {
3495                 if (!strcmp(name, "bpf_wq")) {
3496                         if (*seen_mask & BPF_WORKQUEUE)
3497                                 return -E2BIG;
3498                         *seen_mask |= BPF_WORKQUEUE;
3499                         type = BPF_WORKQUEUE;
3500                         goto end;
3501                 }
3502         }
3503         field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3504         field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3505         field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3506         field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3507         field_mask_test_name(BPF_REFCOUNT,  "bpf_refcount");
3508 
3509         /* Only return BPF_KPTR when all other types with matchable names fail */
3510         if (field_mask & BPF_KPTR && !__btf_type_is_struct(var_type)) {
3511                 type = BPF_KPTR_REF;
3512                 goto end;
3513         }
3514         return 0;
3515 end:
3516         *sz = btf_field_type_size(type);
3517         *align = btf_field_type_align(type);
3518         return type;
3519 }
3520 
3521 #undef field_mask_test_name
3522 
3523 /* Repeat a number of fields for a specified number of times.
3524  *
3525  * Copy the fields starting from the first field and repeat them for
3526  * repeat_cnt times. The fields are repeated by adding the offset of each
3527  * field with
3528  *   (i + 1) * elem_size
3529  * where i is the repeat index and elem_size is the size of an element.
3530  */
3531 static int btf_repeat_fields(struct btf_field_info *info,
3532                              u32 field_cnt, u32 repeat_cnt, u32 elem_size)
3533 {
3534         u32 i, j;
3535         u32 cur;
3536 
3537         /* Ensure not repeating fields that should not be repeated. */
3538         for (i = 0; i < field_cnt; i++) {
3539                 switch (info[i].type) {
3540                 case BPF_KPTR_UNREF:
3541                 case BPF_KPTR_REF:
3542                 case BPF_KPTR_PERCPU:
3543                 case BPF_LIST_HEAD:
3544                 case BPF_RB_ROOT:
3545                         break;
3546                 default:
3547                         return -EINVAL;
3548                 }
3549         }
3550 
3551         cur = field_cnt;
3552         for (i = 0; i < repeat_cnt; i++) {
3553                 memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0]));
3554                 for (j = 0; j < field_cnt; j++)
3555                         info[cur++].off += (i + 1) * elem_size;
3556         }
3557 
3558         return 0;
3559 }
3560 
3561 static int btf_find_struct_field(const struct btf *btf,
3562                                  const struct btf_type *t, u32 field_mask,
3563                                  struct btf_field_info *info, int info_cnt,
3564                                  u32 level);
3565 
3566 /* Find special fields in the struct type of a field.
3567  *
3568  * This function is used to find fields of special types that is not a
3569  * global variable or a direct field of a struct type. It also handles the
3570  * repetition if it is the element type of an array.
3571  */
3572 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t,
3573                                   u32 off, u32 nelems,
3574                                   u32 field_mask, struct btf_field_info *info,
3575                                   int info_cnt, u32 level)
3576 {
3577         int ret, err, i;
3578 
3579         level++;
3580         if (level >= MAX_RESOLVE_DEPTH)
3581                 return -E2BIG;
3582 
3583         ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level);
3584 
3585         if (ret <= 0)
3586                 return ret;
3587 
3588         /* Shift the offsets of the nested struct fields to the offsets
3589          * related to the container.
3590          */
3591         for (i = 0; i < ret; i++)
3592                 info[i].off += off;
3593 
3594         if (nelems > 1) {
3595                 err = btf_repeat_fields(info, ret, nelems - 1, t->size);
3596                 if (err == 0)
3597                         ret *= nelems;
3598                 else
3599                         ret = err;
3600         }
3601 
3602         return ret;
3603 }
3604 
3605 static int btf_find_field_one(const struct btf *btf,
3606                               const struct btf_type *var,
3607                               const struct btf_type *var_type,
3608                               int var_idx,
3609                               u32 off, u32 expected_size,
3610                               u32 field_mask, u32 *seen_mask,
3611                               struct btf_field_info *info, int info_cnt,
3612                               u32 level)
3613 {
3614         int ret, align, sz, field_type;
3615         struct btf_field_info tmp;
3616         const struct btf_array *array;
3617         u32 i, nelems = 1;
3618 
3619         /* Walk into array types to find the element type and the number of
3620          * elements in the (flattened) array.
3621          */
3622         for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) {
3623                 array = btf_array(var_type);
3624                 nelems *= array->nelems;
3625                 var_type = btf_type_by_id(btf, array->type);
3626         }
3627         if (i == MAX_RESOLVE_DEPTH)
3628                 return -E2BIG;
3629         if (nelems == 0)
3630                 return 0;
3631 
3632         field_type = btf_get_field_type(btf, var_type,
3633                                         field_mask, seen_mask, &align, &sz);
3634         /* Look into variables of struct types */
3635         if (!field_type && __btf_type_is_struct(var_type)) {
3636                 sz = var_type->size;
3637                 if (expected_size && expected_size != sz * nelems)
3638                         return 0;
3639                 ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask,
3640                                              &info[0], info_cnt, level);
3641                 return ret;
3642         }
3643 
3644         if (field_type == 0)
3645                 return 0;
3646         if (field_type < 0)
3647                 return field_type;
3648 
3649         if (expected_size && expected_size != sz * nelems)
3650                 return 0;
3651         if (off % align)
3652                 return 0;
3653 
3654         switch (field_type) {
3655         case BPF_SPIN_LOCK:
3656         case BPF_TIMER:
3657         case BPF_WORKQUEUE:
3658         case BPF_LIST_NODE:
3659         case BPF_RB_NODE:
3660         case BPF_REFCOUNT:
3661                 ret = btf_find_struct(btf, var_type, off, sz, field_type,
3662                                       info_cnt ? &info[0] : &tmp);
3663                 if (ret < 0)
3664                         return ret;
3665                 break;
3666         case BPF_KPTR_UNREF:
3667         case BPF_KPTR_REF:
3668         case BPF_KPTR_PERCPU:
3669                 ret = btf_find_kptr(btf, var_type, off, sz,
3670                                     info_cnt ? &info[0] : &tmp);
3671                 if (ret < 0)
3672                         return ret;
3673                 break;
3674         case BPF_LIST_HEAD:
3675         case BPF_RB_ROOT:
3676                 ret = btf_find_graph_root(btf, var, var_type,
3677                                           var_idx, off, sz,
3678                                           info_cnt ? &info[0] : &tmp,
3679                                           field_type);
3680                 if (ret < 0)
3681                         return ret;
3682                 break;
3683         default:
3684                 return -EFAULT;
3685         }
3686 
3687         if (ret == BTF_FIELD_IGNORE)
3688                 return 0;
3689         if (nelems > info_cnt)
3690                 return -E2BIG;
3691         if (nelems > 1) {
3692                 ret = btf_repeat_fields(info, 1, nelems - 1, sz);
3693                 if (ret < 0)
3694                         return ret;
3695         }
3696         return nelems;
3697 }
3698 
3699 static int btf_find_struct_field(const struct btf *btf,
3700                                  const struct btf_type *t, u32 field_mask,
3701                                  struct btf_field_info *info, int info_cnt,
3702                                  u32 level)
3703 {
3704         int ret, idx = 0;
3705         const struct btf_member *member;
3706         u32 i, off, seen_mask = 0;
3707 
3708         for_each_member(i, t, member) {
3709                 const struct btf_type *member_type = btf_type_by_id(btf,
3710                                                                     member->type);
3711 
3712                 off = __btf_member_bit_offset(t, member);
3713                 if (off % 8)
3714                         /* valid C code cannot generate such BTF */
3715                         return -EINVAL;
3716                 off /= 8;
3717 
3718                 ret = btf_find_field_one(btf, t, member_type, i,
3719                                          off, 0,
3720                                          field_mask, &seen_mask,
3721                                          &info[idx], info_cnt - idx, level);
3722                 if (ret < 0)
3723                         return ret;
3724                 idx += ret;
3725         }
3726         return idx;
3727 }
3728 
3729 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3730                                 u32 field_mask, struct btf_field_info *info,
3731                                 int info_cnt, u32 level)
3732 {
3733         int ret, idx = 0;
3734         const struct btf_var_secinfo *vsi;
3735         u32 i, off, seen_mask = 0;
3736 
3737         for_each_vsi(i, t, vsi) {
3738                 const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3739                 const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3740 
3741                 off = vsi->offset;
3742                 ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size,
3743                                          field_mask, &seen_mask,
3744                                          &info[idx], info_cnt - idx,
3745                                          level);
3746                 if (ret < 0)
3747                         return ret;
3748                 idx += ret;
3749         }
3750         return idx;
3751 }
3752 
3753 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3754                           u32 field_mask, struct btf_field_info *info,
3755                           int info_cnt)
3756 {
3757         if (__btf_type_is_struct(t))
3758                 return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0);
3759         else if (btf_type_is_datasec(t))
3760                 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0);
3761         return -EINVAL;
3762 }
3763 
3764 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3765                           struct btf_field_info *info)
3766 {
3767         struct module *mod = NULL;
3768         const struct btf_type *t;
3769         /* If a matching btf type is found in kernel or module BTFs, kptr_ref
3770          * is that BTF, otherwise it's program BTF
3771          */
3772         struct btf *kptr_btf;
3773         int ret;
3774         s32 id;
3775 
3776         /* Find type in map BTF, and use it to look up the matching type
3777          * in vmlinux or module BTFs, by name and kind.
3778          */
3779         t = btf_type_by_id(btf, info->kptr.type_id);
3780         id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3781                              &kptr_btf);
3782         if (id == -ENOENT) {
3783                 /* btf_parse_kptr should only be called w/ btf = program BTF */
3784                 WARN_ON_ONCE(btf_is_kernel(btf));
3785 
3786                 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3787                  * kptr allocated via bpf_obj_new
3788                  */
3789                 field->kptr.dtor = NULL;
3790                 id = info->kptr.type_id;
3791                 kptr_btf = (struct btf *)btf;
3792                 btf_get(kptr_btf);
3793                 goto found_dtor;
3794         }
3795         if (id < 0)
3796                 return id;
3797 
3798         /* Find and stash the function pointer for the destruction function that
3799          * needs to be eventually invoked from the map free path.
3800          */
3801         if (info->type == BPF_KPTR_REF) {
3802                 const struct btf_type *dtor_func;
3803                 const char *dtor_func_name;
3804                 unsigned long addr;
3805                 s32 dtor_btf_id;
3806 
3807                 /* This call also serves as a whitelist of allowed objects that
3808                  * can be used as a referenced pointer and be stored in a map at
3809                  * the same time.
3810                  */
3811                 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3812                 if (dtor_btf_id < 0) {
3813                         ret = dtor_btf_id;
3814                         goto end_btf;
3815                 }
3816 
3817                 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3818                 if (!dtor_func) {
3819                         ret = -ENOENT;
3820                         goto end_btf;
3821                 }
3822 
3823                 if (btf_is_module(kptr_btf)) {
3824                         mod = btf_try_get_module(kptr_btf);
3825                         if (!mod) {
3826                                 ret = -ENXIO;
3827                                 goto end_btf;
3828                         }
3829                 }
3830 
3831                 /* We already verified dtor_func to be btf_type_is_func
3832                  * in register_btf_id_dtor_kfuncs.
3833                  */
3834                 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3835                 addr = kallsyms_lookup_name(dtor_func_name);
3836                 if (!addr) {
3837                         ret = -EINVAL;
3838                         goto end_mod;
3839                 }
3840                 field->kptr.dtor = (void *)addr;
3841         }
3842 
3843 found_dtor:
3844         field->kptr.btf_id = id;
3845         field->kptr.btf = kptr_btf;
3846         field->kptr.module = mod;
3847         return 0;
3848 end_mod:
3849         module_put(mod);
3850 end_btf:
3851         btf_put(kptr_btf);
3852         return ret;
3853 }
3854 
3855 static int btf_parse_graph_root(const struct btf *btf,
3856                                 struct btf_field *field,
3857                                 struct btf_field_info *info,
3858                                 const char *node_type_name,
3859                                 size_t node_type_align)
3860 {
3861         const struct btf_type *t, *n = NULL;
3862         const struct btf_member *member;
3863         u32 offset;
3864         int i;
3865 
3866         t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3867         /* We've already checked that value_btf_id is a struct type. We
3868          * just need to figure out the offset of the list_node, and
3869          * verify its type.
3870          */
3871         for_each_member(i, t, member) {
3872                 if (strcmp(info->graph_root.node_name,
3873                            __btf_name_by_offset(btf, member->name_off)))
3874                         continue;
3875                 /* Invalid BTF, two members with same name */
3876                 if (n)
3877                         return -EINVAL;
3878                 n = btf_type_by_id(btf, member->type);
3879                 if (!__btf_type_is_struct(n))
3880                         return -EINVAL;
3881                 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3882                         return -EINVAL;
3883                 offset = __btf_member_bit_offset(n, member);
3884                 if (offset % 8)
3885                         return -EINVAL;
3886                 offset /= 8;
3887                 if (offset % node_type_align)
3888                         return -EINVAL;
3889 
3890                 field->graph_root.btf = (struct btf *)btf;
3891                 field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3892                 field->graph_root.node_offset = offset;
3893         }
3894         if (!n)
3895                 return -ENOENT;
3896         return 0;
3897 }
3898 
3899 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3900                                struct btf_field_info *info)
3901 {
3902         return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3903                                             __alignof__(struct bpf_list_node));
3904 }
3905 
3906 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3907                              struct btf_field_info *info)
3908 {
3909         return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3910                                             __alignof__(struct bpf_rb_node));
3911 }
3912 
3913 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3914 {
3915         const struct btf_field *a = (const struct btf_field *)_a;
3916         const struct btf_field *b = (const struct btf_field *)_b;
3917 
3918         if (a->offset < b->offset)
3919                 return -1;
3920         else if (a->offset > b->offset)
3921                 return 1;
3922         return 0;
3923 }
3924 
3925 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3926                                     u32 field_mask, u32 value_size)
3927 {
3928         struct btf_field_info info_arr[BTF_FIELDS_MAX];
3929         u32 next_off = 0, field_type_size;
3930         struct btf_record *rec;
3931         int ret, i, cnt;
3932 
3933         ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3934         if (ret < 0)
3935                 return ERR_PTR(ret);
3936         if (!ret)
3937                 return NULL;
3938 
3939         cnt = ret;
3940         /* This needs to be kzalloc to zero out padding and unused fields, see
3941          * comment in btf_record_equal.
3942          */
3943         rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3944         if (!rec)
3945                 return ERR_PTR(-ENOMEM);
3946 
3947         rec->spin_lock_off = -EINVAL;
3948         rec->timer_off = -EINVAL;
3949         rec->wq_off = -EINVAL;
3950         rec->refcount_off = -EINVAL;
3951         for (i = 0; i < cnt; i++) {
3952                 field_type_size = btf_field_type_size(info_arr[i].type);
3953                 if (info_arr[i].off + field_type_size > value_size) {
3954                         WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3955                         ret = -EFAULT;
3956                         goto end;
3957                 }
3958                 if (info_arr[i].off < next_off) {
3959                         ret = -EEXIST;
3960                         goto end;
3961                 }
3962                 next_off = info_arr[i].off + field_type_size;
3963 
3964                 rec->field_mask |= info_arr[i].type;
3965                 rec->fields[i].offset = info_arr[i].off;
3966                 rec->fields[i].type = info_arr[i].type;
3967                 rec->fields[i].size = field_type_size;
3968 
3969                 switch (info_arr[i].type) {
3970                 case BPF_SPIN_LOCK:
3971                         WARN_ON_ONCE(rec->spin_lock_off >= 0);
3972                         /* Cache offset for faster lookup at runtime */
3973                         rec->spin_lock_off = rec->fields[i].offset;
3974                         break;
3975                 case BPF_TIMER:
3976                         WARN_ON_ONCE(rec->timer_off >= 0);
3977                         /* Cache offset for faster lookup at runtime */
3978                         rec->timer_off = rec->fields[i].offset;
3979                         break;
3980                 case BPF_WORKQUEUE:
3981                         WARN_ON_ONCE(rec->wq_off >= 0);
3982                         /* Cache offset for faster lookup at runtime */
3983                         rec->wq_off = rec->fields[i].offset;
3984                         break;
3985                 case BPF_REFCOUNT:
3986                         WARN_ON_ONCE(rec->refcount_off >= 0);
3987                         /* Cache offset for faster lookup at runtime */
3988                         rec->refcount_off = rec->fields[i].offset;
3989                         break;
3990                 case BPF_KPTR_UNREF:
3991                 case BPF_KPTR_REF:
3992                 case BPF_KPTR_PERCPU:
3993                         ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3994                         if (ret < 0)
3995                                 goto end;
3996                         break;
3997                 case BPF_LIST_HEAD:
3998                         ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3999                         if (ret < 0)
4000                                 goto end;
4001                         break;
4002                 case BPF_RB_ROOT:
4003                         ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
4004                         if (ret < 0)
4005                                 goto end;
4006                         break;
4007                 case BPF_LIST_NODE:
4008                 case BPF_RB_NODE:
4009                         break;
4010                 default:
4011                         ret = -EFAULT;
4012                         goto end;
4013                 }
4014                 rec->cnt++;
4015         }
4016 
4017         /* bpf_{list_head, rb_node} require bpf_spin_lock */
4018         if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
4019              btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
4020                 ret = -EINVAL;
4021                 goto end;
4022         }
4023 
4024         if (rec->refcount_off < 0 &&
4025             btf_record_has_field(rec, BPF_LIST_NODE) &&
4026             btf_record_has_field(rec, BPF_RB_NODE)) {
4027                 ret = -EINVAL;
4028                 goto end;
4029         }
4030 
4031         sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
4032                NULL, rec);
4033 
4034         return rec;
4035 end:
4036         btf_record_free(rec);
4037         return ERR_PTR(ret);
4038 }
4039 
4040 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
4041 {
4042         int i;
4043 
4044         /* There are three types that signify ownership of some other type:
4045          *  kptr_ref, bpf_list_head, bpf_rb_root.
4046          * kptr_ref only supports storing kernel types, which can't store
4047          * references to program allocated local types.
4048          *
4049          * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
4050          * does not form cycles.
4051          */
4052         if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT))
4053                 return 0;
4054         for (i = 0; i < rec->cnt; i++) {
4055                 struct btf_struct_meta *meta;
4056                 u32 btf_id;
4057 
4058                 if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
4059                         continue;
4060                 btf_id = rec->fields[i].graph_root.value_btf_id;
4061                 meta = btf_find_struct_meta(btf, btf_id);
4062                 if (!meta)
4063                         return -EFAULT;
4064                 rec->fields[i].graph_root.value_rec = meta->record;
4065 
4066                 /* We need to set value_rec for all root types, but no need
4067                  * to check ownership cycle for a type unless it's also a
4068                  * node type.
4069                  */
4070                 if (!(rec->field_mask & BPF_GRAPH_NODE))
4071                         continue;
4072 
4073                 /* We need to ensure ownership acyclicity among all types. The
4074                  * proper way to do it would be to topologically sort all BTF
4075                  * IDs based on the ownership edges, since there can be multiple
4076                  * bpf_{list_head,rb_node} in a type. Instead, we use the
4077                  * following resaoning:
4078                  *
4079                  * - A type can only be owned by another type in user BTF if it
4080                  *   has a bpf_{list,rb}_node. Let's call these node types.
4081                  * - A type can only _own_ another type in user BTF if it has a
4082                  *   bpf_{list_head,rb_root}. Let's call these root types.
4083                  *
4084                  * We ensure that if a type is both a root and node, its
4085                  * element types cannot be root types.
4086                  *
4087                  * To ensure acyclicity:
4088                  *
4089                  * When A is an root type but not a node, its ownership
4090                  * chain can be:
4091                  *      A -> B -> C
4092                  * Where:
4093                  * - A is an root, e.g. has bpf_rb_root.
4094                  * - B is both a root and node, e.g. has bpf_rb_node and
4095                  *   bpf_list_head.
4096                  * - C is only an root, e.g. has bpf_list_node
4097                  *
4098                  * When A is both a root and node, some other type already
4099                  * owns it in the BTF domain, hence it can not own
4100                  * another root type through any of the ownership edges.
4101                  *      A -> B
4102                  * Where:
4103                  * - A is both an root and node.
4104                  * - B is only an node.
4105                  */
4106                 if (meta->record->field_mask & BPF_GRAPH_ROOT)
4107                         return -ELOOP;
4108         }
4109         return 0;
4110 }
4111 
4112 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
4113                               u32 type_id, void *data, u8 bits_offset,
4114                               struct btf_show *show)
4115 {
4116         const struct btf_member *member;
4117         void *safe_data;
4118         u32 i;
4119 
4120         safe_data = btf_show_start_struct_type(show, t, type_id, data);
4121         if (!safe_data)
4122                 return;
4123 
4124         for_each_member(i, t, member) {
4125                 const struct btf_type *member_type = btf_type_by_id(btf,
4126                                                                 member->type);
4127                 const struct btf_kind_operations *ops;
4128                 u32 member_offset, bitfield_size;
4129                 u32 bytes_offset;
4130                 u8 bits8_offset;
4131 
4132                 btf_show_start_member(show, member);
4133 
4134                 member_offset = __btf_member_bit_offset(t, member);
4135                 bitfield_size = __btf_member_bitfield_size(t, member);
4136                 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
4137                 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
4138                 if (bitfield_size) {
4139                         safe_data = btf_show_start_type(show, member_type,
4140                                                         member->type,
4141                                                         data + bytes_offset);
4142                         if (safe_data)
4143                                 btf_bitfield_show(safe_data,
4144                                                   bits8_offset,
4145                                                   bitfield_size, show);
4146                         btf_show_end_type(show);
4147                 } else {
4148                         ops = btf_type_ops(member_type);
4149                         ops->show(btf, member_type, member->type,
4150                                   data + bytes_offset, bits8_offset, show);
4151                 }
4152 
4153                 btf_show_end_member(show);
4154         }
4155 
4156         btf_show_end_struct_type(show);
4157 }
4158 
4159 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4160                             u32 type_id, void *data, u8 bits_offset,
4161                             struct btf_show *show)
4162 {
4163         const struct btf_member *m = show->state.member;
4164 
4165         /*
4166          * First check if any members would be shown (are non-zero).
4167          * See comments above "struct btf_show" definition for more
4168          * details on how this works at a high-level.
4169          */
4170         if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4171                 if (!show->state.depth_check) {
4172                         show->state.depth_check = show->state.depth + 1;
4173                         show->state.depth_to_show = 0;
4174                 }
4175                 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
4176                 /* Restore saved member data here */
4177                 show->state.member = m;
4178                 if (show->state.depth_check != show->state.depth + 1)
4179                         return;
4180                 show->state.depth_check = 0;
4181 
4182                 if (show->state.depth_to_show <= show->state.depth)
4183                         return;
4184                 /*
4185                  * Reaching here indicates we have recursed and found
4186                  * non-zero child values.
