~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/cgroup/cgroup.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  *  Generic process-grouping system.
  3  *
  4  *  Based originally on the cpuset system, extracted by Paul Menage
  5  *  Copyright (C) 2006 Google, Inc
  6  *
  7  *  Notifications support
  8  *  Copyright (C) 2009 Nokia Corporation
  9  *  Author: Kirill A. Shutemov
 10  *
 11  *  Copyright notices from the original cpuset code:
 12  *  --------------------------------------------------
 13  *  Copyright (C) 2003 BULL SA.
 14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 15  *
 16  *  Portions derived from Patrick Mochel's sysfs code.
 17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 18  *
 19  *  2003-10-10 Written by Simon Derr.
 20  *  2003-10-22 Updates by Stephen Hemminger.
 21  *  2004 May-July Rework by Paul Jackson.
 22  *  ---------------------------------------------------
 23  *
 24  *  This file is subject to the terms and conditions of the GNU General Public
 25  *  License.  See the file COPYING in the main directory of the Linux
 26  *  distribution for more details.
 27  */
 28 
 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 30 
 31 #include "cgroup-internal.h"
 32 
 33 #include <linux/bpf-cgroup.h>
 34 #include <linux/cred.h>
 35 #include <linux/errno.h>
 36 #include <linux/init_task.h>
 37 #include <linux/kernel.h>
 38 #include <linux/magic.h>
 39 #include <linux/mutex.h>
 40 #include <linux/mount.h>
 41 #include <linux/pagemap.h>
 42 #include <linux/proc_fs.h>
 43 #include <linux/rcupdate.h>
 44 #include <linux/sched.h>
 45 #include <linux/sched/task.h>
 46 #include <linux/slab.h>
 47 #include <linux/spinlock.h>
 48 #include <linux/percpu-rwsem.h>
 49 #include <linux/string.h>
 50 #include <linux/hashtable.h>
 51 #include <linux/idr.h>
 52 #include <linux/kthread.h>
 53 #include <linux/atomic.h>
 54 #include <linux/cpuset.h>
 55 #include <linux/proc_ns.h>
 56 #include <linux/nsproxy.h>
 57 #include <linux/file.h>
 58 #include <linux/fs_parser.h>
 59 #include <linux/sched/cputime.h>
 60 #include <linux/sched/deadline.h>
 61 #include <linux/psi.h>
 62 #include <net/sock.h>
 63 
 64 #define CREATE_TRACE_POINTS
 65 #include <trace/events/cgroup.h>
 66 
 67 #define CGROUP_FILE_NAME_MAX            (MAX_CGROUP_TYPE_NAMELEN +      \
 68                                          MAX_CFTYPE_NAME + 2)
 69 /* let's not notify more than 100 times per second */
 70 #define CGROUP_FILE_NOTIFY_MIN_INTV     DIV_ROUND_UP(HZ, 100)
 71 
 72 /*
 73  * To avoid confusing the compiler (and generating warnings) with code
 74  * that attempts to access what would be a 0-element array (i.e. sized
 75  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
 76  * constant expression can be added.
 77  */
 78 #define CGROUP_HAS_SUBSYS_CONFIG        (CGROUP_SUBSYS_COUNT > 0)
 79 
 80 /*
 81  * cgroup_mutex is the master lock.  Any modification to cgroup or its
 82  * hierarchy must be performed while holding it.
 83  *
 84  * css_set_lock protects task->cgroups pointer, the list of css_set
 85  * objects, and the chain of tasks off each css_set.
 86  *
 87  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
 88  * cgroup.h can use them for lockdep annotations.
 89  */
 90 DEFINE_MUTEX(cgroup_mutex);
 91 DEFINE_SPINLOCK(css_set_lock);
 92 
 93 #ifdef CONFIG_PROVE_RCU
 94 EXPORT_SYMBOL_GPL(cgroup_mutex);
 95 EXPORT_SYMBOL_GPL(css_set_lock);
 96 #endif
 97 
 98 DEFINE_SPINLOCK(trace_cgroup_path_lock);
 99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
100 static bool cgroup_debug __read_mostly;
101 
102 /*
103  * Protects cgroup_idr and css_idr so that IDs can be released without
104  * grabbing cgroup_mutex.
105  */
106 static DEFINE_SPINLOCK(cgroup_idr_lock);
107 
108 /*
109  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
110  * against file removal/re-creation across css hiding.
111  */
112 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
113 
114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
115 
116 #define cgroup_assert_mutex_or_rcu_locked()                             \
117         RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
118                            !lockdep_is_held(&cgroup_mutex),             \
119                            "cgroup_mutex or RCU read lock required");
120 
121 /*
122  * cgroup destruction makes heavy use of work items and there can be a lot
123  * of concurrent destructions.  Use a separate workqueue so that cgroup
124  * destruction work items don't end up filling up max_active of system_wq
125  * which may lead to deadlock.
126  */
127 static struct workqueue_struct *cgroup_destroy_wq;
128 
129 /* generate an array of cgroup subsystem pointers */
130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
131 struct cgroup_subsys *cgroup_subsys[] = {
132 #include <linux/cgroup_subsys.h>
133 };
134 #undef SUBSYS
135 
136 /* array of cgroup subsystem names */
137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
138 static const char *cgroup_subsys_name[] = {
139 #include <linux/cgroup_subsys.h>
140 };
141 #undef SUBSYS
142 
143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
144 #define SUBSYS(_x)                                                              \
145         DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);                 \
146         DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);                  \
147         EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);                      \
148         EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
149 #include <linux/cgroup_subsys.h>
150 #undef SUBSYS
151 
152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
153 static struct static_key_true *cgroup_subsys_enabled_key[] = {
154 #include <linux/cgroup_subsys.h>
155 };
156 #undef SUBSYS
157 
158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
160 #include <linux/cgroup_subsys.h>
161 };
162 #undef SUBSYS
163 
164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
165 
166 /* the default hierarchy */
167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
168 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
169 
170 /*
171  * The default hierarchy always exists but is hidden until mounted for the
172  * first time.  This is for backward compatibility.
173  */
174 static bool cgrp_dfl_visible;
175 
176 /* some controllers are not supported in the default hierarchy */
177 static u16 cgrp_dfl_inhibit_ss_mask;
178 
179 /* some controllers are implicitly enabled on the default hierarchy */
180 static u16 cgrp_dfl_implicit_ss_mask;
181 
182 /* some controllers can be threaded on the default hierarchy */
183 static u16 cgrp_dfl_threaded_ss_mask;
184 
185 /* The list of hierarchy roots */
186 LIST_HEAD(cgroup_roots);
187 static int cgroup_root_count;
188 
189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
190 static DEFINE_IDR(cgroup_hierarchy_idr);
191 
192 /*
193  * Assign a monotonically increasing serial number to csses.  It guarantees
194  * cgroups with bigger numbers are newer than those with smaller numbers.
195  * Also, as csses are always appended to the parent's ->children list, it
196  * guarantees that sibling csses are always sorted in the ascending serial
197  * number order on the list.  Protected by cgroup_mutex.
198  */
199 static u64 css_serial_nr_next = 1;
200 
201 /*
202  * These bitmasks identify subsystems with specific features to avoid
203  * having to do iterative checks repeatedly.
204  */
205 static u16 have_fork_callback __read_mostly;
206 static u16 have_exit_callback __read_mostly;
207 static u16 have_release_callback __read_mostly;
208 static u16 have_canfork_callback __read_mostly;
209 
210 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
211 
212 /* cgroup namespace for init task */
213 struct cgroup_namespace init_cgroup_ns = {
214         .ns.count       = REFCOUNT_INIT(2),
215         .user_ns        = &init_user_ns,
216         .ns.ops         = &cgroupns_operations,
217         .ns.inum        = PROC_CGROUP_INIT_INO,
218         .root_cset      = &init_css_set,
219 };
220 
221 static struct file_system_type cgroup2_fs_type;
222 static struct cftype cgroup_base_files[];
223 static struct cftype cgroup_psi_files[];
224 
225 /* cgroup optional features */
226 enum cgroup_opt_features {
227 #ifdef CONFIG_PSI
228         OPT_FEATURE_PRESSURE,
229 #endif
230         OPT_FEATURE_COUNT
231 };
232 
233 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
234 #ifdef CONFIG_PSI
235         "pressure",
236 #endif
237 };
238 
239 static u16 cgroup_feature_disable_mask __read_mostly;
240 
241 static int cgroup_apply_control(struct cgroup *cgrp);
242 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
243 static void css_task_iter_skip(struct css_task_iter *it,
244                                struct task_struct *task);
245 static int cgroup_destroy_locked(struct cgroup *cgrp);
246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
247                                               struct cgroup_subsys *ss);
248 static void css_release(struct percpu_ref *ref);
249 static void kill_css(struct cgroup_subsys_state *css);
250 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
251                               struct cgroup *cgrp, struct cftype cfts[],
252                               bool is_add);
253 
254 #ifdef CONFIG_DEBUG_CGROUP_REF
255 #define CGROUP_REF_FN_ATTRS     noinline
256 #define CGROUP_REF_EXPORT(fn)   EXPORT_SYMBOL_GPL(fn);
257 #include <linux/cgroup_refcnt.h>
258 #endif
259 
260 /**
261  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
262  * @ssid: subsys ID of interest
263  *
264  * cgroup_subsys_enabled() can only be used with literal subsys names which
265  * is fine for individual subsystems but unsuitable for cgroup core.  This
266  * is slower static_key_enabled() based test indexed by @ssid.
267  */
268 bool cgroup_ssid_enabled(int ssid)
269 {
270         if (!CGROUP_HAS_SUBSYS_CONFIG)
271                 return false;
272 
273         return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
274 }
275 
276 /**
277  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
278  * @cgrp: the cgroup of interest
279  *
280  * The default hierarchy is the v2 interface of cgroup and this function
281  * can be used to test whether a cgroup is on the default hierarchy for
282  * cases where a subsystem should behave differently depending on the
283  * interface version.
284  *
285  * List of changed behaviors:
286  *
287  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
288  *   and "name" are disallowed.
289  *
290  * - When mounting an existing superblock, mount options should match.
291  *
292  * - rename(2) is disallowed.
293  *
294  * - "tasks" is removed.  Everything should be at process granularity.  Use
295  *   "cgroup.procs" instead.
296  *
297  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
298  *   recycled in-between reads.
299  *
300  * - "release_agent" and "notify_on_release" are removed.  Replacement
301  *   notification mechanism will be implemented.
302  *
303  * - "cgroup.clone_children" is removed.
304  *
305  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
306  *   and its descendants contain no task; otherwise, 1.  The file also
307  *   generates kernfs notification which can be monitored through poll and
308  *   [di]notify when the value of the file changes.
309  *
310  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
311  *   take masks of ancestors with non-empty cpus/mems, instead of being
312  *   moved to an ancestor.
313  *
314  * - cpuset: a task can be moved into an empty cpuset, and again it takes
315  *   masks of ancestors.
316  *
317  * - blkcg: blk-throttle becomes properly hierarchical.
318  */
319 bool cgroup_on_dfl(const struct cgroup *cgrp)
320 {
321         return cgrp->root == &cgrp_dfl_root;
322 }
323 
324 /* IDR wrappers which synchronize using cgroup_idr_lock */
325 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
326                             gfp_t gfp_mask)
327 {
328         int ret;
329 
330         idr_preload(gfp_mask);
331         spin_lock_bh(&cgroup_idr_lock);
332         ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
333         spin_unlock_bh(&cgroup_idr_lock);
334         idr_preload_end();
335         return ret;
336 }
337 
338 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
339 {
340         void *ret;
341 
342         spin_lock_bh(&cgroup_idr_lock);
343         ret = idr_replace(idr, ptr, id);
344         spin_unlock_bh(&cgroup_idr_lock);
345         return ret;
346 }
347 
348 static void cgroup_idr_remove(struct idr *idr, int id)
349 {
350         spin_lock_bh(&cgroup_idr_lock);
351         idr_remove(idr, id);
352         spin_unlock_bh(&cgroup_idr_lock);
353 }
354 
355 static bool cgroup_has_tasks(struct cgroup *cgrp)
356 {
357         return cgrp->nr_populated_csets;
358 }
359 
360 static bool cgroup_is_threaded(struct cgroup *cgrp)
361 {
362         return cgrp->dom_cgrp != cgrp;
363 }
364 
365 /* can @cgrp host both domain and threaded children? */
366 static bool cgroup_is_mixable(struct cgroup *cgrp)
367 {
368         /*
369          * Root isn't under domain level resource control exempting it from
370          * the no-internal-process constraint, so it can serve as a thread
371          * root and a parent of resource domains at the same time.
372          */
373         return !cgroup_parent(cgrp);
374 }
375 
376 /* can @cgrp become a thread root? Should always be true for a thread root */
377 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
378 {
379         /* mixables don't care */
380         if (cgroup_is_mixable(cgrp))
381                 return true;
382 
383         /* domain roots can't be nested under threaded */
384         if (cgroup_is_threaded(cgrp))
385                 return false;
386 
387         /* can only have either domain or threaded children */
388         if (cgrp->nr_populated_domain_children)
389                 return false;
390 
391         /* and no domain controllers can be enabled */
392         if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
393                 return false;
394 
395         return true;
396 }
397 
398 /* is @cgrp root of a threaded subtree? */
399 static bool cgroup_is_thread_root(struct cgroup *cgrp)
400 {
401         /* thread root should be a domain */
402         if (cgroup_is_threaded(cgrp))
403                 return false;
404 
405         /* a domain w/ threaded children is a thread root */
406         if (cgrp->nr_threaded_children)
407                 return true;
408 
409         /*
410          * A domain which has tasks and explicit threaded controllers
411          * enabled is a thread root.
412          */
413         if (cgroup_has_tasks(cgrp) &&
414             (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
415                 return true;
416 
417         return false;
418 }
419 
420 /* a domain which isn't connected to the root w/o brekage can't be used */
421 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
422 {
423         /* the cgroup itself can be a thread root */
424         if (cgroup_is_threaded(cgrp))
425                 return false;
426 
427         /* but the ancestors can't be unless mixable */
428         while ((cgrp = cgroup_parent(cgrp))) {
429                 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
430                         return false;
431                 if (cgroup_is_threaded(cgrp))
432                         return false;
433         }
434 
435         return true;
436 }
437 
438 /* subsystems visibly enabled on a cgroup */
439 static u16 cgroup_control(struct cgroup *cgrp)
440 {
441         struct cgroup *parent = cgroup_parent(cgrp);
442         u16 root_ss_mask = cgrp->root->subsys_mask;
443 
444         if (parent) {
445                 u16 ss_mask = parent->subtree_control;
446 
447                 /* threaded cgroups can only have threaded controllers */
448                 if (cgroup_is_threaded(cgrp))
449                         ss_mask &= cgrp_dfl_threaded_ss_mask;
450                 return ss_mask;
451         }
452 
453         if (cgroup_on_dfl(cgrp))
454                 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
455                                   cgrp_dfl_implicit_ss_mask);
456         return root_ss_mask;
457 }
458 
459 /* subsystems enabled on a cgroup */
460 static u16 cgroup_ss_mask(struct cgroup *cgrp)
461 {
462         struct cgroup *parent = cgroup_parent(cgrp);
463 
464         if (parent) {
465                 u16 ss_mask = parent->subtree_ss_mask;
466 
467                 /* threaded cgroups can only have threaded controllers */
468                 if (cgroup_is_threaded(cgrp))
469                         ss_mask &= cgrp_dfl_threaded_ss_mask;
470                 return ss_mask;
471         }
472 
473         return cgrp->root->subsys_mask;
474 }
475 
476 /**
477  * cgroup_css - obtain a cgroup's css for the specified subsystem
478  * @cgrp: the cgroup of interest
479  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
480  *
481  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
482  * function must be called either under cgroup_mutex or rcu_read_lock() and
483  * the caller is responsible for pinning the returned css if it wants to
484  * keep accessing it outside the said locks.  This function may return
485  * %NULL if @cgrp doesn't have @subsys_id enabled.
486  */
487 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
488                                               struct cgroup_subsys *ss)
489 {
490         if (CGROUP_HAS_SUBSYS_CONFIG && ss)
491                 return rcu_dereference_check(cgrp->subsys[ss->id],
492                                         lockdep_is_held(&cgroup_mutex));
493         else
494                 return &cgrp->self;
495 }
496 
497 /**
498  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499  * @cgrp: the cgroup of interest
500  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
501  *
502  * Similar to cgroup_css() but returns the effective css, which is defined
503  * as the matching css of the nearest ancestor including self which has @ss
504  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
505  * function is guaranteed to return non-NULL css.
506  */
507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508                                                         struct cgroup_subsys *ss)
509 {
510         lockdep_assert_held(&cgroup_mutex);
511 
512         if (!ss)
513                 return &cgrp->self;
514 
515         /*
516          * This function is used while updating css associations and thus
517          * can't test the csses directly.  Test ss_mask.
518          */
519         while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
520                 cgrp = cgroup_parent(cgrp);
521                 if (!cgrp)
522                         return NULL;
523         }
524 
525         return cgroup_css(cgrp, ss);
526 }
527 
528 /**
529  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530  * @cgrp: the cgroup of interest
531  * @ss: the subsystem of interest
532  *
533  * Find and get the effective css of @cgrp for @ss.  The effective css is
534  * defined as the matching css of the nearest ancestor including self which
535  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
536  * the root css is returned, so this function always returns a valid css.
537  *
538  * The returned css is not guaranteed to be online, and therefore it is the
539  * callers responsibility to try get a reference for it.
540  */
541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542                                          struct cgroup_subsys *ss)
543 {
544         struct cgroup_subsys_state *css;
545 
546         if (!CGROUP_HAS_SUBSYS_CONFIG)
547                 return NULL;
548 
549         do {
550                 css = cgroup_css(cgrp, ss);
551 
552                 if (css)
553                         return css;
554                 cgrp = cgroup_parent(cgrp);
555         } while (cgrp);
556 
557         return init_css_set.subsys[ss->id];
558 }
559 
560 /**
561  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
562  * @cgrp: the cgroup of interest
563  * @ss: the subsystem of interest
564  *
565  * Find and get the effective css of @cgrp for @ss.  The effective css is
566  * defined as the matching css of the nearest ancestor including self which
567  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
568  * the root css is returned, so this function always returns a valid css.
569  * The returned css must be put using css_put().
570  */
571 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
572                                              struct cgroup_subsys *ss)
573 {
574         struct cgroup_subsys_state *css;
575 
576         if (!CGROUP_HAS_SUBSYS_CONFIG)
577                 return NULL;
578 
579         rcu_read_lock();
580 
581         do {
582                 css = cgroup_css(cgrp, ss);
583 
584                 if (css && css_tryget_online(css))
585                         goto out_unlock;
586                 cgrp = cgroup_parent(cgrp);
587         } while (cgrp);
588 
589         css = init_css_set.subsys[ss->id];
590         css_get(css);
591 out_unlock:
592         rcu_read_unlock();
593         return css;
594 }
595 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
596 
597 static void cgroup_get_live(struct cgroup *cgrp)
598 {
599         WARN_ON_ONCE(cgroup_is_dead(cgrp));
600         cgroup_get(cgrp);
601 }
602 
603 /**
604  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
605  * is responsible for taking the css_set_lock.
606  * @cgrp: the cgroup in question
607  */
608 int __cgroup_task_count(const struct cgroup *cgrp)
609 {
610         int count = 0;
611         struct cgrp_cset_link *link;
612 
613         lockdep_assert_held(&css_set_lock);
614 
615         list_for_each_entry(link, &cgrp->cset_links, cset_link)
616                 count += link->cset->nr_tasks;
617 
618         return count;
619 }
620 
621 /**
622  * cgroup_task_count - count the number of tasks in a cgroup.
623  * @cgrp: the cgroup in question
624  */
625 int cgroup_task_count(const struct cgroup *cgrp)
626 {
627         int count;
628 
629         spin_lock_irq(&css_set_lock);
630         count = __cgroup_task_count(cgrp);
631         spin_unlock_irq(&css_set_lock);
632 
633         return count;
634 }
635 
636 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
637 {
638         struct cgroup *cgrp = of->kn->parent->priv;
639         struct cftype *cft = of_cft(of);
640 
641         /*
642          * This is open and unprotected implementation of cgroup_css().
643          * seq_css() is only called from a kernfs file operation which has
644          * an active reference on the file.  Because all the subsystem
645          * files are drained before a css is disassociated with a cgroup,
646          * the matching css from the cgroup's subsys table is guaranteed to
647          * be and stay valid until the enclosing operation is complete.
648          */
649         if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
650                 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
651         else
652                 return &cgrp->self;
653 }
654 EXPORT_SYMBOL_GPL(of_css);
655 
656 /**
657  * for_each_css - iterate all css's of a cgroup
658  * @css: the iteration cursor
659  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
660  * @cgrp: the target cgroup to iterate css's of
661  *
662  * Should be called under cgroup_mutex.
663  */
664 #define for_each_css(css, ssid, cgrp)                                   \
665         for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
666                 if (!((css) = rcu_dereference_check(                    \
667                                 (cgrp)->subsys[(ssid)],                 \
668                                 lockdep_is_held(&cgroup_mutex)))) { }   \
669                 else
670 
671 /**
672  * do_each_subsys_mask - filter for_each_subsys with a bitmask
673  * @ss: the iteration cursor
674  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
675  * @ss_mask: the bitmask
676  *
677  * The block will only run for cases where the ssid-th bit (1 << ssid) of
678  * @ss_mask is set.
679  */
680 #define do_each_subsys_mask(ss, ssid, ss_mask) do {                     \
681         unsigned long __ss_mask = (ss_mask);                            \
682         if (!CGROUP_HAS_SUBSYS_CONFIG) {                                \
683                 (ssid) = 0;                                             \
684                 break;                                                  \
685         }                                                               \
686         for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {       \
687                 (ss) = cgroup_subsys[ssid];                             \
688                 {
689 
690 #define while_each_subsys_mask()                                        \
691                 }                                                       \
692         }                                                               \
693 } while (false)
694 
695 /* iterate over child cgrps, lock should be held throughout iteration */
696 #define cgroup_for_each_live_child(child, cgrp)                         \
697         list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
698                 if (({ lockdep_assert_held(&cgroup_mutex);              \
699                        cgroup_is_dead(child); }))                       \
700                         ;                                               \
701                 else
702 
703 /* walk live descendants in pre order */
704 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)          \
705         css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))  \
706                 if (({ lockdep_assert_held(&cgroup_mutex);              \
707                        (dsct) = (d_css)->cgroup;                        \
708                        cgroup_is_dead(dsct); }))                        \
709                         ;                                               \
710                 else
711 
712 /* walk live descendants in postorder */
713 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)         \
714         css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
715                 if (({ lockdep_assert_held(&cgroup_mutex);              \
716                        (dsct) = (d_css)->cgroup;                        \
717                        cgroup_is_dead(dsct); }))                        \
718                         ;                                               \
719                 else
720 
721 /*
722  * The default css_set - used by init and its children prior to any
723  * hierarchies being mounted. It contains a pointer to the root state
724  * for each subsystem. Also used to anchor the list of css_sets. Not
725  * reference-counted, to improve performance when child cgroups
726  * haven't been created.
727  */
728 struct css_set init_css_set = {
729         .refcount               = REFCOUNT_INIT(1),
730         .dom_cset               = &init_css_set,
731         .tasks                  = LIST_HEAD_INIT(init_css_set.tasks),
732         .mg_tasks               = LIST_HEAD_INIT(init_css_set.mg_tasks),
733         .dying_tasks            = LIST_HEAD_INIT(init_css_set.dying_tasks),
734         .task_iters             = LIST_HEAD_INIT(init_css_set.task_iters),
735         .threaded_csets         = LIST_HEAD_INIT(init_css_set.threaded_csets),
736         .cgrp_links             = LIST_HEAD_INIT(init_css_set.cgrp_links),
737         .mg_src_preload_node    = LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
738         .mg_dst_preload_node    = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
739         .mg_node                = LIST_HEAD_INIT(init_css_set.mg_node),
740 
741         /*
742          * The following field is re-initialized when this cset gets linked
743          * in cgroup_init().  However, let's initialize the field
744          * statically too so that the default cgroup can be accessed safely
745          * early during boot.
