~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/bpf/lpm_trie.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Longest prefix match list implementation
  4  *
  5  * Copyright (c) 2016,2017 Daniel Mack
  6  * Copyright (c) 2016 David Herrmann
  7  */
  8 
  9 #include <linux/bpf.h>
 10 #include <linux/btf.h>
 11 #include <linux/err.h>
 12 #include <linux/slab.h>
 13 #include <linux/spinlock.h>
 14 #include <linux/vmalloc.h>
 15 #include <net/ipv6.h>
 16 #include <uapi/linux/btf.h>
 17 #include <linux/btf_ids.h>
 18 
 19 /* Intermediate node */
 20 #define LPM_TREE_NODE_FLAG_IM BIT(0)
 21 
 22 struct lpm_trie_node;
 23 
 24 struct lpm_trie_node {
 25         struct rcu_head rcu;
 26         struct lpm_trie_node __rcu      *child[2];
 27         u32                             prefixlen;
 28         u32                             flags;
 29         u8                              data[];
 30 };
 31 
 32 struct lpm_trie {
 33         struct bpf_map                  map;
 34         struct lpm_trie_node __rcu      *root;
 35         size_t                          n_entries;
 36         size_t                          max_prefixlen;
 37         size_t                          data_size;
 38         spinlock_t                      lock;
 39 };
 40 
 41 /* This trie implements a longest prefix match algorithm that can be used to
 42  * match IP addresses to a stored set of ranges.
 43  *
 44  * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
 45  * interpreted as big endian, so data[0] stores the most significant byte.
 46  *
 47  * Match ranges are internally stored in instances of struct lpm_trie_node
 48  * which each contain their prefix length as well as two pointers that may
 49  * lead to more nodes containing more specific matches. Each node also stores
 50  * a value that is defined by and returned to userspace via the update_elem
 51  * and lookup functions.
 52  *
 53  * For instance, let's start with a trie that was created with a prefix length
 54  * of 32, so it can be used for IPv4 addresses, and one single element that
 55  * matches 192.168.0.0/16. The data array would hence contain
 56  * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
 57  * stick to IP-address notation for readability though.
 58  *
 59  * As the trie is empty initially, the new node (1) will be places as root
 60  * node, denoted as (R) in the example below. As there are no other node, both
 61  * child pointers are %NULL.
 62  *
 63  *              +----------------+
 64  *              |       (1)  (R) |
 65  *              | 192.168.0.0/16 |
 66  *              |    value: 1    |
 67  *              |   [0]    [1]   |
 68  *              +----------------+
 69  *
 70  * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
 71  * a node with the same data and a smaller prefix (ie, a less specific one),
 72  * node (2) will become a child of (1). In child index depends on the next bit
 73  * that is outside of what (1) matches, and that bit is 0, so (2) will be
 74  * child[0] of (1):
 75  *
 76  *              +----------------+
 77  *              |       (1)  (R) |
 78  *              | 192.168.0.0/16 |
 79  *              |    value: 1    |
 80  *              |   [0]    [1]   |
 81  *              +----------------+
 82  *                   |
 83  *    +----------------+
 84  *    |       (2)      |
 85  *    | 192.168.0.0/24 |
 86  *    |    value: 2    |
 87  *    |   [0]    [1]   |
 88  *    +----------------+
 89  *
 90  * The child[1] slot of (1) could be filled with another node which has bit #17
 91  * (the next bit after the ones that (1) matches on) set to 1. For instance,
 92  * 192.168.128.0/24:
 93  *
 94  *              +----------------+
 95  *              |       (1)  (R) |
 96  *              | 192.168.0.0/16 |
 97  *              |    value: 1    |
 98  *              |   [0]    [1]   |
 99  *              +----------------+
100  *                   |      |
101  *    +----------------+  +------------------+
102  *    |       (2)      |  |        (3)       |
103  *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
104  *    |    value: 2    |  |     value: 3     |
105  *    |   [0]    [1]   |  |    [0]    [1]    |
106  *    +----------------+  +------------------+
107  *
108  * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
109  * it, node (1) is looked at first, and because (4) of the semantics laid out
110  * above (bit #17 is 0), it would normally be attached to (1) as child[0].
111  * However, that slot is already allocated, so a new node is needed in between.