4187                  */
4188         }
4189 
4190         __btf_struct_show(btf, t, type_id, data, bits_offset, show);
4191 }
4192 
4193 static struct btf_kind_operations struct_ops = {
4194         .check_meta = btf_struct_check_meta,
4195         .resolve = btf_struct_resolve,
4196         .check_member = btf_struct_check_member,
4197         .check_kflag_member = btf_generic_check_kflag_member,
4198         .log_details = btf_struct_log,
4199         .show = btf_struct_show,
4200 };
4201 
4202 static int btf_enum_check_member(struct btf_verifier_env *env,
4203                                  const struct btf_type *struct_type,
4204                                  const struct btf_member *member,
4205                                  const struct btf_type *member_type)
4206 {
4207         u32 struct_bits_off = member->offset;
4208         u32 struct_size, bytes_offset;
4209 
4210         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4211                 btf_verifier_log_member(env, struct_type, member,
4212                                         "Member is not byte aligned");
4213                 return -EINVAL;
4214         }
4215 
4216         struct_size = struct_type->size;
4217         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4218         if (struct_size - bytes_offset < member_type->size) {
4219                 btf_verifier_log_member(env, struct_type, member,
4220                                         "Member exceeds struct_size");
4221                 return -EINVAL;
4222         }
4223 
4224         return 0;
4225 }
4226 
4227 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4228                                        const struct btf_type *struct_type,
4229                                        const struct btf_member *member,
4230                                        const struct btf_type *member_type)
4231 {
4232         u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4233         u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4234 
4235         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4236         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4237         if (!nr_bits) {
4238                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4239                         btf_verifier_log_member(env, struct_type, member,
4240                                                 "Member is not byte aligned");
4241                         return -EINVAL;
4242                 }
4243 
4244                 nr_bits = int_bitsize;
4245         } else if (nr_bits > int_bitsize) {
4246                 btf_verifier_log_member(env, struct_type, member,
4247                                         "Invalid member bitfield_size");
4248                 return -EINVAL;
4249         }
4250 
4251         struct_size = struct_type->size;
4252         bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4253         if (struct_size < bytes_end) {
4254                 btf_verifier_log_member(env, struct_type, member,
4255                                         "Member exceeds struct_size");
4256                 return -EINVAL;
4257         }
4258 
4259         return 0;
4260 }
4261 
4262 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4263                                const struct btf_type *t,
4264                                u32 meta_left)
4265 {
4266         const struct btf_enum *enums = btf_type_enum(t);
4267         struct btf *btf = env->btf;
4268         const char *fmt_str;
4269         u16 i, nr_enums;
4270         u32 meta_needed;
4271 
4272         nr_enums = btf_type_vlen(t);
4273         meta_needed = nr_enums * sizeof(*enums);
4274 
4275         if (meta_left < meta_needed) {
4276                 btf_verifier_log_basic(env, t,
4277                                        "meta_left:%u meta_needed:%u",
4278                                        meta_left, meta_needed);
4279                 return -EINVAL;
4280         }
4281 
4282         if (t->size > 8 || !is_power_of_2(t->size)) {
4283                 btf_verifier_log_type(env, t, "Unexpected size");
4284                 return -EINVAL;
4285         }
4286 
4287         /* enum type either no name or a valid one */
4288         if (t->name_off &&
4289             !btf_name_valid_identifier(env->btf, t->name_off)) {
4290                 btf_verifier_log_type(env, t, "Invalid name");
4291                 return -EINVAL;
4292         }
4293 
4294         btf_verifier_log_type(env, t, NULL);
4295 
4296         for (i = 0; i < nr_enums; i++) {
4297                 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4298                         btf_verifier_log(env, "\tInvalid name_offset:%u",
4299                                          enums[i].name_off);
4300                         return -EINVAL;
4301                 }
4302 
4303                 /* enum member must have a valid name */
4304                 if (!enums[i].name_off ||
4305                     !btf_name_valid_identifier(btf, enums[i].name_off)) {
4306                         btf_verifier_log_type(env, t, "Invalid name");
4307                         return -EINVAL;
4308                 }
4309 
4310                 if (env->log.level == BPF_LOG_KERNEL)
4311                         continue;
4312                 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4313                 btf_verifier_log(env, fmt_str,
4314                                  __btf_name_by_offset(btf, enums[i].name_off),
4315                                  enums[i].val);
4316         }
4317 
4318         return meta_needed;
4319 }
4320 
4321 static void btf_enum_log(struct btf_verifier_env *env,
4322                          const struct btf_type *t)
4323 {
4324         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4325 }
4326 
4327 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4328                           u32 type_id, void *data, u8 bits_offset,
4329                           struct btf_show *show)
4330 {
4331         const struct btf_enum *enums = btf_type_enum(t);
4332         u32 i, nr_enums = btf_type_vlen(t);
4333         void *safe_data;
4334         int v;
4335 
4336         safe_data = btf_show_start_type(show, t, type_id, data);
4337         if (!safe_data)
4338                 return;
4339 
4340         v = *(int *)safe_data;
4341 
4342         for (i = 0; i < nr_enums; i++) {
4343                 if (v != enums[i].val)
4344                         continue;
4345 
4346                 btf_show_type_value(show, "%s",
4347                                     __btf_name_by_offset(btf,
4348                                                          enums[i].name_off));
4349 
4350                 btf_show_end_type(show);
4351                 return;
4352         }
4353 
4354         if (btf_type_kflag(t))
4355                 btf_show_type_value(show, "%d", v);
4356         else
4357                 btf_show_type_value(show, "%u", v);
4358         btf_show_end_type(show);
4359 }
4360 
4361 static struct btf_kind_operations enum_ops = {
4362         .check_meta = btf_enum_check_meta,
4363         .resolve = btf_df_resolve,
4364         .check_member = btf_enum_check_member,
4365         .check_kflag_member = btf_enum_check_kflag_member,
4366         .log_details = btf_enum_log,
4367         .show = btf_enum_show,
4368 };
4369 
4370 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4371                                  const struct btf_type *t,
4372                                  u32 meta_left)
4373 {
4374         const struct btf_enum64 *enums = btf_type_enum64(t);
4375         struct btf *btf = env->btf;
4376         const char *fmt_str;
4377         u16 i, nr_enums;
4378         u32 meta_needed;
4379 
4380         nr_enums = btf_type_vlen(t);
4381         meta_needed = nr_enums * sizeof(*enums);
4382 
4383         if (meta_left < meta_needed) {
4384                 btf_verifier_log_basic(env, t,
4385                                        "meta_left:%u meta_needed:%u",
4386                                        meta_left, meta_needed);
4387                 return -EINVAL;
4388         }
4389 
4390         if (t->size > 8 || !is_power_of_2(t->size)) {
4391                 btf_verifier_log_type(env, t, "Unexpected size");
4392                 return -EINVAL;
4393         }
4394 
4395         /* enum type either no name or a valid one */
4396         if (t->name_off &&
4397             !btf_name_valid_identifier(env->btf, t->name_off)) {
4398                 btf_verifier_log_type(env, t, "Invalid name");
4399                 return -EINVAL;
4400         }
4401 
4402         btf_verifier_log_type(env, t, NULL);
4403 
4404         for (i = 0; i < nr_enums; i++) {
4405                 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4406                         btf_verifier_log(env, "\tInvalid name_offset:%u",
4407                                          enums[i].name_off);
4408                         return -EINVAL;
4409                 }
4410 
4411                 /* enum member must have a valid name */
4412                 if (!enums[i].name_off ||
4413                     !btf_name_valid_identifier(btf, enums[i].name_off)) {
4414                         btf_verifier_log_type(env, t, "Invalid name");
4415                         return -EINVAL;
4416                 }
4417 
4418                 if (env->log.level == BPF_LOG_KERNEL)
4419                         continue;
4420 
4421                 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4422                 btf_verifier_log(env, fmt_str,
4423                                  __btf_name_by_offset(btf, enums[i].name_off),
4424                                  btf_enum64_value(enums + i));
4425         }
4426 
4427         return meta_needed;
4428 }
4429 
4430 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4431                             u32 type_id, void *data, u8 bits_offset,
4432                             struct btf_show *show)
4433 {
4434         const struct btf_enum64 *enums = btf_type_enum64(t);
4435         u32 i, nr_enums = btf_type_vlen(t);
4436         void *safe_data;
4437         s64 v;
4438 
4439         safe_data = btf_show_start_type(show, t, type_id, data);
4440         if (!safe_data)
4441                 return;
4442 
4443         v = *(u64 *)safe_data;
4444 
4445         for (i = 0; i < nr_enums; i++) {
4446                 if (v != btf_enum64_value(enums + i))
4447                         continue;
4448 
4449                 btf_show_type_value(show, "%s",
4450                                     __btf_name_by_offset(btf,
4451                                                          enums[i].name_off));
4452 
4453                 btf_show_end_type(show);
4454                 return;
4455         }
4456 
4457         if (btf_type_kflag(t))
4458                 btf_show_type_value(show, "%lld", v);
4459         else
4460                 btf_show_type_value(show, "%llu", v);
4461         btf_show_end_type(show);
4462 }
4463 
4464 static struct btf_kind_operations enum64_ops = {
4465         .check_meta = btf_enum64_check_meta,
4466         .resolve = btf_df_resolve,
4467         .check_member = btf_enum_check_member,
4468         .check_kflag_member = btf_enum_check_kflag_member,
4469         .log_details = btf_enum_log,
4470         .show = btf_enum64_show,
4471 };
4472 
4473 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4474                                      const struct btf_type *t,
4475                                      u32 meta_left)
4476 {
4477         u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4478 
4479         if (meta_left < meta_needed) {
4480                 btf_verifier_log_basic(env, t,
4481                                        "meta_left:%u meta_needed:%u",
4482                                        meta_left, meta_needed);
4483                 return -EINVAL;
4484         }
4485 
4486         if (t->name_off) {
4487                 btf_verifier_log_type(env, t, "Invalid name");
4488                 return -EINVAL;
4489         }
4490 
4491         if (btf_type_kflag(t)) {
4492                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4493                 return -EINVAL;
4494         }
4495 
4496         btf_verifier_log_type(env, t, NULL);
4497 
4498         return meta_needed;
4499 }
4500 
4501 static void btf_func_proto_log(struct btf_verifier_env *env,
4502                                const struct btf_type *t)
4503 {
4504         const struct btf_param *args = (const struct btf_param *)(t + 1);
4505         u16 nr_args = btf_type_vlen(t), i;
4506 
4507         btf_verifier_log(env, "return=%u args=(", t->type);
4508         if (!nr_args) {
4509                 btf_verifier_log(env, "void");
4510                 goto done;
4511         }
4512 
4513         if (nr_args == 1 && !args[0].type) {
4514                 /* Only one vararg */
4515                 btf_verifier_log(env, "vararg");
4516                 goto done;
4517         }
4518 
4519         btf_verifier_log(env, "%u %s", args[0].type,
4520                          __btf_name_by_offset(env->btf,
4521                                               args[0].name_off));
4522         for (i = 1; i < nr_args - 1; i++)
4523                 btf_verifier_log(env, ", %u %s", args[i].type,
4524                                  __btf_name_by_offset(env->btf,
4525                                                       args[i].name_off));
4526 
4527         if (nr_args > 1) {
4528                 const struct btf_param *last_arg = &args[nr_args - 1];
4529 
4530                 if (last_arg->type)
4531                         btf_verifier_log(env, ", %u %s", last_arg->type,
4532                                          __btf_name_by_offset(env->btf,
4533                                                               last_arg->name_off));
4534                 else
4535                         btf_verifier_log(env, ", vararg");
4536         }
4537 
4538 done:
4539         btf_verifier_log(env, ")");
4540 }
4541 
4542 static struct btf_kind_operations func_proto_ops = {
4543         .check_meta = btf_func_proto_check_meta,
4544         .resolve = btf_df_resolve,
4545         /*
4546          * BTF_KIND_FUNC_PROTO cannot be directly referred by
4547          * a struct's member.
4548          *
4549          * It should be a function pointer instead.
4550          * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4551          *
4552          * Hence, there is no btf_func_check_member().
4553          */
4554         .check_member = btf_df_check_member,
4555         .check_kflag_member = btf_df_check_kflag_member,
4556         .log_details = btf_func_proto_log,
4557         .show = btf_df_show,
4558 };
4559 
4560 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4561                                const struct btf_type *t,
4562                                u32 meta_left)
4563 {
4564         if (!t->name_off ||
4565             !btf_name_valid_identifier(env->btf, t->name_off)) {
4566                 btf_verifier_log_type(env, t, "Invalid name");
4567                 return -EINVAL;
4568         }
4569 
4570         if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4571                 btf_verifier_log_type(env, t, "Invalid func linkage");
4572                 return -EINVAL;
4573         }
4574 
4575         if (btf_type_kflag(t)) {
4576                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4577                 return -EINVAL;
4578         }
4579 
4580         btf_verifier_log_type(env, t, NULL);
4581 
4582         return 0;
4583 }
4584 
4585 static int btf_func_resolve(struct btf_verifier_env *env,
4586                             const struct resolve_vertex *v)
4587 {
4588         const struct btf_type *t = v->t;
4589         u32 next_type_id = t->type;
4590         int err;
4591 
4592         err = btf_func_check(env, t);
4593         if (err)
4594                 return err;
4595 
4596         env_stack_pop_resolved(env, next_type_id, 0);
4597         return 0;
4598 }
4599 
4600 static struct btf_kind_operations func_ops = {
4601         .check_meta = btf_func_check_meta,
4602         .resolve = btf_func_resolve,
4603         .check_member = btf_df_check_member,
4604         .check_kflag_member = btf_df_check_kflag_member,
4605         .log_details = btf_ref_type_log,
4606         .show = btf_df_show,
4607 };
4608 
4609 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4610                               const struct btf_type *t,
4611                               u32 meta_left)
4612 {
4613         const struct btf_var *var;
4614         u32 meta_needed = sizeof(*var);
4615 
4616         if (meta_left < meta_needed) {
4617                 btf_verifier_log_basic(env, t,
4618                                        "meta_left:%u meta_needed:%u",
4619                                        meta_left, meta_needed);
4620                 return -EINVAL;
4621         }
4622 
4623         if (btf_type_vlen(t)) {
4624                 btf_verifier_log_type(env, t, "vlen != 0");
4625                 return -EINVAL;
4626         }
4627 
4628         if (btf_type_kflag(t)) {
4629                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4630                 return -EINVAL;
4631         }
4632 
4633         if (!t->name_off ||
4634             !__btf_name_valid(env->btf, t->name_off)) {
4635                 btf_verifier_log_type(env, t, "Invalid name");
4636                 return -EINVAL;
4637         }
4638 
4639         /* A var cannot be in type void */
4640         if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4641                 btf_verifier_log_type(env, t, "Invalid type_id");
4642                 return -EINVAL;
4643         }
4644 
4645         var = btf_type_var(t);
4646         if (var->linkage != BTF_VAR_STATIC &&
4647             var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4648                 btf_verifier_log_type(env, t, "Linkage not supported");
4649                 return -EINVAL;
4650         }
4651 
4652         btf_verifier_log_type(env, t, NULL);
4653 
4654         return meta_needed;
4655 }
4656 
4657 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4658 {
4659         const struct btf_var *var = btf_type_var(t);
4660 
4661         btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4662 }
4663 
4664 static const struct btf_kind_operations var_ops = {
4665         .check_meta             = btf_var_check_meta,
4666         .resolve                = btf_var_resolve,
4667         .check_member           = btf_df_check_member,
4668         .check_kflag_member     = btf_df_check_kflag_member,
4669         .log_details            = btf_var_log,
4670         .show                   = btf_var_show,
4671 };
4672 
4673 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4674                                   const struct btf_type *t,
4675                                   u32 meta_left)
4676 {
4677         const struct btf_var_secinfo *vsi;
4678         u64 last_vsi_end_off = 0, sum = 0;
4679         u32 i, meta_needed;
4680 
4681         meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4682         if (meta_left < meta_needed) {
4683                 btf_verifier_log_basic(env, t,
4684                                        "meta_left:%u meta_needed:%u",
4685                                        meta_left, meta_needed);
4686                 return -EINVAL;
4687         }
4688 
4689         if (!t->size) {
4690                 btf_verifier_log_type(env, t, "size == 0");
4691                 return -EINVAL;
4692         }
4693 
4694         if (btf_type_kflag(t)) {
4695                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4696                 return -EINVAL;
4697         }
4698 
4699         if (!t->name_off ||
4700             !btf_name_valid_section(env->btf, t->name_off)) {
4701                 btf_verifier_log_type(env, t, "Invalid name");
4702                 return -EINVAL;
4703         }
4704 
4705         btf_verifier_log_type(env, t, NULL);
4706 
4707         for_each_vsi(i, t, vsi) {
4708                 /* A var cannot be in type void */
4709                 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4710                         btf_verifier_log_vsi(env, t, vsi,
4711                                              "Invalid type_id");
4712                         return -EINVAL;
4713                 }
4714 
4715                 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4716                         btf_verifier_log_vsi(env, t, vsi,
4717                                              "Invalid offset");
4718                         return -EINVAL;
4719                 }
4720 
4721                 if (!vsi->size || vsi->size > t->size) {
4722                         btf_verifier_log_vsi(env, t, vsi,
4723                                              "Invalid size");
4724                         return -EINVAL;
4725                 }
4726 
4727                 last_vsi_end_off = vsi->offset + vsi->size;
4728                 if (last_vsi_end_off > t->size) {
4729                         btf_verifier_log_vsi(env, t, vsi,
4730                                              "Invalid offset+size");
4731                         return -EINVAL;
4732                 }
4733 
4734                 btf_verifier_log_vsi(env, t, vsi, NULL);
4735                 sum += vsi->size;
4736         }
4737 
4738         if (t->size < sum) {
4739                 btf_verifier_log_type(env, t, "Invalid btf_info size");
4740                 return -EINVAL;
4741         }
4742 
4743         return meta_needed;
4744 }
4745 
4746 static int btf_datasec_resolve(struct btf_verifier_env *env,
4747                                const struct resolve_vertex *v)
4748 {
4749         const struct btf_var_secinfo *vsi;
4750         struct btf *btf = env->btf;
4751         u16 i;
4752 
4753         env->resolve_mode = RESOLVE_TBD;
4754         for_each_vsi_from(i, v->next_member, v->t, vsi) {
4755                 u32 var_type_id = vsi->type, type_id, type_size = 0;
4756                 const struct btf_type *var_type = btf_type_by_id(env->btf,
4757                                                                  var_type_id);
4758                 if (!var_type || !btf_type_is_var(var_type)) {
4759                         btf_verifier_log_vsi(env, v->t, vsi,
4760                                              "Not a VAR kind member");
4761                         return -EINVAL;
4762                 }
4763 
4764                 if (!env_type_is_resolve_sink(env, var_type) &&
4765                     !env_type_is_resolved(env, var_type_id)) {
4766                         env_stack_set_next_member(env, i + 1);
4767                         return env_stack_push(env, var_type, var_type_id);
4768                 }
4769 
4770                 type_id = var_type->type;
4771                 if (!btf_type_id_size(btf, &type_id, &type_size)) {
4772                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4773                         return -EINVAL;
4774                 }
4775 
4776                 if (vsi->size < type_size) {
4777                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4778                         return -EINVAL;
4779                 }
4780         }
4781 
4782         env_stack_pop_resolved(env, 0, 0);
4783         return 0;
4784 }
4785 
4786 static void btf_datasec_log(struct btf_verifier_env *env,
4787                             const struct btf_type *t)
4788 {
4789         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4790 }
4791 
4792 static void btf_datasec_show(const struct btf *btf,
4793                              const struct btf_type *t, u32 type_id,
4794                              void *data, u8 bits_offset,
4795                              struct btf_show *show)
4796 {
4797         const struct btf_var_secinfo *vsi;
4798         const struct btf_type *var;
4799         u32 i;
4800 
4801         if (!btf_show_start_type(show, t, type_id, data))
4802                 return;
4803 
4804         btf_show_type_value(show, "section (\"%s\") = {",
4805                             __btf_name_by_offset(btf, t->name_off));
4806         for_each_vsi(i, t, vsi) {
4807                 var = btf_type_by_id(btf, vsi->type);
4808                 if (i)
4809                         btf_show(show, ",");
4810                 btf_type_ops(var)->show(btf, var, vsi->type,
4811                                         data + vsi->offset, bits_offset, show);
4812         }
4813         btf_show_end_type(show);
4814 }
4815 
4816 static const struct btf_kind_operations datasec_ops = {
4817         .check_meta             = btf_datasec_check_meta,
4818         .resolve                = btf_datasec_resolve,
4819         .check_member           = btf_df_check_member,
4820         .check_kflag_member     = btf_df_check_kflag_member,
4821         .log_details            = btf_datasec_log,
4822         .show                   = btf_datasec_show,
4823 };
4824 
4825 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4826                                 const struct btf_type *t,
4827                                 u32 meta_left)
4828 {
4829         if (btf_type_vlen(t)) {
4830                 btf_verifier_log_type(env, t, "vlen != 0");
4831                 return -EINVAL;
4832         }
4833 
4834         if (btf_type_kflag(t)) {
4835                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4836                 return -EINVAL;
4837         }
4838 
4839         if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4840             t->size != 16) {
4841                 btf_verifier_log_type(env, t, "Invalid type_size");
4842                 return -EINVAL;
4843         }
4844 
4845         btf_verifier_log_type(env, t, NULL);
4846 
4847         return 0;
4848 }
4849 
4850 static int btf_float_check_member(struct btf_verifier_env *env,
4851                                   const struct btf_type *struct_type,
4852                                   const struct btf_member *member,
4853                                   const struct btf_type *member_type)
4854 {
4855         u64 start_offset_bytes;
4856         u64 end_offset_bytes;
4857         u64 misalign_bits;
4858         u64 align_bytes;
4859         u64 align_bits;
4860 
4861         /* Different architectures have different alignment requirements, so
4862          * here we check only for the reasonable minimum. This way we ensure
4863          * that types after CO-RE can pass the kernel BTF verifier.
