1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 3 */ 4 5 /* Devmaps primary use is as a backend map for XDP BPF helper call 6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 7 * spent some effort to ensure the datapath with redirect maps does not use 8 * any locking. This is a quick note on the details. 9 * 10 * We have three possible paths to get into the devmap control plane bpf 11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 12 * will invoke an update, delete, or lookup operation. To ensure updates and 13 * deletes appear atomic from the datapath side xchg() is used to modify the 14 * netdev_map array. Then because the datapath does a lookup into the netdev_map 15 * array (read-only) from an RCU critical section we use call_rcu() to wait for 16 * an rcu grace period before free'ing the old data structures. This ensures the 17 * datapath always has a valid copy. However, the datapath does a "flush" 18 * operation that pushes any pending packets in the driver outside the RCU 19 * critical section. Each bpf_dtab_netdev tracks these pending operations using 20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until 21 * this list is empty, indicating outstanding flush operations have completed. 22 * 23 * BPF syscalls may race with BPF program calls on any of the update, delete 24 * or lookup operations. As noted above the xchg() operation also keep the 25 * netdev_map consistent in this case. From the devmap side BPF programs 26 * calling into these operations are the same as multiple user space threads 27 * making system calls. 28 * 29 * Finally, any of the above may race with a netdev_unregister notifier. The 30 * unregister notifier must search for net devices in the map structure that 31 * contain a reference to the net device and remove them. This is a two step 32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 33 * check to see if the ifindex is the same as the net_device being removed. 34 * When removing the dev a cmpxchg() is used to ensure the correct dev is 35 * removed, in the case of a concurrent update or delete operation it is 36 * possible that the initially referenced dev is no longer in the map. As the 37 * notifier hook walks the map we know that new dev references can not be 38 * added by the user because core infrastructure ensures dev_get_by_index() 39 * calls will fail at this point. 40 * 41 * The devmap_hash type is a map type which interprets keys as ifindexes and 42 * indexes these using a hashmap. This allows maps that use ifindex as key to be 43 * densely packed instead of having holes in the lookup array for unused 44 * ifindexes. The setup and packet enqueue/send code is shared between the two 45 * types of devmap; only the lookup and insertion is different. 46 */ 47 #include <linux/bpf.h> 48 #include <net/xdp.h> 49 #include <linux/filter.h> 50 #include <trace/events/xdp.h> 51 #include <linux/btf_ids.h> 52 53 #define DEV_CREATE_FLAG_MASK \ 54 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 55 56 struct xdp_dev_bulk_queue { 57 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 58 struct list_head flush_node; 59 struct net_device *dev; 60 struct net_device *dev_rx; 61 struct bpf_prog *xdp_prog; 62 unsigned int count; 63 }; 64 65 struct bpf_dtab_netdev { 66 struct net_device *dev; /* must be first member, due to tracepoint */ 67 struct hlist_node index_hlist; 68 struct bpf_prog *xdp_prog; 69 struct rcu_head rcu; 70 unsigned int idx; 71 struct bpf_devmap_val val; 72 }; 73 74 struct bpf_dtab { 75 struct bpf_map map; 76 struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */ 77 struct list_head list; 78 79 /* these are only used for DEVMAP_HASH type maps */ 80 struct hlist_head *dev_index_head; 81 spinlock_t index_lock; 82 unsigned int items; 83 u32 n_buckets; 84 }; 85 86 static DEFINE_SPINLOCK(dev_map_lock); 87 static LIST_HEAD(dev_map_list); 88 89 static struct hlist_head *dev_map_create_hash(unsigned int entries, 90 int numa_node) 91 { 92 int i; 93 struct hlist_head *hash; 94 95 hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node); 96 if (hash != NULL) 97 for (i = 0; i < entries; i++) 98 INIT_HLIST_HEAD(&hash[i]); 99 100 return hash; 101 } 102 103 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, 104 int idx) 105 { 106 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; 107 } 108 109 static int dev_map_alloc_check(union bpf_attr *attr) 110 { 111 u32 valsize = attr->value_size; 112 113 /* check sanity of attributes. 