746          */
747         .dfl_cgrp               = &cgrp_dfl_root.cgrp,
748 };
749 
750 static int css_set_count        = 1;    /* 1 for init_css_set */
751 
752 static bool css_set_threaded(struct css_set *cset)
753 {
754         return cset->dom_cset != cset;
755 }
756 
757 /**
758  * css_set_populated - does a css_set contain any tasks?
759  * @cset: target css_set
760  *
761  * css_set_populated() should be the same as !!cset->nr_tasks at steady
762  * state. However, css_set_populated() can be called while a task is being
763  * added to or removed from the linked list before the nr_tasks is
764  * properly updated. Hence, we can't just look at ->nr_tasks here.
765  */
766 static bool css_set_populated(struct css_set *cset)
767 {
768         lockdep_assert_held(&css_set_lock);
769 
770         return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
771 }
772 
773 /**
774  * cgroup_update_populated - update the populated count of a cgroup
775  * @cgrp: the target cgroup
776  * @populated: inc or dec populated count
777  *
778  * One of the css_sets associated with @cgrp is either getting its first
779  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
780  * count is propagated towards root so that a given cgroup's
781  * nr_populated_children is zero iff none of its descendants contain any
782  * tasks.
783  *
784  * @cgrp's interface file "cgroup.populated" is zero if both
785  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
786  * 1 otherwise.  When the sum changes from or to zero, userland is notified
787  * that the content of the interface file has changed.  This can be used to
788  * detect when @cgrp and its descendants become populated or empty.
789  */
790 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
791 {
792         struct cgroup *child = NULL;
793         int adj = populated ? 1 : -1;
794 
795         lockdep_assert_held(&css_set_lock);
796 
797         do {
798                 bool was_populated = cgroup_is_populated(cgrp);
799 
800                 if (!child) {
801                         cgrp->nr_populated_csets += adj;
802                 } else {
803                         if (cgroup_is_threaded(child))
804                                 cgrp->nr_populated_threaded_children += adj;
805                         else
806                                 cgrp->nr_populated_domain_children += adj;
807                 }
808 
809                 if (was_populated == cgroup_is_populated(cgrp))
810                         break;
811 
812                 cgroup1_check_for_release(cgrp);
813                 TRACE_CGROUP_PATH(notify_populated, cgrp,
814                                   cgroup_is_populated(cgrp));
815                 cgroup_file_notify(&cgrp->events_file);
816 
817                 child = cgrp;
818                 cgrp = cgroup_parent(cgrp);
819         } while (cgrp);
820 }
821 
822 /**
823  * css_set_update_populated - update populated state of a css_set
824  * @cset: target css_set
825  * @populated: whether @cset is populated or depopulated
826  *
827  * @cset is either getting the first task or losing the last.  Update the
828  * populated counters of all associated cgroups accordingly.
829  */
830 static void css_set_update_populated(struct css_set *cset, bool populated)
831 {
832         struct cgrp_cset_link *link;
833 
834         lockdep_assert_held(&css_set_lock);
835 
836         list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
837                 cgroup_update_populated(link->cgrp, populated);
838 }
839 
840 /*
841  * @task is leaving, advance task iterators which are pointing to it so
842  * that they can resume at the next position.  Advancing an iterator might
843  * remove it from the list, use safe walk.  See css_task_iter_skip() for
844  * details.
845  */
846 static void css_set_skip_task_iters(struct css_set *cset,
847                                     struct task_struct *task)
848 {
849         struct css_task_iter *it, *pos;
850 
851         list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
852                 css_task_iter_skip(it, task);
853 }
854 
855 /**
856  * css_set_move_task - move a task from one css_set to another
857  * @task: task being moved
858  * @from_cset: css_set @task currently belongs to (may be NULL)
859  * @to_cset: new css_set @task is being moved to (may be NULL)
860  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
861  *
862  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
863  * css_set, @from_cset can be NULL.  If @task is being disassociated
864  * instead of moved, @to_cset can be NULL.
865  *
866  * This function automatically handles populated counter updates and
867  * css_task_iter adjustments but the caller is responsible for managing
868  * @from_cset and @to_cset's reference counts.
869  */
870 static void css_set_move_task(struct task_struct *task,
871                               struct css_set *from_cset, struct css_set *to_cset,
872                               bool use_mg_tasks)
873 {
874         lockdep_assert_held(&css_set_lock);
875 
876         if (to_cset && !css_set_populated(to_cset))
877                 css_set_update_populated(to_cset, true);
878 
879         if (from_cset) {
880                 WARN_ON_ONCE(list_empty(&task->cg_list));
881 
882                 css_set_skip_task_iters(from_cset, task);
883                 list_del_init(&task->cg_list);
884                 if (!css_set_populated(from_cset))
885                         css_set_update_populated(from_cset, false);
886         } else {
887                 WARN_ON_ONCE(!list_empty(&task->cg_list));
888         }
889 
890         if (to_cset) {
891                 /*
892                  * We are synchronized through cgroup_threadgroup_rwsem
893                  * against PF_EXITING setting such that we can't race
894                  * against cgroup_exit()/cgroup_free() dropping the css_set.
895                  */
896                 WARN_ON_ONCE(task->flags & PF_EXITING);
897 
898                 cgroup_move_task(task, to_cset);
899                 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
900                                                              &to_cset->tasks);
901         }
902 }
903 
904 /*
905  * hash table for cgroup groups. This improves the performance to find
906  * an existing css_set. This hash doesn't (currently) take into
907  * account cgroups in empty hierarchies.
908  */
909 #define CSS_SET_HASH_BITS       7
910 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
911 
912 static unsigned long css_set_hash(struct cgroup_subsys_state **css)
913 {
914         unsigned long key = 0UL;
915         struct cgroup_subsys *ss;
916         int i;
917 
918         for_each_subsys(ss, i)
919                 key += (unsigned long)css[i];
920         key = (key >> 16) ^ key;
921 
922         return key;
923 }
924 
925 void put_css_set_locked(struct css_set *cset)
926 {
927         struct cgrp_cset_link *link, *tmp_link;
928         struct cgroup_subsys *ss;
929         int ssid;
930 
931         lockdep_assert_held(&css_set_lock);
932 
933         if (!refcount_dec_and_test(&cset->refcount))
934                 return;
935 
936         WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
937 
938         /* This css_set is dead. Unlink it and release cgroup and css refs */
939         for_each_subsys(ss, ssid) {
940                 list_del(&cset->e_cset_node[ssid]);
941                 css_put(cset->subsys[ssid]);
942         }
943         hash_del(&cset->hlist);
944         css_set_count--;
945 
946         list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
947                 list_del(&link->cset_link);
948                 list_del(&link->cgrp_link);
949                 if (cgroup_parent(link->cgrp))
950                         cgroup_put(link->cgrp);
951                 kfree(link);
952         }
953 
954         if (css_set_threaded(cset)) {
955                 list_del(&cset->threaded_csets_node);
956                 put_css_set_locked(cset->dom_cset);
957         }
958 
959         kfree_rcu(cset, rcu_head);
960 }
961 
962 /**
963  * compare_css_sets - helper function for find_existing_css_set().
964  * @cset: candidate css_set being tested
965  * @old_cset: existing css_set for a task
966  * @new_cgrp: cgroup that's being entered by the task
967  * @template: desired set of css pointers in css_set (pre-calculated)
968  *
969  * Returns true if "cset" matches "old_cset" except for the hierarchy
970  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
971  */
972 static bool compare_css_sets(struct css_set *cset,
973                              struct css_set *old_cset,
974                              struct cgroup *new_cgrp,
975                              struct cgroup_subsys_state *template[])
976 {
977         struct cgroup *new_dfl_cgrp;
978         struct list_head *l1, *l2;
979 
980         /*
981          * On the default hierarchy, there can be csets which are
982          * associated with the same set of cgroups but different csses.
983          * Let's first ensure that csses match.
984          */
985         if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
986                 return false;
987 
988 
989         /* @cset's domain should match the default cgroup's */
990         if (cgroup_on_dfl(new_cgrp))
991                 new_dfl_cgrp = new_cgrp;
992         else
993                 new_dfl_cgrp = old_cset->dfl_cgrp;
994 
995         if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
996                 return false;
997 
998         /*
999          * Compare cgroup pointers in order to distinguish between
1000          * different cgroups in hierarchies.  As different cgroups may
1001          * share the same effective css, this comparison is always
1002          * necessary.
1003          */
1004         l1 = &cset->cgrp_links;
1005         l2 = &old_cset->cgrp_links;
1006         while (1) {
1007                 struct cgrp_cset_link *link1, *link2;
1008                 struct cgroup *cgrp1, *cgrp2;
1009 
1010                 l1 = l1->next;
1011                 l2 = l2->next;
1012                 /* See if we reached the end - both lists are equal length. */
1013                 if (l1 == &cset->cgrp_links) {
1014                         BUG_ON(l2 != &old_cset->cgrp_links);
1015                         break;
1016                 } else {
1017                         BUG_ON(l2 == &old_cset->cgrp_links);
1018                 }
1019                 /* Locate the cgroups associated with these links. */
1020                 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1021                 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1022                 cgrp1 = link1->cgrp;
1023                 cgrp2 = link2->cgrp;
1024                 /* Hierarchies should be linked in the same order. */
1025                 BUG_ON(cgrp1->root != cgrp2->root);
1026 
1027                 /*
1028                  * If this hierarchy is the hierarchy of the cgroup
1029                  * that's changing, then we need to check that this
1030                  * css_set points to the new cgroup; if it's any other
1031                  * hierarchy, then this css_set should point to the
1032                  * same cgroup as the old css_set.
1033                  */
1034                 if (cgrp1->root == new_cgrp->root) {
1035                         if (cgrp1 != new_cgrp)
1036                                 return false;
1037                 } else {
1038                         if (cgrp1 != cgrp2)
1039                                 return false;
1040                 }
1041         }
1042         return true;
1043 }
1044 
1045 /**
1046  * find_existing_css_set - init css array and find the matching css_set
1047  * @old_cset: the css_set that we're using before the cgroup transition
1048  * @cgrp: the cgroup that we're moving into
1049  * @template: out param for the new set of csses, should be clear on entry
1050  */
1051 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1052                                         struct cgroup *cgrp,
1053                                         struct cgroup_subsys_state **template)
1054 {
1055         struct cgroup_root *root = cgrp->root;
1056         struct cgroup_subsys *ss;
1057         struct css_set *cset;
1058         unsigned long key;
1059         int i;
1060 
1061         /*
1062          * Build the set of subsystem state objects that we want to see in the
1063          * new css_set. While subsystems can change globally, the entries here
1064          * won't change, so no need for locking.
1065          */
1066         for_each_subsys(ss, i) {
1067                 if (root->subsys_mask & (1UL << i)) {
1068                         /*
1069                          * @ss is in this hierarchy, so we want the
1070                          * effective css from @cgrp.
1071                          */
1072                         template[i] = cgroup_e_css_by_mask(cgrp, ss);
1073                 } else {
1074                         /*
1075                          * @ss is not in this hierarchy, so we don't want
1076                          * to change the css.
1077                          */
1078                         template[i] = old_cset->subsys[i];
1079                 }
1080         }
1081 
1082         key = css_set_hash(template);
1083         hash_for_each_possible(css_set_table, cset, hlist, key) {
1084                 if (!compare_css_sets(cset, old_cset, cgrp, template))
1085                         continue;
1086 
1087                 /* This css_set matches what we need */
1088                 return cset;
1089         }
1090 
1091         /* No existing cgroup group matched */
1092         return NULL;
1093 }
1094 
1095 static void free_cgrp_cset_links(struct list_head *links_to_free)
1096 {
1097         struct cgrp_cset_link *link, *tmp_link;
1098 
1099         list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1100                 list_del(&link->cset_link);
1101                 kfree(link);
1102         }
1103 }
1104 
1105 /**
1106  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1107  * @count: the number of links to allocate
1108  * @tmp_links: list_head the allocated links are put on
1109  *
1110  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1111  * through ->cset_link.  Returns 0 on success or -errno.
1112  */
1113 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1114 {
1115         struct cgrp_cset_link *link;
1116         int i;
1117 
1118         INIT_LIST_HEAD(tmp_links);
1119 
1120         for (i = 0; i < count; i++) {
1121                 link = kzalloc(sizeof(*link), GFP_KERNEL);
1122                 if (!link) {
1123                         free_cgrp_cset_links(tmp_links);
1124                         return -ENOMEM;
1125                 }
1126                 list_add(&link->cset_link, tmp_links);
1127         }
1128         return 0;
1129 }
1130 
1131 /**
1132  * link_css_set - a helper function to link a css_set to a cgroup
1133  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1134  * @cset: the css_set to be linked
1135  * @cgrp: the destination cgroup
1136  */
1137 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1138                          struct cgroup *cgrp)
1139 {
1140         struct cgrp_cset_link *link;
1141 
1142         BUG_ON(list_empty(tmp_links));
1143 
1144         if (cgroup_on_dfl(cgrp))
1145                 cset->dfl_cgrp = cgrp;
1146 
1147         link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1148         link->cset = cset;
1149         link->cgrp = cgrp;
1150 
1151         /*
1152          * Always add links to the tail of the lists so that the lists are
1153          * in chronological order.
1154          */
1155         list_move_tail(&link->cset_link, &cgrp->cset_links);
1156         list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1157 
1158         if (cgroup_parent(cgrp))
1159                 cgroup_get_live(cgrp);
1160 }
1161 
1162 /**
1163  * find_css_set - return a new css_set with one cgroup updated
1164  * @old_cset: the baseline css_set
1165  * @cgrp: the cgroup to be updated
1166  *
1167  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1168  * substituted into the appropriate hierarchy.
1169  */
1170 static struct css_set *find_css_set(struct css_set *old_cset,
1171                                     struct cgroup *cgrp)
1172 {
1173         struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1174         struct css_set *cset;
1175         struct list_head tmp_links;
1176         struct cgrp_cset_link *link;
1177         struct cgroup_subsys *ss;
1178         unsigned long key;
1179         int ssid;
1180 
1181         lockdep_assert_held(&cgroup_mutex);
1182 
1183         /* First see if we already have a cgroup group that matches
1184          * the desired set */
1185         spin_lock_irq(&css_set_lock);
1186         cset = find_existing_css_set(old_cset, cgrp, template);
1187         if (cset)
1188                 get_css_set(cset);
1189         spin_unlock_irq(&css_set_lock);
1190 
1191         if (cset)
1192                 return cset;
1193 
1194         cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1195         if (!cset)
1196                 return NULL;
1197 
1198         /* Allocate all the cgrp_cset_link objects that we'll need */
1199         if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1200                 kfree(cset);
1201                 return NULL;
1202         }
1203 
1204         refcount_set(&cset->refcount, 1);
1205         cset->dom_cset = cset;
1206         INIT_LIST_HEAD(&cset->tasks);
1207         INIT_LIST_HEAD(&cset->mg_tasks);
1208         INIT_LIST_HEAD(&cset->dying_tasks);
1209         INIT_LIST_HEAD(&cset->task_iters);
1210         INIT_LIST_HEAD(&cset->threaded_csets);
1211         INIT_HLIST_NODE(&cset->hlist);
1212         INIT_LIST_HEAD(&cset->cgrp_links);
1213         INIT_LIST_HEAD(&cset->mg_src_preload_node);
1214         INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1215         INIT_LIST_HEAD(&cset->mg_node);
1216 
1217         /* Copy the set of subsystem state objects generated in
1218          * find_existing_css_set() */
1219         memcpy(cset->subsys, template, sizeof(cset->subsys));
1220 
1221         spin_lock_irq(&css_set_lock);
1222         /* Add reference counts and links from the new css_set. */
1223         list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224                 struct cgroup *c = link->cgrp;
1225 
1226                 if (c->root == cgrp->root)
1227                         c = cgrp;
1228                 link_css_set(&tmp_links, cset, c);
1229         }
1230 
1231         BUG_ON(!list_empty(&tmp_links));
1232 
1233         css_set_count++;
1234 
1235         /* Add @cset to the hash table */
1236         key = css_set_hash(cset->subsys);
1237         hash_add(css_set_table, &cset->hlist, key);
1238 
1239         for_each_subsys(ss, ssid) {
1240                 struct cgroup_subsys_state *css = cset->subsys[ssid];
1241 
1242                 list_add_tail(&cset->e_cset_node[ssid],
1243                               &css->cgroup->e_csets[ssid]);
1244                 css_get(css);
1245         }
1246 
1247         spin_unlock_irq(&css_set_lock);
1248 
1249         /*
1250          * If @cset should be threaded, look up the matching dom_cset and
1251          * link them up.  We first fully initialize @cset then look for the
1252          * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1253          * to stay empty until we return.
1254          */
1255         if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256                 struct css_set *dcset;
1257 
1258                 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259                 if (!dcset) {
1260                         put_css_set(cset);
1261                         return NULL;
1262                 }
1263 
1264                 spin_lock_irq(&css_set_lock);
1265                 cset->dom_cset = dcset;
1266                 list_add_tail(&cset->threaded_csets_node,
1267                               &dcset->threaded_csets);
1268                 spin_unlock_irq(&css_set_lock);
1269         }
1270 
1271         return cset;
1272 }
1273 
1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275 {
1276         struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1277 
1278         return root_cgrp->root;
1279 }
1280 
1281 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1282 {
1283         bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1284 
1285         /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1286         if (favor && !favoring) {
1287                 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1288                 root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1289         } else if (!favor && favoring) {
1290                 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1291                 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1292         }
1293 }
1294 
1295 static int cgroup_init_root_id(struct cgroup_root *root)
1296 {
1297         int id;
1298 
1299         lockdep_assert_held(&cgroup_mutex);
1300 
1301         id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1302         if (id < 0)
1303                 return id;
1304 
1305         root->hierarchy_id = id;
1306         return 0;
1307 }
1308 
1309 static void cgroup_exit_root_id(struct cgroup_root *root)
1310 {
1311         lockdep_assert_held(&cgroup_mutex);
1312 
1313         idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1314 }
1315 
1316 void cgroup_free_root(struct cgroup_root *root)
1317 {
1318         kfree_rcu(root, rcu);
1319 }
1320 
1321 static void cgroup_destroy_root(struct cgroup_root *root)
1322 {
1323         struct cgroup *cgrp = &root->cgrp;
1324         struct cgrp_cset_link *link, *tmp_link;
1325 
1326         trace_cgroup_destroy_root(root);
1327 
1328         cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1329 
1330         BUG_ON(atomic_read(&root->nr_cgrps));
1331         BUG_ON(!list_empty(&cgrp->self.children));
1332 
1333         /* Rebind all subsystems back to the default hierarchy */
1334         WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1335 
1336         /*
1337          * Release all the links from cset_links to this hierarchy's
1338          * root cgroup
1339          */
1340         spin_lock_irq(&css_set_lock);
1341 
1342         list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1343                 list_del(&link->cset_link);
1344                 list_del(&link->cgrp_link);
1345                 kfree(link);
1346         }
1347 
1348         spin_unlock_irq(&css_set_lock);
1349 
1350         WARN_ON_ONCE(list_empty(&root->root_list));
1351         list_del_rcu(&root->root_list);
1352         cgroup_root_count--;
1353 
1354         if (!have_favordynmods)
1355                 cgroup_favor_dynmods(root, false);
1356 
1357         cgroup_exit_root_id(root);
1358 
1359         cgroup_unlock();
1360 
1361         cgroup_rstat_exit(cgrp);
1362         kernfs_destroy_root(root->kf_root);
1363         cgroup_free_root(root);
1364 }
1365 
1366 /*
1367  * Returned cgroup is without refcount but it's valid as long as cset pins it.
1368  */
1369 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1370                                             struct cgroup_root *root)
1371 {
1372         struct cgroup *res_cgroup = NULL;
1373 
1374         if (cset == &init_css_set) {
1375                 res_cgroup = &root->cgrp;
1376         } else if (root == &cgrp_dfl_root) {
1377                 res_cgroup = cset->dfl_cgrp;
1378         } else {
1379                 struct cgrp_cset_link *link;
1380                 lockdep_assert_held(&css_set_lock);
1381 
1382                 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1383                         struct cgroup *c = link->cgrp;
1384 
1385                         if (c->root == root) {
1386                                 res_cgroup = c;
1387                                 break;
1388                         }
1389                 }
1390         }
1391 
1392         /*
1393          * If cgroup_mutex is not held, the cgrp_cset_link will be freed
1394          * before we remove the cgroup root from the root_list. Consequently,
1395          * when accessing a cgroup root, the cset_link may have already been
1396          * freed, resulting in a NULL res_cgroup. However, by holding the
1397          * cgroup_mutex, we ensure that res_cgroup can't be NULL.
1398          * If we don't hold cgroup_mutex in the caller, we must do the NULL
1399          * check.
1400          */
1401         return res_cgroup;
1402 }
1403 
1404 /*
1405  * look up cgroup associated with current task's cgroup namespace on the
1406  * specified hierarchy
1407  */
1408 static struct cgroup *
1409 current_cgns_cgroup_from_root(struct cgroup_root *root)
1410 {
1411         struct cgroup *res = NULL;
1412         struct css_set *cset;
1413 
1414         lockdep_assert_held(&css_set_lock);
1415 
1416         rcu_read_lock();
1417 
1418         cset = current->nsproxy->cgroup_ns->root_cset;
1419         res = __cset_cgroup_from_root(cset, root);
1420 
1421         rcu_read_unlock();
1422 
1423         /*
1424          * The namespace_sem is held by current, so the root cgroup can't
1425          * be umounted. Therefore, we can ensure that the res is non-NULL.
1426          */
1427         WARN_ON_ONCE(!res);
1428         return res;
1429 }
1430 
1431 /*
1432  * Look up cgroup associated with current task's cgroup namespace on the default
1433  * hierarchy.
1434  *
1435  * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1436  * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1437  *   pointers.
1438  * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1439  * - As a bonus returned cgrp is pinned with the current because it cannot
1440  *   switch cgroup_ns asynchronously.
1441  */
1442 static struct cgroup *current_cgns_cgroup_dfl(void)
1443 {
1444         struct css_set *cset;
1445 
1446         if (current->nsproxy) {
1447                 cset = current->nsproxy->cgroup_ns->root_cset;
1448                 return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1449         } else {
1450                 /*
1451                  * NOTE: This function may be called from bpf_cgroup_from_id()
1452                  * on a task which has already passed exit_task_namespaces() and
1453                  * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1454                  * cgroups visible for lookups.
1455                  */
1456                 return &cgrp_dfl_root.cgrp;
1457         }
1458 }
1459 
1460 /* look up cgroup associated with given css_set on the specified hierarchy */
1461 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1462                                             struct cgroup_root *root)
1463 {
1464         lockdep_assert_held(&css_set_lock);
1465 
1466         return __cset_cgroup_from_root(cset, root);
1467 }
1468 
1469 /*
1470  * Return the cgroup for "task" from the given hierarchy. Must be
1471  * called with css_set_lock held to prevent task's groups from being modified.
1472  * Must be called with either cgroup_mutex or rcu read lock to prevent the
1473  * cgroup root from being destroyed.
1474  */
1475 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1476                                      struct cgroup_root *root)
1477 {
1478         /*
1479          * No need to lock the task - since we hold css_set_lock the
1480          * task can't change groups.
1481          */
1482         return cset_cgroup_from_root(task_css_set(task), root);
1483 }
1484 
1485 /*
1486  * A task must hold cgroup_mutex to modify cgroups.
1487  *
1488  * Any task can increment and decrement the count field without lock.