4864          */
4865         align_bytes = min_t(u64, sizeof(void *), member_type->size);
4866         align_bits = align_bytes * BITS_PER_BYTE;
4867         div64_u64_rem(member->offset, align_bits, &misalign_bits);
4868         if (misalign_bits) {
4869                 btf_verifier_log_member(env, struct_type, member,
4870                                         "Member is not properly aligned");
4871                 return -EINVAL;
4872         }
4873 
4874         start_offset_bytes = member->offset / BITS_PER_BYTE;
4875         end_offset_bytes = start_offset_bytes + member_type->size;
4876         if (end_offset_bytes > struct_type->size) {
4877                 btf_verifier_log_member(env, struct_type, member,
4878                                         "Member exceeds struct_size");
4879                 return -EINVAL;
4880         }
4881 
4882         return 0;
4883 }
4884 
4885 static void btf_float_log(struct btf_verifier_env *env,
4886                           const struct btf_type *t)
4887 {
4888         btf_verifier_log(env, "size=%u", t->size);
4889 }
4890 
4891 static const struct btf_kind_operations float_ops = {
4892         .check_meta = btf_float_check_meta,
4893         .resolve = btf_df_resolve,
4894         .check_member = btf_float_check_member,
4895         .check_kflag_member = btf_generic_check_kflag_member,
4896         .log_details = btf_float_log,
4897         .show = btf_df_show,
4898 };
4899 
4900 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4901                               const struct btf_type *t,
4902                               u32 meta_left)
4903 {
4904         const struct btf_decl_tag *tag;
4905         u32 meta_needed = sizeof(*tag);
4906         s32 component_idx;
4907         const char *value;
4908 
4909         if (meta_left < meta_needed) {
4910                 btf_verifier_log_basic(env, t,
4911                                        "meta_left:%u meta_needed:%u",
4912                                        meta_left, meta_needed);
4913                 return -EINVAL;
4914         }
4915 
4916         value = btf_name_by_offset(env->btf, t->name_off);
4917         if (!value || !value[0]) {
4918                 btf_verifier_log_type(env, t, "Invalid value");
4919                 return -EINVAL;
4920         }
4921 
4922         if (btf_type_vlen(t)) {
4923                 btf_verifier_log_type(env, t, "vlen != 0");
4924                 return -EINVAL;
4925         }
4926 
4927         if (btf_type_kflag(t)) {
4928                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4929                 return -EINVAL;
4930         }
4931 
4932         component_idx = btf_type_decl_tag(t)->component_idx;
4933         if (component_idx < -1) {
4934                 btf_verifier_log_type(env, t, "Invalid component_idx");
4935                 return -EINVAL;
4936         }
4937 
4938         btf_verifier_log_type(env, t, NULL);
4939 
4940         return meta_needed;
4941 }
4942 
4943 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4944                            const struct resolve_vertex *v)
4945 {
4946         const struct btf_type *next_type;
4947         const struct btf_type *t = v->t;
4948         u32 next_type_id = t->type;
4949         struct btf *btf = env->btf;
4950         s32 component_idx;
4951         u32 vlen;
4952 
4953         next_type = btf_type_by_id(btf, next_type_id);
4954         if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4955                 btf_verifier_log_type(env, v->t, "Invalid type_id");
4956                 return -EINVAL;
4957         }
4958 
4959         if (!env_type_is_resolve_sink(env, next_type) &&
4960             !env_type_is_resolved(env, next_type_id))
4961                 return env_stack_push(env, next_type, next_type_id);
4962 
4963         component_idx = btf_type_decl_tag(t)->component_idx;
4964         if (component_idx != -1) {
4965                 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4966                         btf_verifier_log_type(env, v->t, "Invalid component_idx");
4967                         return -EINVAL;
4968                 }
4969 
4970                 if (btf_type_is_struct(next_type)) {
4971                         vlen = btf_type_vlen(next_type);
4972                 } else {
4973                         /* next_type should be a function */
4974                         next_type = btf_type_by_id(btf, next_type->type);
4975                         vlen = btf_type_vlen(next_type);
4976                 }
4977 
4978                 if ((u32)component_idx >= vlen) {
4979                         btf_verifier_log_type(env, v->t, "Invalid component_idx");
4980                         return -EINVAL;
4981                 }
4982         }
4983 
4984         env_stack_pop_resolved(env, next_type_id, 0);
4985 
4986         return 0;
4987 }
4988 
4989 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4990 {
4991         btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4992                          btf_type_decl_tag(t)->component_idx);
4993 }
4994 
4995 static const struct btf_kind_operations decl_tag_ops = {
4996         .check_meta = btf_decl_tag_check_meta,
4997         .resolve = btf_decl_tag_resolve,
4998         .check_member = btf_df_check_member,
4999         .check_kflag_member = btf_df_check_kflag_member,
5000         .log_details = btf_decl_tag_log,
5001         .show = btf_df_show,
5002 };
5003 
5004 static int btf_func_proto_check(struct btf_verifier_env *env,
5005                                 const struct btf_type *t)
5006 {
5007         const struct btf_type *ret_type;
5008         const struct btf_param *args;
5009         const struct btf *btf;
5010         u16 nr_args, i;
5011         int err;
5012 
5013         btf = env->btf;
5014         args = (const struct btf_param *)(t + 1);
5015         nr_args = btf_type_vlen(t);
5016 
5017         /* Check func return type which could be "void" (t->type == 0) */
5018         if (t->type) {
5019                 u32 ret_type_id = t->type;
5020 
5021                 ret_type = btf_type_by_id(btf, ret_type_id);
5022                 if (!ret_type) {
5023                         btf_verifier_log_type(env, t, "Invalid return type");
5024                         return -EINVAL;
5025                 }
5026 
5027                 if (btf_type_is_resolve_source_only(ret_type)) {
5028                         btf_verifier_log_type(env, t, "Invalid return type");
5029                         return -EINVAL;
5030                 }
5031 
5032                 if (btf_type_needs_resolve(ret_type) &&
5033                     !env_type_is_resolved(env, ret_type_id)) {
5034                         err = btf_resolve(env, ret_type, ret_type_id);
5035                         if (err)
5036                                 return err;
5037                 }
5038 
5039                 /* Ensure the return type is a type that has a size */
5040                 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
5041                         btf_verifier_log_type(env, t, "Invalid return type");
5042                         return -EINVAL;
5043                 }
5044         }
5045 
5046         if (!nr_args)
5047                 return 0;
5048 
5049         /* Last func arg type_id could be 0 if it is a vararg */
5050         if (!args[nr_args - 1].type) {
5051                 if (args[nr_args - 1].name_off) {
5052                         btf_verifier_log_type(env, t, "Invalid arg#%u",
5053                                               nr_args);
5054                         return -EINVAL;
5055                 }
5056                 nr_args--;
5057         }
5058 
5059         for (i = 0; i < nr_args; i++) {
5060                 const struct btf_type *arg_type;
5061                 u32 arg_type_id;
5062 
5063                 arg_type_id = args[i].type;
5064                 arg_type = btf_type_by_id(btf, arg_type_id);
5065                 if (!arg_type) {
5066                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5067                         return -EINVAL;
5068                 }
5069 
5070                 if (btf_type_is_resolve_source_only(arg_type)) {
5071                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5072                         return -EINVAL;
5073                 }
5074 
5075                 if (args[i].name_off &&
5076                     (!btf_name_offset_valid(btf, args[i].name_off) ||
5077                      !btf_name_valid_identifier(btf, args[i].name_off))) {
5078                         btf_verifier_log_type(env, t,
5079                                               "Invalid arg#%u", i + 1);
5080                         return -EINVAL;
5081                 }
5082 
5083                 if (btf_type_needs_resolve(arg_type) &&
5084                     !env_type_is_resolved(env, arg_type_id)) {
5085                         err = btf_resolve(env, arg_type, arg_type_id);
5086                         if (err)
5087                                 return err;
5088                 }
5089 
5090                 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
5091                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5092                         return -EINVAL;
5093                 }
5094         }
5095 
5096         return 0;
5097 }
5098 
5099 static int btf_func_check(struct btf_verifier_env *env,
5100                           const struct btf_type *t)
5101 {
5102         const struct btf_type *proto_type;
5103         const struct btf_param *args;
5104         const struct btf *btf;
5105         u16 nr_args, i;
5106 
5107         btf = env->btf;
5108         proto_type = btf_type_by_id(btf, t->type);
5109 
5110         if (!proto_type || !btf_type_is_func_proto(proto_type)) {
5111                 btf_verifier_log_type(env, t, "Invalid type_id");
5112                 return -EINVAL;
5113         }
5114 
5115         args = (const struct btf_param *)(proto_type + 1);
5116         nr_args = btf_type_vlen(proto_type);
5117         for (i = 0; i < nr_args; i++) {
5118                 if (!args[i].name_off && args[i].type) {
5119                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5120                         return -EINVAL;
5121                 }
5122         }
5123 
5124         return 0;
5125 }
5126 
5127 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
5128         [BTF_KIND_INT] = &int_ops,
5129         [BTF_KIND_PTR] = &ptr_ops,
5130         [BTF_KIND_ARRAY] = &array_ops,
5131         [BTF_KIND_STRUCT] = &struct_ops,
5132         [BTF_KIND_UNION] = &struct_ops,
5133         [BTF_KIND_ENUM] = &enum_ops,
5134         [BTF_KIND_FWD] = &fwd_ops,
5135         [BTF_KIND_TYPEDEF] = &modifier_ops,
5136         [BTF_KIND_VOLATILE] = &modifier_ops,
5137         [BTF_KIND_CONST] = &modifier_ops,
5138         [BTF_KIND_RESTRICT] = &modifier_ops,
5139         [BTF_KIND_FUNC] = &func_ops,
5140         [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
5141         [BTF_KIND_VAR] = &var_ops,
5142         [BTF_KIND_DATASEC] = &datasec_ops,
5143         [BTF_KIND_FLOAT] = &float_ops,
5144         [BTF_KIND_DECL_TAG] = &decl_tag_ops,
5145         [BTF_KIND_TYPE_TAG] = &modifier_ops,
5146         [BTF_KIND_ENUM64] = &enum64_ops,
5147 };
5148 
5149 static s32 btf_check_meta(struct btf_verifier_env *env,
5150                           const struct btf_type *t,
5151                           u32 meta_left)
5152 {
5153         u32 saved_meta_left = meta_left;
5154         s32 var_meta_size;
5155 
5156         if (meta_left < sizeof(*t)) {
5157                 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
5158                                  env->log_type_id, meta_left, sizeof(*t));
5159                 return -EINVAL;
5160         }
5161         meta_left -= sizeof(*t);
5162 
5163         if (t->info & ~BTF_INFO_MASK) {
5164                 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
5165                                  env->log_type_id, t->info);
5166                 return -EINVAL;
5167         }
5168 
5169         if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5170             BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5171                 btf_verifier_log(env, "[%u] Invalid kind:%u",
5172                                  env->log_type_id, BTF_INFO_KIND(t->info));
5173                 return -EINVAL;
5174         }
5175 
5176         if (!btf_name_offset_valid(env->btf, t->name_off)) {
5177                 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5178                                  env->log_type_id, t->name_off);
5179                 return -EINVAL;
5180         }
5181 
5182         var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5183         if (var_meta_size < 0)
5184                 return var_meta_size;
5185 
5186         meta_left -= var_meta_size;
5187 
5188         return saved_meta_left - meta_left;
5189 }
5190 
5191 static int btf_check_all_metas(struct btf_verifier_env *env)
5192 {
5193         struct btf *btf = env->btf;
5194         struct btf_header *hdr;
5195         void *cur, *end;
5196 
5197         hdr = &btf->hdr;
5198         cur = btf->nohdr_data + hdr->type_off;
5199         end = cur + hdr->type_len;
5200 
5201         env->log_type_id = btf->base_btf ? btf->start_id : 1;
5202         while (cur < end) {
5203                 struct btf_type *t = cur;
5204                 s32 meta_size;
5205 
5206                 meta_size = btf_check_meta(env, t, end - cur);
5207                 if (meta_size < 0)
5208                         return meta_size;
5209 
5210                 btf_add_type(env, t);
5211                 cur += meta_size;
5212                 env->log_type_id++;
5213         }
5214 
5215         return 0;
5216 }
5217 
5218 static bool btf_resolve_valid(struct btf_verifier_env *env,
5219                               const struct btf_type *t,
5220                               u32 type_id)
5221 {
5222         struct btf *btf = env->btf;
5223 
5224         if (!env_type_is_resolved(env, type_id))
5225                 return false;
5226 
5227         if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5228                 return !btf_resolved_type_id(btf, type_id) &&
5229                        !btf_resolved_type_size(btf, type_id);
5230 
5231         if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5232                 return btf_resolved_type_id(btf, type_id) &&
5233                        !btf_resolved_type_size(btf, type_id);
5234 
5235         if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5236             btf_type_is_var(t)) {
5237                 t = btf_type_id_resolve(btf, &type_id);
5238                 return t &&
5239                        !btf_type_is_modifier(t) &&
5240                        !btf_type_is_var(t) &&
5241                        !btf_type_is_datasec(t);
5242         }
5243 
5244         if (btf_type_is_array(t)) {
5245                 const struct btf_array *array = btf_type_array(t);
5246                 const struct btf_type *elem_type;
5247                 u32 elem_type_id = array->type;
5248                 u32 elem_size;
5249 
5250                 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5251                 return elem_type && !btf_type_is_modifier(elem_type) &&
5252                         (array->nelems * elem_size ==
5253                          btf_resolved_type_size(btf, type_id));
5254         }
5255 
5256         return false;
5257 }
5258 
5259 static int btf_resolve(struct btf_verifier_env *env,
5260                        const struct btf_type *t, u32 type_id)
5261 {
5262         u32 save_log_type_id = env->log_type_id;
5263         const struct resolve_vertex *v;
5264         int err = 0;
5265 
5266         env->resolve_mode = RESOLVE_TBD;
5267         env_stack_push(env, t, type_id);
5268         while (!err && (v = env_stack_peak(env))) {
5269                 env->log_type_id = v->type_id;
5270                 err = btf_type_ops(v->t)->resolve(env, v);
5271         }
5272 
5273         env->log_type_id = type_id;
5274         if (err == -E2BIG) {
5275                 btf_verifier_log_type(env, t,
5276                                       "Exceeded max resolving depth:%u",
5277                                       MAX_RESOLVE_DEPTH);
5278         } else if (err == -EEXIST) {
5279                 btf_verifier_log_type(env, t, "Loop detected");
5280         }
5281 
5282         /* Final sanity check */
5283         if (!err && !btf_resolve_valid(env, t, type_id)) {
5284                 btf_verifier_log_type(env, t, "Invalid resolve state");
5285                 err = -EINVAL;
5286         }
5287 
5288         env->log_type_id = save_log_type_id;
5289         return err;
5290 }
5291 
5292 static int btf_check_all_types(struct btf_verifier_env *env)
5293 {
5294         struct btf *btf = env->btf;
5295         const struct btf_type *t;
5296         u32 type_id, i;
5297         int err;
5298 
5299         err = env_resolve_init(env);
5300         if (err)
5301                 return err;
5302 
5303         env->phase++;
5304         for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5305                 type_id = btf->start_id + i;
5306                 t = btf_type_by_id(btf, type_id);
5307 
5308                 env->log_type_id = type_id;
5309                 if (btf_type_needs_resolve(t) &&
5310                     !env_type_is_resolved(env, type_id)) {
5311                         err = btf_resolve(env, t, type_id);
5312                         if (err)
5313                                 return err;
5314                 }
5315 
5316                 if (btf_type_is_func_proto(t)) {
5317                         err = btf_func_proto_check(env, t);
5318                         if (err)
5319                                 return err;
5320                 }
5321         }
5322 
5323         return 0;
5324 }
5325 
5326 static int btf_parse_type_sec(struct btf_verifier_env *env)
5327 {
5328         const struct btf_header *hdr = &env->btf->hdr;
5329         int err;
5330 
5331         /* Type section must align to 4 bytes */
5332         if (hdr->type_off & (sizeof(u32) - 1)) {
5333                 btf_verifier_log(env, "Unaligned type_off");
5334                 return -EINVAL;
5335         }
5336 
5337         if (!env->btf->base_btf && !hdr->type_len) {
5338                 btf_verifier_log(env, "No type found");
5339                 return -EINVAL;
5340         }
5341 
5342         err = btf_check_all_metas(env);
5343         if (err)
5344                 return err;
5345 
5346         return btf_check_all_types(env);
5347 }
5348 
5349 static int btf_parse_str_sec(struct btf_verifier_env *env)
5350 {
5351         const struct btf_header *hdr;
5352         struct btf *btf = env->btf;
5353         const char *start, *end;
5354 
5355         hdr = &btf->hdr;
5356         start = btf->nohdr_data + hdr->str_off;
5357         end = start + hdr->str_len;
5358 
5359         if (end != btf->data + btf->data_size) {
5360                 btf_verifier_log(env, "String section is not at the end");
5361                 return -EINVAL;
5362         }
5363 
5364         btf->strings = start;
5365 
5366         if (btf->base_btf && !hdr->str_len)
5367                 return 0;
5368         if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5369                 btf_verifier_log(env, "Invalid string section");
5370                 return -EINVAL;
5371         }
5372         if (!btf->base_btf && start[0]) {
5373                 btf_verifier_log(env, "Invalid string section");
5374                 return -EINVAL;
5375         }
5376 
5377         return 0;
5378 }
5379 
5380 static const size_t btf_sec_info_offset[] = {
5381         offsetof(struct btf_header, type_off),
5382         offsetof(struct btf_header, str_off),
5383 };
5384 
5385 static int btf_sec_info_cmp(const void *a, const void *b)
5386 {
5387         const struct btf_sec_info *x = a;
5388         const struct btf_sec_info *y = b;
5389 
5390         return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5391 }
5392 
5393 static int btf_check_sec_info(struct btf_verifier_env *env,
5394                               u32 btf_data_size)
5395 {
5396         struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5397         u32 total, expected_total, i;
5398         const struct btf_header *hdr;
5399         const struct btf *btf;
5400 
5401         btf = env->btf;
5402         hdr = &btf->hdr;
5403 
5404         /* Populate the secs from hdr */
5405         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5406                 secs[i] = *(struct btf_sec_info *)((void *)hdr +
5407                                                    btf_sec_info_offset[i]);
5408 
5409         sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5410              sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5411 
5412         /* Check for gaps and overlap among sections */
5413         total = 0;
5414         expected_total = btf_data_size - hdr->hdr_len;
5415         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5416                 if (expected_total < secs[i].off) {
5417                         btf_verifier_log(env, "Invalid section offset");
5418                         return -EINVAL;
5419                 }
5420                 if (total < secs[i].off) {
5421                         /* gap */
5422                         btf_verifier_log(env, "Unsupported section found");
5423                         return -EINVAL;
5424                 }
5425                 if (total > secs[i].off) {
5426                         btf_verifier_log(env, "Section overlap found");
5427                         return -EINVAL;
5428                 }
5429                 if (expected_total - total < secs[i].len) {
5430                         btf_verifier_log(env,
5431                                          "Total section length too long");
5432                         return -EINVAL;
5433                 }
5434                 total += secs[i].len;
5435         }
5436 
5437         /* There is data other than hdr and known sections */
5438         if (expected_total != total) {
5439                 btf_verifier_log(env, "Unsupported section found");
5440                 return -EINVAL;
5441         }
5442 
5443         return 0;
5444 }
5445 
5446 static int btf_parse_hdr(struct btf_verifier_env *env)
5447 {
5448         u32 hdr_len, hdr_copy, btf_data_size;
5449         const struct btf_header *hdr;
5450         struct btf *btf;
5451 
5452         btf = env->btf;
5453         btf_data_size = btf->data_size;
5454 
5455         if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5456                 btf_verifier_log(env, "hdr_len not found");
5457                 return -EINVAL;
5458         }
5459 
5460         hdr = btf->data;
5461         hdr_len = hdr->hdr_len;
5462         if (btf_data_size < hdr_len) {
5463                 btf_verifier_log(env, "btf_header not found");
5464                 return -EINVAL;
5465         }
5466 
5467         /* Ensure the unsupported header fields are zero */
5468         if (hdr_len > sizeof(btf->hdr)) {
5469                 u8 *expected_zero = btf->data + sizeof(btf->hdr);
5470                 u8 *end = btf->data + hdr_len;
5471 
5472                 for (; expected_zero < end; expected_zero++) {
5473                         if (*expected_zero) {
5474                                 btf_verifier_log(env, "Unsupported btf_header");
5475                                 return -E2BIG;
5476                         }
5477                 }
5478         }
5479 
5480         hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5481         memcpy(&btf->hdr, btf->data, hdr_copy);
5482 
5483         hdr = &btf->hdr;
5484 
5485         btf_verifier_log_hdr(env, btf_data_size);
5486 
5487         if (hdr->magic != BTF_MAGIC) {
5488                 btf_verifier_log(env, "Invalid magic");
5489                 return -EINVAL;
5490         }
5491 
5492         if (hdr->version != BTF_VERSION) {
5493                 btf_verifier_log(env, "Unsupported version");
5494                 return -ENOTSUPP;
5495         }
5496 
5497         if (hdr->flags) {
5498                 btf_verifier_log(env, "Unsupported flags");
5499                 return -ENOTSUPP;
5500         }
5501 
5502         if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5503                 btf_verifier_log(env, "No data");
5504                 return -EINVAL;
5505         }
5506 
5507         return btf_check_sec_info(env, btf_data_size);
5508 }
5509 
5510 static const char *alloc_obj_fields[] = {
5511         "bpf_spin_lock",
5512         "bpf_list_head",
5513         "bpf_list_node",
5514         "bpf_rb_root",
5515         "bpf_rb_node",
5516         "bpf_refcount",
5517 };
5518 
5519 static struct btf_struct_metas *
5520 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5521 {
5522         union {
5523                 struct btf_id_set set;
5524                 struct {
5525                         u32 _cnt;
5526                         u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5527                 } _arr;
5528         } aof;
5529         struct btf_struct_metas *tab = NULL;
5530         int i, n, id, ret;
5531 
5532         BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5533         BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5534 
5535         memset(&aof, 0, sizeof(aof));
5536         for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5537                 /* Try to find whether this special type exists in user BTF, and
5538                  * if so remember its ID so we can easily find it among members
5539                  * of structs that we iterate in the next loop.