2 value sizes supported: 114 * 4 bytes: ifindex 115 * 8 bytes: ifindex + prog fd 116 */ 117 if (attr->max_entries == 0 || attr->key_size != 4 || 118 (valsize != offsetofend(struct bpf_devmap_val, ifindex) && 119 valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) || 120 attr->map_flags & ~DEV_CREATE_FLAG_MASK) 121 return -EINVAL; 122 123 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 124 /* Hash table size must be power of 2; roundup_pow_of_two() 125 * can overflow into UB on 32-bit arches 126 */ 127 if (attr->max_entries > 1UL << 31) 128 return -EINVAL; 129 } 130 131 return 0; 132 } 133 134 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) 135 { 136 /* Lookup returns a pointer straight to dev->ifindex, so make sure the 137 * verifier prevents writes from the BPF side 138 */ 139 attr->map_flags |= BPF_F_RDONLY_PROG; 140 bpf_map_init_from_attr(&dtab->map, attr); 141 142 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 143 /* Hash table size must be power of 2 */ 144 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); 145 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets, 146 dtab->map.numa_node); 147 if (!dtab->dev_index_head) 148 return -ENOMEM; 149 150 spin_lock_init(&dtab->index_lock); 151 } else { 152 dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries * 153 sizeof(struct bpf_dtab_netdev *), 154 dtab->map.numa_node); 155 if (!dtab->netdev_map) 156 return -ENOMEM; 157 } 158 159 return 0; 160 } 161 162 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 163 { 164 struct bpf_dtab *dtab; 165 int err; 166 167 dtab = bpf_map_area_alloc(sizeof(*dtab), NUMA_NO_NODE); 168 if (!dtab) 169 return ERR_PTR(-ENOMEM); 170 171 err = dev_map_init_map(dtab, attr); 172 if (err) { 173 bpf_map_area_free(dtab); 174 return ERR_PTR(err); 175 } 176 177 spin_lock(&dev_map_lock); 178 list_add_tail_rcu(&dtab->list, &dev_map_list); 179 spin_unlock(&dev_map_lock); 180 181 return &dtab->map; 182 } 183 184 static void dev_map_free(struct bpf_map *map) 185 { 186 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 187 int i; 188 189 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 190 * so the programs (can be more than one that used this map) were 191 * disconnected from events. The following synchronize_rcu() guarantees 192 * both rcu read critical sections complete and waits for 193 * preempt-disable regions (NAPI being the relevant context here) so we 194 * are certain there will be no further reads against the netdev_map and 195 * all flush operations are complete. Flush operations can only be done 196 * from NAPI context for this reason. 197 */ 198 199 spin_lock(&dev_map_lock); 200 list_del_rcu(&dtab->list); 201 spin_unlock(&dev_map_lock); 202 203 /* bpf_redirect_info->map is assigned in __bpf_xdp_redirect_map() 204 * during NAPI callback and cleared after the XDP redirect. There is no 205 * explicit RCU read section which protects bpf_redirect_info->map but 206 * local_bh_disable() also marks the beginning an RCU section. This 207 * makes the complete softirq callback RCU protected. Thus after 208 * following synchronize_rcu() there no bpf_redirect_info->map == map 209 * assignment. 210 */ 211 synchronize_rcu(); 212 213 /* Make sure prior __dev_map_entry_free() have completed. */ 214 rcu_barrier(); 215 216 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 217 for (i = 0; i < dtab->n_buckets; i++) { 218 struct bpf_dtab_netdev *dev; 219 struct hlist_head *head; 220 struct hlist_node *next; 221 222 head = dev_map_index_hash(dtab, i); 223 224 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 225 hlist_del_rcu(&dev->index_hlist); 226 if (dev->xdp_prog) 227 bpf_prog_put(dev->xdp_prog); 228 dev_put(dev->dev); 229 kfree(dev); 230 } 231 } 232 233 bpf_map_area_free(dtab->dev_index_head); 234 } else { 235 