1489  * So in general, code holding cgroup_mutex can't rely on the count
1490  * field not changing.  However, if the count goes to zero, then only
1491  * cgroup_attach_task() can increment it again.  Because a count of zero
1492  * means that no tasks are currently attached, therefore there is no
1493  * way a task attached to that cgroup can fork (the other way to
1494  * increment the count).  So code holding cgroup_mutex can safely
1495  * assume that if the count is zero, it will stay zero. Similarly, if
1496  * a task holds cgroup_mutex on a cgroup with zero count, it
1497  * knows that the cgroup won't be removed, as cgroup_rmdir()
1498  * needs that mutex.
1499  *
1500  * A cgroup can only be deleted if both its 'count' of using tasks
1501  * is zero, and its list of 'children' cgroups is empty.  Since all
1502  * tasks in the system use _some_ cgroup, and since there is always at
1503  * least one task in the system (init, pid == 1), therefore, root cgroup
1504  * always has either children cgroups and/or using tasks.  So we don't
1505  * need a special hack to ensure that root cgroup cannot be deleted.
1506  *
1507  * P.S.  One more locking exception.  RCU is used to guard the
1508  * update of a tasks cgroup pointer by cgroup_attach_task()
1509  */
1510 
1511 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1512 
1513 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1514                               char *buf)
1515 {
1516         struct cgroup_subsys *ss = cft->ss;
1517 
1518         if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1519             !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1520                 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1521 
1522                 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1523                          dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1524                          cft->name);
1525         } else {
1526                 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1527         }
1528         return buf;
1529 }
1530 
1531 /**
1532  * cgroup_file_mode - deduce file mode of a control file
1533  * @cft: the control file in question
1534  *
1535  * S_IRUGO for read, S_IWUSR for write.
1536  */
1537 static umode_t cgroup_file_mode(const struct cftype *cft)
1538 {
1539         umode_t mode = 0;
1540 
1541         if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1542                 mode |= S_IRUGO;
1543 
1544         if (cft->write_u64 || cft->write_s64 || cft->write) {
1545                 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1546                         mode |= S_IWUGO;
1547                 else
1548                         mode |= S_IWUSR;
1549         }
1550 
1551         return mode;
1552 }
1553 
1554 /**
1555  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1556  * @subtree_control: the new subtree_control mask to consider
1557  * @this_ss_mask: available subsystems
1558  *
1559  * On the default hierarchy, a subsystem may request other subsystems to be
1560  * enabled together through its ->depends_on mask.  In such cases, more
1561  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1562  *
1563  * This function calculates which subsystems need to be enabled if
1564  * @subtree_control is to be applied while restricted to @this_ss_mask.
1565  */
1566 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1567 {
1568         u16 cur_ss_mask = subtree_control;
1569         struct cgroup_subsys *ss;
1570         int ssid;
1571 
1572         lockdep_assert_held(&cgroup_mutex);
1573 
1574         cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1575 
1576         while (true) {
1577                 u16 new_ss_mask = cur_ss_mask;
1578 
1579                 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1580                         new_ss_mask |= ss->depends_on;
1581                 } while_each_subsys_mask();
1582 
1583                 /*
1584                  * Mask out subsystems which aren't available.  This can
1585                  * happen only if some depended-upon subsystems were bound
1586                  * to non-default hierarchies.
1587                  */
1588                 new_ss_mask &= this_ss_mask;
1589 
1590                 if (new_ss_mask == cur_ss_mask)
1591                         break;
1592                 cur_ss_mask = new_ss_mask;
1593         }
1594 
1595         return cur_ss_mask;
1596 }
1597 
1598 /**
1599  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1600  * @kn: the kernfs_node being serviced
1601  *
1602  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1603  * the method finishes if locking succeeded.  Note that once this function
1604  * returns the cgroup returned by cgroup_kn_lock_live() may become
1605  * inaccessible any time.  If the caller intends to continue to access the
1606  * cgroup, it should pin it before invoking this function.
1607  */
1608 void cgroup_kn_unlock(struct kernfs_node *kn)
1609 {
1610         struct cgroup *cgrp;
1611 
1612         if (kernfs_type(kn) == KERNFS_DIR)
1613                 cgrp = kn->priv;
1614         else
1615                 cgrp = kn->parent->priv;
1616 
1617         cgroup_unlock();
1618 
1619         kernfs_unbreak_active_protection(kn);
1620         cgroup_put(cgrp);
1621 }
1622 
1623 /**
1624  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1625  * @kn: the kernfs_node being serviced
1626  * @drain_offline: perform offline draining on the cgroup
1627  *
1628  * This helper is to be used by a cgroup kernfs method currently servicing
1629  * @kn.  It breaks the active protection, performs cgroup locking and
1630  * verifies that the associated cgroup is alive.  Returns the cgroup if
1631  * alive; otherwise, %NULL.  A successful return should be undone by a
1632  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1633  * cgroup is drained of offlining csses before return.
1634  *
1635  * Any cgroup kernfs method implementation which requires locking the
1636  * associated cgroup should use this helper.  It avoids nesting cgroup
1637  * locking under kernfs active protection and allows all kernfs operations
1638  * including self-removal.
1639  */
1640 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1641 {
1642         struct cgroup *cgrp;
1643 
1644         if (kernfs_type(kn) == KERNFS_DIR)
1645                 cgrp = kn->priv;
1646         else
1647                 cgrp = kn->parent->priv;
1648 
1649         /*
1650          * We're gonna grab cgroup_mutex which nests outside kernfs
1651          * active_ref.  cgroup liveliness check alone provides enough
1652          * protection against removal.  Ensure @cgrp stays accessible and
1653          * break the active_ref protection.
1654          */
1655         if (!cgroup_tryget(cgrp))
1656                 return NULL;
1657         kernfs_break_active_protection(kn);
1658 
1659         if (drain_offline)
1660                 cgroup_lock_and_drain_offline(cgrp);
1661         else
1662                 cgroup_lock();
1663 
1664         if (!cgroup_is_dead(cgrp))
1665                 return cgrp;
1666 
1667         cgroup_kn_unlock(kn);
1668         return NULL;
1669 }
1670 
1671 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1672 {
1673         char name[CGROUP_FILE_NAME_MAX];
1674 
1675         lockdep_assert_held(&cgroup_mutex);
1676 
1677         if (cft->file_offset) {
1678                 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1679                 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1680 
1681                 spin_lock_irq(&cgroup_file_kn_lock);
1682                 cfile->kn = NULL;
1683                 spin_unlock_irq(&cgroup_file_kn_lock);
1684 
1685                 del_timer_sync(&cfile->notify_timer);
1686         }
1687 
1688         kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1689 }
1690 
1691 /**
1692  * css_clear_dir - remove subsys files in a cgroup directory
1693  * @css: target css
1694  */
1695 static void css_clear_dir(struct cgroup_subsys_state *css)
1696 {
1697         struct cgroup *cgrp = css->cgroup;
1698         struct cftype *cfts;
1699 
1700         if (!(css->flags & CSS_VISIBLE))
1701                 return;
1702 
1703         css->flags &= ~CSS_VISIBLE;
1704 
1705         if (!css->ss) {
1706                 if (cgroup_on_dfl(cgrp)) {
1707                         cgroup_addrm_files(css, cgrp,
1708                                            cgroup_base_files, false);
1709                         if (cgroup_psi_enabled())
1710                                 cgroup_addrm_files(css, cgrp,
1711                                                    cgroup_psi_files, false);
1712                 } else {
1713                         cgroup_addrm_files(css, cgrp,
1714                                            cgroup1_base_files, false);
1715                 }
1716         } else {
1717                 list_for_each_entry(cfts, &css->ss->cfts, node)
1718                         cgroup_addrm_files(css, cgrp, cfts, false);
1719         }
1720 }
1721 
1722 /**
1723  * css_populate_dir - create subsys files in a cgroup directory
1724  * @css: target css
1725  *
1726  * On failure, no file is added.
1727  */
1728 static int css_populate_dir(struct cgroup_subsys_state *css)
1729 {
1730         struct cgroup *cgrp = css->cgroup;
1731         struct cftype *cfts, *failed_cfts;
1732         int ret;
1733 
1734         if (css->flags & CSS_VISIBLE)
1735                 return 0;
1736 
1737         if (!css->ss) {
1738                 if (cgroup_on_dfl(cgrp)) {
1739                         ret = cgroup_addrm_files(css, cgrp,
1740                                                  cgroup_base_files, true);
1741                         if (ret < 0)
1742                                 return ret;
1743 
1744                         if (cgroup_psi_enabled()) {
1745                                 ret = cgroup_addrm_files(css, cgrp,
1746                                                          cgroup_psi_files, true);
1747                                 if (ret < 0) {
1748                                         cgroup_addrm_files(css, cgrp,
1749                                                            cgroup_base_files, false);
1750                                         return ret;
1751                                 }
1752                         }
1753                 } else {
1754                         ret = cgroup_addrm_files(css, cgrp,
1755                                                  cgroup1_base_files, true);
1756                         if (ret < 0)
1757                                 return ret;
1758                 }
1759         } else {
1760                 list_for_each_entry(cfts, &css->ss->cfts, node) {
1761                         ret = cgroup_addrm_files(css, cgrp, cfts, true);
1762                         if (ret < 0) {
1763                                 failed_cfts = cfts;
1764                                 goto err;
1765                         }
1766                 }
1767         }
1768 
1769         css->flags |= CSS_VISIBLE;
1770 
1771         return 0;
1772 err:
1773         list_for_each_entry(cfts, &css->ss->cfts, node) {
1774                 if (cfts == failed_cfts)
1775                         break;
1776                 cgroup_addrm_files(css, cgrp, cfts, false);
1777         }
1778         return ret;
1779 }
1780 
1781 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1782 {
1783         struct cgroup *dcgrp = &dst_root->cgrp;
1784         struct cgroup_subsys *ss;
1785         int ssid, ret;
1786         u16 dfl_disable_ss_mask = 0;
1787 
1788         lockdep_assert_held(&cgroup_mutex);
1789 
1790         do_each_subsys_mask(ss, ssid, ss_mask) {
1791                 /*
1792                  * If @ss has non-root csses attached to it, can't move.
1793                  * If @ss is an implicit controller, it is exempt from this
1794                  * rule and can be stolen.
1795                  */
1796                 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1797                     !ss->implicit_on_dfl)
1798                         return -EBUSY;
1799 
1800                 /* can't move between two non-dummy roots either */
1801                 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1802                         return -EBUSY;
1803 
1804                 /*
1805                  * Collect ssid's that need to be disabled from default
1806                  * hierarchy.
1807                  */
1808                 if (ss->root == &cgrp_dfl_root)
1809                         dfl_disable_ss_mask |= 1 << ssid;
1810 
1811         } while_each_subsys_mask();
1812 
1813         if (dfl_disable_ss_mask) {
1814                 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1815 
1816                 /*
1817                  * Controllers from default hierarchy that need to be rebound
1818                  * are all disabled together in one go.
1819                  */
1820                 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1821                 WARN_ON(cgroup_apply_control(scgrp));
1822                 cgroup_finalize_control(scgrp, 0);
1823         }
1824 
1825         do_each_subsys_mask(ss, ssid, ss_mask) {
1826                 struct cgroup_root *src_root = ss->root;
1827                 struct cgroup *scgrp = &src_root->cgrp;
1828                 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1829                 struct css_set *cset, *cset_pos;
1830                 struct css_task_iter *it;
1831 
1832                 WARN_ON(!css || cgroup_css(dcgrp, ss));
1833 
1834                 if (src_root != &cgrp_dfl_root) {
1835                         /* disable from the source */
1836                         src_root->subsys_mask &= ~(1 << ssid);
1837                         WARN_ON(cgroup_apply_control(scgrp));
1838                         cgroup_finalize_control(scgrp, 0);
1839                 }
1840 
1841                 /* rebind */
1842                 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1843                 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1844                 ss->root = dst_root;
1845 
1846                 spin_lock_irq(&css_set_lock);
1847                 css->cgroup = dcgrp;
1848                 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1849                 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1850                                          e_cset_node[ss->id]) {
1851                         list_move_tail(&cset->e_cset_node[ss->id],
1852                                        &dcgrp->e_csets[ss->id]);
1853                         /*
1854                          * all css_sets of scgrp together in same order to dcgrp,
1855                          * patch in-flight iterators to preserve correct iteration.
1856                          * since the iterator is always advanced right away and
1857                          * finished when it->cset_pos meets it->cset_head, so only
1858                          * update it->cset_head is enough here.
1859                          */
1860                         list_for_each_entry(it, &cset->task_iters, iters_node)
1861                                 if (it->cset_head == &scgrp->e_csets[ss->id])
1862                                         it->cset_head = &dcgrp->e_csets[ss->id];
1863                 }
1864                 spin_unlock_irq(&css_set_lock);
1865 
1866                 if (ss->css_rstat_flush) {
1867                         list_del_rcu(&css->rstat_css_node);
1868                         synchronize_rcu();
1869                         list_add_rcu(&css->rstat_css_node,
1870                                      &dcgrp->rstat_css_list);
1871                 }
1872 
1873                 /* default hierarchy doesn't enable controllers by default */
1874                 dst_root->subsys_mask |= 1 << ssid;
1875                 if (dst_root == &cgrp_dfl_root) {
1876                         static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1877                 } else {
1878                         dcgrp->subtree_control |= 1 << ssid;
1879                         static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1880                 }
1881 
1882                 ret = cgroup_apply_control(dcgrp);
1883                 if (ret)
1884                         pr_warn("partial failure to rebind %s controller (err=%d)\n",
1885                                 ss->name, ret);
1886 
1887                 if (ss->bind)
1888                         ss->bind(css);
1889         } while_each_subsys_mask();
1890 
1891         kernfs_activate(dcgrp->kn);
1892         return 0;
1893 }
1894 
1895 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1896                      struct kernfs_root *kf_root)
1897 {
1898         int len = 0;
1899         char *buf = NULL;
1900         struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1901         struct cgroup *ns_cgroup;
1902 
1903         buf = kmalloc(PATH_MAX, GFP_KERNEL);
1904         if (!buf)
1905                 return -ENOMEM;
1906 
1907         spin_lock_irq(&css_set_lock);
1908         ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1909         len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1910         spin_unlock_irq(&css_set_lock);
1911 
1912         if (len == -E2BIG)
1913                 len = -ERANGE;
1914         else if (len > 0) {
1915                 seq_escape(sf, buf, " \t\n\\");
1916                 len = 0;
1917         }
1918         kfree(buf);
1919         return len;
1920 }
1921 
1922 enum cgroup2_param {
1923         Opt_nsdelegate,
1924         Opt_favordynmods,
1925         Opt_memory_localevents,
1926         Opt_memory_recursiveprot,
1927         Opt_memory_hugetlb_accounting,
1928         Opt_pids_localevents,
1929         nr__cgroup2_params
1930 };
1931 
1932 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1933         fsparam_flag("nsdelegate",              Opt_nsdelegate),
1934         fsparam_flag("favordynmods",            Opt_favordynmods),
1935         fsparam_flag("memory_localevents",      Opt_memory_localevents),
1936         fsparam_flag("memory_recursiveprot",    Opt_memory_recursiveprot),
1937         fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
1938         fsparam_flag("pids_localevents",        Opt_pids_localevents),
1939         {}
1940 };
1941 
1942 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1943 {
1944         struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1945         struct fs_parse_result result;
1946         int opt;
1947 
1948         opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1949         if (opt < 0)
1950                 return opt;
1951 
1952         switch (opt) {
1953         case Opt_nsdelegate:
1954                 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1955                 return 0;
1956         case Opt_favordynmods:
1957                 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1958                 return 0;
1959         case Opt_memory_localevents:
1960                 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1961                 return 0;
1962         case Opt_memory_recursiveprot:
1963                 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1964                 return 0;
1965         case Opt_memory_hugetlb_accounting:
1966                 ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1967                 return 0;
1968         case Opt_pids_localevents:
1969                 ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
1970                 return 0;
1971         }
1972         return -EINVAL;
1973 }
1974 
1975 static void apply_cgroup_root_flags(unsigned int root_flags)
1976 {
1977         if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1978                 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1979                         cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1980                 else
1981                         cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1982 
1983                 cgroup_favor_dynmods(&cgrp_dfl_root,
1984                                      root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1985 
1986                 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1987                         cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1988                 else
1989                         cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1990 
1991                 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1992                         cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1993                 else
1994                         cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1995 
1996                 if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
1997                         cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1998                 else
1999                         cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2000 
2001                 if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2002                         cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2003                 else
2004                         cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS;
2005         }
2006 }
2007 
2008 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
2009 {
2010         if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
2011                 seq_puts(seq, ",nsdelegate");
2012         if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2013                 seq_puts(seq, ",favordynmods");
2014         if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2015                 seq_puts(seq, ",memory_localevents");
2016         if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2017                 seq_puts(seq, ",memory_recursiveprot");
2018         if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2019                 seq_puts(seq, ",memory_hugetlb_accounting");
2020         if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2021                 seq_puts(seq, ",pids_localevents");
2022         return 0;
2023 }
2024 
2025 static int cgroup_reconfigure(struct fs_context *fc)
2026 {
2027         struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2028 
2029         apply_cgroup_root_flags(ctx->flags);
2030         return 0;
2031 }
2032 
2033 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2034 {
2035         struct cgroup_subsys *ss;
2036         int ssid;
2037 
2038         INIT_LIST_HEAD(&cgrp->self.sibling);
2039         INIT_LIST_HEAD(&cgrp->self.children);
2040         INIT_LIST_HEAD(&cgrp->cset_links);
2041         INIT_LIST_HEAD(&cgrp->pidlists);
2042         mutex_init(&cgrp->pidlist_mutex);
2043         cgrp->self.cgroup = cgrp;
2044         cgrp->self.flags |= CSS_ONLINE;
2045         cgrp->dom_cgrp = cgrp;
2046         cgrp->max_descendants = INT_MAX;
2047         cgrp->max_depth = INT_MAX;
2048         INIT_LIST_HEAD(&cgrp->rstat_css_list);
2049         prev_cputime_init(&cgrp->prev_cputime);
2050 
2051         for_each_subsys(ss, ssid)
2052                 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2053 
2054         init_waitqueue_head(&cgrp->offline_waitq);
2055         INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2056 }
2057 
2058 void init_cgroup_root(struct cgroup_fs_context *ctx)
2059 {
2060         struct cgroup_root *root = ctx->root;
2061         struct cgroup *cgrp = &root->cgrp;
2062 
2063         INIT_LIST_HEAD_RCU(&root->root_list);
2064         atomic_set(&root->nr_cgrps, 1);
2065         cgrp->root = root;
2066         init_cgroup_housekeeping(cgrp);
2067 
2068         /* DYNMODS must be modified through cgroup_favor_dynmods() */
2069         root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2070         if (ctx->release_agent)
2071                 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2072         if (ctx->name)
2073                 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2074         if (ctx->cpuset_clone_children)
2075                 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2076 }
2077 
2078 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2079 {
2080         LIST_HEAD(tmp_links);
2081         struct cgroup *root_cgrp = &root->cgrp;
2082         struct kernfs_syscall_ops *kf_sops;
2083         struct css_set *cset;
2084         int i, ret;
2085 
2086         lockdep_assert_held(&cgroup_mutex);
2087 
2088         ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2089                               0, GFP_KERNEL);
2090         if (ret)
2091                 goto out;
2092 
2093         /*
2094          * We're accessing css_set_count without locking css_set_lock here,
2095          * but that's OK - it can only be increased by someone holding
2096          * cgroup_lock, and that's us.  Later rebinding may disable
2097          * controllers on the default hierarchy and thus create new csets,
2098          * which can't be more than the existing ones.  Allocate 2x.
2099          */
2100         ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2101         if (ret)
2102                 goto cancel_ref;
2103 
2104         ret = cgroup_init_root_id(root);
2105         if (ret)
2106                 goto cancel_ref;
2107 
2108         kf_sops = root == &cgrp_dfl_root ?
2109                 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2110 
2111         root->kf_root = kernfs_create_root(kf_sops,
2112                                            KERNFS_ROOT_CREATE_DEACTIVATED |
2113                                            KERNFS_ROOT_SUPPORT_EXPORTOP |
2114                                            KERNFS_ROOT_SUPPORT_USER_XATTR,
2115                                            root_cgrp);
2116         if (IS_ERR(root->kf_root)) {
2117                 ret = PTR_ERR(root->kf_root);
2118                 goto exit_root_id;
2119         }
2120         root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2121         WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2122         root_cgrp->ancestors[0] = root_cgrp;
2123 
2124         ret = css_populate_dir(&root_cgrp->self);
2125         if (ret)
2126                 goto destroy_root;
2127 
2128         ret = cgroup_rstat_init(root_cgrp);
2129         if (ret)
2130                 goto destroy_root;
2131 
2132         ret = rebind_subsystems(root, ss_mask);
2133         if (ret)
2134                 goto exit_stats;
2135 
2136         ret = cgroup_bpf_inherit(root_cgrp);
2137         WARN_ON_ONCE(ret);
2138 
2139         trace_cgroup_setup_root(root);
2140 
2141         /*
2142          * There must be no failure case after here, since rebinding takes
2143          * care of subsystems' refcounts, which are explicitly dropped in
2144          * the failure exit path.
2145          */
2146         list_add_rcu(&root->root_list, &cgroup_roots);
2147         cgroup_root_count++;
2148 
2149         /*
2150          * Link the root cgroup in this hierarchy into all the css_set
2151          * objects.
2152          */
2153         spin_lock_irq(&css_set_lock);
2154         hash_for_each(css_set_table, i, cset, hlist) {
2155                 link_css_set(&tmp_links, cset, root_cgrp);
2156                 if (css_set_populated(cset))
2157                         cgroup_update_populated(root_cgrp, true);
2158         }
2159         spin_unlock_irq(&css_set_lock);
2160 
2161         BUG_ON(!list_empty(&root_cgrp->self.children));
2162         BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2163 
2164         ret = 0;
2165         goto out;
2166 
2167 exit_stats:
2168         cgroup_rstat_exit(root_cgrp);
2169 destroy_root:
2170         kernfs_destroy_root(root->kf_root);
2171         root->kf_root = NULL;
2172 exit_root_id:
2173         cgroup_exit_root_id(root);
2174 cancel_ref:
2175         percpu_ref_exit(&root_cgrp->self.refcnt);
2176 out:
2177         free_cgrp_cset_links(&tmp_links);
2178         return ret;
2179 }
2180 
2181 int cgroup_do_get_tree(struct fs_context *fc)
2182 {
2183         struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2184         int ret;
2185 
2186         ctx->kfc.root = ctx->root->kf_root;
2187         if (fc->fs_type == &cgroup2_fs_type)
2188                 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2189         else
2190                 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2191         ret = kernfs_get_tree(fc);
2192 
2193         /*
2194          * In non-init cgroup namespace, instead of root cgroup's dentry,
2195          * we return the dentry corresponding to the cgroupns->root_cgrp.
2196          */
2197         if (!ret && ctx->ns != &init_cgroup_ns) {
2198                 struct dentry *nsdentry;
2199                 struct super_block *sb = fc->root->d_sb;
2200                 struct cgroup *cgrp;
2201 
2202                 cgroup_lock();
2203                 spin_lock_irq(&css_set_lock);
2204 
2205                 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2206 
2207                 spin_unlock_irq(&css_set_lock);
2208                 cgroup_unlock();
2209 
2210                 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2211                 dput(fc->root);
2212                 if (IS_ERR(nsdentry)) {
2213                         deactivate_locked_super(sb);
2214                         ret = PTR_ERR(nsdentry);
2215                         nsdentry = NULL;
2216                 }
2217                 fc->root = nsdentry;
2218         }
2219 
2220         if (!ctx->kfc.new_sb_created)
2221                 cgroup_put(&ctx->root->cgrp);
2222 
2223         return ret;
2224 }
2225 
2226 /*
2227  * Destroy a cgroup filesystem context.