5540                  */
5541                 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5542                 if (id < 0)
5543                         continue;
5544                 aof.set.ids[aof.set.cnt++] = id;
5545         }
5546 
5547         if (!aof.set.cnt)
5548                 return NULL;
5549         sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5550 
5551         n = btf_nr_types(btf);
5552         for (i = 1; i < n; i++) {
5553                 struct btf_struct_metas *new_tab;
5554                 const struct btf_member *member;
5555                 struct btf_struct_meta *type;
5556                 struct btf_record *record;
5557                 const struct btf_type *t;
5558                 int j, tab_cnt;
5559 
5560                 t = btf_type_by_id(btf, i);
5561                 if (!t) {
5562                         ret = -EINVAL;
5563                         goto free;
5564                 }
5565                 if (!__btf_type_is_struct(t))
5566                         continue;
5567 
5568                 cond_resched();
5569 
5570                 for_each_member(j, t, member) {
5571                         if (btf_id_set_contains(&aof.set, member->type))
5572                                 goto parse;
5573                 }
5574                 continue;
5575         parse:
5576                 tab_cnt = tab ? tab->cnt : 0;
5577                 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5578                                    GFP_KERNEL | __GFP_NOWARN);
5579                 if (!new_tab) {
5580                         ret = -ENOMEM;
5581                         goto free;
5582                 }
5583                 if (!tab)
5584                         new_tab->cnt = 0;
5585                 tab = new_tab;
5586 
5587                 type = &tab->types[tab->cnt];
5588                 type->btf_id = i;
5589                 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5590                                                   BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size);
5591                 /* The record cannot be unset, treat it as an error if so */
5592                 if (IS_ERR_OR_NULL(record)) {
5593                         ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5594                         goto free;
5595                 }
5596                 type->record = record;
5597                 tab->cnt++;
5598         }
5599         return tab;
5600 free:
5601         btf_struct_metas_free(tab);
5602         return ERR_PTR(ret);
5603 }
5604 
5605 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5606 {
5607         struct btf_struct_metas *tab;
5608 
5609         BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5610         tab = btf->struct_meta_tab;
5611         if (!tab)
5612                 return NULL;
5613         return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5614 }
5615 
5616 static int btf_check_type_tags(struct btf_verifier_env *env,
5617                                struct btf *btf, int start_id)
5618 {
5619         int i, n, good_id = start_id - 1;
5620         bool in_tags;
5621 
5622         n = btf_nr_types(btf);
5623         for (i = start_id; i < n; i++) {
5624                 const struct btf_type *t;
5625                 int chain_limit = 32;
5626                 u32 cur_id = i;
5627 
5628                 t = btf_type_by_id(btf, i);
5629                 if (!t)
5630                         return -EINVAL;
5631                 if (!btf_type_is_modifier(t))
5632                         continue;
5633 
5634                 cond_resched();
5635 
5636                 in_tags = btf_type_is_type_tag(t);
5637                 while (btf_type_is_modifier(t)) {
5638                         if (!chain_limit--) {
5639                                 btf_verifier_log(env, "Max chain length or cycle detected");
5640                                 return -ELOOP;
5641                         }
5642                         if (btf_type_is_type_tag(t)) {
5643                                 if (!in_tags) {
5644                                         btf_verifier_log(env, "Type tags don't precede modifiers");
5645                                         return -EINVAL;
5646                                 }
5647                         } else if (in_tags) {
5648                                 in_tags = false;
5649                         }
5650                         if (cur_id <= good_id)
5651                                 break;
5652                         /* Move to next type */
5653                         cur_id = t->type;
5654                         t = btf_type_by_id(btf, cur_id);
5655                         if (!t)
5656                                 return -EINVAL;
5657                 }
5658                 good_id = i;
5659         }
5660         return 0;
5661 }
5662 
5663 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5664 {
5665         u32 log_true_size;
5666         int err;
5667 
5668         err = bpf_vlog_finalize(log, &log_true_size);
5669 
5670         if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5671             copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5672                                   &log_true_size, sizeof(log_true_size)))
5673                 err = -EFAULT;
5674 
5675         return err;
5676 }
5677 
5678 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5679 {
5680         bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5681         char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5682         struct btf_struct_metas *struct_meta_tab;
5683         struct btf_verifier_env *env = NULL;
5684         struct btf *btf = NULL;
5685         u8 *data;
5686         int err, ret;
5687 
5688         if (attr->btf_size > BTF_MAX_SIZE)
5689                 return ERR_PTR(-E2BIG);
5690 
5691         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5692         if (!env)
5693                 return ERR_PTR(-ENOMEM);
5694 
5695         /* user could have requested verbose verifier output
5696          * and supplied buffer to store the verification trace
5697          */
5698         err = bpf_vlog_init(&env->log, attr->btf_log_level,
5699                             log_ubuf, attr->btf_log_size);
5700         if (err)
5701                 goto errout_free;
5702 
5703         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5704         if (!btf) {
5705                 err = -ENOMEM;
5706                 goto errout;
5707         }
5708         env->btf = btf;
5709 
5710         data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5711         if (!data) {
5712                 err = -ENOMEM;
5713                 goto errout;
5714         }
5715 
5716         btf->data = data;
5717         btf->data_size = attr->btf_size;
5718 
5719         if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5720                 err = -EFAULT;
5721                 goto errout;
5722         }
5723 
5724         err = btf_parse_hdr(env);
5725         if (err)
5726                 goto errout;
5727 
5728         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5729 
5730         err = btf_parse_str_sec(env);
5731         if (err)
5732                 goto errout;
5733 
5734         err = btf_parse_type_sec(env);
5735         if (err)
5736                 goto errout;
5737 
5738         err = btf_check_type_tags(env, btf, 1);
5739         if (err)
5740                 goto errout;
5741 
5742         struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5743         if (IS_ERR(struct_meta_tab)) {
5744                 err = PTR_ERR(struct_meta_tab);
5745                 goto errout;
5746         }
5747         btf->struct_meta_tab = struct_meta_tab;
5748 
5749         if (struct_meta_tab) {
5750                 int i;
5751 
5752                 for (i = 0; i < struct_meta_tab->cnt; i++) {
5753                         err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5754                         if (err < 0)
5755                                 goto errout_meta;
5756                 }
5757         }
5758 
5759         err = finalize_log(&env->log, uattr, uattr_size);
5760         if (err)
5761                 goto errout_free;
5762 
5763         btf_verifier_env_free(env);
5764         refcount_set(&btf->refcnt, 1);
5765         return btf;
5766 
5767 errout_meta:
5768         btf_free_struct_meta_tab(btf);
5769 errout:
5770         /* overwrite err with -ENOSPC or -EFAULT */
5771         ret = finalize_log(&env->log, uattr, uattr_size);
5772         if (ret)
5773                 err = ret;
5774 errout_free:
5775         btf_verifier_env_free(env);
5776         if (btf)
5777                 btf_free(btf);
5778         return ERR_PTR(err);
5779 }
5780 
5781 extern char __start_BTF[];
5782 extern char __stop_BTF[];
5783 extern struct btf *btf_vmlinux;
5784 
5785 #define BPF_MAP_TYPE(_id, _ops)
5786 #define BPF_LINK_TYPE(_id, _name)
5787 static union {
5788         struct bpf_ctx_convert {
5789 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5790         prog_ctx_type _id##_prog; \
5791         kern_ctx_type _id##_kern;
5792 #include <linux/bpf_types.h>
5793 #undef BPF_PROG_TYPE
5794         } *__t;
5795         /* 't' is written once under lock. Read many times. */
5796         const struct btf_type *t;
5797 } bpf_ctx_convert;
5798 enum {
5799 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5800         __ctx_convert##_id,
5801 #include <linux/bpf_types.h>
5802 #undef BPF_PROG_TYPE
5803         __ctx_convert_unused, /* to avoid empty enum in extreme .config */
5804 };
5805 static u8 bpf_ctx_convert_map[] = {
5806 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5807         [_id] = __ctx_convert##_id,
5808 #include <linux/bpf_types.h>
5809 #undef BPF_PROG_TYPE
5810         0, /* avoid empty array */
5811 };
5812 #undef BPF_MAP_TYPE
5813 #undef BPF_LINK_TYPE
5814 
5815 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
5816 {
5817         const struct btf_type *conv_struct;
5818         const struct btf_member *ctx_type;
5819 
5820         conv_struct = bpf_ctx_convert.t;
5821         if (!conv_struct)
5822                 return NULL;
5823         /* prog_type is valid bpf program type. No need for bounds check. */
5824         ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5825         /* ctx_type is a pointer to prog_ctx_type in vmlinux.
5826          * Like 'struct __sk_buff'
5827          */
5828         return btf_type_by_id(btf_vmlinux, ctx_type->type);
5829 }
5830 
5831 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
5832 {
5833         const struct btf_type *conv_struct;
5834         const struct btf_member *ctx_type;
5835 
5836         conv_struct = bpf_ctx_convert.t;
5837         if (!conv_struct)
5838                 return -EFAULT;
5839         /* prog_type is valid bpf program type. No need for bounds check. */
5840         ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5841         /* ctx_type is a pointer to prog_ctx_type in vmlinux.
5842          * Like 'struct sk_buff'
5843          */
5844         return ctx_type->type;
5845 }
5846 
5847 bool btf_is_projection_of(const char *pname, const char *tname)
5848 {
5849         if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5850                 return true;
5851         if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5852                 return true;
5853         return false;
5854 }
5855 
5856 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5857                           const struct btf_type *t, enum bpf_prog_type prog_type,
5858                           int arg)
5859 {
5860         const struct btf_type *ctx_type;
5861         const char *tname, *ctx_tname;
5862 
5863         t = btf_type_by_id(btf, t->type);
5864 
5865         /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
5866          * check before we skip all the typedef below.
5867          */
5868         if (prog_type == BPF_PROG_TYPE_KPROBE) {
5869                 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5870                         t = btf_type_by_id(btf, t->type);
5871 
5872                 if (btf_type_is_typedef(t)) {
5873                         tname = btf_name_by_offset(btf, t->name_off);
5874                         if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5875                                 return true;
5876                 }
5877         }
5878 
5879         while (btf_type_is_modifier(t))
5880                 t = btf_type_by_id(btf, t->type);
5881         if (!btf_type_is_struct(t)) {
5882                 /* Only pointer to struct is supported for now.
5883                  * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5884                  * is not supported yet.
5885                  * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5886                  */
5887                 return false;
5888         }
5889         tname = btf_name_by_offset(btf, t->name_off);
5890         if (!tname) {
5891                 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5892                 return false;
5893         }
5894 
5895         ctx_type = find_canonical_prog_ctx_type(prog_type);
5896         if (!ctx_type) {
5897                 bpf_log(log, "btf_vmlinux is malformed\n");
5898                 /* should not happen */
5899                 return false;
5900         }
5901 again:
5902         ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5903         if (!ctx_tname) {
5904                 /* should not happen */
5905                 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5906                 return false;
5907         }
5908         /* program types without named context types work only with arg:ctx tag */
5909         if (ctx_tname[0] == '\0')
5910                 return false;
5911         /* only compare that prog's ctx type name is the same as
5912          * kernel expects. No need to compare field by field.
5913          * It's ok for bpf prog to do:
5914          * struct __sk_buff {};
5915          * int socket_filter_bpf_prog(struct __sk_buff *skb)
5916          * { // no fields of skb are ever used }
5917          */
5918         if (btf_is_projection_of(ctx_tname, tname))
5919                 return true;
5920         if (strcmp(ctx_tname, tname)) {
5921                 /* bpf_user_pt_regs_t is a typedef, so resolve it to
5922                  * underlying struct and check name again
5923                  */
5924                 if (!btf_type_is_modifier(ctx_type))
5925                         return false;
5926                 while (btf_type_is_modifier(ctx_type))
5927                         ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5928                 goto again;
5929         }
5930         return true;
5931 }
5932 
5933 /* forward declarations for arch-specific underlying types of
5934  * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
5935  * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
5936  * works correctly with __builtin_types_compatible_p() on respective
5937  * architectures
5938  */
5939 struct user_regs_struct;
5940 struct user_pt_regs;
5941 
5942 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5943                                       const struct btf_type *t, int arg,
5944                                       enum bpf_prog_type prog_type,
5945                                       enum bpf_attach_type attach_type)
5946 {
5947         const struct btf_type *ctx_type;
5948         const char *tname, *ctx_tname;
5949 
5950         if (!btf_is_ptr(t)) {
5951                 bpf_log(log, "arg#%d type isn't a pointer\n", arg);
5952                 return -EINVAL;
5953         }
5954         t = btf_type_by_id(btf, t->type);
5955 
5956         /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
5957         if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
5958                 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5959                         t = btf_type_by_id(btf, t->type);
5960 
5961                 if (btf_type_is_typedef(t)) {
5962                         tname = btf_name_by_offset(btf, t->name_off);
5963                         if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5964                                 return 0;
5965                 }
5966         }
5967 
5968         /* all other program types don't use typedefs for context type */
5969         while (btf_type_is_modifier(t))
5970                 t = btf_type_by_id(btf, t->type);
5971 
5972         /* `void *ctx __arg_ctx` is always valid */
5973         if (btf_type_is_void(t))
5974                 return 0;
5975 
5976         tname = btf_name_by_offset(btf, t->name_off);
5977         if (str_is_empty(tname)) {
5978                 bpf_log(log, "arg#%d type doesn't have a name\n", arg);
5979                 return -EINVAL;
5980         }
5981 
5982         /* special cases */
5983         switch (prog_type) {
5984         case BPF_PROG_TYPE_KPROBE:
5985                 if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5986                         return 0;
5987                 break;
5988         case BPF_PROG_TYPE_PERF_EVENT:
5989                 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
5990                     __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5991                         return 0;
5992                 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
5993                     __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
5994                         return 0;
5995                 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
5996                     __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
5997                         return 0;
5998                 break;
5999         case BPF_PROG_TYPE_RAW_TRACEPOINT:
6000         case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6001                 /* allow u64* as ctx */
6002                 if (btf_is_int(t) && t->size == 8)
6003                         return 0;
6004                 break;
6005         case BPF_PROG_TYPE_TRACING:
6006                 switch (attach_type) {
6007                 case BPF_TRACE_RAW_TP:
6008                         /* tp_btf program is TRACING, so need special case here */
6009                         if (__btf_type_is_struct(t) &&
6010                             strcmp(tname, "bpf_raw_tracepoint_args") == 0)
6011                                 return 0;
6012                         /* allow u64* as ctx */
6013                         if (btf_is_int(t) && t->size == 8)
6014                                 return 0;
6015                         break;
6016                 case BPF_TRACE_ITER:
6017                         /* allow struct bpf_iter__xxx types only */
6018                         if (__btf_type_is_struct(t) &&
6019                             strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
6020                                 return 0;
6021                         break;
6022                 case BPF_TRACE_FENTRY:
6023                 case BPF_TRACE_FEXIT:
6024                 case BPF_MODIFY_RETURN:
6025                         /* allow u64* as ctx */
6026                         if (btf_is_int(t) && t->size == 8)
6027                                 return 0;
6028                         break;
6029                 default:
6030                         break;
6031                 }
6032                 break;
6033         case BPF_PROG_TYPE_LSM:
6034         case BPF_PROG_TYPE_STRUCT_OPS:
6035                 /* allow u64* as ctx */
6036                 if (btf_is_int(t) && t->size == 8)
6037                         return 0;
6038                 break;
6039         case BPF_PROG_TYPE_TRACEPOINT:
6040         case BPF_PROG_TYPE_SYSCALL:
6041         case BPF_PROG_TYPE_EXT:
6042                 return 0; /* anything goes */
6043         default:
6044                 break;
6045         }
6046 
6047         ctx_type = find_canonical_prog_ctx_type(prog_type);
6048         if (!ctx_type) {
6049                 /* should not happen */
6050                 bpf_log(log, "btf_vmlinux is malformed\n");
6051                 return -EINVAL;
6052         }
6053 
6054         /* resolve typedefs and check that underlying structs are matching as well */
6055         while (btf_type_is_modifier(ctx_type))
6056                 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
6057 
6058         /* if program type doesn't have distinctly named struct type for
6059          * context, then __arg_ctx argument can only be `void *`, which we
6060          * already checked above
6061          */
6062         if (!__btf_type_is_struct(ctx_type)) {
6063                 bpf_log(log, "arg#%d should be void pointer\n", arg);
6064                 return -EINVAL;
6065         }
6066 
6067         ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
6068         if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
6069                 bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
6070                 return -EINVAL;
6071         }
6072 
6073         return 0;
6074 }
6075 
6076 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
6077                                      struct btf *btf,
6078                                      const struct btf_type *t,
6079                                      enum bpf_prog_type prog_type,
6080                                      int arg)
6081 {
6082         if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
6083                 return -ENOENT;
6084         return find_kern_ctx_type_id(prog_type);
6085 }
6086 
6087 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
6088 {
6089         const struct btf_member *kctx_member;
6090         const struct btf_type *conv_struct;
6091         const struct btf_type *kctx_type;
6092         u32 kctx_type_id;
6093 
6094         conv_struct = bpf_ctx_convert.t;
6095         /* get member for kernel ctx type */
6096         kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
6097         kctx_type_id = kctx_member->type;
6098         kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
6099         if (!btf_type_is_struct(kctx_type)) {
6100                 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
6101                 return -EINVAL;
6102         }
6103 
6104         return kctx_type_id;
6105 }
6106 
6107 BTF_ID_LIST(bpf_ctx_convert_btf_id)
6108 BTF_ID(struct, bpf_ctx_convert)
6109 
6110 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name,
6111                                   void *data, unsigned int data_size)
6112 {
6113         struct btf *btf = NULL;
6114         int err;
6115 
6116         if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF))
6117                 return ERR_PTR(-ENOENT);
6118 
6119         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6120         if (!btf) {
6121                 err = -ENOMEM;
6122                 goto errout;
6123         }
6124         env->btf = btf;
6125 
6126         btf->data = data;
6127         btf->data_size = data_size;
6128         btf->kernel_btf = true;
6129         snprintf(btf->name, sizeof(btf->name), "%s", name);
6130 
6131         err = btf_parse_hdr(env);
6132         if (err)
6133                 goto errout;
6134 
6135         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6136 
6137         err = btf_parse_str_sec(env);
6138         if (err)
6139                 goto errout;
6140 
6141         err = btf_check_all_metas(env);
6142         if (err)
6143                 goto errout;
6144 
6145         err = btf_check_type_tags(env, btf, 1);
6146         if (err)
6147                 goto errout;
6148 
6149         refcount_set(&btf->refcnt, 1);
6150 
6151         return btf;
6152 
6153 errout:
6154         if (btf) {
6155                 kvfree(btf->types);
6156                 kfree(btf);
6157         }
6158         return ERR_PTR(err);
6159 }
6160 
6161 struct btf *btf_parse_vmlinux(void)
6162 {
6163         struct btf_verifier_env *env = NULL;
6164         struct bpf_verifier_log *log;
6165         struct btf *btf;
6166         int err;
6167 
6168         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6169         if (!env)
6170                 return ERR_PTR(-ENOMEM);
6171 
6172         log = &env->log;
6173         log->level = BPF_LOG_KERNEL;
6174         btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF);
6175         if (IS_ERR(btf))
6176                 goto err_out;
6177 
6178         /* btf_parse_vmlinux() runs under bpf_verifier_lock */
6179         bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
6180         err = btf_alloc_id(btf);
6181         if (err) {
6182                 btf_free(btf);
6183                 btf = ERR_PTR(err);
6184         }
6185 err_out:
6186         btf_verifier_env_free(env);
6187         return btf;
6188 }
6189 
6190 /* If .BTF_ids section was created with distilled base BTF, both base and
6191  * split BTF ids will need to be mapped to actual base/split ids for
6192  * BTF now that it has been relocated.
6193  */
6194 static __u32 btf_relocate_id(const struct btf *btf, __u32 id)
6195 {
6196         if (!btf->base_btf || !btf->base_id_map)
6197                 return id;
6198         return btf->base_id_map[id];
6199 }
6200 
6201 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6202 
6203 static struct btf *btf_parse_module(const char *module_name, const void *data,
6204                                     unsigned int data_size, void *base_data,
6205                                     unsigned int base_data_size)
6206 {
6207         struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL;
6208         struct btf_verifier_env *env = NULL;
6209         struct bpf_verifier_log *log;
6210         int err = 0;
6211 
6212         vmlinux_btf = bpf_get_btf_vmlinux();
6213         if (IS_ERR(vmlinux_btf))
6214                 return vmlinux_btf;
6215         if (!vmlinux_btf)
6216                 return ERR_PTR(-EINVAL);
6217 
6218         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6219         if (!env)
6220                 return ERR_PTR(-ENOMEM);
6221 
6222         log = &env->log;
6223         log->level = BPF_LOG_KERNEL;
6224 
6225         if (base_data) {
6226                 base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size);
6227                 if (IS_ERR(base_btf)) {
6228                         err = PTR_ERR(base_btf);
6229                         goto errout;
6230                 }
6231         } else {
6232                 base_btf = vmlinux_btf;
6233         }
6234 
6235         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6236         if (!btf) {
6237                 err = -ENOMEM;
6238                 goto errout;
6239         }
6240         env->btf = btf;
6241 
6242         btf->base_btf = base_btf;
6243         btf->start_id = base_btf->nr_types;
6244         btf->start_str_off = base_btf->hdr.str_len;
6245         btf->kernel_btf = true;
6246         snprintf(btf->name, sizeof(btf->name), "%s", module_name);
6247 
6248         btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
6249         if (!btf->data) {
6250                 err = -ENOMEM;
6251                 goto errout;
6252         }
6253         memcpy(btf->data, data, data_size);
6254         btf->data_size = data_size;
6255 
6256         err = btf_parse_hdr(env);
6257         if (err)
6258                 goto errout;
6259 
6260         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6261 
6262         err = btf_parse_str_sec(env);
6263         if (err)
6264                 goto errout;
6265 
6266         err = btf_check_all_metas(env);
6267         if (err)
6268                 goto errout;
6269 
6270         err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6271         if (err)
6272                 goto errout;
6273 
6274         if (base_btf != vmlinux_btf) {
6275                 err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map);
6276                 if (err)
6277                         goto errout;
6278                 btf_free(base_btf);
6279                 base_btf = vmlinux_btf;
6280         }
6281 
6282         btf_verifier_env_free(env);
6283         refcount_set(&btf->refcnt, 1);
6284         return btf;
6285 
6286 errout:
6287         btf_verifier_env_free(env);
6288         if (!IS_ERR(base_btf) && base_btf != vmlinux_btf)
6289                 btf_free(base_btf);
6290         if (btf) {
6291                 kvfree(btf->data);
6292                 kvfree(btf->types);
6293                 kfree(btf);
6294         }
6295         return ERR_PTR(err);
6296 }
6297 
6298 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6299 
6300 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6301 {
6302         struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6303 
6304         if (tgt_prog)
6305                 return tgt_prog->aux->btf;
6306         else
6307                 return prog->aux->attach_btf;
6308 }
6309 
6310 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
6311 {
6312         /* skip modifiers */
6313         t = btf_type_skip_modifiers(btf, t->type, NULL);
6314 
6315         return btf_type_is_int(t);
6316 }
6317 
6318 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6319                            int off)
6320 {
6321         const struct btf_param *args;
6322         const struct btf_type *t;
6323         u32 offset = 0, nr_args;
6324         int i;
6325 
6326         if (!func_proto)
6327                 return off / 8;
6328 
6329         nr_args = btf_type_vlen(func_proto);
6330         args = (const struct btf_param *)(func_proto + 1);
6331         for (i = 0; i < nr_args; i++) {
6332                 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6333                 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6334                 if (off < offset)
6335                         return i;
6336         }
6337 
6338         t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6339         offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6340         if (off < offset)
6341                 return nr_args;
6342 
6343         return nr_args + 1;
6344 }
6345 
6346 static bool prog_args_trusted(const struct bpf_prog *prog)
6347 {
6348         enum bpf_attach_type atype = prog->expected_attach_type;
6349 
6350         switch (prog->type) {
6351         case BPF_PROG_TYPE_TRACING:
6352                 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6353         case BPF_PROG_TYPE_LSM:
6354                 return bpf_lsm_is_trusted(prog);
6355         case BPF_PROG_TYPE_STRUCT_OPS:
6356                 return true;
6357         default:
6358                 return false;
6359         }
6360 }
6361 
6362 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
6363                        u32 arg_no)
6364 {
6365         const struct btf_param *args;
6366         const struct btf_type *t;
6367         int off = 0, i;
6368         u32 sz;
6369 
6370         args = btf_params(func_proto);
6371         for (i = 0; i < arg_no; i++) {
6372                 t = btf_type_by_id(btf, args[i].type);
6373                 t = btf_resolve_size(btf, t, &sz);
6374                 if (IS_ERR(t))
6375                         return PTR_ERR(t);
6376                 off += roundup(sz, 8);
6377         }
6378 
6379         return off;
6380 }
6381 
6382 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6383                     const struct bpf_prog *prog,
6384                     struct bpf_insn_access_aux *info)
6385 {
6386         const struct btf_type *t = prog->aux->attach_func_proto;
6387         struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6388         struct btf *btf = bpf_prog_get_target_btf(prog);
6389         const char *tname = prog->aux->attach_func_name;
6390         struct bpf_verifier_log *log = info->log;
6391         const struct btf_param *args;
6392         const char *tag_value;
6393         u32 nr_args, arg;
6394         int i, ret;
6395 
6396         if (off % 8) {
6397                 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6398                         tname, off);
6399                 return false;
6400         }
6401         arg = get_ctx_arg_idx(btf, t, off);
6402         args = (const struct btf_param *)(t + 1);
6403         /* if (t == NULL) Fall back to default BPF prog with
6404          * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6405          */
6406         nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6407         if (prog->aux->attach_btf_trace) {
6408                 /* skip first 'void *__data' argument in btf_trace_##name typedef */
6409                 args++;
6410                 nr_args--;
6411         }
6412 
6413         if (arg > nr_args) {
6414                 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6415                         tname, arg + 1);
6416                 return false;
6417         }
6418 
6419         if (arg == nr_args) {
6420                 switch (prog->expected_attach_type) {
6421                 case BPF_LSM_MAC:
6422                         /* mark we are accessing the return value */
6423                         info->is_retval = true;
6424                         fallthrough;
6425                 case BPF_LSM_CGROUP:
6426                 case BPF_TRACE_FEXIT:
6427                         /* When LSM programs are attached to void LSM hooks
6428                          * they use FEXIT trampolines and when attached to
6429                          * int LSM hooks, they use MODIFY_RETURN trampolines.