112  * That node does not have a value attached to it and it will never be
113  * returned to users as result of a lookup. It is only there to differentiate
114  * the traversal further. It will get a prefix as wide as necessary to
115  * distinguish its two children:
116  *
117  *                      +----------------+
118  *                      |       (1)  (R) |
119  *                      | 192.168.0.0/16 |
120  *                      |    value: 1    |
121  *                      |   [0]    [1]   |
122  *                      +----------------+
123  *                           |      |
124  *            +----------------+  +------------------+
125  *            |       (4)  (I) |  |        (3)       |
126  *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
127  *            |    value: ---  |  |     value: 3     |
128  *            |   [0]    [1]   |  |    [0]    [1]    |
129  *            +----------------+  +------------------+
130  *                 |      |
131  *  +----------------+  +----------------+
132  *  |       (2)      |  |       (5)      |
133  *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
134  *  |    value: 2    |  |     value: 5   |
135  *  |   [0]    [1]   |  |   [0]    [1]   |
136  *  +----------------+  +----------------+
137  *
138  * 192.168.1.1/32 would be a child of (5) etc.
139  *
140  * An intermediate node will be turned into a 'real' node on demand. In the
141  * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
142  *
143  * A fully populated trie would have a height of 32 nodes, as the trie was
144  * created with a prefix length of 32.
145  *
146  * The lookup starts at the root node. If the current node matches and if there
147  * is a child that can be used to become more specific, the trie is traversed
148  * downwards. The last node in the traversal that is a non-intermediate one is
149  * returned.
150  */
151 
152 static inline int extract_bit(const u8 *data, size_t index)
153 {
154         return !!(data[index / 8] & (1 << (7 - (index % 8))));
155 }
156 
157 /**
158  * __longest_prefix_match() - determine the longest prefix
159  * @trie:       The trie to get internal sizes from
160  * @node:       The node to operate on
161  * @key:        The key to compare to @node
162  *
163  * Determine the longest prefix of @node that matches the bits in @key.
164  */
165 static __always_inline
166 size_t __longest_prefix_match(const struct lpm_trie *trie,
167                               const struct lpm_trie_node *node,
168                               const struct bpf_lpm_trie_key_u8 *key)
169 {
170         u32 limit = min(node->prefixlen, key->prefixlen);
171         u32 prefixlen = 0, i = 0;
172 
173         BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
174         BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key_u8, data) % sizeof(u32));
175 
176 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
177 
178         /* data_size >= 16 has very small probability.
179          * We do not use a loop for optimal code generation.
180          */
181         if (trie->data_size >= 8) {
182                 u64 diff = be64_to_cpu(*(__be64 *)node->data ^
183                                        *(__be64 *)key->data);
184 
185                 prefixlen = 64 - fls64(diff);
186                 if (prefixlen >= limit)
187                         return limit;
188                 if (diff)
189                         return prefixlen;
190                 i = 8;
191         }
192 #endif
193 
194         while (trie->data_size >= i + 4) {
195                 u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
196                                        *(__be32 *)&key->data[i]);
197 
198                 prefixlen += 32 - fls(diff);
199                 if (prefixlen >= limit)
200                         return limit;
201                 if (diff)
202                         return prefixlen;
203                 i += 4;
204         }
205 
206         if (trie->data_size >= i + 2) {
207                 u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
208                                        *(__be16 *)&key->data[i]);
209 
210                 prefixlen += 16 - fls(diff);
211                 if (prefixlen >= limit)
212                         return limit;
213                 if (diff)
214                         return prefixlen;
215                 i += 2;
216         }
217 
218         if (trie->data_size >= i + 1) {
219                 prefixlen += 8 - fls(node->data[i] ^ key->data[i]);
220 
221                 if (prefixlen >= limit)
222                         return limit;
223         }
224 
225         return prefixlen;
226 }
227 
228 static size_t longest_prefix_match(const struct lpm_trie *trie,
229                                    const struct lpm_trie_node *node,
230                                    const struct bpf_lpm_trie_key_u8 *key)
231 {
232         return __longest_prefix_match(trie, node, key);
233 }
234 
235 /* Called from syscall or from eBPF program */
236 static void *trie_lookup_elem(struct bpf_map *map, void *_key)
237 {
238         struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
239         struct lpm_trie_node *node, *found = NULL;
240         struct bpf_lpm_trie_key_u8 *key = _key;
241 
242         if (key->prefixlen > trie->max_prefixlen)
243                 return NULL;
244 
245         /* Start walking the trie from the root node ... */
246 
247         for (node = rcu_dereference_check(trie->root, rcu_read_lock_bh_held());
248              node;) {
249                 unsigned int next_bit;
250                 size_t matchlen;
251 
252                 /* Determine the longest prefix of @node that matches @key.