2228  */
2229 static void cgroup_fs_context_free(struct fs_context *fc)
2230 {
2231         struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2232 
2233         kfree(ctx->name);
2234         kfree(ctx->release_agent);
2235         put_cgroup_ns(ctx->ns);
2236         kernfs_free_fs_context(fc);
2237         kfree(ctx);
2238 }
2239 
2240 static int cgroup_get_tree(struct fs_context *fc)
2241 {
2242         struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2243         int ret;
2244 
2245         WRITE_ONCE(cgrp_dfl_visible, true);
2246         cgroup_get_live(&cgrp_dfl_root.cgrp);
2247         ctx->root = &cgrp_dfl_root;
2248 
2249         ret = cgroup_do_get_tree(fc);
2250         if (!ret)
2251                 apply_cgroup_root_flags(ctx->flags);
2252         return ret;
2253 }
2254 
2255 static const struct fs_context_operations cgroup_fs_context_ops = {
2256         .free           = cgroup_fs_context_free,
2257         .parse_param    = cgroup2_parse_param,
2258         .get_tree       = cgroup_get_tree,
2259         .reconfigure    = cgroup_reconfigure,
2260 };
2261 
2262 static const struct fs_context_operations cgroup1_fs_context_ops = {
2263         .free           = cgroup_fs_context_free,
2264         .parse_param    = cgroup1_parse_param,
2265         .get_tree       = cgroup1_get_tree,
2266         .reconfigure    = cgroup1_reconfigure,
2267 };
2268 
2269 /*
2270  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2271  * we select the namespace we're going to use.
2272  */
2273 static int cgroup_init_fs_context(struct fs_context *fc)
2274 {
2275         struct cgroup_fs_context *ctx;
2276 
2277         ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2278         if (!ctx)
2279                 return -ENOMEM;
2280 
2281         ctx->ns = current->nsproxy->cgroup_ns;
2282         get_cgroup_ns(ctx->ns);
2283         fc->fs_private = &ctx->kfc;
2284         if (fc->fs_type == &cgroup2_fs_type)
2285                 fc->ops = &cgroup_fs_context_ops;
2286         else
2287                 fc->ops = &cgroup1_fs_context_ops;
2288         put_user_ns(fc->user_ns);
2289         fc->user_ns = get_user_ns(ctx->ns->user_ns);
2290         fc->global = true;
2291 
2292         if (have_favordynmods)
2293                 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2294 
2295         return 0;
2296 }
2297 
2298 static void cgroup_kill_sb(struct super_block *sb)
2299 {
2300         struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2301         struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2302 
2303         /*
2304          * If @root doesn't have any children, start killing it.
2305          * This prevents new mounts by disabling percpu_ref_tryget_live().
2306          *
2307          * And don't kill the default root.
2308          */
2309         if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2310             !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2311                 cgroup_bpf_offline(&root->cgrp);
2312                 percpu_ref_kill(&root->cgrp.self.refcnt);
2313         }
2314         cgroup_put(&root->cgrp);
2315         kernfs_kill_sb(sb);
2316 }
2317 
2318 struct file_system_type cgroup_fs_type = {
2319         .name                   = "cgroup",
2320         .init_fs_context        = cgroup_init_fs_context,
2321         .parameters             = cgroup1_fs_parameters,
2322         .kill_sb                = cgroup_kill_sb,
2323         .fs_flags               = FS_USERNS_MOUNT,
2324 };
2325 
2326 static struct file_system_type cgroup2_fs_type = {
2327         .name                   = "cgroup2",
2328         .init_fs_context        = cgroup_init_fs_context,
2329         .parameters             = cgroup2_fs_parameters,
2330         .kill_sb                = cgroup_kill_sb,
2331         .fs_flags               = FS_USERNS_MOUNT,
2332 };
2333 
2334 #ifdef CONFIG_CPUSETS
2335 static const struct fs_context_operations cpuset_fs_context_ops = {
2336         .get_tree       = cgroup1_get_tree,
2337         .free           = cgroup_fs_context_free,
2338 };
2339 
2340 /*
2341  * This is ugly, but preserves the userspace API for existing cpuset
2342  * users. If someone tries to mount the "cpuset" filesystem, we
2343  * silently switch it to mount "cgroup" instead
2344  */
2345 static int cpuset_init_fs_context(struct fs_context *fc)
2346 {
2347         char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2348         struct cgroup_fs_context *ctx;
2349         int err;
2350 
2351         err = cgroup_init_fs_context(fc);
2352         if (err) {
2353                 kfree(agent);
2354                 return err;
2355         }
2356 
2357         fc->ops = &cpuset_fs_context_ops;
2358 
2359         ctx = cgroup_fc2context(fc);
2360         ctx->subsys_mask = 1 << cpuset_cgrp_id;
2361         ctx->flags |= CGRP_ROOT_NOPREFIX;
2362         ctx->release_agent = agent;
2363 
2364         get_filesystem(&cgroup_fs_type);
2365         put_filesystem(fc->fs_type);
2366         fc->fs_type = &cgroup_fs_type;
2367 
2368         return 0;
2369 }
2370 
2371 static struct file_system_type cpuset_fs_type = {
2372         .name                   = "cpuset",
2373         .init_fs_context        = cpuset_init_fs_context,
2374         .fs_flags               = FS_USERNS_MOUNT,
2375 };
2376 #endif
2377 
2378 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2379                           struct cgroup_namespace *ns)
2380 {
2381         struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2382 
2383         return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2384 }
2385 
2386 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2387                    struct cgroup_namespace *ns)
2388 {
2389         int ret;
2390 
2391         cgroup_lock();
2392         spin_lock_irq(&css_set_lock);
2393 
2394         ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2395 
2396         spin_unlock_irq(&css_set_lock);
2397         cgroup_unlock();
2398 
2399         return ret;
2400 }
2401 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2402 
2403 /**
2404  * cgroup_attach_lock - Lock for ->attach()
2405  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2406  *
2407  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2408  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2409  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2410  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2411  * lead to deadlocks.
2412  *
2413  * Bringing up a CPU may involve creating and destroying tasks which requires
2414  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2415  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2416  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2417  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2418  * the threadgroup_rwsem to be released to create new tasks. For more details:
2419  *
2420  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2421  *
2422  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2423  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2424  * CPU hotplug is disabled on entry.
2425  */
2426 void cgroup_attach_lock(bool lock_threadgroup)
2427 {
2428         cpus_read_lock();
2429         if (lock_threadgroup)
2430                 percpu_down_write(&cgroup_threadgroup_rwsem);
2431 }
2432 
2433 /**
2434  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2435  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2436  */
2437 void cgroup_attach_unlock(bool lock_threadgroup)
2438 {
2439         if (lock_threadgroup)
2440                 percpu_up_write(&cgroup_threadgroup_rwsem);
2441         cpus_read_unlock();
2442 }
2443 
2444 /**
2445  * cgroup_migrate_add_task - add a migration target task to a migration context
2446  * @task: target task
2447  * @mgctx: target migration context
2448  *
2449  * Add @task, which is a migration target, to @mgctx->tset.  This function
2450  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2451  * should have been added as a migration source and @task->cg_list will be
2452  * moved from the css_set's tasks list to mg_tasks one.
2453  */
2454 static void cgroup_migrate_add_task(struct task_struct *task,
2455                                     struct cgroup_mgctx *mgctx)
2456 {
2457         struct css_set *cset;
2458 
2459         lockdep_assert_held(&css_set_lock);
2460 
2461         /* @task either already exited or can't exit until the end */
2462         if (task->flags & PF_EXITING)
2463                 return;
2464 
2465         /* cgroup_threadgroup_rwsem protects racing against forks */
2466         WARN_ON_ONCE(list_empty(&task->cg_list));
2467 
2468         cset = task_css_set(task);
2469         if (!cset->mg_src_cgrp)
2470                 return;
2471 
2472         mgctx->tset.nr_tasks++;
2473 
2474         list_move_tail(&task->cg_list, &cset->mg_tasks);
2475         if (list_empty(&cset->mg_node))
2476                 list_add_tail(&cset->mg_node,
2477                               &mgctx->tset.src_csets);
2478         if (list_empty(&cset->mg_dst_cset->mg_node))
2479                 list_add_tail(&cset->mg_dst_cset->mg_node,
2480                               &mgctx->tset.dst_csets);
2481 }
2482 
2483 /**
2484  * cgroup_taskset_first - reset taskset and return the first task
2485  * @tset: taskset of interest
2486  * @dst_cssp: output variable for the destination css
2487  *
2488  * @tset iteration is initialized and the first task is returned.
2489  */
2490 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2491                                          struct cgroup_subsys_state **dst_cssp)
2492 {
2493         tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2494         tset->cur_task = NULL;
2495 
2496         return cgroup_taskset_next(tset, dst_cssp);
2497 }
2498 
2499 /**
2500  * cgroup_taskset_next - iterate to the next task in taskset
2501  * @tset: taskset of interest
2502  * @dst_cssp: output variable for the destination css
2503  *
2504  * Return the next task in @tset.  Iteration must have been initialized
2505  * with cgroup_taskset_first().
2506  */
2507 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2508                                         struct cgroup_subsys_state **dst_cssp)
2509 {
2510         struct css_set *cset = tset->cur_cset;
2511         struct task_struct *task = tset->cur_task;
2512 
2513         while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2514                 if (!task)
2515                         task = list_first_entry(&cset->mg_tasks,
2516                                                 struct task_struct, cg_list);
2517                 else
2518                         task = list_next_entry(task, cg_list);
2519 
2520                 if (&task->cg_list != &cset->mg_tasks) {
2521                         tset->cur_cset = cset;
2522                         tset->cur_task = task;
2523 
2524                         /*
2525                          * This function may be called both before and
2526                          * after cgroup_migrate_execute().  The two cases
2527                          * can be distinguished by looking at whether @cset
2528                          * has its ->mg_dst_cset set.
2529                          */
2530                         if (cset->mg_dst_cset)
2531                                 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2532                         else
2533                                 *dst_cssp = cset->subsys[tset->ssid];
2534 
2535                         return task;
2536                 }
2537 
2538                 cset = list_next_entry(cset, mg_node);
2539                 task = NULL;
2540         }
2541 
2542         return NULL;
2543 }
2544 
2545 /**
2546  * cgroup_migrate_execute - migrate a taskset
2547  * @mgctx: migration context
2548  *
2549  * Migrate tasks in @mgctx as setup by migration preparation functions.
2550  * This function fails iff one of the ->can_attach callbacks fails and
2551  * guarantees that either all or none of the tasks in @mgctx are migrated.
2552  * @mgctx is consumed regardless of success.
2553  */
2554 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2555 {
2556         struct cgroup_taskset *tset = &mgctx->tset;
2557         struct cgroup_subsys *ss;
2558         struct task_struct *task, *tmp_task;
2559         struct css_set *cset, *tmp_cset;
2560         int ssid, failed_ssid, ret;
2561 
2562         /* check that we can legitimately attach to the cgroup */
2563         if (tset->nr_tasks) {
2564                 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2565                         if (ss->can_attach) {
2566                                 tset->ssid = ssid;
2567                                 ret = ss->can_attach(tset);
2568                                 if (ret) {
2569                                         failed_ssid = ssid;
2570                                         goto out_cancel_attach;
2571                                 }
2572                         }
2573                 } while_each_subsys_mask();
2574         }
2575 
2576         /*
2577          * Now that we're guaranteed success, proceed to move all tasks to
2578          * the new cgroup.  There are no failure cases after here, so this
2579          * is the commit point.
2580          */
2581         spin_lock_irq(&css_set_lock);
2582         list_for_each_entry(cset, &tset->src_csets, mg_node) {
2583                 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2584                         struct css_set *from_cset = task_css_set(task);
2585                         struct css_set *to_cset = cset->mg_dst_cset;
2586 
2587                         get_css_set(to_cset);
2588                         to_cset->nr_tasks++;
2589                         css_set_move_task(task, from_cset, to_cset, true);
2590                         from_cset->nr_tasks--;
2591                         /*
2592                          * If the source or destination cgroup is frozen,
2593                          * the task might require to change its state.
2594                          */
2595                         cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2596                                                     to_cset->dfl_cgrp);
2597                         put_css_set_locked(from_cset);
2598 
2599                 }
2600         }
2601         spin_unlock_irq(&css_set_lock);
2602 
2603         /*
2604          * Migration is committed, all target tasks are now on dst_csets.
2605          * Nothing is sensitive to fork() after this point.  Notify
2606          * controllers that migration is complete.
2607          */
2608         tset->csets = &tset->dst_csets;
2609 
2610         if (tset->nr_tasks) {
2611                 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2612                         if (ss->attach) {
2613                                 tset->ssid = ssid;
2614                                 ss->attach(tset);
2615                         }
2616                 } while_each_subsys_mask();
2617         }
2618 
2619         ret = 0;
2620         goto out_release_tset;
2621 
2622 out_cancel_attach:
2623         if (tset->nr_tasks) {
2624                 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2625                         if (ssid == failed_ssid)
2626                                 break;
2627                         if (ss->cancel_attach) {
2628                                 tset->ssid = ssid;
2629                                 ss->cancel_attach(tset);
2630                         }
2631                 } while_each_subsys_mask();
2632         }
2633 out_release_tset:
2634         spin_lock_irq(&css_set_lock);
2635         list_splice_init(&tset->dst_csets, &tset->src_csets);
2636         list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2637                 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2638                 list_del_init(&cset->mg_node);
2639         }
2640         spin_unlock_irq(&css_set_lock);
2641 
2642         /*
2643          * Re-initialize the cgroup_taskset structure in case it is reused
2644          * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2645          * iteration.
2646          */
2647         tset->nr_tasks = 0;
2648         tset->csets    = &tset->src_csets;
2649         return ret;
2650 }
2651 
2652 /**
2653  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2654  * @dst_cgrp: destination cgroup to test
2655  *
2656  * On the default hierarchy, except for the mixable, (possible) thread root
2657  * and threaded cgroups, subtree_control must be zero for migration
2658  * destination cgroups with tasks so that child cgroups don't compete
2659  * against tasks.
2660  */
2661 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2662 {
2663         /* v1 doesn't have any restriction */
2664         if (!cgroup_on_dfl(dst_cgrp))
2665                 return 0;
2666 
2667         /* verify @dst_cgrp can host resources */
2668         if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2669                 return -EOPNOTSUPP;
2670 
2671         /*
2672          * If @dst_cgrp is already or can become a thread root or is
2673          * threaded, it doesn't matter.
2674          */
2675         if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2676                 return 0;
2677 
2678         /* apply no-internal-process constraint */
2679         if (dst_cgrp->subtree_control)
2680                 return -EBUSY;
2681 
2682         return 0;
2683 }
2684 
2685 /**
2686  * cgroup_migrate_finish - cleanup after attach
2687  * @mgctx: migration context
2688  *
2689  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2690  * those functions for details.
2691  */
2692 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2693 {
2694         struct css_set *cset, *tmp_cset;
2695 
2696         lockdep_assert_held(&cgroup_mutex);
2697 
2698         spin_lock_irq(&css_set_lock);
2699 
2700         list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2701                                  mg_src_preload_node) {
2702                 cset->mg_src_cgrp = NULL;
2703                 cset->mg_dst_cgrp = NULL;
2704                 cset->mg_dst_cset = NULL;
2705                 list_del_init(&cset->mg_src_preload_node);
2706                 put_css_set_locked(cset);
2707         }
2708 
2709         list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2710                                  mg_dst_preload_node) {
2711                 cset->mg_src_cgrp = NULL;
2712                 cset->mg_dst_cgrp = NULL;
2713                 cset->mg_dst_cset = NULL;
2714                 list_del_init(&cset->mg_dst_preload_node);
2715                 put_css_set_locked(cset);
2716         }
2717 
2718         spin_unlock_irq(&css_set_lock);
2719 }
2720 
2721 /**
2722  * cgroup_migrate_add_src - add a migration source css_set
2723  * @src_cset: the source css_set to add
2724  * @dst_cgrp: the destination cgroup
2725  * @mgctx: migration context
2726  *
2727  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2728  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2729  * up by cgroup_migrate_finish().
2730  *
2731  * This function may be called without holding cgroup_threadgroup_rwsem
2732  * even if the target is a process.  Threads may be created and destroyed
2733  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2734  * into play and the preloaded css_sets are guaranteed to cover all
2735  * migrations.
2736  */
2737 void cgroup_migrate_add_src(struct css_set *src_cset,
2738                             struct cgroup *dst_cgrp,
2739                             struct cgroup_mgctx *mgctx)
2740 {
2741         struct cgroup *src_cgrp;
2742 
2743         lockdep_assert_held(&cgroup_mutex);
2744         lockdep_assert_held(&css_set_lock);
2745 
2746         /*
2747          * If ->dead, @src_set is associated with one or more dead cgroups
2748          * and doesn't contain any migratable tasks.  Ignore it early so
2749          * that the rest of migration path doesn't get confused by it.
2750          */
2751         if (src_cset->dead)
2752                 return;
2753 
2754         if (!list_empty(&src_cset->mg_src_preload_node))
2755                 return;
2756 
2757         src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2758 
2759         WARN_ON(src_cset->mg_src_cgrp);
2760         WARN_ON(src_cset->mg_dst_cgrp);
2761         WARN_ON(!list_empty(&src_cset->mg_tasks));
2762         WARN_ON(!list_empty(&src_cset->mg_node));
2763 
2764         src_cset->mg_src_cgrp = src_cgrp;
2765         src_cset->mg_dst_cgrp = dst_cgrp;
2766         get_css_set(src_cset);
2767         list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2768 }
2769 
2770 /**
2771  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2772  * @mgctx: migration context
2773  *
2774  * Tasks are about to be moved and all the source css_sets have been
2775  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2776  * pins all destination css_sets, links each to its source, and append them
2777  * to @mgctx->preloaded_dst_csets.
2778  *
2779  * This function must be called after cgroup_migrate_add_src() has been
2780  * called on each migration source css_set.  After migration is performed
2781  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2782  * @mgctx.
2783  */
2784 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2785 {
2786         struct css_set *src_cset, *tmp_cset;
2787 
2788         lockdep_assert_held(&cgroup_mutex);
2789 
2790         /* look up the dst cset for each src cset and link it to src */
2791         list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2792                                  mg_src_preload_node) {
2793                 struct css_set *dst_cset;
2794                 struct cgroup_subsys *ss;
2795                 int ssid;
2796 
2797                 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2798                 if (!dst_cset)
2799                         return -ENOMEM;
2800 
2801                 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2802 
2803                 /*
2804                  * If src cset equals dst, it's noop.  Drop the src.
2805                  * cgroup_migrate() will skip the cset too.  Note that we
2806                  * can't handle src == dst as some nodes are used by both.
2807                  */
2808                 if (src_cset == dst_cset) {
2809                         src_cset->mg_src_cgrp = NULL;
2810                         src_cset->mg_dst_cgrp = NULL;
2811                         list_del_init(&src_cset->mg_src_preload_node);
2812                         put_css_set(src_cset);
2813                         put_css_set(dst_cset);
2814                         continue;
2815                 }
2816 
2817                 src_cset->mg_dst_cset = dst_cset;
2818 
2819                 if (list_empty(&dst_cset->mg_dst_preload_node))
2820                         list_add_tail(&dst_cset->mg_dst_preload_node,
2821                                       &mgctx->preloaded_dst_csets);
2822                 else
2823                         put_css_set(dst_cset);
2824 
2825                 for_each_subsys(ss, ssid)
2826                         if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2827                                 mgctx->ss_mask |= 1 << ssid;
2828         }
2829 
2830         return 0;
2831 }
2832 
2833 /**
2834  * cgroup_migrate - migrate a process or task to a cgroup
2835  * @leader: the leader of the process or the task to migrate
2836  * @threadgroup: whether @leader points to the whole process or a single task
2837  * @mgctx: migration context
2838  *
2839  * Migrate a process or task denoted by @leader.  If migrating a process,
2840  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2841  * responsible for invoking cgroup_migrate_add_src() and
2842  * cgroup_migrate_prepare_dst() on the targets before invoking this
2843  * function and following up with cgroup_migrate_finish().
2844  *
2845  * As long as a controller's ->can_attach() doesn't fail, this function is
2846  * guaranteed to succeed.  This means that, excluding ->can_attach()
2847  * failure, when migrating multiple targets, the success or failure can be
2848  * decided for all targets by invoking group_migrate_prepare_dst() before
2849  * actually starting migrating.
2850  */
2851 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2852                    struct cgroup_mgctx *mgctx)
2853 {
2854         struct task_struct *task;
2855 
2856         /*
2857          * The following thread iteration should be inside an RCU critical
2858          * section to prevent tasks from being freed while taking the snapshot.
2859          * spin_lock_irq() implies RCU critical section here.
2860          */
2861         spin_lock_irq(&css_set_lock);
2862         task = leader;
2863         do {
2864                 cgroup_migrate_add_task(task, mgctx);
2865                 if (!threadgroup)
2866                         break;
2867         } while_each_thread(leader, task);
2868         spin_unlock_irq(&css_set_lock);
2869 
2870         return cgroup_migrate_execute(mgctx);
2871 }
2872 
2873 /**
2874  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2875  * @dst_cgrp: the cgroup to attach to
2876  * @leader: the task or the leader of the threadgroup to be attached
2877  * @threadgroup: attach the whole threadgroup?
2878  *
2879  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2880  */
2881 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2882                        bool threadgroup)
2883 {
2884         DEFINE_CGROUP_MGCTX(mgctx);
2885         struct task_struct *task;
2886         int ret = 0;
2887 
2888         /* look up all src csets */
2889         spin_lock_irq(&css_set_lock);
2890         rcu_read_lock();
2891         task = leader;
2892         do {
2893                 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2894                 if (!threadgroup)
2895                         break;
2896         } while_each_thread(leader, task);
2897         rcu_read_unlock();
2898         spin_unlock_irq(&css_set_lock);
2899 
2900         /* prepare dst csets and commit */
2901         ret = cgroup_migrate_prepare_dst(&mgctx);
2902         if (!ret)
2903                 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2904 
2905         cgroup_migrate_finish(&mgctx);
2906 
2907         if (!ret)
2908                 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2909 
2910         return ret;
2911 }
2912 
2913 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2914                                              bool *threadgroup_locked)
2915 {
2916         struct task_struct *tsk;
2917         pid_t pid;
2918 
2919         if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2920                 return ERR_PTR(-EINVAL);
2921 
2922         /*
2923          * If we migrate a single thread, we don't care about threadgroup
2924          * stability. If the thread is `current`, it won't exit(2) under our
2925          * hands or change PID through exec(2). We exclude
2926          * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2927          * callers by cgroup_mutex.
2928          * Therefore, we can skip the global lock.
2929          */
2930         lockdep_assert_held(&cgroup_mutex);
2931         *threadgroup_locked = pid || threadgroup;
2932         cgroup_attach_lock(*threadgroup_locked);
2933 
2934         rcu_read_lock();
2935         if (pid) {
2936                 tsk = find_task_by_vpid(pid);
2937                 if (!tsk) {
2938                         tsk = ERR_PTR(-ESRCH);
2939                         goto out_unlock_threadgroup;
2940                 }
2941         } else {
2942                 tsk = current;
2943         }
2944 
2945         if (threadgroup)
2946                 tsk = tsk->group_leader;
2947 
2948         /*
2949          * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2950          * If userland migrates such a kthread to a non-root cgroup, it can
2951          * become trapped in a cpuset, or RT kthread may be born in a
2952          * cgroup with no rt_runtime allocated.  Just say no.