6430                          *
6431                          * While the LSM programs are BPF_MODIFY_RETURN-like
6432                          * the check:
6433                          *
6434                          *      if (ret_type != 'int')
6435                          *              return -EINVAL;
6436                          *
6437                          * is _not_ done here. This is still safe as LSM hooks
6438                          * have only void and int return types.
6439                          */
6440                         if (!t)
6441                                 return true;
6442                         t = btf_type_by_id(btf, t->type);
6443                         break;
6444                 case BPF_MODIFY_RETURN:
6445                         /* For now the BPF_MODIFY_RETURN can only be attached to
6446                          * functions that return an int.
6447                          */
6448                         if (!t)
6449                                 return false;
6450 
6451                         t = btf_type_skip_modifiers(btf, t->type, NULL);
6452                         if (!btf_type_is_small_int(t)) {
6453                                 bpf_log(log,
6454                                         "ret type %s not allowed for fmod_ret\n",
6455                                         btf_type_str(t));
6456                                 return false;
6457                         }
6458                         break;
6459                 default:
6460                         bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6461                                 tname, arg + 1);
6462                         return false;
6463                 }
6464         } else {
6465                 if (!t)
6466                         /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6467                         return true;
6468                 t = btf_type_by_id(btf, args[arg].type);
6469         }
6470 
6471         /* skip modifiers */
6472         while (btf_type_is_modifier(t))
6473                 t = btf_type_by_id(btf, t->type);
6474         if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6475                 /* accessing a scalar */
6476                 return true;
6477         if (!btf_type_is_ptr(t)) {
6478                 bpf_log(log,
6479                         "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6480                         tname, arg,
6481                         __btf_name_by_offset(btf, t->name_off),
6482                         btf_type_str(t));
6483                 return false;
6484         }
6485 
6486         /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6487         for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6488                 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6489                 u32 type, flag;
6490 
6491                 type = base_type(ctx_arg_info->reg_type);
6492                 flag = type_flag(ctx_arg_info->reg_type);
6493                 if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6494                     (flag & PTR_MAYBE_NULL)) {
6495                         info->reg_type = ctx_arg_info->reg_type;
6496                         return true;
6497                 }
6498         }
6499 
6500         if (t->type == 0)
6501                 /* This is a pointer to void.
6502                  * It is the same as scalar from the verifier safety pov.
6503                  * No further pointer walking is allowed.
6504                  */
6505                 return true;
6506 
6507         if (is_int_ptr(btf, t))
6508                 return true;
6509 
6510         /* this is a pointer to another type */
6511         for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6512                 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6513 
6514                 if (ctx_arg_info->offset == off) {
6515                         if (!ctx_arg_info->btf_id) {
6516                                 bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6517                                 return false;
6518                         }
6519 
6520                         info->reg_type = ctx_arg_info->reg_type;
6521                         info->btf = ctx_arg_info->btf ? : btf_vmlinux;
6522                         info->btf_id = ctx_arg_info->btf_id;
6523                         return true;
6524                 }
6525         }
6526 
6527         info->reg_type = PTR_TO_BTF_ID;
6528         if (prog_args_trusted(prog))
6529                 info->reg_type |= PTR_TRUSTED;
6530 
6531         if (tgt_prog) {
6532                 enum bpf_prog_type tgt_type;
6533 
6534                 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6535                         tgt_type = tgt_prog->aux->saved_dst_prog_type;
6536                 else
6537                         tgt_type = tgt_prog->type;
6538 
6539                 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6540                 if (ret > 0) {
6541                         info->btf = btf_vmlinux;
6542                         info->btf_id = ret;
6543                         return true;
6544                 } else {
6545                         return false;
6546                 }
6547         }
6548 
6549         info->btf = btf;
6550         info->btf_id = t->type;
6551         t = btf_type_by_id(btf, t->type);
6552 
6553         if (btf_type_is_type_tag(t)) {
6554                 tag_value = __btf_name_by_offset(btf, t->name_off);
6555                 if (strcmp(tag_value, "user") == 0)
6556                         info->reg_type |= MEM_USER;
6557                 if (strcmp(tag_value, "percpu") == 0)
6558                         info->reg_type |= MEM_PERCPU;
6559         }
6560 
6561         /* skip modifiers */
6562         while (btf_type_is_modifier(t)) {
6563                 info->btf_id = t->type;
6564                 t = btf_type_by_id(btf, t->type);
6565         }
6566         if (!btf_type_is_struct(t)) {
6567                 bpf_log(log,
6568                         "func '%s' arg%d type %s is not a struct\n",
6569                         tname, arg, btf_type_str(t));
6570                 return false;
6571         }
6572         bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6573                 tname, arg, info->btf_id, btf_type_str(t),
6574                 __btf_name_by_offset(btf, t->name_off));
6575         return true;
6576 }
6577 EXPORT_SYMBOL_GPL(btf_ctx_access);
6578 
6579 enum bpf_struct_walk_result {
6580         /* < 0 error */
6581         WALK_SCALAR = 0,
6582         WALK_PTR,
6583         WALK_STRUCT,
6584 };
6585 
6586 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6587                            const struct btf_type *t, int off, int size,
6588                            u32 *next_btf_id, enum bpf_type_flag *flag,
6589                            const char **field_name)
6590 {
6591         u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6592         const struct btf_type *mtype, *elem_type = NULL;
6593         const struct btf_member *member;
6594         const char *tname, *mname, *tag_value;
6595         u32 vlen, elem_id, mid;
6596 
6597 again:
6598         if (btf_type_is_modifier(t))
6599                 t = btf_type_skip_modifiers(btf, t->type, NULL);
6600         tname = __btf_name_by_offset(btf, t->name_off);
6601         if (!btf_type_is_struct(t)) {
6602                 bpf_log(log, "Type '%s' is not a struct\n", tname);
6603                 return -EINVAL;
6604         }
6605 
6606         vlen = btf_type_vlen(t);
6607         if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6608                 /*
6609                  * walking unions yields untrusted pointers
6610                  * with exception of __bpf_md_ptr and other
6611                  * unions with a single member
6612                  */
6613                 *flag |= PTR_UNTRUSTED;
6614 
6615         if (off + size > t->size) {
6616                 /* If the last element is a variable size array, we may
6617                  * need to relax the rule.
6618                  */
6619                 struct btf_array *array_elem;
6620 
6621                 if (vlen == 0)
6622                         goto error;
6623 
6624                 member = btf_type_member(t) + vlen - 1;
6625                 mtype = btf_type_skip_modifiers(btf, member->type,
6626                                                 NULL);
6627                 if (!btf_type_is_array(mtype))
6628                         goto error;
6629 
6630                 array_elem = (struct btf_array *)(mtype + 1);
6631                 if (array_elem->nelems != 0)
6632                         goto error;
6633 
6634                 moff = __btf_member_bit_offset(t, member) / 8;
6635                 if (off < moff)
6636                         goto error;
6637 
6638                 /* allow structure and integer */
6639                 t = btf_type_skip_modifiers(btf, array_elem->type,
6640                                             NULL);
6641 
6642                 if (btf_type_is_int(t))
6643                         return WALK_SCALAR;
6644 
6645                 if (!btf_type_is_struct(t))
6646                         goto error;
6647 
6648                 off = (off - moff) % t->size;
6649                 goto again;
6650 
6651 error:
6652                 bpf_log(log, "access beyond struct %s at off %u size %u\n",
6653                         tname, off, size);
6654                 return -EACCES;
6655         }
6656 
6657         for_each_member(i, t, member) {
6658                 /* offset of the field in bytes */
6659                 moff = __btf_member_bit_offset(t, member) / 8;
6660                 if (off + size <= moff)
6661                         /* won't find anything, field is already too far */
6662                         break;
6663 
6664                 if (__btf_member_bitfield_size(t, member)) {
6665                         u32 end_bit = __btf_member_bit_offset(t, member) +
6666                                 __btf_member_bitfield_size(t, member);
6667 
6668                         /* off <= moff instead of off == moff because clang
6669                          * does not generate a BTF member for anonymous
6670                          * bitfield like the ":16" here:
6671                          * struct {
6672                          *      int :16;
6673                          *      int x:8;
6674                          * };
6675                          */
6676                         if (off <= moff &&
6677                             BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6678                                 return WALK_SCALAR;
6679 
6680                         /* off may be accessing a following member
6681                          *
6682                          * or
6683                          *
6684                          * Doing partial access at either end of this
6685                          * bitfield.  Continue on this case also to
6686                          * treat it as not accessing this bitfield
6687                          * and eventually error out as field not
6688                          * found to keep it simple.
6689                          * It could be relaxed if there was a legit
6690                          * partial access case later.
6691                          */
6692                         continue;
6693                 }
6694 
6695                 /* In case of "off" is pointing to holes of a struct */
6696                 if (off < moff)
6697                         break;
6698 
6699                 /* type of the field */
6700                 mid = member->type;
6701                 mtype = btf_type_by_id(btf, member->type);
6702                 mname = __btf_name_by_offset(btf, member->name_off);
6703 
6704                 mtype = __btf_resolve_size(btf, mtype, &msize,
6705                                            &elem_type, &elem_id, &total_nelems,
6706                                            &mid);
6707                 if (IS_ERR(mtype)) {
6708                         bpf_log(log, "field %s doesn't have size\n", mname);
6709                         return -EFAULT;
6710                 }
6711 
6712                 mtrue_end = moff + msize;
6713                 if (off >= mtrue_end)
6714                         /* no overlap with member, keep iterating */
6715                         continue;
6716 
6717                 if (btf_type_is_array(mtype)) {
6718                         u32 elem_idx;
6719 
6720                         /* __btf_resolve_size() above helps to
6721                          * linearize a multi-dimensional array.
6722                          *
6723                          * The logic here is treating an array
6724                          * in a struct as the following way:
6725                          *
6726                          * struct outer {
6727                          *      struct inner array[2][2];
6728                          * };
6729                          *
6730                          * looks like:
6731                          *
6732                          * struct outer {
6733                          *      struct inner array_elem0;
6734                          *      struct inner array_elem1;
6735                          *      struct inner array_elem2;
6736                          *      struct inner array_elem3;
6737                          * };
6738                          *
6739                          * When accessing outer->array[1][0], it moves
6740                          * moff to "array_elem2", set mtype to
6741                          * "struct inner", and msize also becomes
6742                          * sizeof(struct inner).  Then most of the
6743                          * remaining logic will fall through without
6744                          * caring the current member is an array or
6745                          * not.
6746                          *
6747                          * Unlike mtype/msize/moff, mtrue_end does not
6748                          * change.  The naming difference ("_true") tells
6749                          * that it is not always corresponding to
6750                          * the current mtype/msize/moff.
6751                          * It is the true end of the current
6752                          * member (i.e. array in this case).  That
6753                          * will allow an int array to be accessed like
6754                          * a scratch space,
6755                          * i.e. allow access beyond the size of
6756                          *      the array's element as long as it is
6757                          *      within the mtrue_end boundary.
6758                          */
6759 
6760                         /* skip empty array */
6761                         if (moff == mtrue_end)
6762                                 continue;
6763 
6764                         msize /= total_nelems;
6765                         elem_idx = (off - moff) / msize;
6766                         moff += elem_idx * msize;
6767                         mtype = elem_type;
6768                         mid = elem_id;
6769                 }
6770 
6771                 /* the 'off' we're looking for is either equal to start
6772                  * of this field or inside of this struct
6773                  */
6774                 if (btf_type_is_struct(mtype)) {
6775                         /* our field must be inside that union or struct */
6776                         t = mtype;
6777 
6778                         /* return if the offset matches the member offset */
6779                         if (off == moff) {
6780                                 *next_btf_id = mid;
6781                                 return WALK_STRUCT;
6782                         }
6783 
6784                         /* adjust offset we're looking for */
6785                         off -= moff;
6786                         goto again;
6787                 }
6788 
6789                 if (btf_type_is_ptr(mtype)) {
6790                         const struct btf_type *stype, *t;
6791                         enum bpf_type_flag tmp_flag = 0;
6792                         u32 id;
6793 
6794                         if (msize != size || off != moff) {
6795                                 bpf_log(log,
6796                                         "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6797                                         mname, moff, tname, off, size);
6798                                 return -EACCES;
6799                         }
6800 
6801                         /* check type tag */
6802                         t = btf_type_by_id(btf, mtype->type);
6803                         if (btf_type_is_type_tag(t)) {
6804                                 tag_value = __btf_name_by_offset(btf, t->name_off);
6805                                 /* check __user tag */
6806                                 if (strcmp(tag_value, "user") == 0)
6807                                         tmp_flag = MEM_USER;
6808                                 /* check __percpu tag */
6809                                 if (strcmp(tag_value, "percpu") == 0)
6810                                         tmp_flag = MEM_PERCPU;
6811                                 /* check __rcu tag */
6812                                 if (strcmp(tag_value, "rcu") == 0)
6813                                         tmp_flag = MEM_RCU;
6814                         }
6815 
6816                         stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6817                         if (btf_type_is_struct(stype)) {
6818                                 *next_btf_id = id;
6819                                 *flag |= tmp_flag;
6820                                 if (field_name)
6821                                         *field_name = mname;
6822                                 return WALK_PTR;
6823                         }
6824                 }
6825 
6826                 /* Allow more flexible access within an int as long as
6827                  * it is within mtrue_end.
6828                  * Since mtrue_end could be the end of an array,
6829                  * that also allows using an array of int as a scratch
6830                  * space. e.g. skb->cb[].
6831                  */
6832                 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
6833                         bpf_log(log,
6834                                 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6835                                 mname, mtrue_end, tname, off, size);
6836                         return -EACCES;
6837                 }
6838 
6839                 return WALK_SCALAR;
6840         }
6841         bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6842         return -EINVAL;
6843 }
6844 
6845 int btf_struct_access(struct bpf_verifier_log *log,
6846                       const struct bpf_reg_state *reg,
6847                       int off, int size, enum bpf_access_type atype __maybe_unused,
6848                       u32 *next_btf_id, enum bpf_type_flag *flag,
6849                       const char **field_name)
6850 {
6851         const struct btf *btf = reg->btf;
6852         enum bpf_type_flag tmp_flag = 0;
6853         const struct btf_type *t;
6854         u32 id = reg->btf_id;
6855         int err;
6856 
6857         while (type_is_alloc(reg->type)) {
6858                 struct btf_struct_meta *meta;
6859                 struct btf_record *rec;
6860                 int i;
6861 
6862                 meta = btf_find_struct_meta(btf, id);
6863                 if (!meta)
6864                         break;
6865                 rec = meta->record;
6866                 for (i = 0; i < rec->cnt; i++) {
6867                         struct btf_field *field = &rec->fields[i];
6868                         u32 offset = field->offset;
6869                         if (off < offset + field->size && offset < off + size) {
6870                                 bpf_log(log,
6871                                         "direct access to %s is disallowed\n",
6872                                         btf_field_type_name(field->type));
6873                                 return -EACCES;
6874                         }
6875                 }
6876                 break;
6877         }
6878 
6879         t = btf_type_by_id(btf, id);
6880         do {
6881                 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
6882 
6883                 switch (err) {
6884                 case WALK_PTR:
6885                         /* For local types, the destination register cannot
6886                          * become a pointer again.
6887                          */
6888                         if (type_is_alloc(reg->type))
6889                                 return SCALAR_VALUE;
6890                         /* If we found the pointer or scalar on t+off,
6891                          * we're done.
6892                          */
6893                         *next_btf_id = id;
6894                         *flag = tmp_flag;
6895                         return PTR_TO_BTF_ID;
6896                 case WALK_SCALAR:
6897                         return SCALAR_VALUE;
6898                 case WALK_STRUCT:
6899                         /* We found nested struct, so continue the search
6900                          * by diving in it. At this point the offset is
6901                          * aligned with the new type, so set it to 0.
6902                          */
6903                         t = btf_type_by_id(btf, id);
6904                         off = 0;
6905                         break;
6906                 default:
6907                         /* It's either error or unknown return value..
6908                          * scream and leave.
6909                          */
6910                         if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6911                                 return -EINVAL;
6912                         return err;
6913                 }
6914         } while (t);
6915 
6916         return -EINVAL;
6917 }
6918 
6919 /* Check that two BTF types, each specified as an BTF object + id, are exactly
6920  * the same. Trivial ID check is not enough due to module BTFs, because we can
6921  * end up with two different module BTFs, but IDs point to the common type in
6922  * vmlinux BTF.
6923  */
6924 bool btf_types_are_same(const struct btf *btf1, u32 id1,
6925                         const struct btf *btf2, u32 id2)
6926 {
6927         if (id1 != id2)
6928                 return false;
6929         if (btf1 == btf2)
6930                 return true;
6931         return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6932 }
6933 
6934 bool btf_struct_ids_match(struct bpf_verifier_log *log,
6935                           const struct btf *btf, u32 id, int off,
6936                           const struct btf *need_btf, u32 need_type_id,
6937                           bool strict)
6938 {
6939         const struct btf_type *type;
6940         enum bpf_type_flag flag = 0;
6941         int err;
6942 
6943         /* Are we already done? */
6944         if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6945                 return true;
6946         /* In case of strict type match, we do not walk struct, the top level
6947          * type match must succeed. When strict is true, off should have already
6948          * been 0.
6949          */
6950         if (strict)
6951                 return false;
6952 again:
6953         type = btf_type_by_id(btf, id);
6954         if (!type)
6955                 return false;
6956         err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
6957         if (err != WALK_STRUCT)
6958                 return false;
6959 
6960         /* We found nested struct object. If it matches
6961          * the requested ID, we're done. Otherwise let's
6962          * continue the search with offset 0 in the new
6963          * type.
6964          */
6965         if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6966                 off = 0;
6967                 goto again;
6968         }
6969 
6970         return true;
6971 }
6972 
6973 static int __get_type_size(struct btf *btf, u32 btf_id,
6974                            const struct btf_type **ret_type)
6975 {
6976         const struct btf_type *t;
6977 
6978         *ret_type = btf_type_by_id(btf, 0);
6979         if (!btf_id)
6980                 /* void */
6981                 return 0;
6982         t = btf_type_by_id(btf, btf_id);
6983         while (t && btf_type_is_modifier(t))
6984                 t = btf_type_by_id(btf, t->type);
6985         if (!t)
6986                 return -EINVAL;
6987         *ret_type = t;
6988         if (btf_type_is_ptr(t))
6989                 /* kernel size of pointer. Not BPF's size of pointer*/
6990                 return sizeof(void *);
6991         if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6992                 return t->size;
6993         return -EINVAL;
6994 }
6995 
6996 static u8 __get_type_fmodel_flags(const struct btf_type *t)
6997 {
6998         u8 flags = 0;
6999 
7000         if (__btf_type_is_struct(t))
7001                 flags |= BTF_FMODEL_STRUCT_ARG;
7002         if (btf_type_is_signed_int(t))
7003                 flags |= BTF_FMODEL_SIGNED_ARG;
7004 
7005         return flags;
7006 }
7007 
7008 int btf_distill_func_proto(struct bpf_verifier_log *log,
7009                            struct btf *btf,
7010                            const struct btf_type *func,
7011                            const char *tname,
7012                            struct btf_func_model *m)
7013 {
7014         const struct btf_param *args;
7015         const struct btf_type *t;
7016         u32 i, nargs;
7017         int ret;
7018 
7019         if (!func) {
7020                 /* BTF function prototype doesn't match the verifier types.
7021                  * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
7022                  */
7023                 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7024                         m->arg_size[i] = 8;
7025                         m->arg_flags[i] = 0;
7026                 }
7027                 m->ret_size = 8;
7028                 m->ret_flags = 0;
7029                 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
7030                 return 0;
7031         }
7032         args = (const struct btf_param *)(func + 1);
7033         nargs = btf_type_vlen(func);
7034         if (nargs > MAX_BPF_FUNC_ARGS) {
7035                 bpf_log(log,
7036                         "The function %s has %d arguments. Too many.\n",
7037                         tname, nargs);
7038                 return -EINVAL;
7039         }
7040         ret = __get_type_size(btf, func->type, &t);
7041         if (ret < 0 || __btf_type_is_struct(t)) {
7042                 bpf_log(log,
7043                         "The function %s return type %s is unsupported.\n",
7044                         tname, btf_type_str(t));
7045                 return -EINVAL;
7046         }
7047         m->ret_size = ret;
7048         m->ret_flags = __get_type_fmodel_flags(t);
7049 
7050         for (i = 0; i < nargs; i++) {
7051                 if (i == nargs - 1 && args[i].type == 0) {
7052                         bpf_log(log,
7053                                 "The function %s with variable args is unsupported.\n",
7054                                 tname);
7055                         return -EINVAL;
7056                 }
7057                 ret = __get_type_size(btf, args[i].type, &t);
7058 
7059                 /* No support of struct argument size greater than 16 bytes */
7060                 if (ret < 0 || ret > 16) {
7061                         bpf_log(log,
7062                                 "The function %s arg%d type %s is unsupported.\n",
7063                                 tname, i, btf_type_str(t));
7064                         return -EINVAL;
7065                 }
7066                 if (ret == 0) {
7067                         bpf_log(log,
7068                                 "The function %s has malformed void argument.\n",
7069                                 tname);
7070                         return -EINVAL;
7071                 }
7072                 m->arg_size[i] = ret;
7073                 m->arg_flags[i] = __get_type_fmodel_flags(t);
7074         }
7075         m->nr_args = nargs;
7076         return 0;
7077 }
7078 
7079 /* Compare BTFs of two functions assuming only scalars and pointers to context.