253                  * If it's the maximum possible prefix for this trie, we have
254                  * an exact match and can return it directly.
255                  */
256                 matchlen = __longest_prefix_match(trie, node, key);
257                 if (matchlen == trie->max_prefixlen) {
258                         found = node;
259                         break;
260                 }
261 
262                 /* If the number of bits that match is smaller than the prefix
263                  * length of @node, bail out and return the node we have seen
264                  * last in the traversal (ie, the parent).
265                  */
266                 if (matchlen < node->prefixlen)
267                         break;
268 
269                 /* Consider this node as return candidate unless it is an
270                  * artificially added intermediate one.
271                  */
272                 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
273                         found = node;
274 
275                 /* If the node match is fully satisfied, let's see if we can
276                  * become more specific. Determine the next bit in the key and
277                  * traverse down.
278                  */
279                 next_bit = extract_bit(key->data, node->prefixlen);
280                 node = rcu_dereference_check(node->child[next_bit],
281                                              rcu_read_lock_bh_held());
282         }
283 
284         if (!found)
285                 return NULL;
286 
287         return found->data + trie->data_size;
288 }
289 
290 static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
291                                                  const void *value)
292 {
293         struct lpm_trie_node *node;
294         size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
295 
296         if (value)
297                 size += trie->map.value_size;
298 
299         node = bpf_map_kmalloc_node(&trie->map, size, GFP_NOWAIT | __GFP_NOWARN,
300                                     trie->map.numa_node);
301         if (!node)
302                 return NULL;
303 
304         node->flags = 0;
305 
306         if (value)
307                 memcpy(node->data + trie->data_size, value,
308                        trie->map.value_size);
309 
310         return node;
311 }
312 
313 /* Called from syscall or from eBPF program */
314 static long trie_update_elem(struct bpf_map *map,
315                              void *_key, void *value, u64 flags)
316 {
317         struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
318         struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
319         struct lpm_trie_node *free_node = NULL;
320         struct lpm_trie_node __rcu **slot;
321         struct bpf_lpm_trie_key_u8 *key = _key;
322         unsigned long irq_flags;
323         unsigned int next_bit;
324         size_t matchlen = 0;
325         int ret = 0;
326 
327         if (unlikely(flags > BPF_EXIST))
328                 return -EINVAL;
329 
330         if (key->prefixlen > trie->max_prefixlen)
331                 return -EINVAL;
332 
333         spin_lock_irqsave(&trie->lock, irq_flags);
334 
335         /* Allocate and fill a new node */
336 
337         if (trie->n_entries == trie->map.max_entries) {
338                 ret = -ENOSPC;
339                 goto out;
340         }
341 
342         new_node = lpm_trie_node_alloc(trie, value);
343         if (!new_node) {
344                 ret = -ENOMEM;
345                 goto out;
346         }
347 
348         trie->n_entries++;
349 
350         new_node->prefixlen = key->prefixlen;
351         RCU_INIT_POINTER(new_node->child[0], NULL);
352         RCU_INIT_POINTER(new_node->child[1], NULL);
353         memcpy(new_node->data, key->data, trie->data_size);
354 
355         /* Now find a slot to attach the new node. To do that, walk the tree
356          * from the root and match as many bits as possible for each node until
357          * we either find an empty slot or a slot that needs to be replaced by
358          * an intermediate node.
359          */
360         slot = &trie->root;
361 
362         while ((node = rcu_dereference_protected(*slot,
363                                         lockdep_is_held(&trie->lock)))) {
364                 matchlen = longest_prefix_match(trie, node, key);
365 
366                 if (node->prefixlen != matchlen ||
367                     node->prefixlen == key->prefixlen ||
368                     node->prefixlen == trie->max_prefixlen)
369                         break;
370 
371                 next_bit = extract_bit(key->data, node->prefixlen);
372                 slot = &node->child[next_bit];
373         }
374 
375         /* If the slot is empty (a free child pointer or an empty root),
376          * simply assign the @new_node to that slot and be done.
377          */
378         if (!node) {
379                 rcu_assign_pointer(*slot, new_node);
380                 goto out;
381         }
382 
383         /* If the slot we picked already exists, replace it with @new_node
384          * which already has the correct data array set.