2953          */
2954         if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2955                 tsk = ERR_PTR(-EINVAL);
2956                 goto out_unlock_threadgroup;
2957         }
2958 
2959         get_task_struct(tsk);
2960         goto out_unlock_rcu;
2961 
2962 out_unlock_threadgroup:
2963         cgroup_attach_unlock(*threadgroup_locked);
2964         *threadgroup_locked = false;
2965 out_unlock_rcu:
2966         rcu_read_unlock();
2967         return tsk;
2968 }
2969 
2970 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2971 {
2972         struct cgroup_subsys *ss;
2973         int ssid;
2974 
2975         /* release reference from cgroup_procs_write_start() */
2976         put_task_struct(task);
2977 
2978         cgroup_attach_unlock(threadgroup_locked);
2979 
2980         for_each_subsys(ss, ssid)
2981                 if (ss->post_attach)
2982                         ss->post_attach();
2983 }
2984 
2985 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2986 {
2987         struct cgroup_subsys *ss;
2988         bool printed = false;
2989         int ssid;
2990 
2991         do_each_subsys_mask(ss, ssid, ss_mask) {
2992                 if (printed)
2993                         seq_putc(seq, ' ');
2994                 seq_puts(seq, ss->name);
2995                 printed = true;
2996         } while_each_subsys_mask();
2997         if (printed)
2998                 seq_putc(seq, '\n');
2999 }
3000 
3001 /* show controllers which are enabled from the parent */
3002 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3003 {
3004         struct cgroup *cgrp = seq_css(seq)->cgroup;
3005 
3006         cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3007         return 0;
3008 }
3009 
3010 /* show controllers which are enabled for a given cgroup's children */
3011 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3012 {
3013         struct cgroup *cgrp = seq_css(seq)->cgroup;
3014 
3015         cgroup_print_ss_mask(seq, cgrp->subtree_control);
3016         return 0;
3017 }
3018 
3019 /**
3020  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3021  * @cgrp: root of the subtree to update csses for
3022  *
3023  * @cgrp's control masks have changed and its subtree's css associations
3024  * need to be updated accordingly.  This function looks up all css_sets
3025  * which are attached to the subtree, creates the matching updated css_sets
3026  * and migrates the tasks to the new ones.
3027  */
3028 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3029 {
3030         DEFINE_CGROUP_MGCTX(mgctx);
3031         struct cgroup_subsys_state *d_css;
3032         struct cgroup *dsct;
3033         struct css_set *src_cset;
3034         bool has_tasks;
3035         int ret;
3036 
3037         lockdep_assert_held(&cgroup_mutex);
3038 
3039         /* look up all csses currently attached to @cgrp's subtree */
3040         spin_lock_irq(&css_set_lock);
3041         cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3042                 struct cgrp_cset_link *link;
3043 
3044                 /*
3045                  * As cgroup_update_dfl_csses() is only called by
3046                  * cgroup_apply_control(). The csses associated with the
3047                  * given cgrp will not be affected by changes made to
3048                  * its subtree_control file. We can skip them.
3049                  */
3050                 if (dsct == cgrp)
3051                         continue;
3052 
3053                 list_for_each_entry(link, &dsct->cset_links, cset_link)
3054                         cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3055         }
3056         spin_unlock_irq(&css_set_lock);
3057 
3058         /*
3059          * We need to write-lock threadgroup_rwsem while migrating tasks.
3060          * However, if there are no source csets for @cgrp, changing its
3061          * controllers isn't gonna produce any task migrations and the
3062          * write-locking can be skipped safely.
3063          */
3064         has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3065         cgroup_attach_lock(has_tasks);
3066 
3067         /* NULL dst indicates self on default hierarchy */
3068         ret = cgroup_migrate_prepare_dst(&mgctx);
3069         if (ret)
3070                 goto out_finish;
3071 
3072         spin_lock_irq(&css_set_lock);
3073         list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3074                             mg_src_preload_node) {
3075                 struct task_struct *task, *ntask;
3076 
3077                 /* all tasks in src_csets need to be migrated */
3078                 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3079                         cgroup_migrate_add_task(task, &mgctx);
3080         }
3081         spin_unlock_irq(&css_set_lock);
3082 
3083         ret = cgroup_migrate_execute(&mgctx);
3084 out_finish:
3085         cgroup_migrate_finish(&mgctx);
3086         cgroup_attach_unlock(has_tasks);
3087         return ret;
3088 }
3089 
3090 /**
3091  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3092  * @cgrp: root of the target subtree
3093  *
3094  * Because css offlining is asynchronous, userland may try to re-enable a
3095  * controller while the previous css is still around.  This function grabs
3096  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3097  */
3098 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3099         __acquires(&cgroup_mutex)
3100 {
3101         struct cgroup *dsct;
3102         struct cgroup_subsys_state *d_css;
3103         struct cgroup_subsys *ss;
3104         int ssid;
3105 
3106 restart:
3107         cgroup_lock();
3108 
3109         cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3110                 for_each_subsys(ss, ssid) {
3111                         struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3112                         DEFINE_WAIT(wait);
3113 
3114                         if (!css || !percpu_ref_is_dying(&css->refcnt))
3115                                 continue;
3116 
3117                         cgroup_get_live(dsct);
3118                         prepare_to_wait(&dsct->offline_waitq, &wait,
3119                                         TASK_UNINTERRUPTIBLE);
3120 
3121                         cgroup_unlock();
3122                         schedule();
3123                         finish_wait(&dsct->offline_waitq, &wait);
3124 
3125                         cgroup_put(dsct);
3126                         goto restart;
3127                 }
3128         }
3129 }
3130 
3131 /**
3132  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3133  * @cgrp: root of the target subtree
3134  *
3135  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3136  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3137  * itself.
3138  */
3139 static void cgroup_save_control(struct cgroup *cgrp)
3140 {
3141         struct cgroup *dsct;
3142         struct cgroup_subsys_state *d_css;
3143 
3144         cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3145                 dsct->old_subtree_control = dsct->subtree_control;
3146                 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3147                 dsct->old_dom_cgrp = dsct->dom_cgrp;
3148         }
3149 }
3150 
3151 /**
3152  * cgroup_propagate_control - refresh control masks of a subtree
3153  * @cgrp: root of the target subtree
3154  *
3155  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3156  * ->subtree_control and propagate controller availability through the
3157  * subtree so that descendants don't have unavailable controllers enabled.
3158  */
3159 static void cgroup_propagate_control(struct cgroup *cgrp)
3160 {
3161         struct cgroup *dsct;
3162         struct cgroup_subsys_state *d_css;
3163 
3164         cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3165                 dsct->subtree_control &= cgroup_control(dsct);
3166                 dsct->subtree_ss_mask =
3167                         cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3168                                                     cgroup_ss_mask(dsct));
3169         }
3170 }
3171 
3172 /**
3173  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3174  * @cgrp: root of the target subtree
3175  *
3176  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3177  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3178  * itself.
3179  */
3180 static void cgroup_restore_control(struct cgroup *cgrp)
3181 {
3182         struct cgroup *dsct;
3183         struct cgroup_subsys_state *d_css;
3184 
3185         cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3186                 dsct->subtree_control = dsct->old_subtree_control;
3187                 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3188                 dsct->dom_cgrp = dsct->old_dom_cgrp;
3189         }
3190 }
3191 
3192 static bool css_visible(struct cgroup_subsys_state *css)
3193 {
3194         struct cgroup_subsys *ss = css->ss;
3195         struct cgroup *cgrp = css->cgroup;
3196 
3197         if (cgroup_control(cgrp) & (1 << ss->id))
3198                 return true;
3199         if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3200                 return false;
3201         return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3202 }
3203 
3204 /**
3205  * cgroup_apply_control_enable - enable or show csses according to control
3206  * @cgrp: root of the target subtree
3207  *
3208  * Walk @cgrp's subtree and create new csses or make the existing ones
3209  * visible.  A css is created invisible if it's being implicitly enabled
3210  * through dependency.  An invisible css is made visible when the userland
3211  * explicitly enables it.
3212  *
3213  * Returns 0 on success, -errno on failure.  On failure, csses which have
3214  * been processed already aren't cleaned up.  The caller is responsible for
3215  * cleaning up with cgroup_apply_control_disable().
3216  */
3217 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3218 {
3219         struct cgroup *dsct;
3220         struct cgroup_subsys_state *d_css;
3221         struct cgroup_subsys *ss;
3222         int ssid, ret;
3223 
3224         cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3225                 for_each_subsys(ss, ssid) {
3226                         struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3227 
3228                         if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3229                                 continue;
3230 
3231                         if (!css) {
3232                                 css = css_create(dsct, ss);
3233                                 if (IS_ERR(css))
3234                                         return PTR_ERR(css);
3235                         }
3236 
3237                         WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3238 
3239                         if (css_visible(css)) {
3240                                 ret = css_populate_dir(css);
3241                                 if (ret)
3242                                         return ret;
3243                         }
3244                 }
3245         }
3246 
3247         return 0;
3248 }
3249 
3250 /**
3251  * cgroup_apply_control_disable - kill or hide csses according to control
3252  * @cgrp: root of the target subtree
3253  *
3254  * Walk @cgrp's subtree and kill and hide csses so that they match
3255  * cgroup_ss_mask() and cgroup_visible_mask().
3256  *
3257  * A css is hidden when the userland requests it to be disabled while other
3258  * subsystems are still depending on it.  The css must not actively control
3259  * resources and be in the vanilla state if it's made visible again later.
3260  * Controllers which may be depended upon should provide ->css_reset() for
3261  * this purpose.
3262  */
3263 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3264 {
3265         struct cgroup *dsct;
3266         struct cgroup_subsys_state *d_css;
3267         struct cgroup_subsys *ss;
3268         int ssid;
3269 
3270         cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3271                 for_each_subsys(ss, ssid) {
3272                         struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3273 
3274                         if (!css)
3275                                 continue;
3276 
3277                         WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3278 
3279                         if (css->parent &&
3280                             !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3281                                 kill_css(css);
3282                         } else if (!css_visible(css)) {
3283                                 css_clear_dir(css);
3284                                 if (ss->css_reset)
3285                                         ss->css_reset(css);
3286                         }
3287                 }
3288         }
3289 }
3290 
3291 /**
3292  * cgroup_apply_control - apply control mask updates to the subtree
3293  * @cgrp: root of the target subtree
3294  *
3295  * subsystems can be enabled and disabled in a subtree using the following
3296  * steps.
3297  *
3298  * 1. Call cgroup_save_control() to stash the current state.
3299  * 2. Update ->subtree_control masks in the subtree as desired.
3300  * 3. Call cgroup_apply_control() to apply the changes.
3301  * 4. Optionally perform other related operations.
3302  * 5. Call cgroup_finalize_control() to finish up.
3303  *
3304  * This function implements step 3 and propagates the mask changes
3305  * throughout @cgrp's subtree, updates csses accordingly and perform
3306  * process migrations.
3307  */
3308 static int cgroup_apply_control(struct cgroup *cgrp)
3309 {
3310         int ret;
3311 
3312         cgroup_propagate_control(cgrp);
3313 
3314         ret = cgroup_apply_control_enable(cgrp);
3315         if (ret)
3316                 return ret;
3317 
3318         /*
3319          * At this point, cgroup_e_css_by_mask() results reflect the new csses
3320          * making the following cgroup_update_dfl_csses() properly update
3321          * css associations of all tasks in the subtree.
3322          */
3323         return cgroup_update_dfl_csses(cgrp);
3324 }
3325 
3326 /**
3327  * cgroup_finalize_control - finalize control mask update
3328  * @cgrp: root of the target subtree
3329  * @ret: the result of the update
3330  *
3331  * Finalize control mask update.  See cgroup_apply_control() for more info.
3332  */
3333 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3334 {
3335         if (ret) {
3336                 cgroup_restore_control(cgrp);
3337                 cgroup_propagate_control(cgrp);
3338         }
3339 
3340         cgroup_apply_control_disable(cgrp);
3341 }
3342 
3343 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3344 {
3345         u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3346 
3347         /* if nothing is getting enabled, nothing to worry about */
3348         if (!enable)
3349                 return 0;
3350 
3351         /* can @cgrp host any resources? */
3352         if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3353                 return -EOPNOTSUPP;
3354 
3355         /* mixables don't care */
3356         if (cgroup_is_mixable(cgrp))
3357                 return 0;
3358 
3359         if (domain_enable) {
3360                 /* can't enable domain controllers inside a thread subtree */
3361                 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3362                         return -EOPNOTSUPP;
3363         } else {
3364                 /*
3365                  * Threaded controllers can handle internal competitions
3366                  * and are always allowed inside a (prospective) thread
3367                  * subtree.
3368                  */
3369                 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3370                         return 0;
3371         }
3372 
3373         /*
3374          * Controllers can't be enabled for a cgroup with tasks to avoid
3375          * child cgroups competing against tasks.
3376          */
3377         if (cgroup_has_tasks(cgrp))
3378                 return -EBUSY;
3379 
3380         return 0;
3381 }
3382 
3383 /* change the enabled child controllers for a cgroup in the default hierarchy */
3384 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3385                                             char *buf, size_t nbytes,
3386                                             loff_t off)
3387 {
3388         u16 enable = 0, disable = 0;
3389         struct cgroup *cgrp, *child;
3390         struct cgroup_subsys *ss;
3391         char *tok;
3392         int ssid, ret;
3393 
3394         /*
3395          * Parse input - space separated list of subsystem names prefixed
3396          * with either + or -.
3397          */
3398         buf = strstrip(buf);
3399         while ((tok = strsep(&buf, " "))) {
3400                 if (tok[0] == '\0')
3401                         continue;
3402                 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3403                         if (!cgroup_ssid_enabled(ssid) ||
3404                             strcmp(tok + 1, ss->name))
3405                                 continue;
3406 
3407                         if (*tok == '+') {
3408                                 enable |= 1 << ssid;
3409                                 disable &= ~(1 << ssid);
3410                         } else if (*tok == '-') {
3411                                 disable |= 1 << ssid;
3412                                 enable &= ~(1 << ssid);
3413                         } else {
3414                                 return -EINVAL;
3415                         }
3416                         break;
3417                 } while_each_subsys_mask();
3418                 if (ssid == CGROUP_SUBSYS_COUNT)
3419                         return -EINVAL;
3420         }
3421 
3422         cgrp = cgroup_kn_lock_live(of->kn, true);
3423         if (!cgrp)
3424                 return -ENODEV;
3425 
3426         for_each_subsys(ss, ssid) {
3427                 if (enable & (1 << ssid)) {
3428                         if (cgrp->subtree_control & (1 << ssid)) {
3429                                 enable &= ~(1 << ssid);
3430                                 continue;
3431                         }
3432 
3433                         if (!(cgroup_control(cgrp) & (1 << ssid))) {
3434                                 ret = -ENOENT;
3435                                 goto out_unlock;
3436                         }
3437                 } else if (disable & (1 << ssid)) {
3438                         if (!(cgrp->subtree_control & (1 << ssid))) {
3439                                 disable &= ~(1 << ssid);
3440                                 continue;
3441                         }
3442 
3443                         /* a child has it enabled? */
3444                         cgroup_for_each_live_child(child, cgrp) {
3445                                 if (child->subtree_control & (1 << ssid)) {
3446                                         ret = -EBUSY;
3447                                         goto out_unlock;
3448                                 }
3449                         }
3450                 }
3451         }
3452 
3453         if (!enable && !disable) {
3454                 ret = 0;
3455                 goto out_unlock;
3456         }
3457 
3458         ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3459         if (ret)
3460                 goto out_unlock;
3461 
3462         /* save and update control masks and prepare csses */
3463         cgroup_save_control(cgrp);
3464 
3465         cgrp->subtree_control |= enable;
3466         cgrp->subtree_control &= ~disable;
3467 
3468         ret = cgroup_apply_control(cgrp);
3469         cgroup_finalize_control(cgrp, ret);
3470         if (ret)
3471                 goto out_unlock;
3472 
3473         kernfs_activate(cgrp->kn);
3474 out_unlock:
3475         cgroup_kn_unlock(of->kn);
3476         return ret ?: nbytes;
3477 }
3478 
3479 /**
3480  * cgroup_enable_threaded - make @cgrp threaded
3481  * @cgrp: the target cgroup
3482  *
3483  * Called when "threaded" is written to the cgroup.type interface file and
3484  * tries to make @cgrp threaded and join the parent's resource domain.
3485  * This function is never called on the root cgroup as cgroup.type doesn't
3486  * exist on it.
3487  */
3488 static int cgroup_enable_threaded(struct cgroup *cgrp)
3489 {
3490         struct cgroup *parent = cgroup_parent(cgrp);
3491         struct cgroup *dom_cgrp = parent->dom_cgrp;
3492         struct cgroup *dsct;
3493         struct cgroup_subsys_state *d_css;
3494         int ret;
3495 
3496         lockdep_assert_held(&cgroup_mutex);
3497 
3498         /* noop if already threaded */
3499         if (cgroup_is_threaded(cgrp))
3500                 return 0;
3501 
3502         /*
3503          * If @cgroup is populated or has domain controllers enabled, it
3504          * can't be switched.  While the below cgroup_can_be_thread_root()
3505          * test can catch the same conditions, that's only when @parent is
3506          * not mixable, so let's check it explicitly.
3507          */
3508         if (cgroup_is_populated(cgrp) ||
3509             cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3510                 return -EOPNOTSUPP;
3511 
3512         /* we're joining the parent's domain, ensure its validity */
3513         if (!cgroup_is_valid_domain(dom_cgrp) ||
3514             !cgroup_can_be_thread_root(dom_cgrp))
3515                 return -EOPNOTSUPP;
3516 
3517         /*
3518          * The following shouldn't cause actual migrations and should
3519          * always succeed.
3520          */
3521         cgroup_save_control(cgrp);
3522 
3523         cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3524                 if (dsct == cgrp || cgroup_is_threaded(dsct))
3525                         dsct->dom_cgrp = dom_cgrp;
3526 
3527         ret = cgroup_apply_control(cgrp);
3528         if (!ret)
3529                 parent->nr_threaded_children++;
3530 
3531         cgroup_finalize_control(cgrp, ret);
3532         return ret;
3533 }
3534 
3535 static int cgroup_type_show(struct seq_file *seq, void *v)
3536 {
3537         struct cgroup *cgrp = seq_css(seq)->cgroup;
3538 
3539         if (cgroup_is_threaded(cgrp))
3540                 seq_puts(seq, "threaded\n");
3541         else if (!cgroup_is_valid_domain(cgrp))
3542                 seq_puts(seq, "domain invalid\n");
3543         else if (cgroup_is_thread_root(cgrp))
3544                 seq_puts(seq, "domain threaded\n");
3545         else
3546                 seq_puts(seq, "domain\n");
3547 
3548         return 0;
3549 }
3550 
3551 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3552                                  size_t nbytes, loff_t off)
3553 {
3554         struct cgroup *cgrp;
3555         int ret;
3556 
3557         /* only switching to threaded mode is supported */
3558         if (strcmp(strstrip(buf), "threaded"))
3559                 return -EINVAL;
3560 
3561         /* drain dying csses before we re-apply (threaded) subtree control */
3562         cgrp = cgroup_kn_lock_live(of->kn, true);
3563         if (!cgrp)
3564                 return -ENOENT;
3565 
3566         /* threaded can only be enabled */
3567         ret = cgroup_enable_threaded(cgrp);
3568 
3569         cgroup_kn_unlock(of->kn);
3570         return ret ?: nbytes;
3571 }
3572 
3573 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3574 {
3575         struct cgroup *cgrp = seq_css(seq)->cgroup;
3576         int descendants = READ_ONCE(cgrp->max_descendants);
3577 
3578         if (descendants == INT_MAX)
3579                 seq_puts(seq, "max\n");
3580         else
3581                 seq_printf(seq, "%d\n", descendants);
3582 
3583         return 0;
3584 }
3585 
3586 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3587                                            char *buf, size_t nbytes, loff_t off)
3588 {
3589         struct cgroup *cgrp;
3590         int descendants;
3591         ssize_t ret;
3592 
3593         buf = strstrip(buf);
3594         if (!strcmp(buf, "max")) {
3595                 descendants = INT_MAX;
3596         } else {
3597                 ret = kstrtoint(buf, 0, &descendants);
3598                 if (ret)
3599                         return ret;
3600         }
3601 
3602         if (descendants < 0)
3603                 return -ERANGE;
3604 
3605         cgrp = cgroup_kn_lock_live(of->kn, false);
3606         if (!cgrp)
3607                 return -ENOENT;
3608 
3609         cgrp->max_descendants = descendants;
3610 
3611         cgroup_kn_unlock(of->kn);
3612 
3613         return nbytes;
3614 }
3615 
3616 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3617 {
3618         struct cgroup *cgrp = seq_css(seq)->cgroup;
3619         int depth = READ_ONCE(cgrp->max_depth);
3620 
3621         if (depth == INT_MAX)
3622                 seq_puts(seq, "max\n");
3623         else
3624                 seq_printf(seq, "%d\n", depth);
3625 
3626         return 0;
3627 }
3628 
3629 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3630                                       char *buf, size_t nbytes, loff_t off)
3631 {
3632         struct cgroup *cgrp;
3633         ssize_t ret;
3634         int depth;
3635 
3636         buf = strstrip(buf);
3637         if (!strcmp(buf, "max")) {
3638                 depth = INT_MAX;
3639         } else {
3640                 ret = kstrtoint(buf, 0, &depth);
3641                 if (ret)
3642                         return ret;
3643         }
3644 
3645         if (depth < 0)
3646                 return -ERANGE;
3647 
3648         cgrp = cgroup_kn_lock_live(of->kn, false);
3649         if (!cgrp)
3650                 return -ENOENT;
3651 
3652         cgrp->max_depth = depth;
3653 
3654         cgroup_kn_unlock(of->kn);
3655 
3656         return nbytes;
3657 }
3658 
3659 static int cgroup_events_show(struct seq_file *seq, void *v)
3660 {
3661         struct cgroup *cgrp = seq_css(seq)->cgroup;
3662 
3663         seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3664         seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3665 
3666         return 0;
3667 }
3668 
3669 static int cgroup_stat_show(struct seq_file *seq, void *v)
3670 {
3671         struct cgroup *cgroup = seq_css(seq)->cgroup;
3672 
3673         seq_printf(seq, "nr_descendants %d\n",
3674                    cgroup->nr_descendants);
3675         seq_printf(seq, "nr_dying_descendants %d\n",
3676                    cgroup->nr_dying_descendants);
3677 
3678         return 0;
3679 }
3680 
3681 #ifdef CONFIG_CGROUP_SCHED
3682 /**
3683  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3684  * @cgrp: the cgroup of interest
3685  * @ss: the subsystem of interest
3686  *
3687  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
3688  * or is offline, %NULL is returned.