7080  * t1 points to BTF_KIND_FUNC in btf1
7081  * t2 points to BTF_KIND_FUNC in btf2
7082  * Returns:
7083  * EINVAL - function prototype mismatch
7084  * EFAULT - verifier bug
7085  * 0 - 99% match. The last 1% is validated by the verifier.
7086  */
7087 static int btf_check_func_type_match(struct bpf_verifier_log *log,
7088                                      struct btf *btf1, const struct btf_type *t1,
7089                                      struct btf *btf2, const struct btf_type *t2)
7090 {
7091         const struct btf_param *args1, *args2;
7092         const char *fn1, *fn2, *s1, *s2;
7093         u32 nargs1, nargs2, i;
7094 
7095         fn1 = btf_name_by_offset(btf1, t1->name_off);
7096         fn2 = btf_name_by_offset(btf2, t2->name_off);
7097 
7098         if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
7099                 bpf_log(log, "%s() is not a global function\n", fn1);
7100                 return -EINVAL;
7101         }
7102         if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
7103                 bpf_log(log, "%s() is not a global function\n", fn2);
7104                 return -EINVAL;
7105         }
7106 
7107         t1 = btf_type_by_id(btf1, t1->type);
7108         if (!t1 || !btf_type_is_func_proto(t1))
7109                 return -EFAULT;
7110         t2 = btf_type_by_id(btf2, t2->type);
7111         if (!t2 || !btf_type_is_func_proto(t2))
7112                 return -EFAULT;
7113 
7114         args1 = (const struct btf_param *)(t1 + 1);
7115         nargs1 = btf_type_vlen(t1);
7116         args2 = (const struct btf_param *)(t2 + 1);
7117         nargs2 = btf_type_vlen(t2);
7118 
7119         if (nargs1 != nargs2) {
7120                 bpf_log(log, "%s() has %d args while %s() has %d args\n",
7121                         fn1, nargs1, fn2, nargs2);
7122                 return -EINVAL;
7123         }
7124 
7125         t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7126         t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7127         if (t1->info != t2->info) {
7128                 bpf_log(log,
7129                         "Return type %s of %s() doesn't match type %s of %s()\n",
7130                         btf_type_str(t1), fn1,
7131                         btf_type_str(t2), fn2);
7132                 return -EINVAL;
7133         }
7134 
7135         for (i = 0; i < nargs1; i++) {
7136                 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
7137                 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
7138 
7139                 if (t1->info != t2->info) {
7140                         bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
7141                                 i, fn1, btf_type_str(t1),
7142                                 fn2, btf_type_str(t2));
7143                         return -EINVAL;
7144                 }
7145                 if (btf_type_has_size(t1) && t1->size != t2->size) {
7146                         bpf_log(log,
7147                                 "arg%d in %s() has size %d while %s() has %d\n",
7148                                 i, fn1, t1->size,
7149                                 fn2, t2->size);
7150                         return -EINVAL;
7151                 }
7152 
7153                 /* global functions are validated with scalars and pointers
7154                  * to context only. And only global functions can be replaced.
7155                  * Hence type check only those types.
7156                  */
7157                 if (btf_type_is_int(t1) || btf_is_any_enum(t1))
7158                         continue;
7159                 if (!btf_type_is_ptr(t1)) {
7160                         bpf_log(log,
7161                                 "arg%d in %s() has unrecognized type\n",
7162                                 i, fn1);
7163                         return -EINVAL;
7164                 }
7165                 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
7166                 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
7167                 if (!btf_type_is_struct(t1)) {
7168                         bpf_log(log,
7169                                 "arg%d in %s() is not a pointer to context\n",
7170                                 i, fn1);
7171                         return -EINVAL;
7172                 }
7173                 if (!btf_type_is_struct(t2)) {
7174                         bpf_log(log,
7175                                 "arg%d in %s() is not a pointer to context\n",
7176                                 i, fn2);
7177                         return -EINVAL;
7178                 }
7179                 /* This is an optional check to make program writing easier.
7180                  * Compare names of structs and report an error to the user.
7181                  * btf_prepare_func_args() already checked that t2 struct
7182                  * is a context type. btf_prepare_func_args() will check
7183                  * later that t1 struct is a context type as well.
7184                  */
7185                 s1 = btf_name_by_offset(btf1, t1->name_off);
7186                 s2 = btf_name_by_offset(btf2, t2->name_off);
7187                 if (strcmp(s1, s2)) {
7188                         bpf_log(log,
7189                                 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
7190                                 i, fn1, s1, fn2, s2);
7191                         return -EINVAL;
7192                 }
7193         }
7194         return 0;
7195 }
7196 
7197 /* Compare BTFs of given program with BTF of target program */
7198 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
7199                          struct btf *btf2, const struct btf_type *t2)
7200 {
7201         struct btf *btf1 = prog->aux->btf;
7202         const struct btf_type *t1;
7203         u32 btf_id = 0;
7204 
7205         if (!prog->aux->func_info) {
7206                 bpf_log(log, "Program extension requires BTF\n");
7207                 return -EINVAL;
7208         }
7209 
7210         btf_id = prog->aux->func_info[0].type_id;
7211         if (!btf_id)
7212                 return -EFAULT;
7213 
7214         t1 = btf_type_by_id(btf1, btf_id);
7215         if (!t1 || !btf_type_is_func(t1))
7216                 return -EFAULT;
7217 
7218         return btf_check_func_type_match(log, btf1, t1, btf2, t2);
7219 }
7220 
7221 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
7222 {
7223         const char *name;
7224 
7225         t = btf_type_by_id(btf, t->type); /* skip PTR */
7226 
7227         while (btf_type_is_modifier(t))
7228                 t = btf_type_by_id(btf, t->type);
7229 
7230         /* allow either struct or struct forward declaration */
7231         if (btf_type_is_struct(t) ||
7232             (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
7233                 name = btf_str_by_offset(btf, t->name_off);
7234                 return name && strcmp(name, "bpf_dynptr") == 0;
7235         }
7236 
7237         return false;
7238 }
7239 
7240 struct bpf_cand_cache {
7241         const char *name;
7242         u32 name_len;
7243         u16 kind;
7244         u16 cnt;
7245         struct {
7246                 const struct btf *btf;
7247                 u32 id;
7248         } cands[];
7249 };
7250 
7251 static DEFINE_MUTEX(cand_cache_mutex);
7252 
7253 static struct bpf_cand_cache *
7254 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
7255 
7256 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
7257                                  const struct btf *btf, const struct btf_type *t)
7258 {
7259         struct bpf_cand_cache *cc;
7260         struct bpf_core_ctx ctx = {
7261                 .btf = btf,
7262                 .log = log,
7263         };
7264         u32 kern_type_id, type_id;
7265         int err = 0;
7266 
7267         /* skip PTR and modifiers */
7268         type_id = t->type;
7269         t = btf_type_by_id(btf, t->type);
7270         while (btf_type_is_modifier(t)) {
7271                 type_id = t->type;
7272                 t = btf_type_by_id(btf, t->type);
7273         }
7274 
7275         mutex_lock(&cand_cache_mutex);
7276         cc = bpf_core_find_cands(&ctx, type_id);
7277         if (IS_ERR(cc)) {
7278                 err = PTR_ERR(cc);
7279                 bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n",
7280                         arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7281                         err);
7282                 goto cand_cache_unlock;
7283         }
7284         if (cc->cnt != 1) {
7285                 bpf_log(log, "arg#%d reference type('%s %s') %s\n",
7286                         arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7287                         cc->cnt == 0 ? "has no matches" : "is ambiguous");
7288                 err = cc->cnt == 0 ? -ENOENT : -ESRCH;
7289                 goto cand_cache_unlock;
7290         }
7291         if (btf_is_module(cc->cands[0].btf)) {
7292                 bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
7293                         arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off));
7294                 err = -EOPNOTSUPP;
7295                 goto cand_cache_unlock;
7296         }
7297         kern_type_id = cc->cands[0].id;
7298 
7299 cand_cache_unlock:
7300         mutex_unlock(&cand_cache_mutex);
7301         if (err)
7302                 return err;
7303 
7304         return kern_type_id;
7305 }
7306 
7307 enum btf_arg_tag {
7308         ARG_TAG_CTX      = BIT_ULL(0),
7309         ARG_TAG_NONNULL  = BIT_ULL(1),
7310         ARG_TAG_TRUSTED  = BIT_ULL(2),
7311         ARG_TAG_NULLABLE = BIT_ULL(3),
7312         ARG_TAG_ARENA    = BIT_ULL(4),
7313 };
7314 
7315 /* Process BTF of a function to produce high-level expectation of function
7316  * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
7317  * is cached in subprog info for reuse.
7318  * Returns:
7319  * EFAULT - there is a verifier bug. Abort verification.
7320  * EINVAL - cannot convert BTF.
7321  * 0 - Successfully processed BTF and constructed argument expectations.
7322  */
7323 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
7324 {
7325         bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7326         struct bpf_subprog_info *sub = subprog_info(env, subprog);
7327         struct bpf_verifier_log *log = &env->log;
7328         struct bpf_prog *prog = env->prog;
7329         enum bpf_prog_type prog_type = prog->type;
7330         struct btf *btf = prog->aux->btf;
7331         const struct btf_param *args;
7332         const struct btf_type *t, *ref_t, *fn_t;
7333         u32 i, nargs, btf_id;
7334         const char *tname;
7335 
7336         if (sub->args_cached)
7337                 return 0;
7338 
7339         if (!prog->aux->func_info) {
7340                 bpf_log(log, "Verifier bug\n");
7341                 return -EFAULT;
7342         }
7343 
7344         btf_id = prog->aux->func_info[subprog].type_id;
7345         if (!btf_id) {
7346                 if (!is_global) /* not fatal for static funcs */
7347                         return -EINVAL;
7348                 bpf_log(log, "Global functions need valid BTF\n");
7349                 return -EFAULT;
7350         }
7351 
7352         fn_t = btf_type_by_id(btf, btf_id);
7353         if (!fn_t || !btf_type_is_func(fn_t)) {
7354                 /* These checks were already done by the verifier while loading
7355                  * struct bpf_func_info
7356                  */
7357                 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7358                         subprog);
7359                 return -EFAULT;
7360         }
7361         tname = btf_name_by_offset(btf, fn_t->name_off);
7362 
7363         if (prog->aux->func_info_aux[subprog].unreliable) {
7364                 bpf_log(log, "Verifier bug in function %s()\n", tname);
7365                 return -EFAULT;
7366         }
7367         if (prog_type == BPF_PROG_TYPE_EXT)
7368                 prog_type = prog->aux->dst_prog->type;
7369 
7370         t = btf_type_by_id(btf, fn_t->type);
7371         if (!t || !btf_type_is_func_proto(t)) {
7372                 bpf_log(log, "Invalid type of function %s()\n", tname);
7373                 return -EFAULT;
7374         }
7375         args = (const struct btf_param *)(t + 1);
7376         nargs = btf_type_vlen(t);
7377         if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7378                 if (!is_global)
7379                         return -EINVAL;
7380                 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7381                         tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7382                 return -EINVAL;
7383         }
7384         /* check that function returns int, exception cb also requires this */
7385         t = btf_type_by_id(btf, t->type);
7386         while (btf_type_is_modifier(t))
7387                 t = btf_type_by_id(btf, t->type);
7388         if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7389                 if (!is_global)
7390                         return -EINVAL;
7391                 bpf_log(log,
7392                         "Global function %s() doesn't return scalar. Only those are supported.\n",
7393                         tname);
7394                 return -EINVAL;
7395         }
7396         /* Convert BTF function arguments into verifier types.
7397          * Only PTR_TO_CTX and SCALAR are supported atm.
7398          */
7399         for (i = 0; i < nargs; i++) {
7400                 u32 tags = 0;
7401                 int id = 0;
7402 
7403                 /* 'arg:<tag>' decl_tag takes precedence over derivation of
7404                  * register type from BTF type itself
7405                  */
7406                 while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
7407                         const struct btf_type *tag_t = btf_type_by_id(btf, id);
7408                         const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
7409 
7410                         /* disallow arg tags in static subprogs */
7411                         if (!is_global) {
7412                                 bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7413                                 return -EOPNOTSUPP;
7414                         }
7415 
7416                         if (strcmp(tag, "ctx") == 0) {
7417                                 tags |= ARG_TAG_CTX;
7418                         } else if (strcmp(tag, "trusted") == 0) {
7419                                 tags |= ARG_TAG_TRUSTED;
7420                         } else if (strcmp(tag, "nonnull") == 0) {
7421                                 tags |= ARG_TAG_NONNULL;
7422                         } else if (strcmp(tag, "nullable") == 0) {
7423                                 tags |= ARG_TAG_NULLABLE;
7424                         } else if (strcmp(tag, "arena") == 0) {
7425                                 tags |= ARG_TAG_ARENA;
7426                         } else {
7427                                 bpf_log(log, "arg#%d has unsupported set of tags\n", i);
7428                                 return -EOPNOTSUPP;
7429                         }
7430                 }
7431                 if (id != -ENOENT) {
7432                         bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
7433                         return id;
7434                 }
7435 
7436                 t = btf_type_by_id(btf, args[i].type);
7437                 while (btf_type_is_modifier(t))
7438                         t = btf_type_by_id(btf, t->type);
7439                 if (!btf_type_is_ptr(t))
7440                         goto skip_pointer;
7441 
7442                 if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) {
7443                         if (tags & ~ARG_TAG_CTX) {
7444                                 bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7445                                 return -EINVAL;
7446                         }
7447                         if ((tags & ARG_TAG_CTX) &&
7448                             btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7449                                                        prog->expected_attach_type))
7450                                 return -EINVAL;
7451                         sub->args[i].arg_type = ARG_PTR_TO_CTX;
7452                         continue;
7453                 }
7454                 if (btf_is_dynptr_ptr(btf, t)) {
7455                         if (tags) {
7456                                 bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7457                                 return -EINVAL;
7458                         }
7459                         sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7460                         continue;
7461                 }
7462                 if (tags & ARG_TAG_TRUSTED) {
7463                         int kern_type_id;
7464 
7465                         if (tags & ARG_TAG_NONNULL) {
7466                                 bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7467                                 return -EINVAL;
7468                         }
7469 
7470                         kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7471                         if (kern_type_id < 0)
7472                                 return kern_type_id;
7473 
7474                         sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
7475                         if (tags & ARG_TAG_NULLABLE)
7476                                 sub->args[i].arg_type |= PTR_MAYBE_NULL;
7477                         sub->args[i].btf_id = kern_type_id;
7478                         continue;
7479                 }
7480                 if (tags & ARG_TAG_ARENA) {
7481                         if (tags & ~ARG_TAG_ARENA) {
7482                                 bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i);
7483                                 return -EINVAL;
7484                         }
7485                         sub->args[i].arg_type = ARG_PTR_TO_ARENA;
7486                         continue;
7487                 }
7488                 if (is_global) { /* generic user data pointer */
7489                         u32 mem_size;
7490 
7491                         if (tags & ARG_TAG_NULLABLE) {
7492                                 bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7493                                 return -EINVAL;
7494                         }
7495 
7496                         t = btf_type_skip_modifiers(btf, t->type, NULL);
7497                         ref_t = btf_resolve_size(btf, t, &mem_size);
7498                         if (IS_ERR(ref_t)) {
7499                                 bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7500                                         i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7501                                         PTR_ERR(ref_t));
7502                                 return -EINVAL;
7503                         }
7504 
7505                         sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7506                         if (tags & ARG_TAG_NONNULL)
7507                                 sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7508                         sub->args[i].mem_size = mem_size;
7509                         continue;
7510                 }
7511 
7512 skip_pointer:
7513                 if (tags) {
7514                         bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
7515                         return -EINVAL;
7516                 }
7517                 if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7518                         sub->args[i].arg_type = ARG_ANYTHING;
7519                         continue;
7520                 }
7521                 if (!is_global)
7522                         return -EINVAL;
7523                 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7524                         i, btf_type_str(t), tname);
7525                 return -EINVAL;
7526         }
7527 
7528         sub->arg_cnt = nargs;
7529         sub->args_cached = true;
7530 
7531         return 0;
7532 }
7533 
7534 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7535                           struct btf_show *show)
7536 {
7537         const struct btf_type *t = btf_type_by_id(btf, type_id);
7538 
7539         show->btf = btf;
7540         memset(&show->state, 0, sizeof(show->state));
7541         memset(&show->obj, 0, sizeof(show->obj));
7542 
7543         btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7544 }
7545 
7546 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt,
7547                                         va_list args)
7548 {
7549         seq_vprintf((struct seq_file *)show->target, fmt, args);
7550 }
7551 
7552 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7553                             void *obj, struct seq_file *m, u64 flags)
7554 {
7555         struct btf_show sseq;
7556 
7557         sseq.target = m;
7558         sseq.showfn = btf_seq_show;
7559         sseq.flags = flags;
7560 
7561         btf_type_show(btf, type_id, obj, &sseq);
7562 
7563         return sseq.state.status;
7564 }
7565 
7566 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7567                        struct seq_file *m)
7568 {
7569         (void) btf_type_seq_show_flags(btf, type_id, obj, m,
7570                                        BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7571                                        BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7572 }
7573 
7574 struct btf_show_snprintf {
7575         struct btf_show show;
7576         int len_left;           /* space left in string */
7577         int len;                /* length we would have written */
7578 };
7579 
7580 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7581                                              va_list args)
7582 {
7583         struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7584         int len;
7585 
7586         len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7587 
7588         if (len < 0) {
7589                 ssnprintf->len_left = 0;
7590                 ssnprintf->len = len;
7591         } else if (len >= ssnprintf->len_left) {
7592                 /* no space, drive on to get length we would have written */
7593                 ssnprintf->len_left = 0;
7594                 ssnprintf->len += len;
7595         } else {
7596                 ssnprintf->len_left -= len;
7597                 ssnprintf->len += len;
7598                 show->target += len;
7599         }
7600 }
7601 
7602 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7603                            char *buf, int len, u64 flags)
7604 {
7605         struct btf_show_snprintf ssnprintf;
7606 
7607         ssnprintf.show.target = buf;
7608         ssnprintf.show.flags = flags;
7609         ssnprintf.show.showfn = btf_snprintf_show;
7610         ssnprintf.len_left = len;
7611         ssnprintf.len = 0;
7612 
7613         btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7614 
7615         /* If we encountered an error, return it. */
7616         if (ssnprintf.show.state.status)
7617                 return ssnprintf.show.state.status;
7618 
7619         /* Otherwise return length we would have written */
7620         return ssnprintf.len;
7621 }
7622 
7623 #ifdef CONFIG_PROC_FS
7624 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7625 {
7626         const struct btf *btf = filp->private_data;
7627 
7628         seq_printf(m, "btf_id:\t%u\n", btf->id);
7629 }
7630 #endif
7631 
7632 static int btf_release(struct inode *inode, struct file *filp)
7633 {
7634         btf_put(filp->private_data);
7635         return 0;
7636 }
7637 
7638 const struct file_operations btf_fops = {
7639 #ifdef CONFIG_PROC_FS
7640         .show_fdinfo    = bpf_btf_show_fdinfo,
7641 #endif
7642         .release        = btf_release,
7643 };
7644 
7645 static int __btf_new_fd(struct btf *btf)
7646 {
7647         return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7648 }
7649 
7650 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7651 {
7652         struct btf *btf;
7653         int ret;
7654 
7655         btf = btf_parse(attr, uattr, uattr_size);
7656         if (IS_ERR(btf))
7657                 return PTR_ERR(btf);
7658 
7659         ret = btf_alloc_id(btf);
7660         if (ret) {
7661                 btf_free(btf);
7662                 return ret;
7663         }
7664 
7665         /*
7666          * The BTF ID is published to the userspace.
7667          * All BTF free must go through call_rcu() from
7668          * now on (i.e. free by calling btf_put()).