385          */
386         if (node->prefixlen == matchlen) {
387                 new_node->child[0] = node->child[0];
388                 new_node->child[1] = node->child[1];
389 
390                 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
391                         trie->n_entries--;
392 
393                 rcu_assign_pointer(*slot, new_node);
394                 free_node = node;
395 
396                 goto out;
397         }
398 
399         /* If the new node matches the prefix completely, it must be inserted
400          * as an ancestor. Simply insert it between @node and *@slot.
401          */
402         if (matchlen == key->prefixlen) {
403                 next_bit = extract_bit(node->data, matchlen);
404                 rcu_assign_pointer(new_node->child[next_bit], node);
405                 rcu_assign_pointer(*slot, new_node);
406                 goto out;
407         }
408 
409         im_node = lpm_trie_node_alloc(trie, NULL);
410         if (!im_node) {
411                 ret = -ENOMEM;
412                 goto out;
413         }
414 
415         im_node->prefixlen = matchlen;
416         im_node->flags |= LPM_TREE_NODE_FLAG_IM;
417         memcpy(im_node->data, node->data, trie->data_size);
418 
419         /* Now determine which child to install in which slot */
420         if (extract_bit(key->data, matchlen)) {
421                 rcu_assign_pointer(im_node->child[0], node);
422                 rcu_assign_pointer(im_node->child[1], new_node);
423         } else {
424                 rcu_assign_pointer(im_node->child[0], new_node);
425                 rcu_assign_pointer(im_node->child[1], node);
426         }
427 
428         /* Finally, assign the intermediate node to the determined slot */
429         rcu_assign_pointer(*slot, im_node);
430 
431 out:
432         if (ret) {
433                 if (new_node)
434                         trie->n_entries--;
435 
436                 kfree(new_node);
437                 kfree(im_node);
438         }
439 
440         spin_unlock_irqrestore(&trie->lock, irq_flags);
441         kfree_rcu(free_node, rcu);
442 
443         return ret;
444 }
445 
446 /* Called from syscall or from eBPF program */
447 static long trie_delete_elem(struct bpf_map *map, void *_key)
448 {
449         struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
450         struct lpm_trie_node *free_node = NULL, *free_parent = NULL;
451         struct bpf_lpm_trie_key_u8 *key = _key;
452         struct lpm_trie_node __rcu **trim, **trim2;
453         struct lpm_trie_node *node, *parent;
454         unsigned long irq_flags;
455         unsigned int next_bit;
456         size_t matchlen = 0;
457         int ret = 0;
458 
459         if (key->prefixlen > trie->max_prefixlen)
460                 return -EINVAL;
461 
462         spin_lock_irqsave(&trie->lock, irq_flags);
463 
464         /* Walk the tree looking for an exact key/length match and keeping
465          * track of the path we traverse.  We will need to know the node
466          * we wish to delete, and the slot that points to the node we want
467          * to delete.  We may also need to know the nodes parent and the
468          * slot that contains it.
469          */
470         trim = &trie->root;
471         trim2 = trim;
472         parent = NULL;
473         while ((node = rcu_dereference_protected(
474                        *trim, lockdep_is_held(&trie->lock)))) {
475                 matchlen = longest_prefix_match(trie, node, key);
476 
477                 if (node->prefixlen != matchlen ||
478                     node->prefixlen == key->prefixlen)
479                         break;
480 
481                 parent = node;
482                 trim2 = trim;
483                 next_bit = extract_bit(key->data, node->prefixlen);
484                 trim = &node->child[next_bit];
485         }
486 
487         if (!node || node->prefixlen != key->prefixlen ||
488             node->prefixlen != matchlen ||
489             (node->flags & LPM_TREE_NODE_FLAG_IM)) {
490                 ret = -ENOENT;
491                 goto out;
492         }
493 
494         trie->n_entries--;
495 
496         /* If the node we are removing has two children, simply mark it
497          * as intermediate and we are done.
498          */
499         if (rcu_access_pointer(node->child[0]) &&
500             rcu_access_pointer(node->child[1])) {
501                 node->flags |= LPM_TREE_NODE_FLAG_IM;
502                 goto out;
503         }
504 
505         /* If the parent of the node we are about to delete is an intermediate
506          * node, and the deleted node doesn't have any children, we can delete
507          * the intermediate parent as well and promote its other child
508          * up the tree.  Doing this maintains the invariant that all
509          * intermediate nodes have exactly 2 children and that there are no
510          * unnecessary intermediate nodes in the tree.