3689  */
3690 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3691                                                      struct cgroup_subsys *ss)
3692 {
3693         struct cgroup_subsys_state *css;
3694 
3695         rcu_read_lock();
3696         css = cgroup_css(cgrp, ss);
3697         if (css && !css_tryget_online(css))
3698                 css = NULL;
3699         rcu_read_unlock();
3700 
3701         return css;
3702 }
3703 
3704 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3705 {
3706         struct cgroup *cgrp = seq_css(seq)->cgroup;
3707         struct cgroup_subsys *ss = cgroup_subsys[ssid];
3708         struct cgroup_subsys_state *css;
3709         int ret;
3710 
3711         if (!ss->css_extra_stat_show)
3712                 return 0;
3713 
3714         css = cgroup_tryget_css(cgrp, ss);
3715         if (!css)
3716                 return 0;
3717 
3718         ret = ss->css_extra_stat_show(seq, css);
3719         css_put(css);
3720         return ret;
3721 }
3722 
3723 static int cgroup_local_stat_show(struct seq_file *seq,
3724                                   struct cgroup *cgrp, int ssid)
3725 {
3726         struct cgroup_subsys *ss = cgroup_subsys[ssid];
3727         struct cgroup_subsys_state *css;
3728         int ret;
3729 
3730         if (!ss->css_local_stat_show)
3731                 return 0;
3732 
3733         css = cgroup_tryget_css(cgrp, ss);
3734         if (!css)
3735                 return 0;
3736 
3737         ret = ss->css_local_stat_show(seq, css);
3738         css_put(css);
3739         return ret;
3740 }
3741 #endif
3742 
3743 static int cpu_stat_show(struct seq_file *seq, void *v)
3744 {
3745         int ret = 0;
3746 
3747         cgroup_base_stat_cputime_show(seq);
3748 #ifdef CONFIG_CGROUP_SCHED
3749         ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3750 #endif
3751         return ret;
3752 }
3753 
3754 static int cpu_local_stat_show(struct seq_file *seq, void *v)
3755 {
3756         struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3757         int ret = 0;
3758 
3759 #ifdef CONFIG_CGROUP_SCHED
3760         ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3761 #endif
3762         return ret;
3763 }
3764 
3765 #ifdef CONFIG_PSI
3766 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3767 {
3768         struct cgroup *cgrp = seq_css(seq)->cgroup;
3769         struct psi_group *psi = cgroup_psi(cgrp);
3770 
3771         return psi_show(seq, psi, PSI_IO);
3772 }
3773 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3774 {
3775         struct cgroup *cgrp = seq_css(seq)->cgroup;
3776         struct psi_group *psi = cgroup_psi(cgrp);
3777 
3778         return psi_show(seq, psi, PSI_MEM);
3779 }
3780 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3781 {
3782         struct cgroup *cgrp = seq_css(seq)->cgroup;
3783         struct psi_group *psi = cgroup_psi(cgrp);
3784 
3785         return psi_show(seq, psi, PSI_CPU);
3786 }
3787 
3788 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3789                               size_t nbytes, enum psi_res res)
3790 {
3791         struct cgroup_file_ctx *ctx = of->priv;
3792         struct psi_trigger *new;
3793         struct cgroup *cgrp;
3794         struct psi_group *psi;
3795 
3796         cgrp = cgroup_kn_lock_live(of->kn, false);
3797         if (!cgrp)
3798                 return -ENODEV;
3799 
3800         cgroup_get(cgrp);
3801         cgroup_kn_unlock(of->kn);
3802 
3803         /* Allow only one trigger per file descriptor */
3804         if (ctx->psi.trigger) {
3805                 cgroup_put(cgrp);
3806                 return -EBUSY;
3807         }
3808 
3809         psi = cgroup_psi(cgrp);
3810         new = psi_trigger_create(psi, buf, res, of->file, of);
3811         if (IS_ERR(new)) {
3812                 cgroup_put(cgrp);
3813                 return PTR_ERR(new);
3814         }
3815 
3816         smp_store_release(&ctx->psi.trigger, new);
3817         cgroup_put(cgrp);
3818 
3819         return nbytes;
3820 }
3821 
3822 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3823                                           char *buf, size_t nbytes,
3824                                           loff_t off)
3825 {
3826         return pressure_write(of, buf, nbytes, PSI_IO);
3827 }
3828 
3829 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3830                                           char *buf, size_t nbytes,
3831                                           loff_t off)
3832 {
3833         return pressure_write(of, buf, nbytes, PSI_MEM);
3834 }
3835 
3836 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3837                                           char *buf, size_t nbytes,
3838                                           loff_t off)
3839 {
3840         return pressure_write(of, buf, nbytes, PSI_CPU);
3841 }
3842 
3843 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3844 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3845 {
3846         struct cgroup *cgrp = seq_css(seq)->cgroup;
3847         struct psi_group *psi = cgroup_psi(cgrp);
3848 
3849         return psi_show(seq, psi, PSI_IRQ);
3850 }
3851 
3852 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3853                                          char *buf, size_t nbytes,
3854                                          loff_t off)
3855 {
3856         return pressure_write(of, buf, nbytes, PSI_IRQ);
3857 }
3858 #endif
3859 
3860 static int cgroup_pressure_show(struct seq_file *seq, void *v)
3861 {
3862         struct cgroup *cgrp = seq_css(seq)->cgroup;
3863         struct psi_group *psi = cgroup_psi(cgrp);
3864 
3865         seq_printf(seq, "%d\n", psi->enabled);
3866 
3867         return 0;
3868 }
3869 
3870 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3871                                      char *buf, size_t nbytes,
3872                                      loff_t off)
3873 {
3874         ssize_t ret;
3875         int enable;
3876         struct cgroup *cgrp;
3877         struct psi_group *psi;
3878 
3879         ret = kstrtoint(strstrip(buf), 0, &enable);
3880         if (ret)
3881                 return ret;
3882 
3883         if (enable < 0 || enable > 1)
3884                 return -ERANGE;
3885 
3886         cgrp = cgroup_kn_lock_live(of->kn, false);
3887         if (!cgrp)
3888                 return -ENOENT;
3889 
3890         psi = cgroup_psi(cgrp);
3891         if (psi->enabled != enable) {
3892                 int i;
3893 
3894                 /* show or hide {cpu,memory,io,irq}.pressure files */
3895                 for (i = 0; i < NR_PSI_RESOURCES; i++)
3896                         cgroup_file_show(&cgrp->psi_files[i], enable);
3897 
3898                 psi->enabled = enable;
3899                 if (enable)
3900                         psi_cgroup_restart(psi);
3901         }
3902 
3903         cgroup_kn_unlock(of->kn);
3904 
3905         return nbytes;
3906 }
3907 
3908 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3909                                           poll_table *pt)
3910 {
3911         struct cgroup_file_ctx *ctx = of->priv;
3912 
3913         return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3914 }
3915 
3916 static void cgroup_pressure_release(struct kernfs_open_file *of)
3917 {
3918         struct cgroup_file_ctx *ctx = of->priv;
3919 
3920         psi_trigger_destroy(ctx->psi.trigger);
3921 }
3922 
3923 bool cgroup_psi_enabled(void)
3924 {
3925         if (static_branch_likely(&psi_disabled))
3926                 return false;
3927 
3928         return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3929 }
3930 
3931 #else /* CONFIG_PSI */
3932 bool cgroup_psi_enabled(void)
3933 {
3934         return false;
3935 }
3936 
3937 #endif /* CONFIG_PSI */
3938 
3939 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3940 {
3941         struct cgroup *cgrp = seq_css(seq)->cgroup;
3942 
3943         seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3944 
3945         return 0;
3946 }
3947 
3948 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3949                                    char *buf, size_t nbytes, loff_t off)
3950 {
3951         struct cgroup *cgrp;
3952         ssize_t ret;
3953         int freeze;
3954 
3955         ret = kstrtoint(strstrip(buf), 0, &freeze);
3956         if (ret)
3957                 return ret;
3958 
3959         if (freeze < 0 || freeze > 1)
3960                 return -ERANGE;
3961 
3962         cgrp = cgroup_kn_lock_live(of->kn, false);
3963         if (!cgrp)
3964                 return -ENOENT;
3965 
3966         cgroup_freeze(cgrp, freeze);
3967 
3968         cgroup_kn_unlock(of->kn);
3969 
3970         return nbytes;
3971 }
3972 
3973 static void __cgroup_kill(struct cgroup *cgrp)
3974 {
3975         struct css_task_iter it;
3976         struct task_struct *task;
3977 
3978         lockdep_assert_held(&cgroup_mutex);
3979 
3980         spin_lock_irq(&css_set_lock);
3981         set_bit(CGRP_KILL, &cgrp->flags);
3982         spin_unlock_irq(&css_set_lock);
3983 
3984         css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3985         while ((task = css_task_iter_next(&it))) {
3986                 /* Ignore kernel threads here. */
3987                 if (task->flags & PF_KTHREAD)
3988                         continue;
3989 
3990                 /* Skip tasks that are already dying. */
3991                 if (__fatal_signal_pending(task))
3992                         continue;
3993 
3994                 send_sig(SIGKILL, task, 0);
3995         }
3996         css_task_iter_end(&it);
3997 
3998         spin_lock_irq(&css_set_lock);
3999         clear_bit(CGRP_KILL, &cgrp->flags);
4000         spin_unlock_irq(&css_set_lock);
4001 }
4002 
4003 static void cgroup_kill(struct cgroup *cgrp)
4004 {
4005         struct cgroup_subsys_state *css;
4006         struct cgroup *dsct;
4007 
4008         lockdep_assert_held(&cgroup_mutex);
4009 
4010         cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
4011                 __cgroup_kill(dsct);
4012 }
4013 
4014 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4015                                  size_t nbytes, loff_t off)
4016 {
4017         ssize_t ret = 0;
4018         int kill;
4019         struct cgroup *cgrp;
4020 
4021         ret = kstrtoint(strstrip(buf), 0, &kill);
4022         if (ret)
4023                 return ret;
4024 
4025         if (kill != 1)
4026                 return -ERANGE;
4027 
4028         cgrp = cgroup_kn_lock_live(of->kn, false);
4029         if (!cgrp)
4030                 return -ENOENT;
4031 
4032         /*
4033          * Killing is a process directed operation, i.e. the whole thread-group
4034          * is taken down so act like we do for cgroup.procs and only make this
4035          * writable in non-threaded cgroups.
4036          */
4037         if (cgroup_is_threaded(cgrp))
4038                 ret = -EOPNOTSUPP;
4039         else
4040                 cgroup_kill(cgrp);
4041 
4042         cgroup_kn_unlock(of->kn);
4043 
4044         return ret ?: nbytes;
4045 }
4046 
4047 static int cgroup_file_open(struct kernfs_open_file *of)
4048 {
4049         struct cftype *cft = of_cft(of);
4050         struct cgroup_file_ctx *ctx;
4051         int ret;
4052 
4053         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4054         if (!ctx)
4055                 return -ENOMEM;
4056 
4057         ctx->ns = current->nsproxy->cgroup_ns;
4058         get_cgroup_ns(ctx->ns);
4059         of->priv = ctx;
4060 
4061         if (!cft->open)
4062                 return 0;
4063 
4064         ret = cft->open(of);
4065         if (ret) {
4066                 put_cgroup_ns(ctx->ns);
4067                 kfree(ctx);
4068         }
4069         return ret;
4070 }
4071 
4072 static void cgroup_file_release(struct kernfs_open_file *of)
4073 {
4074         struct cftype *cft = of_cft(of);
4075         struct cgroup_file_ctx *ctx = of->priv;
4076 
4077         if (cft->release)
4078                 cft->release(of);
4079         put_cgroup_ns(ctx->ns);
4080         kfree(ctx);
4081 }
4082 
4083 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4084                                  size_t nbytes, loff_t off)
4085 {
4086         struct cgroup_file_ctx *ctx = of->priv;
4087         struct cgroup *cgrp = of->kn->parent->priv;
4088         struct cftype *cft = of_cft(of);
4089         struct cgroup_subsys_state *css;
4090         int ret;
4091 
4092         if (!nbytes)
4093                 return 0;
4094 
4095         /*
4096          * If namespaces are delegation boundaries, disallow writes to
4097          * files in an non-init namespace root from inside the namespace
4098          * except for the files explicitly marked delegatable -
4099          * cgroup.procs and cgroup.subtree_control.
4100          */
4101         if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4102             !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4103             ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4104                 return -EPERM;
4105 
4106         if (cft->write)
4107                 return cft->write(of, buf, nbytes, off);
4108 
4109         /*
4110          * kernfs guarantees that a file isn't deleted with operations in
4111          * flight, which means that the matching css is and stays alive and
4112          * doesn't need to be pinned.  The RCU locking is not necessary
4113          * either.  It's just for the convenience of using cgroup_css().
4114          */
4115         rcu_read_lock();
4116         css = cgroup_css(cgrp, cft->ss);
4117         rcu_read_unlock();
4118 
4119         if (cft->write_u64) {
4120                 unsigned long long v;
4121                 ret = kstrtoull(buf, 0, &v);
4122                 if (!ret)
4123                         ret = cft->write_u64(css, cft, v);
4124         } else if (cft->write_s64) {
4125                 long long v;
4126                 ret = kstrtoll(buf, 0, &v);
4127                 if (!ret)
4128                         ret = cft->write_s64(css, cft, v);
4129         } else {
4130                 ret = -EINVAL;
4131         }
4132 
4133         return ret ?: nbytes;
4134 }
4135 
4136 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4137 {
4138         struct cftype *cft = of_cft(of);
4139 
4140         if (cft->poll)
4141                 return cft->poll(of, pt);
4142 
4143         return kernfs_generic_poll(of, pt);
4144 }
4145 
4146 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4147 {
4148         return seq_cft(seq)->seq_start(seq, ppos);
4149 }
4150 
4151 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4152 {
4153         return seq_cft(seq)->seq_next(seq, v, ppos);
4154 }
4155 
4156 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4157 {
4158         if (seq_cft(seq)->seq_stop)
4159                 seq_cft(seq)->seq_stop(seq, v);
4160 }
4161 
4162 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4163 {
4164         struct cftype *cft = seq_cft(m);
4165         struct cgroup_subsys_state *css = seq_css(m);
4166 
4167         if (cft->seq_show)
4168                 return cft->seq_show(m, arg);
4169 
4170         if (cft->read_u64)
4171                 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4172         else if (cft->read_s64)
4173                 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4174         else
4175                 return -EINVAL;
4176         return 0;
4177 }
4178 
4179 static struct kernfs_ops cgroup_kf_single_ops = {
4180         .atomic_write_len       = PAGE_SIZE,
4181         .open                   = cgroup_file_open,
4182         .release                = cgroup_file_release,
4183         .write                  = cgroup_file_write,
4184         .poll                   = cgroup_file_poll,
4185         .seq_show               = cgroup_seqfile_show,
4186 };
4187 
4188 static struct kernfs_ops cgroup_kf_ops = {
4189         .atomic_write_len       = PAGE_SIZE,
4190         .open                   = cgroup_file_open,
4191         .release                = cgroup_file_release,
4192         .write                  = cgroup_file_write,
4193         .poll                   = cgroup_file_poll,
4194         .seq_start              = cgroup_seqfile_start,
4195         .seq_next               = cgroup_seqfile_next,
4196         .seq_stop               = cgroup_seqfile_stop,
4197         .seq_show               = cgroup_seqfile_show,
4198 };
4199 
4200 static void cgroup_file_notify_timer(struct timer_list *timer)
4201 {
4202         cgroup_file_notify(container_of(timer, struct cgroup_file,
4203                                         notify_timer));
4204 }
4205 
4206 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4207                            struct cftype *cft)
4208 {
4209         char name[CGROUP_FILE_NAME_MAX];
4210         struct kernfs_node *kn;
4211         struct lock_class_key *key = NULL;
4212 
4213 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4214         key = &cft->lockdep_key;
4215 #endif
4216         kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4217                                   cgroup_file_mode(cft),
4218                                   current_fsuid(), current_fsgid(),
4219                                   0, cft->kf_ops, cft,
4220                                   NULL, key);
4221         if (IS_ERR(kn))
4222                 return PTR_ERR(kn);
4223 
4224         if (cft->file_offset) {
4225                 struct cgroup_file *cfile = (void *)css + cft->file_offset;
4226 
4227                 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4228 
4229                 spin_lock_irq(&cgroup_file_kn_lock);
4230                 cfile->kn = kn;
4231                 spin_unlock_irq(&cgroup_file_kn_lock);
4232         }
4233 
4234         return 0;
4235 }
4236 
4237 /**
4238  * cgroup_addrm_files - add or remove files to a cgroup directory
4239  * @css: the target css
4240  * @cgrp: the target cgroup (usually css->cgroup)
4241  * @cfts: array of cftypes to be added
4242  * @is_add: whether to add or remove
4243  *
4244  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4245  * For removals, this function never fails.
4246  */
4247 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4248                               struct cgroup *cgrp, struct cftype cfts[],
4249                               bool is_add)
4250 {
4251         struct cftype *cft, *cft_end = NULL;
4252         int ret = 0;
4253 
4254         lockdep_assert_held(&cgroup_mutex);
4255 
4256 restart:
4257         for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4258                 /* does cft->flags tell us to skip this file on @cgrp? */
4259                 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4260                         continue;
4261                 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4262                         continue;
4263                 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4264                         continue;
4265                 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4266                         continue;
4267                 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4268                         continue;
4269                 if (is_add) {
4270                         ret = cgroup_add_file(css, cgrp, cft);
4271                         if (ret) {
4272                                 pr_warn("%s: failed to add %s, err=%d\n",
4273                                         __func__, cft->name, ret);
4274                                 cft_end = cft;
4275                                 is_add = false;
4276                                 goto restart;
4277                         }
4278                 } else {
4279                         cgroup_rm_file(cgrp, cft);
4280                 }
4281         }
4282         return ret;
4283 }
4284 
4285 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4286 {
4287         struct cgroup_subsys *ss = cfts[0].ss;
4288         struct cgroup *root = &ss->root->cgrp;
4289         struct cgroup_subsys_state *css;
4290         int ret = 0;
4291 
4292         lockdep_assert_held(&cgroup_mutex);
4293 
4294         /* add/rm files for all cgroups created before */
4295         css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4296                 struct cgroup *cgrp = css->cgroup;
4297 
4298                 if (!(css->flags & CSS_VISIBLE))
4299                         continue;
4300 
4301                 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4302                 if (ret)
4303                         break;
4304         }
4305 
4306         if (is_add && !ret)
4307                 kernfs_activate(root->kn);
4308         return ret;
4309 }
4310 
4311 static void cgroup_exit_cftypes(struct cftype *cfts)
4312 {
4313         struct cftype *cft;
4314 
4315         for (cft = cfts; cft->name[0] != '\0'; cft++) {
4316                 /* free copy for custom atomic_write_len, see init_cftypes() */
4317                 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4318                         kfree(cft->kf_ops);
4319                 cft->kf_ops = NULL;
4320                 cft->ss = NULL;
4321 
4322                 /* revert flags set by cgroup core while adding @cfts */
4323                 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4324                                 __CFTYPE_ADDED);
4325         }
4326 }
4327 
4328 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4329 {
4330         struct cftype *cft;
4331         int ret = 0;
4332 
4333         for (cft = cfts; cft->name[0] != '\0'; cft++) {
4334                 struct kernfs_ops *kf_ops;
4335 
4336                 WARN_ON(cft->ss || cft->kf_ops);
4337 
4338                 if (cft->flags & __CFTYPE_ADDED) {
4339                         ret = -EBUSY;
4340                         break;
4341                 }
4342 
4343                 if (cft->seq_start)
4344                         kf_ops = &cgroup_kf_ops;
4345                 else
4346                         kf_ops = &cgroup_kf_single_ops;
4347 
4348                 /*
4349                  * Ugh... if @cft wants a custom max_write_len, we need to
4350                  * make a copy of kf_ops to set its atomic_write_len.
4351                  */
4352                 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4353                         kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4354                         if (!kf_ops) {
4355                                 ret = -ENOMEM;
4356                                 break;
4357                         }
4358                         kf_ops->atomic_write_len = cft->max_write_len;
4359                 }
4360 
4361                 cft->kf_ops = kf_ops;
4362                 cft->ss = ss;
4363                 cft->flags |= __CFTYPE_ADDED;
4364         }
4365 
4366         if (ret)
4367                 cgroup_exit_cftypes(cfts);
4368         return ret;
4369 }
4370 
4371 static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4372 {
4373         lockdep_assert_held(&cgroup_mutex);
4374 
4375         list_del(&cfts->node);
4376         cgroup_apply_cftypes(cfts, false);
4377         cgroup_exit_cftypes(cfts);
4378 }
4379 
4380 /**
4381  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4382  * @cfts: zero-length name terminated array of cftypes
4383  *
4384  * Unregister @cfts.  Files described by @cfts are removed from all
4385  * existing cgroups and all future cgroups won't have them either.  This
4386  * function can be called anytime whether @cfts' subsys is attached or not.
4387  *
4388  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4389  * registered.
4390  */
4391 int cgroup_rm_cftypes(struct cftype *cfts)
4392 {
4393         if (!cfts || cfts[0].name[0] == '\0')
4394                 return 0;
4395 
4396         if (!(cfts[0].flags & __CFTYPE_ADDED))
4397                 return -ENOENT;
4398 
4399         cgroup_lock();
4400         cgroup_rm_cftypes_locked(cfts);
4401         cgroup_unlock();
4402         return 0;
4403 }
4404 
4405 /**
4406  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4407  * @ss: target cgroup subsystem
4408  * @cfts: zero-length name terminated array of cftypes
4409  *
4410  * Register @cfts to @ss.  Files described by @cfts are created for all
4411  * existing cgroups to which @ss is attached and all future cgroups will
4412  * have them too.  This function can be called anytime whether @ss is
4413  * attached or not.
4414  *
4415  * Returns 0 on successful registration, -errno on failure.  Note that this
4416  * function currently returns 0 as long as @cfts registration is successful
4417  * even if some file creation attempts on existing cgroups fail.
4418  */
4419 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4420 {
4421         int ret;
4422 
4423         if (!cgroup_ssid_enabled(ss->id))
4424                 return 0;
4425 
4426         if (!cfts || cfts[0].name[0] == '\0')
4427                 return 0;
4428 
4429         ret = cgroup_init_cftypes(ss, cfts);
4430         if (ret)
4431                 return ret;
4432 
4433         cgroup_lock();
4434 
4435         list_add_tail(&cfts->node, &ss->cfts);
4436         ret = cgroup_apply_cftypes(cfts, true);
4437         if (ret)
4438                 cgroup_rm_cftypes_locked(cfts);
4439 
4440         cgroup_unlock();
4441         return ret;
4442 }
4443 
4444 /**
4445  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4446  * @ss: target cgroup subsystem
4447  * @cfts: zero-length name terminated array of cftypes
4448  *
4449  * Similar to cgroup_add_cftypes() but the added files are only used for
4450  * the default hierarchy.
4451  */
4452 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4453 {
4454         struct cftype *cft;
4455 
4456         for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4457                 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4458         return cgroup_add_cftypes(ss, cfts);
4459 }
4460 
4461 /**
4462  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4463  * @ss: target cgroup subsystem
4464  * @cfts: zero-length name terminated array of cftypes
4465  *
4466  * Similar to cgroup_add_cftypes() but the added files are only used for
4467  * the legacy hierarchies.
4468  */
4469 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4470 {
4471         struct cftype *cft;
4472 
4473         for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4474                 cft->flags |= __CFTYPE_NOT_ON_DFL;
4475         return cgroup_add_cftypes(ss, cfts);
4476 }
4477 
4478 /**
4479  * cgroup_file_notify - generate a file modified event for a cgroup_file
4480  * @cfile: target cgroup_file
4481  *
4482  * @cfile must have been obtained by setting cftype->file_offset.
4483  */
4484 void cgroup_file_notify(struct cgroup_file *cfile)
4485 {
4486         unsigned long flags;
4487 
4488         spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4489         if (cfile->kn) {
4490                 unsigned long last = cfile->notified_at;
4491                 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4492 
4493                 if (time_in_range(jiffies, last, next)) {
4494                         timer_reduce(&cfile->notify_timer, next);
4495                 } else {
4496                         kernfs_notify(cfile->kn);
4497                         cfile->notified_at = jiffies;
4498                 }
4499         }
4500         spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4501 }
4502 
4503 /**
4504  * cgroup_file_show - show or hide a hidden cgroup file
4505  * @cfile: target cgroup_file obtained by setting cftype->file_offset
4506  * @show: whether to show or hide
4507  */
4508 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4509 {
4510         struct kernfs_node *kn;
4511 
4512         spin_lock_irq(&cgroup_file_kn_lock);
4513         kn = cfile->kn;
4514         kernfs_get(kn);
4515         spin_unlock_irq(&cgroup_file_kn_lock);
4516 
4517         if (kn)
4518                 kernfs_show(kn, show);
4519 
4520         kernfs_put(kn);
4521 }
4522 
4523 /**
4524  * css_next_child - find the next child of a given css
4525  * @pos: the current position (%NULL to initiate traversal)
4526  * @parent: css whose children to walk
4527  *
4528  * This function returns the next child of @parent and should be called
4529  * under either cgroup_mutex or RCU read lock.  The only requirement is
4530  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4531  * be returned regardless of their states.