for (i = 0; i < dtab->map.max_entries; i++) { 236 struct bpf_dtab_netdev *dev; 237 238 dev = rcu_dereference_raw(dtab->netdev_map[i]); 239 if (!dev) 240 continue; 241 242 if (dev->xdp_prog) 243 bpf_prog_put(dev->xdp_prog); 244 dev_put(dev->dev); 245 kfree(dev); 246 } 247 248 bpf_map_area_free(dtab->netdev_map); 249 } 250 251 bpf_map_area_free(dtab); 252 } 253 254 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 255 { 256 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 257 u32 index = key ? *(u32 *)key : U32_MAX; 258 u32 *next = next_key; 259 260 if (index >= dtab->map.max_entries) { 261 *next = 0; 262 return 0; 263 } 264 265 if (index == dtab->map.max_entries - 1) 266 return -ENOENT; 267 *next = index + 1; 268 return 0; 269 } 270 271 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 272 * by local_bh_disable() (from XDP calls inside NAPI). The 273 * rcu_read_lock_bh_held() below makes lockdep accept both. 274 */ 275 static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) 276 { 277 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 278 struct hlist_head *head = dev_map_index_hash(dtab, key); 279 struct bpf_dtab_netdev *dev; 280 281 hlist_for_each_entry_rcu(dev, head, index_hlist, 282 lockdep_is_held(&dtab->index_lock)) 283 if (dev->idx == key) 284 return dev; 285 286 return NULL; 287 } 288 289 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, 290 void *next_key) 291 { 292 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 293 u32 idx, *next = next_key; 294 struct bpf_dtab_netdev *dev, *next_dev; 295 struct hlist_head *head; 296 int i = 0; 297 298 if (!key) 299 goto find_first; 300 301 idx = *(u32 *)key; 302 303 dev = __dev_map_hash_lookup_elem(map, idx); 304 if (!dev) 305 goto find_first; 306 307 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), 308 struct bpf_dtab_netdev, index_hlist); 309 310 if (next_dev) { 311 *next = next_dev->idx; 312 return 0; 313 } 314 315 i = idx & (dtab->n_buckets - 1); 316 i++; 317 318 find_first: 319 for (; i < dtab->n_buckets; i++) { 320 head = dev_map_index_hash(dtab, i); 321 322 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), 323 struct bpf_dtab_netdev, 324 index_hlist); 325 if (next_dev) { 326 *next = next_dev->idx; 327 return 0; 328 } 329 } 330 331 return -ENOENT; 332 } 333 334 static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog, 335 struct xdp_frame **frames, int n, 336 struct net_device *dev) 337 { 338 struct xdp_txq_info txq = { .dev = dev }; 339 struct xdp_buff xdp; 340 int i, nframes = 0; 341 342 for (i = 0; i < n; i++) { 343 struct xdp_frame *xdpf = frames[i]; 344 u32 act; 345 int err; 346 347 xdp_convert_frame_to_buff(xdpf, &xdp); 348 xdp.txq = &txq; 349 350 act = bpf_prog_run_xdp(xdp_prog, &xdp); 351 switch (act) { 352 case XDP_PASS: 353 err = xdp_update_frame_from_buff(&xdp, xdpf); 354 if (unlikely(err < 0)) 355 xdp_return_frame_rx_napi(xdpf); 356 else 357 frames[nframes++] = xdpf; 358 break; 359 default: 360 bpf_warn_invalid_xdp_action(NULL, xdp_prog, act); 361 fallthrough; 362 case XDP_ABORTED: 363 trace_xdp_exception(dev, xdp_prog, act); 364 fallthrough; 365 case XDP_DROP: 366 xdp_return_frame_rx_napi(xdpf); 367 break; 368 } 369 } 370 return nframes; /* sent frames count */ 371 } 372 373 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) 374 { 375 struct net_device *dev = bq->dev; 376 unsigned int cnt = bq->count; 377 int sent = 0, err = 0; 378 int to_send = cnt; 379 int i; 380 381 if (unlikely(!cnt)) 382 return; 383 384 for (i = 0; i < cnt; i++) { 385 struct xdp_frame *xdpf = bq->q[i]; 386 387 prefetch(xdpf); 388 } 389 390 if (bq->xdp_prog) { 391 to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev); 392 if (!to_send) 393 goto out; 394 } 395 396 sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags); 397 if (sent < 0) { 398 /* If ndo_xdp_xmit fails with an errno, no frames have 399 * been xmit'ed. 400 */ 401 err = sent; 402 sent = 0; 403 } 404 405 /* If not all frames have been transmitted, it is our 406 * responsibility to free them 407 */ 408 for (i = sent; unlikely(i < to_send); i++) 409 xdp_return_frame_rx_napi(bq->q[i]); 410 411 out: 412 