511          */
512         if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
513             !node->child[0] && !node->child[1]) {
514                 if (node == rcu_access_pointer(parent->child[0]))
515                         rcu_assign_pointer(
516                                 *trim2, rcu_access_pointer(parent->child[1]));
517                 else
518                         rcu_assign_pointer(
519                                 *trim2, rcu_access_pointer(parent->child[0]));
520                 free_parent = parent;
521                 free_node = node;
522                 goto out;
523         }
524 
525         /* The node we are removing has either zero or one child. If there
526          * is a child, move it into the removed node's slot then delete
527          * the node.  Otherwise just clear the slot and delete the node.
528          */
529         if (node->child[0])
530                 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
531         else if (node->child[1])
532                 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
533         else
534                 RCU_INIT_POINTER(*trim, NULL);
535         free_node = node;
536 
537 out:
538         spin_unlock_irqrestore(&trie->lock, irq_flags);
539         kfree_rcu(free_parent, rcu);
540         kfree_rcu(free_node, rcu);
541 
542         return ret;
543 }
544 
545 #define LPM_DATA_SIZE_MAX       256
546 #define LPM_DATA_SIZE_MIN       1
547 
548 #define LPM_VAL_SIZE_MAX        (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
549                                  sizeof(struct lpm_trie_node))
550 #define LPM_VAL_SIZE_MIN        1
551 
552 #define LPM_KEY_SIZE(X)         (sizeof(struct bpf_lpm_trie_key_u8) + (X))
553 #define LPM_KEY_SIZE_MAX        LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
554 #define LPM_KEY_SIZE_MIN        LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
555 
556 #define LPM_CREATE_FLAG_MASK    (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE |  \
557                                  BPF_F_ACCESS_MASK)
558 
559 static struct bpf_map *trie_alloc(union bpf_attr *attr)
560 {
561         struct lpm_trie *trie;
562 
563         /* check sanity of attributes */
564         if (attr->max_entries == 0 ||
565             !(attr->map_flags & BPF_F_NO_PREALLOC) ||
566             attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
567             !bpf_map_flags_access_ok(attr->map_flags) ||
568             attr->key_size < LPM_KEY_SIZE_MIN ||
569             attr->key_size > LPM_KEY_SIZE_MAX ||
570             attr->value_size < LPM_VAL_SIZE_MIN ||
571             attr->value_size > LPM_VAL_SIZE_MAX)
572                 return ERR_PTR(-EINVAL);
573 
574         trie = bpf_map_area_alloc(sizeof(*trie), NUMA_NO_NODE);
575         if (!trie)
576                 return ERR_PTR(-ENOMEM);
577 
578         /* copy mandatory map attributes */
579         bpf_map_init_from_attr(&trie->map, attr);
580         trie->data_size = attr->key_size -
581                           offsetof(struct bpf_lpm_trie_key_u8, data);
582         trie->max_prefixlen = trie->data_size * 8;
583 
584         spin_lock_init(&trie->lock);
585 
586         return &trie->map;
587 }
588 
589 static void trie_free(struct bpf_map *map)
590 {
591         struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
592         struct lpm_trie_node __rcu **slot;
593         struct lpm_trie_node *node;
594 
595         /* Always start at the root and walk down to a node that has no
596          * children. Then free that node, nullify its reference in the parent
597          * and start over.
598          */
599 
600         for (;;) {
601                 slot = &trie->root;
602 
603                 for (;;) {
604                         node = rcu_dereference_protected(*slot, 1);
605                         if (!node)
606                                 goto out;
607 
608                         if (rcu_access_pointer(node->child[0])) {
609                                 slot = &node->child[0];
610                                 continue;
611                         }
612 
613                         if (rcu_access_pointer(node->child[1])) {
614                                 slot = &node->child[1];
615                                 continue;
616                         }
617 
618                         kfree(node);
619                         RCU_INIT_POINTER(*slot, NULL);
620                         break;
621                 }
622         }
623 
624 out:
625         bpf_map_area_free(trie);
626 }
627 
628 static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
629 {
630         struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
631         struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
632         struct bpf_lpm_trie_key_u8 *key = _key, *next_key = _next_key;
633         struct lpm_trie_node **node_stack = NULL;
634         int err = 0, stack_ptr = -1;
635         unsigned int next_bit;
636         size_t matchlen;
637 
638         /* The get_next_key follows postorder. For the 4 node example in
639          * the top of this file, the trie_get_next_key() returns the following
640          * one after another:
641          *   192.168.0.0/24
642          *   192.168.1.0/24
643          *   192.168.128.0/24
644          *   192.168.0.0/16
645          *
646          * The idea is to return more specific keys before less specific ones.