7669          */
7670 
7671         ret = __btf_new_fd(btf);
7672         if (ret < 0)
7673                 btf_put(btf);
7674 
7675         return ret;
7676 }
7677 
7678 struct btf *btf_get_by_fd(int fd)
7679 {
7680         struct btf *btf;
7681         struct fd f;
7682 
7683         f = fdget(fd);
7684 
7685         if (!f.file)
7686                 return ERR_PTR(-EBADF);
7687 
7688         if (f.file->f_op != &btf_fops) {
7689                 fdput(f);
7690                 return ERR_PTR(-EINVAL);
7691         }
7692 
7693         btf = f.file->private_data;
7694         refcount_inc(&btf->refcnt);
7695         fdput(f);
7696 
7697         return btf;
7698 }
7699 
7700 int btf_get_info_by_fd(const struct btf *btf,
7701                        const union bpf_attr *attr,
7702                        union bpf_attr __user *uattr)
7703 {
7704         struct bpf_btf_info __user *uinfo;
7705         struct bpf_btf_info info;
7706         u32 info_copy, btf_copy;
7707         void __user *ubtf;
7708         char __user *uname;
7709         u32 uinfo_len, uname_len, name_len;
7710         int ret = 0;
7711 
7712         uinfo = u64_to_user_ptr(attr->info.info);
7713         uinfo_len = attr->info.info_len;
7714 
7715         info_copy = min_t(u32, uinfo_len, sizeof(info));
7716         memset(&info, 0, sizeof(info));
7717         if (copy_from_user(&info, uinfo, info_copy))
7718                 return -EFAULT;
7719 
7720         info.id = btf->id;
7721         ubtf = u64_to_user_ptr(info.btf);
7722         btf_copy = min_t(u32, btf->data_size, info.btf_size);
7723         if (copy_to_user(ubtf, btf->data, btf_copy))
7724                 return -EFAULT;
7725         info.btf_size = btf->data_size;
7726 
7727         info.kernel_btf = btf->kernel_btf;
7728 
7729         uname = u64_to_user_ptr(info.name);
7730         uname_len = info.name_len;
7731         if (!uname ^ !uname_len)
7732                 return -EINVAL;
7733 
7734         name_len = strlen(btf->name);
7735         info.name_len = name_len;
7736 
7737         if (uname) {
7738                 if (uname_len >= name_len + 1) {
7739                         if (copy_to_user(uname, btf->name, name_len + 1))
7740                                 return -EFAULT;
7741                 } else {
7742                         char zero = '\0';
7743 
7744                         if (copy_to_user(uname, btf->name, uname_len - 1))
7745                                 return -EFAULT;
7746                         if (put_user(zero, uname + uname_len - 1))
7747                                 return -EFAULT;
7748                         /* let user-space know about too short buffer */
7749                         ret = -ENOSPC;
7750                 }
7751         }
7752 
7753         if (copy_to_user(uinfo, &info, info_copy) ||
7754             put_user(info_copy, &uattr->info.info_len))
7755                 return -EFAULT;
7756 
7757         return ret;
7758 }
7759 
7760 int btf_get_fd_by_id(u32 id)
7761 {
7762         struct btf *btf;
7763         int fd;
7764 
7765         rcu_read_lock();
7766         btf = idr_find(&btf_idr, id);
7767         if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7768                 btf = ERR_PTR(-ENOENT);
7769         rcu_read_unlock();
7770 
7771         if (IS_ERR(btf))
7772                 return PTR_ERR(btf);
7773 
7774         fd = __btf_new_fd(btf);
7775         if (fd < 0)
7776                 btf_put(btf);
7777 
7778         return fd;
7779 }
7780 
7781 u32 btf_obj_id(const struct btf *btf)
7782 {
7783         return btf->id;
7784 }
7785 
7786 bool btf_is_kernel(const struct btf *btf)
7787 {
7788         return btf->kernel_btf;
7789 }
7790 
7791 bool btf_is_module(const struct btf *btf)
7792 {
7793         return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7794 }
7795 
7796 enum {
7797         BTF_MODULE_F_LIVE = (1 << 0),
7798 };
7799 
7800 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7801 struct btf_module {
7802         struct list_head list;
7803         struct module *module;
7804         struct btf *btf;
7805         struct bin_attribute *sysfs_attr;
7806         int flags;
7807 };
7808 
7809 static LIST_HEAD(btf_modules);
7810 static DEFINE_MUTEX(btf_module_mutex);
7811 
7812 static ssize_t
7813 btf_module_read(struct file *file, struct kobject *kobj,
7814                 struct bin_attribute *bin_attr,
7815                 char *buf, loff_t off, size_t len)
7816 {
7817         const struct btf *btf = bin_attr->private;
7818 
7819         memcpy(buf, btf->data + off, len);
7820         return len;
7821 }
7822 
7823 static void purge_cand_cache(struct btf *btf);
7824 
7825 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7826                              void *module)
7827 {
7828         struct btf_module *btf_mod, *tmp;
7829         struct module *mod = module;
7830         struct btf *btf;
7831         int err = 0;
7832 
7833         if (mod->btf_data_size == 0 ||
7834             (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7835              op != MODULE_STATE_GOING))
7836                 goto out;
7837 
7838         switch (op) {
7839         case MODULE_STATE_COMING:
7840                 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7841                 if (!btf_mod) {
7842                         err = -ENOMEM;
7843                         goto out;
7844                 }
7845                 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size,
7846                                        mod->btf_base_data, mod->btf_base_data_size);
7847                 if (IS_ERR(btf)) {
7848                         kfree(btf_mod);
7849                         if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7850                                 pr_warn("failed to validate module [%s] BTF: %ld\n",
7851                                         mod->name, PTR_ERR(btf));
7852                                 err = PTR_ERR(btf);
7853                         } else {
7854                                 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7855                         }
7856                         goto out;
7857                 }
7858                 err = btf_alloc_id(btf);
7859                 if (err) {
7860                         btf_free(btf);
7861                         kfree(btf_mod);
7862                         goto out;
7863                 }
7864 
7865                 purge_cand_cache(NULL);
7866                 mutex_lock(&btf_module_mutex);
7867                 btf_mod->module = module;
7868                 btf_mod->btf = btf;
7869                 list_add(&btf_mod->list, &btf_modules);
7870                 mutex_unlock(&btf_module_mutex);
7871 
7872                 if (IS_ENABLED(CONFIG_SYSFS)) {
7873                         struct bin_attribute *attr;
7874 
7875                         attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7876                         if (!attr)
7877                                 goto out;
7878 
7879                         sysfs_bin_attr_init(attr);
7880                         attr->attr.name = btf->name;
7881                         attr->attr.mode = 0444;
7882                         attr->size = btf->data_size;
7883                         attr->private = btf;
7884                         attr->read = btf_module_read;
7885 
7886                         err = sysfs_create_bin_file(btf_kobj, attr);
7887                         if (err) {
7888                                 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7889                                         mod->name, err);
7890                                 kfree(attr);
7891                                 err = 0;
7892                                 goto out;
7893                         }
7894 
7895                         btf_mod->sysfs_attr = attr;
7896                 }
7897 
7898                 break;
7899         case MODULE_STATE_LIVE:
7900                 mutex_lock(&btf_module_mutex);
7901                 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7902                         if (btf_mod->module != module)
7903                                 continue;
7904 
7905                         btf_mod->flags |= BTF_MODULE_F_LIVE;
7906                         break;
7907                 }
7908                 mutex_unlock(&btf_module_mutex);
7909                 break;
7910         case MODULE_STATE_GOING:
7911                 mutex_lock(&btf_module_mutex);
7912                 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7913                         if (btf_mod->module != module)
7914                                 continue;
7915 
7916                         list_del(&btf_mod->list);
7917                         if (btf_mod->sysfs_attr)
7918                                 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7919                         purge_cand_cache(btf_mod->btf);
7920                         btf_put(btf_mod->btf);
7921                         kfree(btf_mod->sysfs_attr);
7922                         kfree(btf_mod);
7923                         break;
7924                 }
7925                 mutex_unlock(&btf_module_mutex);
7926                 break;
7927         }
7928 out:
7929         return notifier_from_errno(err);
7930 }
7931 
7932 static struct notifier_block btf_module_nb = {
7933         .notifier_call = btf_module_notify,
7934 };
7935 
7936 static int __init btf_module_init(void)
7937 {
7938         register_module_notifier(&btf_module_nb);
7939         return 0;
7940 }
7941 
7942 fs_initcall(btf_module_init);
7943 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7944 
7945 struct module *btf_try_get_module(const struct btf *btf)
7946 {
7947         struct module *res = NULL;
7948 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7949         struct btf_module *btf_mod, *tmp;
7950 
7951         mutex_lock(&btf_module_mutex);
7952         list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7953                 if (btf_mod->btf != btf)
7954                         continue;
7955 
7956                 /* We must only consider module whose __init routine has
7957                  * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7958                  * which is set from the notifier callback for
7959                  * MODULE_STATE_LIVE.
7960                  */
7961                 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7962                         res = btf_mod->module;
7963 
7964                 break;
7965         }
7966         mutex_unlock(&btf_module_mutex);
7967 #endif
7968 
7969         return res;
7970 }
7971 
7972 /* Returns struct btf corresponding to the struct module.
7973  * This function can return NULL or ERR_PTR.
7974  */
7975 static struct btf *btf_get_module_btf(const struct module *module)
7976 {
7977 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7978         struct btf_module *btf_mod, *tmp;
7979 #endif
7980         struct btf *btf = NULL;
7981 
7982         if (!module) {
7983                 btf = bpf_get_btf_vmlinux();
7984                 if (!IS_ERR_OR_NULL(btf))
7985                         btf_get(btf);
7986                 return btf;
7987         }
7988 
7989 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7990         mutex_lock(&btf_module_mutex);
7991         list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7992                 if (btf_mod->module != module)
7993                         continue;
7994 
7995                 btf_get(btf_mod->btf);
7996                 btf = btf_mod->btf;
7997                 break;
7998         }
7999         mutex_unlock(&btf_module_mutex);
8000 #endif
8001 
8002         return btf;
8003 }
8004 
8005 static int check_btf_kconfigs(const struct module *module, const char *feature)
8006 {
8007         if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8008                 pr_err("missing vmlinux BTF, cannot register %s\n", feature);
8009                 return -ENOENT;
8010         }
8011         if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
8012                 pr_warn("missing module BTF, cannot register %s\n", feature);
8013         return 0;
8014 }
8015 
8016 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
8017 {
8018         struct btf *btf = NULL;
8019         int btf_obj_fd = 0;
8020         long ret;
8021 
8022         if (flags)
8023                 return -EINVAL;
8024 
8025         if (name_sz <= 1 || name[name_sz - 1])
8026                 return -EINVAL;
8027 
8028         ret = bpf_find_btf_id(name, kind, &btf);
8029         if (ret > 0 && btf_is_module(btf)) {
8030                 btf_obj_fd = __btf_new_fd(btf);
8031                 if (btf_obj_fd < 0) {
8032                         btf_put(btf);
8033                         return btf_obj_fd;
8034                 }
8035                 return ret | (((u64)btf_obj_fd) << 32);
8036         }
8037         if (ret > 0)
8038                 btf_put(btf);
8039         return ret;
8040 }
8041 
8042 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
8043         .func           = bpf_btf_find_by_name_kind,
8044         .gpl_only       = false,
8045         .ret_type       = RET_INTEGER,
8046         .arg1_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
8047         .arg2_type      = ARG_CONST_SIZE,
8048         .arg3_type      = ARG_ANYTHING,
8049         .arg4_type      = ARG_ANYTHING,
8050 };
8051 
8052 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
8053 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
8054 BTF_TRACING_TYPE_xxx
8055 #undef BTF_TRACING_TYPE
8056 
8057 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
8058                                  const struct btf_type *func, u32 func_flags)
8059 {
8060         u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
8061         const char *name, *sfx, *iter_name;
8062         const struct btf_param *arg;
8063         const struct btf_type *t;
8064         char exp_name[128];
8065         u32 nr_args;
8066 
8067         /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
8068         if (!flags || (flags & (flags - 1)))
8069                 return -EINVAL;
8070 
8071         /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
8072         nr_args = btf_type_vlen(func);
8073         if (nr_args < 1)
8074                 return -EINVAL;
8075 
8076         arg = &btf_params(func)[0];
8077         t = btf_type_skip_modifiers(btf, arg->type, NULL);
8078         if (!t || !btf_type_is_ptr(t))
8079                 return -EINVAL;
8080         t = btf_type_skip_modifiers(btf, t->type, NULL);
8081         if (!t || !__btf_type_is_struct(t))
8082                 return -EINVAL;
8083 
8084         name = btf_name_by_offset(btf, t->name_off);
8085         if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
8086                 return -EINVAL;
8087 
8088         /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
8089          * fit nicely in stack slots
8090          */
8091         if (t->size == 0 || (t->size % 8))
8092                 return -EINVAL;
8093 
8094         /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
8095          * naming pattern
8096          */
8097         iter_name = name + sizeof(ITER_PREFIX) - 1;
8098         if (flags & KF_ITER_NEW)
8099                 sfx = "new";
8100         else if (flags & KF_ITER_NEXT)
8101                 sfx = "next";
8102         else /* (flags & KF_ITER_DESTROY) */
8103                 sfx = "destroy";
8104 
8105         snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
8106         if (strcmp(func_name, exp_name))
8107                 return -EINVAL;
8108 
8109         /* only iter constructor should have extra arguments */
8110         if (!(flags & KF_ITER_NEW) && nr_args != 1)
8111                 return -EINVAL;
8112 
8113         if (flags & KF_ITER_NEXT) {
8114                 /* bpf_iter_<type>_next() should return pointer */
8115                 t = btf_type_skip_modifiers(btf, func->type, NULL);
8116                 if (!t || !btf_type_is_ptr(t))
8117                         return -EINVAL;
8118         }
8119 
8120         if (flags & KF_ITER_DESTROY) {
8121                 /* bpf_iter_<type>_destroy() should return void */
8122                 t = btf_type_by_id(btf, func->type);
8123                 if (!t || !btf_type_is_void(t))
8124                         return -EINVAL;
8125         }
8126 
8127         return 0;
8128 }
8129 
8130 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
8131 {
8132         const struct btf_type *func;
8133         const char *func_name;
8134         int err;
8135 
8136         /* any kfunc should be FUNC -> FUNC_PROTO */
8137         func = btf_type_by_id(btf, func_id);
8138         if (!func || !btf_type_is_func(func))
8139                 return -EINVAL;
8140 
8141         /* sanity check kfunc name */
8142         func_name = btf_name_by_offset(btf, func->name_off);
8143         if (!func_name || !func_name[0])
8144                 return -EINVAL;
8145 
8146         func = btf_type_by_id(btf, func->type);
8147         if (!func || !btf_type_is_func_proto(func))
8148                 return -EINVAL;
8149 
8150         if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
8151                 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
8152                 if (err)
8153                         return err;
8154         }
8155 
8156         return 0;
8157 }
8158 
8159 /* Kernel Function (kfunc) BTF ID set registration API */
8160 
8161 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
8162                                   const struct btf_kfunc_id_set *kset)
8163 {
8164         struct btf_kfunc_hook_filter *hook_filter;
8165         struct btf_id_set8 *add_set = kset->set;
8166         bool vmlinux_set = !btf_is_module(btf);
8167         bool add_filter = !!kset->filter;
8168         struct btf_kfunc_set_tab *tab;
8169         struct btf_id_set8 *set;
8170         u32 set_cnt, i;
8171         int ret;
8172 
8173         if (hook >= BTF_KFUNC_HOOK_MAX) {
8174                 ret = -EINVAL;
8175                 goto end;
8176         }
8177 
8178         if (!add_set->cnt)
8179                 return 0;
8180 
8181         tab = btf->kfunc_set_tab;
8182 
8183         if (tab && add_filter) {
8184                 u32 i;
8185 
8186                 hook_filter = &tab->hook_filters[hook];
8187                 for (i = 0; i < hook_filter->nr_filters; i++) {
8188                         if (hook_filter->filters[i] == kset->filter) {
8189                                 add_filter = false;
8190                                 break;
8191                         }
8192                 }
8193 
8194                 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
8195                         ret = -E2BIG;
8196                         goto end;
8197                 }
8198         }
8199 
8200         if (!tab) {
8201                 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
8202                 if (!tab)
8203                         return -ENOMEM;
8204                 btf->kfunc_set_tab = tab;
8205         }
8206 
8207         set = tab->sets[hook];
8208         /* Warn when register_btf_kfunc_id_set is called twice for the same hook
8209          * for module sets.
8210          */
8211         if (WARN_ON_ONCE(set && !vmlinux_set)) {
8212                 ret = -EINVAL;
8213                 goto end;
8214         }
8215 
8216         /* In case of vmlinux sets, there may be more than one set being
8217          * registered per hook. To create a unified set, we allocate a new set
8218          * and concatenate all individual sets being registered. While each set
8219          * is individually sorted, they may become unsorted when concatenated,
8220          * hence re-sorting the final set again is required to make binary
8221          * searching the set using btf_id_set8_contains function work.
8222          *
8223          * For module sets, we need to allocate as we may need to relocate
8224          * BTF ids.
8225          */
8226         set_cnt = set ? set->cnt : 0;
8227 
8228         if (set_cnt > U32_MAX - add_set->cnt) {
8229                 ret = -EOVERFLOW;
8230                 goto end;
8231         }
8232 
8233         if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
8234                 ret = -E2BIG;
8235                 goto end;
8236         }
8237 
8238         /* Grow set */
8239         set = krealloc(tab->sets[hook],
8240                        offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
8241                        GFP_KERNEL | __GFP_NOWARN);
8242         if (!set) {
8243                 ret = -ENOMEM;
8244                 goto end;
8245         }
8246 
8247         /* For newly allocated set, initialize set->cnt to 0 */
8248         if (!tab->sets[hook])
8249                 set->cnt = 0;
8250         tab->sets[hook] = set;
8251 
8252         /* Concatenate the two sets */
8253         memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
8254         /* Now that the set is copied, update with relocated BTF ids */
8255         for (i = set->cnt; i < set->cnt + add_set->cnt; i++)
8256                 set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id);
8257 
8258         set->cnt += add_set->cnt;
8259 
8260         sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
8261 
8262         if (add_filter) {
8263                 hook_filter = &tab->hook_filters[hook];
8264                 hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
8265         }
8266         return 0;
8267 end:
8268         btf_free_kfunc_set_tab(btf);
8269         return ret;
8270 }
8271 
8272 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
8273                                         enum btf_kfunc_hook hook,
8274                                         u32 kfunc_btf_id,
8275                                         const struct bpf_prog *prog)
8276 {
8277         struct btf_kfunc_hook_filter *hook_filter;
8278         struct btf_id_set8 *set;
8279         u32 *id, i;
8280 
8281         if (hook >= BTF_KFUNC_HOOK_MAX)
8282                 return NULL;
8283         if (!btf->kfunc_set_tab)
8284                 return NULL;
8285         hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
8286         for (i = 0; i < hook_filter->nr_filters; i++) {
8287                 if (hook_filter->filters[i](prog, kfunc_btf_id))
8288                         return NULL;
8289         }
8290         set = btf->kfunc_set_tab->sets[hook];
8291         if (!set)
8292                 return NULL;
8293         id = btf_id_set8_contains(set, kfunc_btf_id);
8294         if (!id)
8295                 return NULL;
8296         /* The flags for BTF ID are located next to it */
8297         return id + 1;
8298 }
8299 
8300 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
8301 {
8302         switch (prog_type) {
8303         case BPF_PROG_TYPE_UNSPEC:
8304                 return BTF_KFUNC_HOOK_COMMON;
8305         case BPF_PROG_TYPE_XDP:
8306                 return BTF_KFUNC_HOOK_XDP;
8307         case BPF_PROG_TYPE_SCHED_CLS:
8308                 return BTF_KFUNC_HOOK_TC;
8309         case BPF_PROG_TYPE_STRUCT_OPS:
8310                 return BTF_KFUNC_HOOK_STRUCT_OPS;
8311         case BPF_PROG_TYPE_TRACING:
8312         case BPF_PROG_TYPE_LSM:
8313                 return BTF_KFUNC_HOOK_TRACING;
8314         case BPF_PROG_TYPE_SYSCALL:
8315                 return BTF_KFUNC_HOOK_SYSCALL;
8316         case BPF_PROG_TYPE_CGROUP_SKB:
8317         case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8318                 return BTF_KFUNC_HOOK_CGROUP_SKB;
8319         case BPF_PROG_TYPE_SCHED_ACT:
8320                 return BTF_KFUNC_HOOK_SCHED_ACT;
8321         case BPF_PROG_TYPE_SK_SKB:
8322                 return BTF_KFUNC_HOOK_SK_SKB;
8323         case BPF_PROG_TYPE_SOCKET_FILTER:
8324                 return BTF_KFUNC_HOOK_SOCKET_FILTER;
8325         case BPF_PROG_TYPE_LWT_OUT:
8326         case BPF_PROG_TYPE_LWT_IN:
8327         case BPF_PROG_TYPE_LWT_XMIT:
8328         case BPF_PROG_TYPE_LWT_SEG6LOCAL:
8329                 return BTF_KFUNC_HOOK_LWT;
8330         case BPF_PROG_TYPE_NETFILTER:
8331                 return BTF_KFUNC_HOOK_NETFILTER;
8332         case BPF_PROG_TYPE_KPROBE:
8333                 return BTF_KFUNC_HOOK_KPROBE;
8334         default:
8335                 return BTF_KFUNC_HOOK_MAX;
8336         }
8337 }
8338 
8339 /* Caution:
8340  * Reference to the module (obtained using btf_try_get_module) corresponding to
8341  * the struct btf *MUST* be held when calling this function from verifier
8342  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
8343  * keeping the reference for the duration of the call provides the necessary
8344  * protection for looking up a well-formed btf->kfunc_set_tab.
8345  */
8346 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
8347                                u32 kfunc_btf_id,
8348                                const struct bpf_prog *prog)
8349 {
8350         enum bpf_prog_type prog_type = resolve_prog_type(prog);
8351         enum btf_kfunc_hook hook;
8352         u32 *kfunc_flags;
8353 
8354         kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
8355         if (kfunc_flags)
8356                 return kfunc_flags;
8357 
8358         hook = bpf_prog_type_to_kfunc_hook(prog_type);
8359         return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
8360 }
8361 
8362 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8363                                 const struct bpf_prog *prog)
8364 {
8365         return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
8366 }
8367 
8368 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8369                                        const struct btf_kfunc_id_set *kset)
8370 {
8371         struct btf *btf;
8372         int ret, i;
8373 
8374         btf = btf_get_module_btf(kset->owner);
8375         if (!btf)
8376                 return check_btf_kconfigs(kset->owner, "kfunc");
8377         if (IS_ERR(btf))
8378                 return PTR_ERR(btf);
8379 
8380         for (i = 0; i < kset->set->cnt; i++) {
8381                 ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id),
8382                                              kset->set->pairs[i].flags);
8383                 if (ret)
8384                         goto err_out;
8385         }
8386 
8387         ret = btf_populate_kfunc_set(btf, hook, kset);
8388 
8389 err_out:
8390         btf_put(btf);
8391         return ret;
8392 }
8393 
8394 /* This function must be invoked only from initcalls/module init functions */
8395 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8396                               const struct btf_kfunc_id_set *kset)
8397 {
8398         enum btf_kfunc_hook hook;
8399 
8400         /* All kfuncs need to be tagged as such in BTF.
8401          * WARN() for initcall registrations that do not check errors.