bq->count = 0; 413 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err); 414 } 415 416 /* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the 417 * driver before returning from its napi->poll() routine. See the comment above 418 * xdp_do_flush() in filter.c. 419 */ 420 void __dev_flush(struct list_head *flush_list) 421 { 422 struct xdp_dev_bulk_queue *bq, *tmp; 423 424 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 425 bq_xmit_all(bq, XDP_XMIT_FLUSH); 426 bq->dev_rx = NULL; 427 bq->xdp_prog = NULL; 428 __list_del_clearprev(&bq->flush_node); 429 } 430 } 431 432 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 433 * by local_bh_disable() (from XDP calls inside NAPI). The 434 * rcu_read_lock_bh_held() below makes lockdep accept both. 435 */ 436 static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 437 { 438 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 439 struct bpf_dtab_netdev *obj; 440 441 if (key >= map->max_entries) 442 return NULL; 443 444 obj = rcu_dereference_check(dtab->netdev_map[key], 445 rcu_read_lock_bh_held()); 446 return obj; 447 } 448 449 /* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu 450 * variable access, and map elements stick around. See comment above 451 * xdp_do_flush() in filter.c. 452 */ 453 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 454 struct net_device *dev_rx, struct bpf_prog *xdp_prog) 455 { 456 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); 457 458 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 459 bq_xmit_all(bq, 0); 460 461 /* Ingress dev_rx will be the same for all xdp_frame's in 462 * bulk_queue, because bq stored per-CPU and must be flushed 463 * from net_device drivers NAPI func end. 464 * 465 * Do the same with xdp_prog and flush_list since these fields 466 * are only ever modified together. 467 */ 468 if (!bq->dev_rx) { 469 struct list_head *flush_list = bpf_net_ctx_get_dev_flush_list(); 470 471 bq->dev_rx = dev_rx; 472 bq->xdp_prog = xdp_prog; 473 list_add(&bq->flush_node, flush_list); 474 } 475 476 bq->q[bq->count++] = xdpf; 477 } 478 479 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 480 struct net_device *dev_rx, 481 struct bpf_prog *xdp_prog) 482 { 483 int err; 484 485 if (!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 486 return -EOPNOTSUPP; 487 488 if (unlikely(!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 489 xdp_frame_has_frags(xdpf))) 490 return -EOPNOTSUPP; 491 492 err = xdp_ok_fwd_dev(dev, xdp_get_frame_len(xdpf)); 493 if (unlikely(err)) 494 return err; 495 496 bq_enqueue(dev, xdpf, dev_rx, xdp_prog); 497 return 0; 498 } 499 500 static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst) 501 { 502 struct xdp_txq_info txq = { .dev = dst->dev }; 503 struct xdp_buff xdp; 504 u32 act; 505 506 if (!dst->xdp_prog) 507 return XDP_PASS; 508 509 __skb_pull(skb, skb->mac_len); 510 xdp.txq = &txq; 511 512 act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog); 513 switch (act) { 514 case XDP_PASS: 515 __skb_push(skb, skb->mac_len); 516 break; 517 default: 518 bpf_warn_invalid_xdp_action(NULL, dst->xdp_prog, act); 519 fallthrough; 520 case XDP_ABORTED: 521 trace_xdp_exception(dst->dev, dst->xdp_prog, act); 522 fallthrough; 523 case XDP_DROP: 524 kfree_skb(skb); 525 break; 526 } 527 528 return act; 529 } 530 531 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 532 struct net_device *dev_rx) 533 { 534 return __xdp_enqueue(dev, xdpf, dev_rx, NULL); 535 } 536 537 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 538 struct net_device *dev_rx) 539 { 540 struct net_device *dev = dst->dev; 541 542 return __xdp_enqueue(dev, xdpf, dev_rx, dst->xdp_prog); 543 } 544 545 static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf) 546 { 547 if (!obj) 548 return false; 549 550 if (!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 551 return false; 552 553 if (unlikely(!