647          */
648 
649         /* Empty trie */
650         search_root = rcu_dereference(trie->root);
651         if (!search_root)
652                 return -ENOENT;
653 
654         /* For invalid key, find the leftmost node in the trie */
655         if (!key || key->prefixlen > trie->max_prefixlen)
656                 goto find_leftmost;
657 
658         node_stack = kmalloc_array(trie->max_prefixlen,
659                                    sizeof(struct lpm_trie_node *),
660                                    GFP_ATOMIC | __GFP_NOWARN);
661         if (!node_stack)
662                 return -ENOMEM;
663 
664         /* Try to find the exact node for the given key */
665         for (node = search_root; node;) {
666                 node_stack[++stack_ptr] = node;
667                 matchlen = longest_prefix_match(trie, node, key);
668                 if (node->prefixlen != matchlen ||
669                     node->prefixlen == key->prefixlen)
670                         break;
671 
672                 next_bit = extract_bit(key->data, node->prefixlen);
673                 node = rcu_dereference(node->child[next_bit]);
674         }
675         if (!node || node->prefixlen != key->prefixlen ||
676             (node->flags & LPM_TREE_NODE_FLAG_IM))
677                 goto find_leftmost;
678 
679         /* The node with the exactly-matching key has been found,
680          * find the first node in postorder after the matched node.
681          */
682         node = node_stack[stack_ptr];
683         while (stack_ptr > 0) {
684                 parent = node_stack[stack_ptr - 1];
685                 if (rcu_dereference(parent->child[0]) == node) {
686                         search_root = rcu_dereference(parent->child[1]);
687                         if (search_root)
688                                 goto find_leftmost;
689                 }
690                 if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
691                         next_node = parent;
692                         goto do_copy;
693                 }
694 
695                 node = parent;
696                 stack_ptr--;
697         }
698 
699         /* did not find anything */
700         err = -ENOENT;
701         goto free_stack;
702 
703 find_leftmost:
704         /* Find the leftmost non-intermediate node, all intermediate nodes
705          * have exact two children, so this function will never return NULL.
706          */
707         for (node = search_root; node;) {
708                 if (node->flags & LPM_TREE_NODE_FLAG_IM) {
709                         node = rcu_dereference(node->child[0]);
710                 } else {
711                         next_node = node;
712                         node = rcu_dereference(node->child[0]);
713                         if (!node)
714                                 node = rcu_dereference(next_node->child[1]);
715                 }
716         }
717 do_copy:
718         next_key->prefixlen = next_node->prefixlen;
719         memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key_u8, data),
720                next_node->data, trie->data_size);
721 free_stack:
722         kfree(node_stack);
723         return err;
724 }
725 
726 static int trie_check_btf(const struct bpf_map *map,
727                           const struct btf *btf,
728                           const struct btf_type *key_type,
729                           const struct btf_type *value_type)
730 {
731         /* Keys must have struct bpf_lpm_trie_key_u8 embedded. */
732         return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
733                -EINVAL : 0;
734 }
735 
736 static u64 trie_mem_usage(const struct bpf_map *map)
737 {
738         struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
739         u64 elem_size;
740 
741         elem_size = sizeof(struct lpm_trie_node) + trie->data_size +
742                             trie->map.value_size;
743         return elem_size * READ_ONCE(trie->n_entries);
744 }
745 
746 BTF_ID_LIST_SINGLE(trie_map_btf_ids, struct, lpm_trie)
747 const struct bpf_map_ops trie_map_ops = {
748         .map_meta_equal = bpf_map_meta_equal,
749         .map_alloc = trie_alloc,
750         .map_free = trie_free,
751         .map_get_next_key = trie_get_next_key,
752         .map_lookup_elem = trie_lookup_elem,
753         .map_update_elem = trie_update_elem,
754         .map_delete_elem = trie_delete_elem,
755         .map_lookup_batch = generic_map_lookup_batch,
756         .map_update_batch = generic_map_update_batch,
757         .map_delete_batch = generic_map_delete_batch,
758         .map_check_btf = trie_check_btf,
759         .map_mem_usage = trie_mem_usage,
760         .map_btf_id = &trie_map_btf_ids[0],
761 };
762 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php