4532  *
4533  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4534  * css which finished ->css_online() is guaranteed to be visible in the
4535  * future iterations and will stay visible until the last reference is put.
4536  * A css which hasn't finished ->css_online() or already finished
4537  * ->css_offline() may show up during traversal.  It's each subsystem's
4538  * responsibility to synchronize against on/offlining.
4539  */
4540 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4541                                            struct cgroup_subsys_state *parent)
4542 {
4543         struct cgroup_subsys_state *next;
4544 
4545         cgroup_assert_mutex_or_rcu_locked();
4546 
4547         /*
4548          * @pos could already have been unlinked from the sibling list.
4549          * Once a cgroup is removed, its ->sibling.next is no longer
4550          * updated when its next sibling changes.  CSS_RELEASED is set when
4551          * @pos is taken off list, at which time its next pointer is valid,
4552          * and, as releases are serialized, the one pointed to by the next
4553          * pointer is guaranteed to not have started release yet.  This
4554          * implies that if we observe !CSS_RELEASED on @pos in this RCU
4555          * critical section, the one pointed to by its next pointer is
4556          * guaranteed to not have finished its RCU grace period even if we
4557          * have dropped rcu_read_lock() in-between iterations.
4558          *
4559          * If @pos has CSS_RELEASED set, its next pointer can't be
4560          * dereferenced; however, as each css is given a monotonically
4561          * increasing unique serial number and always appended to the
4562          * sibling list, the next one can be found by walking the parent's
4563          * children until the first css with higher serial number than
4564          * @pos's.  While this path can be slower, it happens iff iteration
4565          * races against release and the race window is very small.
4566          */
4567         if (!pos) {
4568                 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4569         } else if (likely(!(pos->flags & CSS_RELEASED))) {
4570                 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4571         } else {
4572                 list_for_each_entry_rcu(next, &parent->children, sibling,
4573                                         lockdep_is_held(&cgroup_mutex))
4574                         if (next->serial_nr > pos->serial_nr)
4575                                 break;
4576         }
4577 
4578         /*
4579          * @next, if not pointing to the head, can be dereferenced and is
4580          * the next sibling.
4581          */
4582         if (&next->sibling != &parent->children)
4583                 return next;
4584         return NULL;
4585 }
4586 
4587 /**
4588  * css_next_descendant_pre - find the next descendant for pre-order walk
4589  * @pos: the current position (%NULL to initiate traversal)
4590  * @root: css whose descendants to walk
4591  *
4592  * To be used by css_for_each_descendant_pre().  Find the next descendant
4593  * to visit for pre-order traversal of @root's descendants.  @root is
4594  * included in the iteration and the first node to be visited.
4595  *
4596  * While this function requires cgroup_mutex or RCU read locking, it
4597  * doesn't require the whole traversal to be contained in a single critical
4598  * section.  This function will return the correct next descendant as long
4599  * as both @pos and @root are accessible and @pos is a descendant of @root.
4600  *
4601  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4602  * css which finished ->css_online() is guaranteed to be visible in the
4603  * future iterations and will stay visible until the last reference is put.
4604  * A css which hasn't finished ->css_online() or already finished
4605  * ->css_offline() may show up during traversal.  It's each subsystem's
4606  * responsibility to synchronize against on/offlining.
4607  */
4608 struct cgroup_subsys_state *
4609 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4610                         struct cgroup_subsys_state *root)
4611 {
4612         struct cgroup_subsys_state *next;
4613 
4614         cgroup_assert_mutex_or_rcu_locked();
4615 
4616         /* if first iteration, visit @root */
4617         if (!pos)
4618                 return root;
4619 
4620         /* visit the first child if exists */
4621         next = css_next_child(NULL, pos);
4622         if (next)
4623                 return next;
4624 
4625         /* no child, visit my or the closest ancestor's next sibling */
4626         while (pos != root) {
4627                 next = css_next_child(pos, pos->parent);
4628                 if (next)
4629                         return next;
4630                 pos = pos->parent;
4631         }
4632 
4633         return NULL;
4634 }
4635 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4636 
4637 /**
4638  * css_rightmost_descendant - return the rightmost descendant of a css
4639  * @pos: css of interest
4640  *
4641  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4642  * is returned.  This can be used during pre-order traversal to skip
4643  * subtree of @pos.
4644  *
4645  * While this function requires cgroup_mutex or RCU read locking, it
4646  * doesn't require the whole traversal to be contained in a single critical
4647  * section.  This function will return the correct rightmost descendant as
4648  * long as @pos is accessible.
4649  */
4650 struct cgroup_subsys_state *
4651 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4652 {
4653         struct cgroup_subsys_state *last, *tmp;
4654 
4655         cgroup_assert_mutex_or_rcu_locked();
4656 
4657         do {
4658                 last = pos;
4659                 /* ->prev isn't RCU safe, walk ->next till the end */
4660                 pos = NULL;
4661                 css_for_each_child(tmp, last)
4662                         pos = tmp;
4663         } while (pos);
4664 
4665         return last;
4666 }
4667 
4668 static struct cgroup_subsys_state *
4669 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4670 {
4671         struct cgroup_subsys_state *last;
4672 
4673         do {
4674                 last = pos;
4675                 pos = css_next_child(NULL, pos);
4676         } while (pos);
4677 
4678         return last;
4679 }
4680 
4681 /**
4682  * css_next_descendant_post - find the next descendant for post-order walk
4683  * @pos: the current position (%NULL to initiate traversal)
4684  * @root: css whose descendants to walk
4685  *
4686  * To be used by css_for_each_descendant_post().  Find the next descendant
4687  * to visit for post-order traversal of @root's descendants.  @root is
4688  * included in the iteration and the last node to be visited.
4689  *
4690  * While this function requires cgroup_mutex or RCU read locking, it
4691  * doesn't require the whole traversal to be contained in a single critical
4692  * section.  This function will return the correct next descendant as long
4693  * as both @pos and @cgroup are accessible and @pos is a descendant of
4694  * @cgroup.
4695  *
4696  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4697  * css which finished ->css_online() is guaranteed to be visible in the
4698  * future iterations and will stay visible until the last reference is put.
4699  * A css which hasn't finished ->css_online() or already finished
4700  * ->css_offline() may show up during traversal.  It's each subsystem's
4701  * responsibility to synchronize against on/offlining.
4702  */
4703 struct cgroup_subsys_state *
4704 css_next_descendant_post(struct cgroup_subsys_state *pos,
4705                          struct cgroup_subsys_state *root)
4706 {
4707         struct cgroup_subsys_state *next;
4708 
4709         cgroup_assert_mutex_or_rcu_locked();
4710 
4711         /* if first iteration, visit leftmost descendant which may be @root */
4712         if (!pos)
4713                 return css_leftmost_descendant(root);
4714 
4715         /* if we visited @root, we're done */
4716         if (pos == root)
4717                 return NULL;
4718 
4719         /* if there's an unvisited sibling, visit its leftmost descendant */
4720         next = css_next_child(pos, pos->parent);
4721         if (next)
4722                 return css_leftmost_descendant(next);
4723 
4724         /* no sibling left, visit parent */
4725         return pos->parent;
4726 }
4727 
4728 /**
4729  * css_has_online_children - does a css have online children
4730  * @css: the target css
4731  *
4732  * Returns %true if @css has any online children; otherwise, %false.  This
4733  * function can be called from any context but the caller is responsible
4734  * for synchronizing against on/offlining as necessary.
4735  */
4736 bool css_has_online_children(struct cgroup_subsys_state *css)
4737 {
4738         struct cgroup_subsys_state *child;
4739         bool ret = false;
4740 
4741         rcu_read_lock();
4742         css_for_each_child(child, css) {
4743                 if (child->flags & CSS_ONLINE) {
4744                         ret = true;
4745                         break;
4746                 }
4747         }
4748         rcu_read_unlock();
4749         return ret;
4750 }
4751 
4752 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4753 {
4754         struct list_head *l;
4755         struct cgrp_cset_link *link;
4756         struct css_set *cset;
4757 
4758         lockdep_assert_held(&css_set_lock);
4759 
4760         /* find the next threaded cset */
4761         if (it->tcset_pos) {
4762                 l = it->tcset_pos->next;
4763 
4764                 if (l != it->tcset_head) {
4765                         it->tcset_pos = l;
4766                         return container_of(l, struct css_set,
4767                                             threaded_csets_node);
4768                 }
4769 
4770                 it->tcset_pos = NULL;
4771         }
4772 
4773         /* find the next cset */
4774         l = it->cset_pos;
4775         l = l->next;
4776         if (l == it->cset_head) {
4777                 it->cset_pos = NULL;
4778                 return NULL;
4779         }
4780 
4781         if (it->ss) {
4782                 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4783         } else {
4784                 link = list_entry(l, struct cgrp_cset_link, cset_link);
4785                 cset = link->cset;
4786         }
4787 
4788         it->cset_pos = l;
4789 
4790         /* initialize threaded css_set walking */
4791         if (it->flags & CSS_TASK_ITER_THREADED) {
4792                 if (it->cur_dcset)
4793                         put_css_set_locked(it->cur_dcset);
4794                 it->cur_dcset = cset;
4795                 get_css_set(cset);
4796 
4797                 it->tcset_head = &cset->threaded_csets;
4798                 it->tcset_pos = &cset->threaded_csets;
4799         }
4800 
4801         return cset;
4802 }
4803 
4804 /**
4805  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4806  * @it: the iterator to advance
4807  *
4808  * Advance @it to the next css_set to walk.
4809  */
4810 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4811 {
4812         struct css_set *cset;
4813 
4814         lockdep_assert_held(&css_set_lock);
4815 
4816         /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4817         while ((cset = css_task_iter_next_css_set(it))) {
4818                 if (!list_empty(&cset->tasks)) {
4819                         it->cur_tasks_head = &cset->tasks;
4820                         break;
4821                 } else if (!list_empty(&cset->mg_tasks)) {
4822                         it->cur_tasks_head = &cset->mg_tasks;
4823                         break;
4824                 } else if (!list_empty(&cset->dying_tasks)) {
4825                         it->cur_tasks_head = &cset->dying_tasks;
4826                         break;
4827                 }
4828         }
4829         if (!cset) {
4830                 it->task_pos = NULL;
4831                 return;
4832         }
4833         it->task_pos = it->cur_tasks_head->next;
4834 
4835         /*
4836          * We don't keep css_sets locked across iteration steps and thus
4837          * need to take steps to ensure that iteration can be resumed after
4838          * the lock is re-acquired.  Iteration is performed at two levels -
4839          * css_sets and tasks in them.
4840          *
4841          * Once created, a css_set never leaves its cgroup lists, so a
4842          * pinned css_set is guaranteed to stay put and we can resume
4843          * iteration afterwards.
4844          *
4845          * Tasks may leave @cset across iteration steps.  This is resolved
4846          * by registering each iterator with the css_set currently being
4847          * walked and making css_set_move_task() advance iterators whose
4848          * next task is leaving.
4849          */
4850         if (it->cur_cset) {
4851                 list_del(&it->iters_node);
4852                 put_css_set_locked(it->cur_cset);
4853         }
4854         get_css_set(cset);
4855         it->cur_cset = cset;
4856         list_add(&it->iters_node, &cset->task_iters);
4857 }
4858 
4859 static void css_task_iter_skip(struct css_task_iter *it,
4860                                struct task_struct *task)
4861 {
4862         lockdep_assert_held(&css_set_lock);
4863 
4864         if (it->task_pos == &task->cg_list) {
4865                 it->task_pos = it->task_pos->next;
4866                 it->flags |= CSS_TASK_ITER_SKIPPED;
4867         }
4868 }
4869 
4870 static void css_task_iter_advance(struct css_task_iter *it)
4871 {
4872         struct task_struct *task;
4873 
4874         lockdep_assert_held(&css_set_lock);
4875 repeat:
4876         if (it->task_pos) {
4877                 /*
4878                  * Advance iterator to find next entry. We go through cset
4879                  * tasks, mg_tasks and dying_tasks, when consumed we move onto
4880                  * the next cset.
4881                  */
4882                 if (it->flags & CSS_TASK_ITER_SKIPPED)
4883                         it->flags &= ~CSS_TASK_ITER_SKIPPED;
4884                 else
4885                         it->task_pos = it->task_pos->next;
4886 
4887                 if (it->task_pos == &it->cur_cset->tasks) {
4888                         it->cur_tasks_head = &it->cur_cset->mg_tasks;
4889                         it->task_pos = it->cur_tasks_head->next;
4890                 }
4891                 if (it->task_pos == &it->cur_cset->mg_tasks) {
4892                         it->cur_tasks_head = &it->cur_cset->dying_tasks;
4893                         it->task_pos = it->cur_tasks_head->next;
4894                 }
4895                 if (it->task_pos == &it->cur_cset->dying_tasks)
4896                         css_task_iter_advance_css_set(it);
4897         } else {
4898                 /* called from start, proceed to the first cset */
4899                 css_task_iter_advance_css_set(it);
4900         }
4901 
4902         if (!it->task_pos)
4903                 return;
4904 
4905         task = list_entry(it->task_pos, struct task_struct, cg_list);
4906 
4907         if (it->flags & CSS_TASK_ITER_PROCS) {
4908                 /* if PROCS, skip over tasks which aren't group leaders */
4909                 if (!thread_group_leader(task))
4910                         goto repeat;
4911 
4912                 /* and dying leaders w/o live member threads */
4913                 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4914                     !atomic_read(&task->signal->live))
4915                         goto repeat;
4916         } else {
4917                 /* skip all dying ones */
4918                 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4919                         goto repeat;
4920         }
4921 }
4922 
4923 /**
4924  * css_task_iter_start - initiate task iteration
4925  * @css: the css to walk tasks of
4926  * @flags: CSS_TASK_ITER_* flags
4927  * @it: the task iterator to use
4928  *
4929  * Initiate iteration through the tasks of @css.  The caller can call
4930  * css_task_iter_next() to walk through the tasks until the function
4931  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4932  * called.
4933  */
4934 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4935                          struct css_task_iter *it)
4936 {
4937         unsigned long irqflags;
4938 
4939         memset(it, 0, sizeof(*it));
4940 
4941         spin_lock_irqsave(&css_set_lock, irqflags);
4942 
4943         it->ss = css->ss;
4944         it->flags = flags;
4945 
4946         if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4947                 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4948         else
4949                 it->cset_pos = &css->cgroup->cset_links;
4950 
4951         it->cset_head = it->cset_pos;
4952 
4953         css_task_iter_advance(it);
4954 
4955         spin_unlock_irqrestore(&css_set_lock, irqflags);
4956 }
4957 
4958 /**
4959  * css_task_iter_next - return the next task for the iterator
4960  * @it: the task iterator being iterated
4961  *
4962  * The "next" function for task iteration.  @it should have been
4963  * initialized via css_task_iter_start().  Returns NULL when the iteration
4964  * reaches the end.
4965  */
4966 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4967 {
4968         unsigned long irqflags;
4969 
4970         if (it->cur_task) {
4971                 put_task_struct(it->cur_task);
4972                 it->cur_task = NULL;
4973         }
4974 
4975         spin_lock_irqsave(&css_set_lock, irqflags);
4976 
4977         /* @it may be half-advanced by skips, finish advancing */
4978         if (it->flags & CSS_TASK_ITER_SKIPPED)
4979                 css_task_iter_advance(it);
4980 
4981         if (it->task_pos) {
4982                 it->cur_task = list_entry(it->task_pos, struct task_struct,
4983                                           cg_list);
4984                 get_task_struct(it->cur_task);
4985                 css_task_iter_advance(it);
4986         }
4987 
4988         spin_unlock_irqrestore(&css_set_lock, irqflags);
4989 
4990         return it->cur_task;
4991 }
4992 
4993 /**
4994  * css_task_iter_end - finish task iteration
4995  * @it: the task iterator to finish
4996  *
4997  * Finish task iteration started by css_task_iter_start().
4998  */
4999 void css_task_iter_end(struct css_task_iter *it)
5000 {
5001         unsigned long irqflags;
5002 
5003         if (it->cur_cset) {
5004                 spin_lock_irqsave(&css_set_lock, irqflags);
5005                 list_del(&it->iters_node);
5006                 put_css_set_locked(it->cur_cset);
5007                 spin_unlock_irqrestore(&css_set_lock, irqflags);
5008         }
5009 
5010         if (it->cur_dcset)
5011                 put_css_set(it->cur_dcset);
5012 
5013         if (it->cur_task)
5014                 put_task_struct(it->cur_task);
5015 }
5016 
5017 static void cgroup_procs_release(struct kernfs_open_file *of)
5018 {
5019         struct cgroup_file_ctx *ctx = of->priv;
5020 
5021         if (ctx->procs.started)
5022                 css_task_iter_end(&ctx->procs.iter);
5023 }
5024 
5025 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5026 {
5027         struct kernfs_open_file *of = s->private;
5028         struct cgroup_file_ctx *ctx = of->priv;
5029 
5030         if (pos)
5031                 (*pos)++;
5032 
5033         return css_task_iter_next(&ctx->procs.iter);
5034 }
5035 
5036 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5037                                   unsigned int iter_flags)
5038 {
5039         struct kernfs_open_file *of = s->private;
5040         struct cgroup *cgrp = seq_css(s)->cgroup;
5041         struct cgroup_file_ctx *ctx = of->priv;
5042         struct css_task_iter *it = &ctx->procs.iter;
5043 
5044         /*
5045          * When a seq_file is seeked, it's always traversed sequentially
5046          * from position 0, so we can simply keep iterating on !0 *pos.
5047          */
5048         if (!ctx->procs.started) {
5049                 if (WARN_ON_ONCE((*pos)))
5050                         return ERR_PTR(-EINVAL);
5051                 css_task_iter_start(&cgrp->self, iter_flags, it);
5052                 ctx->procs.started = true;
5053         } else if (!(*pos)) {
5054                 css_task_iter_end(it);
5055                 css_task_iter_start(&cgrp->self, iter_flags, it);
5056         } else
5057                 return it->cur_task;
5058 
5059         return cgroup_procs_next(s, NULL, NULL);
5060 }
5061 
5062 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5063 {
5064         struct cgroup *cgrp = seq_css(s)->cgroup;
5065 
5066         /*
5067          * All processes of a threaded subtree belong to the domain cgroup
5068          * of the subtree.  Only threads can be distributed across the
5069          * subtree.  Reject reads on cgroup.procs in the subtree proper.
5070          * They're always empty anyway.
5071          */
5072         if (cgroup_is_threaded(cgrp))
5073                 return ERR_PTR(-EOPNOTSUPP);
5074 
5075         return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5076                                             CSS_TASK_ITER_THREADED);
5077 }
5078 
5079 static int cgroup_procs_show(struct seq_file *s, void *v)
5080 {
5081         seq_printf(s, "%d\n", task_pid_vnr(v));
5082         return 0;
5083 }
5084 
5085 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5086 {
5087         int ret;
5088         struct inode *inode;
5089 
5090         lockdep_assert_held(&cgroup_mutex);
5091 
5092         inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5093         if (!inode)
5094                 return -ENOMEM;
5095 
5096         ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5097         iput(inode);
5098         return ret;
5099 }
5100 
5101 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5102                                          struct cgroup *dst_cgrp,
5103                                          struct super_block *sb,
5104                                          struct cgroup_namespace *ns)
5105 {
5106         struct cgroup *com_cgrp = src_cgrp;
5107         int ret;
5108 
5109         lockdep_assert_held(&cgroup_mutex);
5110 
5111         /* find the common ancestor */
5112         while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5113                 com_cgrp = cgroup_parent(com_cgrp);
5114 
5115         /* %current should be authorized to migrate to the common ancestor */
5116         ret = cgroup_may_write(com_cgrp, sb);
5117         if (ret)
5118                 return ret;
5119 
5120         /*
5121          * If namespaces are delegation boundaries, %current must be able
5122          * to see both source and destination cgroups from its namespace.
5123          */
5124         if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5125             (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5126              !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5127                 return -ENOENT;
5128 
5129         return 0;
5130 }
5131 
5132 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5133                                      struct cgroup *dst_cgrp,
5134                                      struct super_block *sb, bool threadgroup,
5135                                      struct cgroup_namespace *ns)
5136 {
5137         int ret = 0;
5138 
5139         ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5140         if (ret)
5141                 return ret;
5142 
5143         ret = cgroup_migrate_vet_dst(dst_cgrp);
5144         if (ret)
5145                 return ret;
5146 
5147         if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5148                 ret = -EOPNOTSUPP;
5149 
5150         return ret;
5151 }
5152 
5153 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5154                                     bool threadgroup)
5155 {
5156         struct cgroup_file_ctx *ctx = of->priv;
5157         struct cgroup *src_cgrp, *dst_cgrp;
5158         struct task_struct *task;
5159         const struct cred *saved_cred;
5160         ssize_t ret;
5161         bool threadgroup_locked;
5162 
5163         dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5164         if (!dst_cgrp)
5165                 return -ENODEV;
5166 
5167         task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5168         ret = PTR_ERR_OR_ZERO(task);
5169         if (ret)
5170                 goto out_unlock;
5171 
5172         /* find the source cgroup */
5173         spin_lock_irq(&css_set_lock);
5174         src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5175         spin_unlock_irq(&css_set_lock);
5176 
5177         /*
5178          * Process and thread migrations follow same delegation rule. Check
5179          * permissions using the credentials from file open to protect against
5180          * inherited fd attacks.