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 554 xdp_frame_has_frags(xdpf))) 555 return false; 556 557 if (xdp_ok_fwd_dev(obj->dev, xdp_get_frame_len(xdpf))) 558 return false; 559 560 return true; 561 } 562 563 static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj, 564 struct net_device *dev_rx, 565 struct xdp_frame *xdpf) 566 { 567 struct xdp_frame *nxdpf; 568 569 nxdpf = xdpf_clone(xdpf); 570 if (!nxdpf) 571 return -ENOMEM; 572 573 bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog); 574 575 return 0; 576 } 577 578 static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex) 579 { 580 while (num_excluded--) { 581 if (ifindex == excluded[num_excluded]) 582 return true; 583 } 584 return false; 585 } 586 587 /* Get ifindex of each upper device. 'indexes' must be able to hold at 588 * least MAX_NEST_DEV elements. 589 * Returns the number of ifindexes added. 590 */ 591 static int get_upper_ifindexes(struct net_device *dev, int *indexes) 592 { 593 struct net_device *upper; 594 struct list_head *iter; 595 int n = 0; 596 597 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 598 indexes[n++] = upper->ifindex; 599 } 600 return n; 601 } 602 603 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 604 struct bpf_map *map, bool exclude_ingress) 605 { 606 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 607 struct bpf_dtab_netdev *dst, *last_dst = NULL; 608 int excluded_devices[1+MAX_NEST_DEV]; 609 struct hlist_head *head; 610 int num_excluded = 0; 611 unsigned int i; 612 int err; 613 614 if (exclude_ingress) { 615 num_excluded = get_upper_ifindexes(dev_rx, excluded_devices); 616 excluded_devices[num_excluded++] = dev_rx->ifindex; 617 } 618 619 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 620 for (i = 0; i < map->max_entries; i++) { 621 dst = rcu_dereference_check(dtab->netdev_map[i], 622 rcu_read_lock_bh_held()); 623 if (!is_valid_dst(dst, xdpf)) 624 continue; 625 626 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 627 continue; 628 629 /* we only need n-1 clones; last_dst enqueued below */ 630 if (!last_dst) { 631 last_dst = dst; 632 continue; 633 } 634 635 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 636 if (err) 637 return err; 638 639 last_dst = dst; 640 } 641 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 642 for (i = 0; i < dtab->n_buckets; i++) { 643 head = dev_map_index_hash(dtab, i); 644 hlist_for_each_entry_rcu(dst, head, index_hlist, 645 lockdep_is_held(&dtab->index_lock)) { 646 if (!is_valid_dst(dst, xdpf)) 647 continue; 648 649 if (is_ifindex_excluded(excluded_devices, num_excluded, 650 dst->dev->ifindex)) 651 continue; 652 653 /* we only need n-1 clones; last_dst enqueued below */ 654 if (!last_dst) { 655 last_dst = dst; 656 continue; 657 } 658 659 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 660 if (err) 661 return err; 662 663 last_dst = dst; 664 } 665 } 666 } 667 668 /* consume the last copy of the frame */ 669 if (last_dst) 670 bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog); 671 else 672 xdp_return_frame_rx_napi(xdpf); /* dtab is empty */ 673 674 return 0; 675 } 676 677 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 678 struct bpf_prog *xdp_prog) 679 { 680 int err; 681 682 err = xdp_ok_fwd_dev(dst->dev, skb->len); 683 if (unlikely(err)) 684 return err; 685 686 /* Redirect has already succeeded semantically at this point, so we just 687 * return 0 even if packet is dropped. Helper below takes care of 688 * freeing skb. 689 */ 690 if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS) 691 return 0; 692 693 skb->dev = dst->dev; 694 generic_xdp_tx(skb, xdp_prog); 695 696 return 0; 697 } 698 699 static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst, 700 struct sk_buff *skb, 701 struct bpf_prog *xdp_prog) 702 { 703 struct sk_buff *nskb; 704 int err; 705 706 nskb = skb_clone(skb, GFP_ATOMIC); 707 if (!nskb) 708 return -ENOMEM; 709 710 err = dev_map_generic_redirect(dst, nskb, xdp_prog); 711 if (unlikely(err)) { 712 consume_skb(nskb); 713 return err; 714 } 715 716 return 0; 717 } 718 719 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 720 struct bpf_prog *xdp_prog, struct bpf_map *map, 721 bool exclude_ingress) 722 { 723 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 724 struct bpf_dtab_netdev *dst, *last_dst = NULL; 725 int excluded_devices[1+MAX_NEST_DEV]; 726 struct hlist_head *head; 727 struct hlist_node *next; 728 int num_excluded = 0; 729 unsigned int i; 730 int err; 731 732 if (exclude_ingress) { 733 num_excluded = get_upper_ifindexes(dev, excluded_devices); 734 excluded_devices[num_excluded++] = dev->ifindex; 735 } 736 737 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 738 for (i = 0; i < map->max_entries; i++) { 739 dst = rcu_dereference_check(dtab->netdev_map[i], 740 rcu_read_lock_bh_held()); 741 if (!dst) 742 continue; 743 744 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 745 continue; 746 747 /* we only need n-1 clones; last_dst enqueued below */ 748 if (!last_dst) { 749 last_dst = dst; 750 continue; 751 } 752 753 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 754 if (err) 755 return err; 756 757 last_dst = dst; 758 759 } 760 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 761 for (i = 0; i < dtab->n_buckets; i++) { 762 head = dev_map_index_hash(dtab, i); 763 hlist_for_each_entry_safe(dst, next, head, index_hlist) { 764 if (is_ifindex_excluded(excluded_devices, num_excluded, 765 dst->dev->ifindex)) 766 continue; 767 768 /* we only need n-1 clones; last_dst enqueued below */ 769 if (!last_dst) { 770 last_dst = dst; 771 continue; 772 } 773 774 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 775 if (err) 776 return err; 777 778 last_dst = dst; 779 } 780 } 781 } 782 783 /* consume the first skb and return */ 784 if (last_dst) 785 return dev_map_generic_redirect(last_dst, skb, xdp_prog); 786 787 /* dtab is empty */ 788 consume_skb(skb); 789 return 0; 790 } 791 792 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 793 { 794 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 795 796 return obj ? &obj->val : NULL; 797 } 798 799 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) 800 { 801 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, 802 *(u32 *)key); 803 return obj ? &obj->val : NULL; 804 } 805 806 static void __dev_map_entry_free(struct rcu_head *rcu) 807 { 808 struct bpf_dtab_netdev *dev; 809 810 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 811 if (dev->xdp_prog) 812 bpf_prog_put(dev->xdp_prog); 813 dev_put(dev->dev); 814 kfree(dev); 815 } 816 817 static long dev_map_delete_elem(struct bpf_map *map, void *key) 818 { 819 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 820 struct bpf_dtab_netdev *old_dev; 821 int k = *(u32 *)key; 822 823 if (k >= map->max_entries) 824 return -EINVAL; 825 826 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL)); 827 if (old_dev) { 828 call_rcu(&old_dev->rcu, __dev_map_entry_free); 829 atomic_dec((atomic_t *)&dtab->items); 830 } 831 return 0; 832 } 833 834 static long dev_map_hash_delete_elem(struct bpf_map *map, void *key) 835 { 836 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 837 struct bpf_dtab_netdev *old_dev; 838 int k = *(u32 *)key; 839 unsigned long flags; 840 int ret = -ENOENT; 841 842 spin_lock_irqsave(&dtab->index_lock, flags); 843 844 old_dev = __dev_map_hash_lookup_elem(map, k); 845 if (old_dev) { 846 dtab->items--; 847 hlist_del_init_rcu(&old_dev->index_hlist); 848 call_rcu(&old_dev->rcu, __dev_map_entry_free); 849 ret = 0; 850 } 851 spin_unlock_irqrestore(&dtab->index_lock, flags); 852 853 return ret; 854 } 855 856 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, 857 struct bpf_dtab *dtab, 858 struct bpf_devmap_val *val, 859 unsigned int idx) 860 { 861 struct bpf_prog *prog = NULL; 862 struct bpf_dtab_netdev *dev; 863 864 dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev), 865 GFP_NOWAIT | __GFP_NOWARN, 866 dtab->map.numa_node); 867 if (!dev) 868 return ERR_PTR(-ENOMEM); 869 870 dev->dev = dev_get_by_index(net, val->ifindex); 871 if (!dev->dev) 872 goto err_out; 873 874 if (val->bpf_prog.fd > 0) { 875 prog = bpf_prog_get_type_dev(val->bpf_prog.fd, 876 BPF_PROG_TYPE_XDP, false); 877 if (IS_ERR(prog)) 878 goto err_put_dev; 879 if (prog->expected_attach_type != BPF_XDP_DEVMAP || 880 !bpf_prog_map_compatible(&dtab->map, prog)) 881 goto err_put_prog; 882 } 883 884 dev->idx = idx; 885 if (prog) { 886 dev->xdp_prog = prog; 887 dev->val.bpf_prog.id = prog->aux->id; 888 } else { 889 dev->xdp_prog = NULL; 890 dev->val.bpf_prog.id = 0; 891 } 892 dev->val.ifindex = val->ifindex; 893 894 return dev; 895 err_put_prog: 896 bpf_prog_put(prog); 897 err_put_dev: 898 dev_put(dev->dev); 899 err_out: 900 kfree(dev); 901 return ERR_PTR(-EINVAL); 902 } 903 904 static long __dev_map_update_elem(struct net *net, struct bpf_map *map, 905 void *key, void *value, u64 map_flags) 906 { 907 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 908 struct bpf_dtab_netdev *dev, *old_dev; 909 struct bpf_devmap_val val = {}; 910 u32 i = *(u32 *)key; 911 912 if (unlikely(map_flags > BPF_EXIST)) 913 return -EINVAL; 914 if (unlikely(i >= dtab->map.max_entries)) 915 return -E2BIG; 916 if (unlikely(map_flags == BPF_NOEXIST)) 917 return -EEXIST; 918 919 /* already verified value_size <= sizeof val */ 920 memcpy(&val, value, map->value_size); 921 922 if (!val.ifindex) { 923 dev = NULL; 924 /* can not specify fd if ifindex is 0 */ 925 if (val.bpf_prog.fd > 0) 926 return -EINVAL; 927 } else { 928 dev = __dev_map_alloc_node(net, dtab, &val, i); 929 if (IS_ERR(dev)) 930 return PTR_ERR(dev); 931 } 932 933 /* Use call_rcu() here to ensure rcu critical sections have completed 934 * Remembering the driver side flush operation will happen before the 935 * net device is removed. 936 */ 937 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev))); 938 if (old_dev) 939 call_rcu(&old_dev->rcu, __dev_map_entry_free); 940 else 941 atomic_inc((atomic_t *)&dtab->items); 942 943 return 0; 944 } 945 946 static long dev_map_update_elem(struct bpf_map *map, void *key, void *value, 947 u64 map_flags) 948 { 949 return __dev_map_update_elem(current->nsproxy->net_ns, 950 map, key, value, map_flags); 951 } 952 953 static long __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, 954 void *key, void *value, u64 map_flags) 955 { 956 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 957 struct bpf_dtab_netdev *dev, *old_dev; 958 struct bpf_devmap_val val = {}; 959 u32 idx = *(u32 *)key; 960 unsigned long flags; 961 int err = -EEXIST; 962 963 /* already verified value_size <= sizeof val */ 964 memcpy(&val, value, map->value_size); 965 966 if (unlikely(map_flags > BPF_EXIST || !val.ifindex)) 967 return -EINVAL; 968 969 spin_lock_irqsave(&dtab->index_lock, flags); 970 971 old_dev = __dev_map_hash_lookup_elem(map, idx); 972 if (old_dev && (map_flags & BPF_NOEXIST)) 973 goto out_err; 974 975 dev = __dev_map_alloc_node(net, dtab, &val, idx); 976 if (IS_ERR(dev)) { 977 err = PTR_ERR(dev); 978 goto out_err; 979 } 980 981 if (old_dev) { 982 hlist_del_rcu(&old_dev->index_hlist); 983 } else { 984 if (dtab->items >= dtab->map.max_entries) { 985 spin_unlock_irqrestore(&dtab->index_lock, flags); 986 call_rcu(&dev->rcu, __dev_map_entry_free); 987 return -E2BIG; 988 } 989 dtab->items++; 990 } 991 992 hlist_add_head_rcu(&dev->index_hlist, 993 dev_map_index_hash(dtab, idx)); 994 spin_unlock_irqrestore(&dtab->index_lock, flags); 995 996 if (old_dev) 997 call_rcu(&old_dev->rcu, __dev_map_entry_free); 998 999 return 0; 1000 1001 out_err: 1002 spin_unlock_irqrestore(&dtab->index_lock, flags); 1003 return err; 1004 } 1005 1006 static long dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, 1007 u64 map_flags) 1008 { 1009 return __dev_map_hash_update_elem(current->nsproxy->net_ns, 1010 map, key, value, map_flags); 1011 } 1012 1013 static long dev_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1014 { 1015 return __bpf_xdp_redirect_map(map, ifindex, flags, 1016 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1017 __dev_map_lookup_elem); 1018 } 1019 1020 static long dev_hash_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1021 { 1022 return __bpf_xdp_redirect_map(map, ifindex, flags, 1023 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1024 __dev_map_hash_lookup_elem); 1025 } 1026 1027 static u64 dev_map_mem_usage(const struct bpf_map *map) 1028 { 1029 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 1030 u64 usage = sizeof(struct bpf_dtab); 1031 1032 if (map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) 1033 usage += (u64)dtab->n_buckets * sizeof(struct hlist_head); 1034 else 1035 usage += (u64)map->max_entries * sizeof(struct