8402          */
8403         if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
8404                 WARN_ON(!kset->owner);
8405                 return -EINVAL;
8406         }
8407 
8408         hook = bpf_prog_type_to_kfunc_hook(prog_type);
8409         return __register_btf_kfunc_id_set(hook, kset);
8410 }
8411 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8412 
8413 /* This function must be invoked only from initcalls/module init functions */
8414 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8415 {
8416         return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
8417 }
8418 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8419 
8420 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8421 {
8422         struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8423         struct btf_id_dtor_kfunc *dtor;
8424 
8425         if (!tab)
8426                 return -ENOENT;
8427         /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8428          * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8429          */
8430         BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8431         dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8432         if (!dtor)
8433                 return -ENOENT;
8434         return dtor->kfunc_btf_id;
8435 }
8436 
8437 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8438 {
8439         const struct btf_type *dtor_func, *dtor_func_proto, *t;
8440         const struct btf_param *args;
8441         s32 dtor_btf_id;
8442         u32 nr_args, i;
8443 
8444         for (i = 0; i < cnt; i++) {
8445                 dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id);
8446 
8447                 dtor_func = btf_type_by_id(btf, dtor_btf_id);
8448                 if (!dtor_func || !btf_type_is_func(dtor_func))
8449                         return -EINVAL;
8450 
8451                 dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8452                 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8453                         return -EINVAL;
8454 
8455                 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8456                 t = btf_type_by_id(btf, dtor_func_proto->type);
8457                 if (!t || !btf_type_is_void(t))
8458                         return -EINVAL;
8459 
8460                 nr_args = btf_type_vlen(dtor_func_proto);
8461                 if (nr_args != 1)
8462                         return -EINVAL;
8463                 args = btf_params(dtor_func_proto);
8464                 t = btf_type_by_id(btf, args[0].type);
8465                 /* Allow any pointer type, as width on targets Linux supports
8466                  * will be same for all pointer types (i.e. sizeof(void *))
8467                  */
8468                 if (!t || !btf_type_is_ptr(t))
8469                         return -EINVAL;
8470         }
8471         return 0;
8472 }
8473 
8474 /* This function must be invoked only from initcalls/module init functions */
8475 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8476                                 struct module *owner)
8477 {
8478         struct btf_id_dtor_kfunc_tab *tab;
8479         struct btf *btf;
8480         u32 tab_cnt, i;
8481         int ret;
8482 
8483         btf = btf_get_module_btf(owner);
8484         if (!btf)
8485                 return check_btf_kconfigs(owner, "dtor kfuncs");
8486         if (IS_ERR(btf))
8487                 return PTR_ERR(btf);
8488 
8489         if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8490                 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8491                 ret = -E2BIG;
8492                 goto end;
8493         }
8494 
8495         /* Ensure that the prototype of dtor kfuncs being registered is sane */
8496         ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8497         if (ret < 0)
8498                 goto end;
8499 
8500         tab = btf->dtor_kfunc_tab;
8501         /* Only one call allowed for modules */
8502         if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8503                 ret = -EINVAL;
8504                 goto end;
8505         }
8506 
8507         tab_cnt = tab ? tab->cnt : 0;
8508         if (tab_cnt > U32_MAX - add_cnt) {
8509                 ret = -EOVERFLOW;
8510                 goto end;
8511         }
8512         if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8513                 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8514                 ret = -E2BIG;
8515                 goto end;
8516         }
8517 
8518         tab = krealloc(btf->dtor_kfunc_tab,
8519                        offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8520                        GFP_KERNEL | __GFP_NOWARN);
8521         if (!tab) {
8522                 ret = -ENOMEM;
8523                 goto end;
8524         }
8525 
8526         if (!btf->dtor_kfunc_tab)
8527                 tab->cnt = 0;
8528         btf->dtor_kfunc_tab = tab;
8529 
8530         memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8531 
8532         /* remap BTF ids based on BTF relocation (if any) */
8533         for (i = tab_cnt; i < tab_cnt + add_cnt; i++) {
8534                 tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id);
8535                 tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id);
8536         }
8537 
8538         tab->cnt += add_cnt;
8539 
8540         sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8541 
8542 end:
8543         if (ret)
8544                 btf_free_dtor_kfunc_tab(btf);
8545         btf_put(btf);
8546         return ret;
8547 }
8548 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8549 
8550 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8551 
8552 /* Check local and target types for compatibility. This check is used for
8553  * type-based CO-RE relocations and follow slightly different rules than
8554  * field-based relocations. This function assumes that root types were already
8555  * checked for name match. Beyond that initial root-level name check, names
8556  * are completely ignored. Compatibility rules are as follows:
8557  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8558  *     kind should match for local and target types (i.e., STRUCT is not
8559  *     compatible with UNION);
8560  *   - for ENUMs/ENUM64s, the size is ignored;
8561  *   - for INT, size and signedness are ignored;
8562  *   - for ARRAY, dimensionality is ignored, element types are checked for
8563  *     compatibility recursively;
8564  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
8565  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8566  *   - FUNC_PROTOs are compatible if they have compatible signature: same
8567  *     number of input args and compatible return and argument types.
8568  * These rules are not set in stone and probably will be adjusted as we get
8569  * more experience with using BPF CO-RE relocations.
8570  */
8571 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8572                               const struct btf *targ_btf, __u32 targ_id)
8573 {
8574         return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8575                                            MAX_TYPES_ARE_COMPAT_DEPTH);
8576 }
8577 
8578 #define MAX_TYPES_MATCH_DEPTH 2
8579 
8580 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8581                          const struct btf *targ_btf, u32 targ_id)
8582 {
8583         return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8584                                       MAX_TYPES_MATCH_DEPTH);
8585 }
8586 
8587 static bool bpf_core_is_flavor_sep(const char *s)
8588 {
8589         /* check X___Y name pattern, where X and Y are not underscores */
8590         return s[0] != '_' &&                                 /* X */
8591                s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
8592                s[4] != '_';                                   /* Y */
8593 }
8594 
8595 size_t bpf_core_essential_name_len(const char *name)
8596 {
8597         size_t n = strlen(name);
8598         int i;
8599 
8600         for (i = n - 5; i >= 0; i--) {
8601                 if (bpf_core_is_flavor_sep(name + i))
8602                         return i + 1;
8603         }
8604         return n;
8605 }
8606 
8607 static void bpf_free_cands(struct bpf_cand_cache *cands)
8608 {
8609         if (!cands->cnt)
8610                 /* empty candidate array was allocated on stack */
8611                 return;
8612         kfree(cands);
8613 }
8614 
8615 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8616 {
8617         kfree(cands->name);
8618         kfree(cands);
8619 }
8620 
8621 #define VMLINUX_CAND_CACHE_SIZE 31
8622 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8623 
8624 #define MODULE_CAND_CACHE_SIZE 31
8625 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8626 
8627 static void __print_cand_cache(struct bpf_verifier_log *log,
8628                                struct bpf_cand_cache **cache,
8629                                int cache_size)
8630 {
8631         struct bpf_cand_cache *cc;
8632         int i, j;
8633 
8634         for (i = 0; i < cache_size; i++) {
8635                 cc = cache[i];
8636                 if (!cc)
8637                         continue;
8638                 bpf_log(log, "[%d]%s(", i, cc->name);
8639                 for (j = 0; j < cc->cnt; j++) {
8640                         bpf_log(log, "%d", cc->cands[j].id);
8641                         if (j < cc->cnt - 1)
8642                                 bpf_log(log, " ");
8643                 }
8644                 bpf_log(log, "), ");
8645         }
8646 }
8647 
8648 static void print_cand_cache(struct bpf_verifier_log *log)
8649 {
8650         mutex_lock(&cand_cache_mutex);
8651         bpf_log(log, "vmlinux_cand_cache:");
8652         __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8653         bpf_log(log, "\nmodule_cand_cache:");
8654         __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8655         bpf_log(log, "\n");
8656         mutex_unlock(&cand_cache_mutex);
8657 }
8658 
8659 static u32 hash_cands(struct bpf_cand_cache *cands)
8660 {
8661         return jhash(cands->name, cands->name_len, 0);
8662 }
8663 
8664 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8665                                                struct bpf_cand_cache **cache,
8666                                                int cache_size)
8667 {
8668         struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8669 
8670         if (cc && cc->name_len == cands->name_len &&
8671             !strncmp(cc->name, cands->name, cands->name_len))
8672                 return cc;
8673         return NULL;
8674 }
8675 
8676 static size_t sizeof_cands(int cnt)
8677 {
8678         return offsetof(struct bpf_cand_cache, cands[cnt]);
8679 }
8680 
8681 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8682                                                   struct bpf_cand_cache **cache,
8683                                                   int cache_size)
8684 {
8685         struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8686 
8687         if (*cc) {
8688                 bpf_free_cands_from_cache(*cc);
8689                 *cc = NULL;
8690         }
8691         new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8692         if (!new_cands) {
8693                 bpf_free_cands(cands);
8694                 return ERR_PTR(-ENOMEM);
8695         }
8696         /* strdup the name, since it will stay in cache.
8697          * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8698          */
8699         new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8700         bpf_free_cands(cands);
8701         if (!new_cands->name) {
8702                 kfree(new_cands);
8703                 return ERR_PTR(-ENOMEM);
8704         }
8705         *cc = new_cands;
8706         return new_cands;
8707 }
8708 
8709 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8710 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8711                                int cache_size)
8712 {
8713         struct bpf_cand_cache *cc;
8714         int i, j;
8715 
8716         for (i = 0; i < cache_size; i++) {
8717                 cc = cache[i];
8718                 if (!cc)
8719                         continue;
8720                 if (!btf) {
8721                         /* when new module is loaded purge all of module_cand_cache,
8722                          * since new module might have candidates with the name
8723                          * that matches cached cands.
8724                          */
8725                         bpf_free_cands_from_cache(cc);
8726                         cache[i] = NULL;
8727                         continue;
8728                 }
8729                 /* when module is unloaded purge cache entries
8730                  * that match module's btf
8731                  */
8732                 for (j = 0; j < cc->cnt; j++)
8733                         if (cc->cands[j].btf == btf) {
8734                                 bpf_free_cands_from_cache(cc);
8735                                 cache[i] = NULL;
8736                                 break;
8737                         }
8738         }
8739 
8740 }
8741 
8742 static void purge_cand_cache(struct btf *btf)
8743 {
8744         mutex_lock(&cand_cache_mutex);
8745         __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8746         mutex_unlock(&cand_cache_mutex);
8747 }
8748 #endif
8749 
8750 static struct bpf_cand_cache *
8751 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8752                    int targ_start_id)
8753 {
8754         struct bpf_cand_cache *new_cands;
8755         const struct btf_type *t;
8756         const char *targ_name;
8757         size_t targ_essent_len;
8758         int n, i;
8759 
8760         n = btf_nr_types(targ_btf);
8761         for (i = targ_start_id; i < n; i++) {
8762                 t = btf_type_by_id(targ_btf, i);
8763                 if (btf_kind(t) != cands->kind)
8764                         continue;
8765 
8766                 targ_name = btf_name_by_offset(targ_btf, t->name_off);
8767                 if (!targ_name)
8768                         continue;
8769 
8770                 /* the resched point is before strncmp to make sure that search
8771                  * for non-existing name will have a chance to schedule().
8772                  */
8773                 cond_resched();
8774 
8775                 if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8776                         continue;
8777 
8778                 targ_essent_len = bpf_core_essential_name_len(targ_name);
8779                 if (targ_essent_len != cands->name_len)
8780                         continue;
8781 
8782                 /* most of the time there is only one candidate for a given kind+name pair */
8783                 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8784                 if (!new_cands) {
8785                         bpf_free_cands(cands);
8786                         return ERR_PTR(-ENOMEM);
8787                 }
8788 
8789                 memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8790                 bpf_free_cands(cands);
8791                 cands = new_cands;
8792                 cands->cands[cands->cnt].btf = targ_btf;
8793                 cands->cands[cands->cnt].id = i;
8794                 cands->cnt++;
8795         }
8796         return cands;
8797 }
8798 
8799 static struct bpf_cand_cache *
8800 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8801 {
8802         struct bpf_cand_cache *cands, *cc, local_cand = {};
8803         const struct btf *local_btf = ctx->btf;
8804         const struct btf_type *local_type;
8805         const struct btf *main_btf;
8806         size_t local_essent_len;
8807         struct btf *mod_btf;
8808         const char *name;
8809         int id;
8810 
8811         main_btf = bpf_get_btf_vmlinux();
8812         if (IS_ERR(main_btf))
8813                 return ERR_CAST(main_btf);
8814         if (!main_btf)
8815                 return ERR_PTR(-EINVAL);
8816 
8817         local_type = btf_type_by_id(local_btf, local_type_id);
8818         if (!local_type)
8819                 return ERR_PTR(-EINVAL);
8820 
8821         name = btf_name_by_offset(local_btf, local_type->name_off);
8822         if (str_is_empty(name))
8823                 return ERR_PTR(-EINVAL);
8824         local_essent_len = bpf_core_essential_name_len(name);
8825 
8826         cands = &local_cand;
8827         cands->name = name;
8828         cands->kind = btf_kind(local_type);
8829         cands->name_len = local_essent_len;
8830 
8831         cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8832         /* cands is a pointer to stack here */
8833         if (cc) {
8834                 if (cc->cnt)
8835                         return cc;
8836                 goto check_modules;
8837         }
8838 
8839         /* Attempt to find target candidates in vmlinux BTF first */
8840         cands = bpf_core_add_cands(cands, main_btf, 1);
8841         if (IS_ERR(cands))
8842                 return ERR_CAST(cands);
8843 
8844         /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8845 
8846         /* populate cache even when cands->cnt == 0 */
8847         cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8848         if (IS_ERR(cc))
8849                 return ERR_CAST(cc);
8850 
8851         /* if vmlinux BTF has any candidate, don't go for module BTFs */
8852         if (cc->cnt)
8853                 return cc;
8854 
8855 check_modules:
8856         /* cands is a pointer to stack here and cands->cnt == 0 */
8857         cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8858         if (cc)
8859                 /* if cache has it return it even if cc->cnt == 0 */
8860                 return cc;
8861 
8862         /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8863         spin_lock_bh(&btf_idr_lock);
8864         idr_for_each_entry(&btf_idr, mod_btf, id) {
8865                 if (!btf_is_module(mod_btf))
8866                         continue;
8867                 /* linear search could be slow hence unlock/lock
8868                  * the IDR to avoiding holding it for too long
8869                  */
8870                 btf_get(mod_btf);
8871                 spin_unlock_bh(&btf_idr_lock);
8872                 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8873                 btf_put(mod_btf);
8874                 if (IS_ERR(cands))
8875                         return ERR_CAST(cands);
8876                 spin_lock_bh(&btf_idr_lock);
8877         }
8878         spin_unlock_bh(&btf_idr_lock);
8879         /* cands is a pointer to kmalloced memory here if cands->cnt > 0
8880          * or pointer to stack if cands->cnd == 0.
8881          * Copy it into the cache even when cands->cnt == 0 and
8882          * return the result.
8883          */
8884         return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8885 }
8886 
8887 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8888                    int relo_idx, void *insn)
8889 {
8890         bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8891         struct bpf_core_cand_list cands = {};
8892         struct bpf_core_relo_res targ_res;
8893         struct bpf_core_spec *specs;
8894         const struct btf_type *type;
8895         int err;
8896 
8897         /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8898          * into arrays of btf_ids of struct fields and array indices.
8899          */
8900         specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8901         if (!specs)
8902                 return -ENOMEM;
8903 
8904         type = btf_type_by_id(ctx->btf, relo->type_id);
8905         if (!type) {
8906                 bpf_log(ctx->log, "relo #%u: bad type id %u\n",
8907                         relo_idx, relo->type_id);
8908                 return -EINVAL;
8909         }
8910 
8911         if (need_cands) {
8912                 struct bpf_cand_cache *cc;
8913                 int i;
8914 
8915                 mutex_lock(&cand_cache_mutex);
8916                 cc = bpf_core_find_cands(ctx, relo->type_id);
8917                 if (IS_ERR(cc)) {
8918                         bpf_log(ctx->log, "target candidate search failed for %d\n",
8919                                 relo->type_id);
8920                         err = PTR_ERR(cc);
8921                         goto out;
8922                 }
8923                 if (cc->cnt) {
8924                         cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8925                         if (!cands.cands) {
8926                                 err = -ENOMEM;
8927                                 goto out;
8928                         }
8929                 }
8930                 for (i = 0; i < cc->cnt; i++) {
8931                         bpf_log(ctx->log,
8932                                 "CO-RE relocating %s %s: found target candidate [%d]\n",
8933                                 btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8934                         cands.cands[i].btf = cc->cands[i].btf;
8935                         cands.cands[i].id = cc->cands[i].id;
8936                 }
8937                 cands.len = cc->cnt;
8938                 /* cand_cache_mutex needs to span the cache lookup and
8939                  * copy of btf pointer into bpf_core_cand_list,
8940                  * since module can be unloaded while bpf_core_calc_relo_insn
8941                  * is working with module's btf.
8942                  */
8943         }
8944 
8945         err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8946                                       &targ_res);
8947         if (err)
8948                 goto out;
8949 
8950         err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8951                                   &targ_res);
8952 
8953 out:
8954         kfree(specs);
8955         if (need_cands) {
8956                 kfree(cands.cands);
8957                 mutex_unlock(&cand_cache_mutex);
8958                 if (ctx->log->level & BPF_LOG_LEVEL2)
8959                         print_cand_cache(ctx->log);
8960         }
8961         return err;
8962 }
8963 
8964 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8965                                 const struct bpf_reg_state *reg,
8966                                 const char *field_name, u32 btf_id, const char *suffix)
8967 {
8968         struct btf *btf = reg->btf;
8969         const struct btf_type *walk_type, *safe_type;
8970         const char *tname;
8971         char safe_tname[64];
8972         long ret, safe_id;
8973         const struct btf_member *member;
8974         u32 i;
8975 
8976         walk_type = btf_type_by_id(btf, reg->btf_id);
8977         if (!walk_type)
8978                 return false;
8979 
8980         tname = btf_name_by_offset(btf, walk_type->name_off);
8981 
8982         ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
8983         if (ret >= sizeof(safe_tname))
8984                 return false;
8985 
8986         safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8987         if (safe_id < 0)
8988                 return false;
8989 
8990         safe_type = btf_type_by_id(btf, safe_id);
8991         if (!safe_type)
8992                 return false;
8993 
8994         for_each_member(i, safe_type, member) {
8995                 const char *m_name = __btf_name_by_offset(btf, member->name_off);
8996                 const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8997                 u32 id;
8998 
8999                 if (!btf_type_is_ptr(mtype))
9000                         continue;
9001 
9002                 btf_type_skip_modifiers(btf, mtype->type, &id);
9003                 /* If we match on both type and name, the field is considered trusted. */
9004                 if (btf_id == id && !strcmp(field_name, m_name))
9005                         return true;
9006         }
9007 
9008         return false;
9009 }
9010 
9011 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
9012                                const struct btf *reg_btf, u32 reg_id,
9013                                const struct btf *arg_btf, u32 arg_id)
9014 {
9015         const char *reg_name, *arg_name, *search_needle;
9016         const struct btf_type *reg_type, *arg_type;
9017         int reg_len, arg_len, cmp_len;
9018         size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
9019 
9020         reg_type = btf_type_by_id(reg_btf, reg_id);
9021         if (!reg_type)
9022                 return false;
9023 
9024         arg_type = btf_type_by_id(arg_btf, arg_id);
9025         if (!arg_type)
9026                 return false;
9027 
9028         reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
9029         arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
9030 
9031         reg_len = strlen(reg_name);
9032         arg_len = strlen(arg_name);
9033 
9034         /* Exactly one of the two type names may be suffixed with ___init, so
9035          * if the strings are the same size, they can't possibly be no-cast
9036          * aliases of one another. If you have two of the same type names, e.g.
9037          * they're both nf_conn___init, it would be improper to return true
9038          * because they are _not_ no-cast aliases, they are the same type.
9039          */
9040         if (reg_len == arg_len)
9041                 return false;
9042 
9043         /* Either of the two names must be the other name, suffixed with ___init. */
9044         if ((reg_len != arg_len + pattern_len) &&
9045             (arg_len != reg_len + pattern_len))
9046                 return false;
9047 
9048         if (reg_len < arg_len) {
9049                 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
9050                 cmp_len = reg_len;
9051         } else {
9052                 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
9053                 cmp_len = arg_len;
9054         }
9055 
9056         if (!search_needle)
9057                 return false;
9058 
9059         /* ___init suffix must come at the end of the name */
9060         if (*(search_needle + pattern_len) != '\0')
9061                 return false;
9062 
9063         return !strncmp(reg_name, arg_name, cmp_len);
9064 }
9065 
9066 #ifdef CONFIG_BPF_JIT
9067 static int
9068 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
9069                    struct bpf_verifier_log *log)
9070 {
9071         struct btf_struct_ops_tab *tab, *new_tab;
9072         int i, err;
9073 
9074         tab = btf->struct_ops_tab;
9075         if (!tab) {
9076                 tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]),
9077                               GFP_KERNEL);
9078                 if (!tab)
9079                         return -ENOMEM;
9080                 tab->capacity = 4;
9081                 btf->struct_ops_tab = tab;
9082         }
9083 
9084         for (i = 0; i < tab->cnt; i++)
9085                 if (tab->ops[i].st_ops == st_ops)
9086                         return -EEXIST;
9087 
9088         if (tab->cnt == tab->capacity) {
9089                 new_tab = krealloc(tab,
9090                                    offsetof(struct btf_struct_ops_tab,
9091                                             ops[tab->capacity * 2]),
9092                                    GFP_KERNEL);
9093                 if (!new_tab)
9094                         return -ENOMEM;
9095                 tab = new_tab;
9096                 tab->capacity *= 2;
9097                 btf->struct_ops_tab = tab;
9098         }
9099 
9100         tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
9101 
9102         err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
9103         if (err)
9104                 return err;
9105 
9106         btf->struct_ops_tab->cnt++;
9107 
9108         return 0;
9109 }
9110 
9111 const struct bpf_struct_ops_desc *
9112 bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
9113 {
9114         const struct bpf_struct_ops_desc *st_ops_list;
9115         unsigned int i;
9116         u32 cnt;
9117 
9118         if (!value_id)
9119                 return NULL;
9120         if (!btf->struct_ops_tab)
9121                 return NULL;
9122 
9123         cnt = btf->struct_ops_tab->cnt;
9124         st_ops_list = btf->struct_ops_tab->ops;
9125         for (i = 0; i < cnt; i++) {
9126                 if (st_ops_list[i].value_id == value_id)
9127                         return &st_ops_list[i];
9128         }
9129 
9130         return NULL;
9131 }
9132 
9133 const struct bpf_struct_ops_desc *
9134 bpf_struct_ops_find(struct btf *btf, u32 type_id)
9135 {
9136         const struct bpf_struct_ops_desc *st_ops_list;
9137         unsigned int i;
9138         u32 cnt;
9139 
9140         if (!type_id)
9141                 return NULL;
9142         if (!btf->struct_ops_tab)
9143                 return NULL;
9144 
9145         cnt = btf->struct_ops_tab->cnt;
9146         st_ops_list = btf->struct_ops_tab->ops;
9147         for (i = 0; i < cnt; i++) {
9148                 if (st_ops_list[i].type_id == type_id)
9149                         return &st_ops_list[i];
9150         }
9151 
9152         return NULL;
9153 }
9154 
9155 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
9156 {
9157         struct bpf_verifier_log *log;
9158         struct btf *btf;
9159         int err = 0;
9160 
9161         btf = btf_get_module_btf(st_ops->owner);
9162         if (!btf)
9163                 return check_btf_kconfigs(st_ops->owner, "struct_ops");
9164         if (IS_ERR(btf))
9165                 return PTR_ERR(btf);
9166 
9167         log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
9168         if (!log) {
9169                 err = -ENOMEM;
9170                 goto errout;
9171         }
9172 
9173         log->level = BPF_LOG_KERNEL;
9174 
9175         err = btf_add_struct_ops(btf, st_ops, log);
9176 
9177 errout:
9178         kfree(log);
9179         btf_put(btf);
9180 
9181         return err;
9182 }
9183 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
9184 #endif
9185 
9186 bool btf_param_match_suffix(const struct btf *btf,
9187                             const struct btf_param *arg,
9188                             const char *suffix)
9189 {
9190         int suffix_len = strlen(suffix), len;
9191         const char *param_name;
9192 
9193         /* In the future, this can be ported to use BTF tagging */
9194         param_name = btf_name_by_offset(btf, arg->name_off);
9195         if (str_is_empty(param_name))
9196                 return false;
9197         len = strlen(param_name);
9198         if (len <= suffix_len)
9199                 return false;
9200         param_name += len - suffix_len;
9201         return !strncmp(param_name, suffix, suffix_len);
9202 }
9203 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php