bpf_dtab_netdev *); 1036 usage += atomic_read((atomic_t *)&dtab->items) * 1037 (u64)sizeof(struct bpf_dtab_netdev); 1038 return usage; 1039 } 1040 1041 BTF_ID_LIST_SINGLE(dev_map_btf_ids, struct, bpf_dtab) 1042 const struct bpf_map_ops dev_map_ops = { 1043 .map_meta_equal = bpf_map_meta_equal, 1044 .map_alloc_check = dev_map_alloc_check, 1045 .map_alloc = dev_map_alloc, 1046 .map_free = dev_map_free, 1047 .map_get_next_key = dev_map_get_next_key, 1048 .map_lookup_elem = dev_map_lookup_elem, 1049 .map_update_elem = dev_map_update_elem, 1050 .map_delete_elem = dev_map_delete_elem, 1051 .map_check_btf = map_check_no_btf, 1052 .map_mem_usage = dev_map_mem_usage, 1053 .map_btf_id = &dev_map_btf_ids[0], 1054 .map_redirect = dev_map_redirect, 1055 }; 1056 1057 const struct bpf_map_ops dev_map_hash_ops = { 1058 .map_meta_equal = bpf_map_meta_equal, 1059 .map_alloc_check = dev_map_alloc_check, 1060 .map_alloc = dev_map_alloc, 1061 .map_free = dev_map_free, 1062 .map_get_next_key = dev_map_hash_get_next_key, 1063 .map_lookup_elem = dev_map_hash_lookup_elem, 1064 .map_update_elem = dev_map_hash_update_elem, 1065 .map_delete_elem = dev_map_hash_delete_elem, 1066 .map_check_btf = map_check_no_btf, 1067 .map_mem_usage = dev_map_mem_usage, 1068 .map_btf_id = &dev_map_btf_ids[0], 1069 .map_redirect = dev_hash_map_redirect, 1070 }; 1071 1072 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, 1073 struct net_device *netdev) 1074 { 1075 unsigned long flags; 1076 u32 i; 1077 1078 spin_lock_irqsave(&dtab->index_lock, flags); 1079 for (i = 0; i < dtab->n_buckets; i++) { 1080 struct bpf_dtab_netdev *dev; 1081 struct hlist_head *head; 1082 struct hlist_node *next; 1083 1084 head = dev_map_index_hash(dtab, i); 1085 1086 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 1087 if (netdev != dev->dev) 1088 continue; 1089 1090 dtab->items--; 1091 hlist_del_rcu(&dev->index_hlist); 1092 call_rcu(&dev->rcu, __dev_map_entry_free); 1093 } 1094 } 1095 spin_unlock_irqrestore(&dtab->index_lock, flags); 1096 } 1097 1098 static int dev_map_notification(struct notifier_block *notifier, 1099 ulong event, void *ptr) 1100 { 1101 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 1102 struct bpf_dtab *dtab; 1103 int i, cpu; 1104 1105 switch (event) { 1106 case NETDEV_REGISTER: 1107 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) 1108 break; 1109 1110 /* will be freed in free_netdev() */ 1111 netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue); 1112 if (!netdev->xdp_bulkq) 1113 return NOTIFY_BAD; 1114 1115 for_each_possible_cpu(cpu) 1116 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; 1117 break; 1118 case NETDEV_UNREGISTER: 1119 /* This rcu_read_lock/unlock pair is needed because 1120 * dev_map_list is an RCU list AND to ensure a delete 1121 * operation does not free a netdev_map entry while we 1122 * are comparing it against the netdev being unregistered. 1123 */ 1124 rcu_read_lock(); 1125 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 1126 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 1127 dev_map_hash_remove_netdev(dtab, netdev); 1128 continue; 1129 } 1130 1131 for (i = 0; i < dtab->map.max_entries; i++) { 1132 struct bpf_dtab_netdev *dev, *odev; 1133 1134 dev = rcu_dereference(dtab->netdev_map[i]); 1135 if (!dev || netdev != dev->dev) 1136 continue; 1137 odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL)); 1138 if (dev == odev) { 1139 call_rcu(&dev->rcu, 1140 __dev_map_entry_free); 1141 atomic_dec((atomic_t *)&dtab->items); 1142 } 1143 } 1144 } 1145 rcu_read_unlock(); 1146 break; 1147 default: 1148 break; 1149 } 1150 return NOTIFY_OK; 1151 } 1152 1153 static struct notifier_block dev_map_notifier = { 1154 .notifier_call = dev_map_notification, 1155 }; 1156 1157 static int __init dev_map_init(void) 1158 { 1159 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 1160 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 1161 offsetof(struct _bpf_dtab_netdev, dev)); 1162 register_netdevice_notifier(&dev_map_notifier); 1163 1164 return 0; 1165 } 1166 1167 subsys_initcall(dev_map_init); 1168
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.