5181          */
5182         saved_cred = override_creds(of->file->f_cred);
5183         ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5184                                         of->file->f_path.dentry->d_sb,
5185                                         threadgroup, ctx->ns);
5186         revert_creds(saved_cred);
5187         if (ret)
5188                 goto out_finish;
5189 
5190         ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5191 
5192 out_finish:
5193         cgroup_procs_write_finish(task, threadgroup_locked);
5194 out_unlock:
5195         cgroup_kn_unlock(of->kn);
5196 
5197         return ret;
5198 }
5199 
5200 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5201                                   char *buf, size_t nbytes, loff_t off)
5202 {
5203         return __cgroup_procs_write(of, buf, true) ?: nbytes;
5204 }
5205 
5206 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5207 {
5208         return __cgroup_procs_start(s, pos, 0);
5209 }
5210 
5211 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5212                                     char *buf, size_t nbytes, loff_t off)
5213 {
5214         return __cgroup_procs_write(of, buf, false) ?: nbytes;
5215 }
5216 
5217 /* cgroup core interface files for the default hierarchy */
5218 static struct cftype cgroup_base_files[] = {
5219         {
5220                 .name = "cgroup.type",
5221                 .flags = CFTYPE_NOT_ON_ROOT,
5222                 .seq_show = cgroup_type_show,
5223                 .write = cgroup_type_write,
5224         },
5225         {
5226                 .name = "cgroup.procs",
5227                 .flags = CFTYPE_NS_DELEGATABLE,
5228                 .file_offset = offsetof(struct cgroup, procs_file),
5229                 .release = cgroup_procs_release,
5230                 .seq_start = cgroup_procs_start,
5231                 .seq_next = cgroup_procs_next,
5232                 .seq_show = cgroup_procs_show,
5233                 .write = cgroup_procs_write,
5234         },
5235         {
5236                 .name = "cgroup.threads",
5237                 .flags = CFTYPE_NS_DELEGATABLE,
5238                 .release = cgroup_procs_release,
5239                 .seq_start = cgroup_threads_start,
5240                 .seq_next = cgroup_procs_next,
5241                 .seq_show = cgroup_procs_show,
5242                 .write = cgroup_threads_write,
5243         },
5244         {
5245                 .name = "cgroup.controllers",
5246                 .seq_show = cgroup_controllers_show,
5247         },
5248         {
5249                 .name = "cgroup.subtree_control",
5250                 .flags = CFTYPE_NS_DELEGATABLE,
5251                 .seq_show = cgroup_subtree_control_show,
5252                 .write = cgroup_subtree_control_write,
5253         },
5254         {
5255                 .name = "cgroup.events",
5256                 .flags = CFTYPE_NOT_ON_ROOT,
5257                 .file_offset = offsetof(struct cgroup, events_file),
5258                 .seq_show = cgroup_events_show,
5259         },
5260         {
5261                 .name = "cgroup.max.descendants",
5262                 .seq_show = cgroup_max_descendants_show,
5263                 .write = cgroup_max_descendants_write,
5264         },
5265         {
5266                 .name = "cgroup.max.depth",
5267                 .seq_show = cgroup_max_depth_show,
5268                 .write = cgroup_max_depth_write,
5269         },
5270         {
5271                 .name = "cgroup.stat",
5272                 .seq_show = cgroup_stat_show,
5273         },
5274         {
5275                 .name = "cgroup.freeze",
5276                 .flags = CFTYPE_NOT_ON_ROOT,
5277                 .seq_show = cgroup_freeze_show,
5278                 .write = cgroup_freeze_write,
5279         },
5280         {
5281                 .name = "cgroup.kill",
5282                 .flags = CFTYPE_NOT_ON_ROOT,
5283                 .write = cgroup_kill_write,
5284         },
5285         {
5286                 .name = "cpu.stat",
5287                 .seq_show = cpu_stat_show,
5288         },
5289         {
5290                 .name = "cpu.stat.local",
5291                 .seq_show = cpu_local_stat_show,
5292         },
5293         { }     /* terminate */
5294 };
5295 
5296 static struct cftype cgroup_psi_files[] = {
5297 #ifdef CONFIG_PSI
5298         {
5299                 .name = "io.pressure",
5300                 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5301                 .seq_show = cgroup_io_pressure_show,
5302                 .write = cgroup_io_pressure_write,
5303                 .poll = cgroup_pressure_poll,
5304                 .release = cgroup_pressure_release,
5305         },
5306         {
5307                 .name = "memory.pressure",
5308                 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5309                 .seq_show = cgroup_memory_pressure_show,
5310                 .write = cgroup_memory_pressure_write,
5311                 .poll = cgroup_pressure_poll,
5312                 .release = cgroup_pressure_release,
5313         },
5314         {
5315                 .name = "cpu.pressure",
5316                 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5317                 .seq_show = cgroup_cpu_pressure_show,
5318                 .write = cgroup_cpu_pressure_write,
5319                 .poll = cgroup_pressure_poll,
5320                 .release = cgroup_pressure_release,
5321         },
5322 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5323         {
5324                 .name = "irq.pressure",
5325                 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5326                 .seq_show = cgroup_irq_pressure_show,
5327                 .write = cgroup_irq_pressure_write,
5328                 .poll = cgroup_pressure_poll,
5329                 .release = cgroup_pressure_release,
5330         },
5331 #endif
5332         {
5333                 .name = "cgroup.pressure",
5334                 .seq_show = cgroup_pressure_show,
5335                 .write = cgroup_pressure_write,
5336         },
5337 #endif /* CONFIG_PSI */
5338         { }     /* terminate */
5339 };
5340 
5341 /*
5342  * css destruction is four-stage process.
5343  *
5344  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5345  *    Implemented in kill_css().
5346  *
5347  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5348  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5349  *    offlined by invoking offline_css().  After offlining, the base ref is
5350  *    put.  Implemented in css_killed_work_fn().
5351  *
5352  * 3. When the percpu_ref reaches zero, the only possible remaining
5353  *    accessors are inside RCU read sections.  css_release() schedules the
5354  *    RCU callback.
5355  *
5356  * 4. After the grace period, the css can be freed.  Implemented in
5357  *    css_free_rwork_fn().
5358  *
5359  * It is actually hairier because both step 2 and 4 require process context
5360  * and thus involve punting to css->destroy_work adding two additional
5361  * steps to the already complex sequence.
5362  */
5363 static void css_free_rwork_fn(struct work_struct *work)
5364 {
5365         struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5366                                 struct cgroup_subsys_state, destroy_rwork);
5367         struct cgroup_subsys *ss = css->ss;
5368         struct cgroup *cgrp = css->cgroup;
5369 
5370         percpu_ref_exit(&css->refcnt);
5371 
5372         if (ss) {
5373                 /* css free path */
5374                 struct cgroup_subsys_state *parent = css->parent;
5375                 int id = css->id;
5376 
5377                 ss->css_free(css);
5378                 cgroup_idr_remove(&ss->css_idr, id);
5379                 cgroup_put(cgrp);
5380 
5381                 if (parent)
5382                         css_put(parent);
5383         } else {
5384                 /* cgroup free path */
5385                 atomic_dec(&cgrp->root->nr_cgrps);
5386                 if (!cgroup_on_dfl(cgrp))
5387                         cgroup1_pidlist_destroy_all(cgrp);
5388                 cancel_work_sync(&cgrp->release_agent_work);
5389                 bpf_cgrp_storage_free(cgrp);
5390 
5391                 if (cgroup_parent(cgrp)) {
5392                         /*
5393                          * We get a ref to the parent, and put the ref when
5394                          * this cgroup is being freed, so it's guaranteed
5395                          * that the parent won't be destroyed before its
5396                          * children.
5397                          */
5398                         cgroup_put(cgroup_parent(cgrp));
5399                         kernfs_put(cgrp->kn);
5400                         psi_cgroup_free(cgrp);
5401                         cgroup_rstat_exit(cgrp);
5402                         kfree(cgrp);
5403                 } else {
5404                         /*
5405                          * This is root cgroup's refcnt reaching zero,
5406                          * which indicates that the root should be
5407                          * released.
5408                          */
5409                         cgroup_destroy_root(cgrp->root);
5410                 }
5411         }
5412 }
5413 
5414 static void css_release_work_fn(struct work_struct *work)
5415 {
5416         struct cgroup_subsys_state *css =
5417                 container_of(work, struct cgroup_subsys_state, destroy_work);
5418         struct cgroup_subsys *ss = css->ss;
5419         struct cgroup *cgrp = css->cgroup;
5420 
5421         cgroup_lock();
5422 
5423         css->flags |= CSS_RELEASED;
5424         list_del_rcu(&css->sibling);
5425 
5426         if (ss) {
5427                 /* css release path */
5428                 if (!list_empty(&css->rstat_css_node)) {
5429                         cgroup_rstat_flush(cgrp);
5430                         list_del_rcu(&css->rstat_css_node);
5431                 }
5432 
5433                 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5434                 if (ss->css_released)
5435                         ss->css_released(css);
5436         } else {
5437                 struct cgroup *tcgrp;
5438 
5439                 /* cgroup release path */
5440                 TRACE_CGROUP_PATH(release, cgrp);
5441 
5442                 cgroup_rstat_flush(cgrp);
5443 
5444                 spin_lock_irq(&css_set_lock);
5445                 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5446                      tcgrp = cgroup_parent(tcgrp))
5447                         tcgrp->nr_dying_descendants--;
5448                 spin_unlock_irq(&css_set_lock);
5449 
5450                 /*
5451                  * There are two control paths which try to determine
5452                  * cgroup from dentry without going through kernfs -
5453                  * cgroupstats_build() and css_tryget_online_from_dir().
5454                  * Those are supported by RCU protecting clearing of
5455                  * cgrp->kn->priv backpointer.
5456                  */
5457                 if (cgrp->kn)
5458                         RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5459                                          NULL);
5460         }
5461 
5462         cgroup_unlock();
5463 
5464         INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5465         queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5466 }
5467 
5468 static void css_release(struct percpu_ref *ref)
5469 {
5470         struct cgroup_subsys_state *css =
5471                 container_of(ref, struct cgroup_subsys_state, refcnt);
5472 
5473         INIT_WORK(&css->destroy_work, css_release_work_fn);
5474         queue_work(cgroup_destroy_wq, &css->destroy_work);
5475 }
5476 
5477 static void init_and_link_css(struct cgroup_subsys_state *css,
5478                               struct cgroup_subsys *ss, struct cgroup *cgrp)
5479 {
5480         lockdep_assert_held(&cgroup_mutex);
5481 
5482         cgroup_get_live(cgrp);
5483 
5484         memset(css, 0, sizeof(*css));
5485         css->cgroup = cgrp;
5486         css->ss = ss;
5487         css->id = -1;
5488         INIT_LIST_HEAD(&css->sibling);
5489         INIT_LIST_HEAD(&css->children);
5490         INIT_LIST_HEAD(&css->rstat_css_node);
5491         css->serial_nr = css_serial_nr_next++;
5492         atomic_set(&css->online_cnt, 0);
5493 
5494         if (cgroup_parent(cgrp)) {
5495                 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5496                 css_get(css->parent);
5497         }
5498 
5499         if (ss->css_rstat_flush)
5500                 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5501 
5502         BUG_ON(cgroup_css(cgrp, ss));
5503 }
5504 
5505 /* invoke ->css_online() on a new CSS and mark it online if successful */
5506 static int online_css(struct cgroup_subsys_state *css)
5507 {
5508         struct cgroup_subsys *ss = css->ss;
5509         int ret = 0;
5510 
5511         lockdep_assert_held(&cgroup_mutex);
5512 
5513         if (ss->css_online)
5514                 ret = ss->css_online(css);
5515         if (!ret) {
5516                 css->flags |= CSS_ONLINE;
5517                 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5518 
5519                 atomic_inc(&css->online_cnt);
5520                 if (css->parent)
5521                         atomic_inc(&css->parent->online_cnt);
5522         }
5523         return ret;
5524 }
5525 
5526 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5527 static void offline_css(struct cgroup_subsys_state *css)
5528 {
5529         struct cgroup_subsys *ss = css->ss;
5530 
5531         lockdep_assert_held(&cgroup_mutex);
5532 
5533         if (!(css->flags & CSS_ONLINE))
5534                 return;
5535 
5536         if (ss->css_offline)
5537                 ss->css_offline(css);
5538 
5539         css->flags &= ~CSS_ONLINE;
5540         RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5541 
5542         wake_up_all(&css->cgroup->offline_waitq);
5543 }
5544 
5545 /**
5546  * css_create - create a cgroup_subsys_state
5547  * @cgrp: the cgroup new css will be associated with
5548  * @ss: the subsys of new css
5549  *
5550  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5551  * css is online and installed in @cgrp.  This function doesn't create the
5552  * interface files.  Returns 0 on success, -errno on failure.
5553  */
5554 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5555                                               struct cgroup_subsys *ss)
5556 {
5557         struct cgroup *parent = cgroup_parent(cgrp);
5558         struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5559         struct cgroup_subsys_state *css;
5560         int err;
5561 
5562         lockdep_assert_held(&cgroup_mutex);
5563 
5564         css = ss->css_alloc(parent_css);
5565         if (!css)
5566                 css = ERR_PTR(-ENOMEM);
5567         if (IS_ERR(css))
5568                 return css;
5569 
5570         init_and_link_css(css, ss, cgrp);
5571 
5572         err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5573         if (err)
5574                 goto err_free_css;
5575 
5576         err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5577         if (err < 0)
5578                 goto err_free_css;
5579         css->id = err;
5580 
5581         /* @css is ready to be brought online now, make it visible */
5582         list_add_tail_rcu(&css->sibling, &parent_css->children);
5583         cgroup_idr_replace(&ss->css_idr, css, css->id);
5584 
5585         err = online_css(css);
5586         if (err)
5587                 goto err_list_del;
5588 
5589         return css;
5590 
5591 err_list_del:
5592         list_del_rcu(&css->sibling);
5593 err_free_css:
5594         list_del_rcu(&css->rstat_css_node);
5595         INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5596         queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5597         return ERR_PTR(err);
5598 }
5599 
5600 /*
5601  * The returned cgroup is fully initialized including its control mask, but
5602  * it doesn't have the control mask applied.
5603  */
5604 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5605                                     umode_t mode)
5606 {
5607         struct cgroup_root *root = parent->root;
5608         struct cgroup *cgrp, *tcgrp;
5609         struct kernfs_node *kn;
5610         int level = parent->level + 1;
5611         int ret;
5612 
5613         /* allocate the cgroup and its ID, 0 is reserved for the root */
5614         cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5615         if (!cgrp)
5616                 return ERR_PTR(-ENOMEM);
5617 
5618         ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5619         if (ret)
5620                 goto out_free_cgrp;
5621 
5622         ret = cgroup_rstat_init(cgrp);
5623         if (ret)
5624                 goto out_cancel_ref;
5625 
5626         /* create the directory */
5627         kn = kernfs_create_dir_ns(parent->kn, name, mode,
5628                                   current_fsuid(), current_fsgid(),
5629                                   cgrp, NULL);
5630         if (IS_ERR(kn)) {
5631                 ret = PTR_ERR(kn);
5632                 goto out_stat_exit;
5633         }
5634         cgrp->kn = kn;
5635 
5636         init_cgroup_housekeeping(cgrp);
5637 
5638         cgrp->self.parent = &parent->self;
5639         cgrp->root = root;
5640         cgrp->level = level;
5641 
5642         ret = psi_cgroup_alloc(cgrp);
5643         if (ret)
5644                 goto out_kernfs_remove;
5645 
5646         ret = cgroup_bpf_inherit(cgrp);
5647         if (ret)
5648                 goto out_psi_free;
5649 
5650         /*
5651          * New cgroup inherits effective freeze counter, and
5652          * if the parent has to be frozen, the child has too.
5653          */
5654         cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5655         if (cgrp->freezer.e_freeze) {
5656                 /*
5657                  * Set the CGRP_FREEZE flag, so when a process will be
5658                  * attached to the child cgroup, it will become frozen.
5659                  * At this point the new cgroup is unpopulated, so we can
5660                  * consider it frozen immediately.
5661                  */
5662                 set_bit(CGRP_FREEZE, &cgrp->flags);
5663                 set_bit(CGRP_FROZEN, &cgrp->flags);
5664         }
5665 
5666         spin_lock_irq(&css_set_lock);
5667         for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5668                 cgrp->ancestors[tcgrp->level] = tcgrp;
5669 
5670                 if (tcgrp != cgrp) {
5671                         tcgrp->nr_descendants++;
5672 
5673                         /*
5674                          * If the new cgroup is frozen, all ancestor cgroups
5675                          * get a new frozen descendant, but their state can't
5676                          * change because of this.
5677                          */
5678                         if (cgrp->freezer.e_freeze)
5679                                 tcgrp->freezer.nr_frozen_descendants++;
5680                 }
5681         }
5682         spin_unlock_irq(&css_set_lock);
5683 
5684         if (notify_on_release(parent))
5685                 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5686 
5687         if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5688                 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5689 
5690         cgrp->self.serial_nr = css_serial_nr_next++;
5691 
5692         /* allocation complete, commit to creation */
5693         list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5694         atomic_inc(&root->nr_cgrps);
5695         cgroup_get_live(parent);
5696 
5697         /*
5698          * On the default hierarchy, a child doesn't automatically inherit
5699          * subtree_control from the parent.  Each is configured manually.
5700          */
5701         if (!cgroup_on_dfl(cgrp))
5702                 cgrp->subtree_control = cgroup_control(cgrp);
5703 
5704         cgroup_propagate_control(cgrp);
5705 
5706         return cgrp;
5707 
5708 out_psi_free:
5709         psi_cgroup_free(cgrp);
5710 out_kernfs_remove:
5711         kernfs_remove(cgrp->kn);
5712 out_stat_exit:
5713         cgroup_rstat_exit(cgrp);
5714 out_cancel_ref:
5715         percpu_ref_exit(&cgrp->self.refcnt);
5716 out_free_cgrp:
5717         kfree(cgrp);
5718         return ERR_PTR(ret);
5719 }
5720 
5721 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5722 {
5723         struct cgroup *cgroup;
5724         int ret = false;
5725         int level = 1;
5726 
5727         lockdep_assert_held(&cgroup_mutex);
5728 
5729         for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5730                 if (cgroup->nr_descendants >= cgroup->max_descendants)
5731                         goto fail;
5732 
5733                 if (level > cgroup->max_depth)
5734                         goto fail;
5735 
5736                 level++;
5737         }
5738 
5739         ret = true;
5740 fail:
5741         return ret;
5742 }
5743 
5744 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5745 {
5746         struct cgroup *parent, *cgrp;
5747         int ret;
5748 
5749         /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5750         if (strchr(name, '\n'))
5751                 return -EINVAL;
5752 
5753         parent = cgroup_kn_lock_live(parent_kn, false);
5754         if (!parent)
5755                 return -ENODEV;
5756 
5757         if (!cgroup_check_hierarchy_limits(parent)) {
5758                 ret = -EAGAIN;
5759                 goto out_unlock;
5760         }
5761 
5762         cgrp = cgroup_create(parent, name, mode);
5763         if (IS_ERR(cgrp)) {
5764                 ret = PTR_ERR(cgrp);
5765                 goto out_unlock;
5766         }
5767 
5768         /*
5769          * This extra ref will be put in cgroup_free_fn() and guarantees
5770          * that @cgrp->kn is always accessible.
5771          */
5772         kernfs_get(cgrp->kn);
5773 
5774         ret = css_populate_dir(&cgrp->self);
5775         if (ret)
5776                 goto out_destroy;
5777 
5778         ret = cgroup_apply_control_enable(cgrp);
5779         if (ret)
5780                 goto out_destroy;
5781 
5782         TRACE_CGROUP_PATH(mkdir, cgrp);
5783 
5784         /* let's create and online css's */
5785         kernfs_activate(cgrp->kn);
5786 
5787         ret = 0;
5788         goto out_unlock;
5789 
5790 out_destroy:
5791         cgroup_destroy_locked(cgrp);
5792 out_unlock:
5793         cgroup_kn_unlock(parent_kn);
5794         return ret;
5795 }
5796 
5797 /*
5798  * This is called when the refcnt of a css is confirmed to be killed.
5799  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5800  * initiate destruction and put the css ref from kill_css().
5801  */
5802 static void css_killed_work_fn(struct work_struct *work)
5803 {
5804         struct cgroup_subsys_state *css =
5805                 container_of(work, struct cgroup_subsys_state, destroy_work);
5806 
5807         cgroup_lock();
5808 
5809         do {
5810                 offline_css(css);
5811                 css_put(css);
5812                 /* @css can't go away while we're holding cgroup_mutex */
5813                 css = css->parent;
5814         } while (css && atomic_dec_and_test(&css->online_cnt));
5815 
5816         cgroup_unlock();
5817 }
5818 
5819 /* css kill confirmation processing requires process context, bounce */
5820 static void css_killed_ref_fn(struct percpu_ref *ref)
5821 {
5822         struct cgroup_subsys_state *css =
5823                 container_of(ref, struct cgroup_subsys_state, refcnt);
5824 
5825         if (atomic_dec_and_test(&css->online_cnt)) {
5826                 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5827                 queue_work(cgroup_destroy_wq, &css->destroy_work);
5828         }
5829 }
5830 
5831 /**
5832  * kill_css - destroy a css
5833  * @css: css to destroy
5834  *
5835  * This function initiates destruction of @css by removing cgroup interface
5836  * files and putting its base reference.  ->css_offline() will be invoked
5837  * asynchronously once css_tryget_online() is guaranteed to fail and when
5838  * the reference count reaches zero, @css will be released.
5839  */
5840 static void kill_css(struct cgroup_subsys_state *css)
5841 {
5842         lockdep_assert_held(&cgroup_mutex);
5843 
5844         if (css->flags & CSS_DYING)
5845                 return;
5846 
5847         css->flags |= CSS_DYING;
5848 
5849         /*
5850          * This must happen before css is disassociated with its cgroup.
5851          * See seq_css() for details.
5852          */
5853         css_clear_dir(css);
5854 
5855         /*
5856          * Killing would put the base ref, but we need to keep it alive
5857          * until after ->css_offline().
5858          */
5859         css_get(css);
5860 
5861         /*
5862          * cgroup core guarantees that, by the time ->css_offline() is
5863          * invoked, no new css reference will be given out via
5864          * css_tryget_online().  We can't simply call percpu_ref_kill() and
5865          * proceed to offlining css's because percpu_ref_kill() doesn't
5866          * guarantee that the ref is seen as killed on all CPUs on return.
5867          *
5868          * Use percpu_ref_kill_and_confirm() to get notifications as each
5869          * css is confirmed to be seen as killed on all CPUs.
5870          */
5871         percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5872 }
5873 
5874 /**
5875  * cgroup_destroy_locked - the first stage of cgroup destruction
5876  * @cgrp: cgroup to be destroyed
5877  *
5878  * css's make use of percpu refcnts whose killing latency shouldn't be
5879  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5880  * guarantee that css_tryget_online() won't succeed by the time
5881  * ->css_offline() is invoked.  To satisfy all the requirements,
5882  * destruction is implemented in the following two steps.
5883  *
5884  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5885  *     userland visible parts and start killing the percpu refcnts of
5886  *     css's.  Set up so that the next stage will be kicked off once all
5887  *     the percpu refcnts are confirmed to be killed.
5888  *
5889  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5890  *     rest of destruction.  Once all cgroup references are gone, the
5891  *     cgroup is RCU-freed.
5892  *
5893  * This function implements s1.  After this step, @cgrp is gone as far as
5894  * the userland is concerned and a new cgroup with the same name may be
5895  * created.  As cgroup doesn't care about the names internally, this
5896  * doesn't cause any problem.
5897  */
5898 static int cgroup_destroy_locked(struct cgroup *cgrp)
5899         __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5900 {
5901         struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5902         struct cgroup_subsys_state *css;
5903         struct cgrp_cset_link *link;
5904         int ssid;
5905 
5906         lockdep_assert_held(&cgroup_mutex);
5907 
5908         /*
5909          * Only migration can raise populated from zero and we're already
5910          * holding cgroup_mutex.
5911          */
5912         if (cgroup_is_populated(cgrp))
5913                 return -EBUSY;
5914 
5915         /*
5916          * Make sure there's no live children.  We can't test emptiness of
5917          * ->self.children as dead children linger on it while being
5918          * drained; otherwise, "rmdir parent/child parent" may fail.
5919          */
5920         if (css_has_online_children(&cgrp->self))
5921                 return -EBUSY;
5922 
5923         /*
5924          * Mark @cgrp and the associated csets dead.  The former prevents
5925          * further task migration and child creation by disabling
5926          * cgroup_kn_lock_live().  The latter makes the csets ignored by
5927          * the migration path.
5928          */
5929         cgrp->self.flags &= ~CSS_ONLINE;
5930 
5931         spin_lock_irq(&css_set_lock);
5932         list_for_each_entry(link, &cgrp->cset_links, cset_link)
5933                 link->cset->dead = true;
5934         spin_unlock_irq(&css_set_lock);
5935 
5936         /* initiate massacre of all css's */
5937         for_each_css(css, ssid, cgrp)
5938                 kill_css(css);
5939 
5940         /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5941         css_clear_dir(&cgrp->self);
5942         kernfs_remove(cgrp->kn);
5943 
5944         if (cgroup_is_threaded(cgrp))
5945                 parent->nr_threaded_children--;
5946 
5947         spin_lock_irq(&css_set_lock);
5948         for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5949                 tcgrp->nr_descendants--;
5950                 tcgrp->nr_dying_descendants++;
5951                 /*
5952                  * If the dying cgroup is frozen, decrease frozen descendants
5953                  * counters of ancestor cgroups.
5954                  */
5955                 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5956                         tcgrp->freezer.nr_frozen_descendants--;
5957         }
5958         spin_unlock_irq(&css_set_lock);
5959 
5960         cgroup1_check_for_release(parent);
5961 
5962         cgroup_bpf_offline(cgrp);
5963 
5964         /* put the base reference */
5965         percpu_ref_kill(&cgrp->self.refcnt);
5966 
5967         return 0;
5968 };
5969 
5970 int cgroup_rmdir(struct kernfs_node *kn)
5971 {
5972         struct cgroup *cgrp;
5973         int ret = 0;
5974 
5975         cgrp = cgroup_kn_lock_live(kn, false);
5976         if (!cgrp)
5977                 return 0;
5978 
5979         ret = cgroup_destroy_locked(cgrp);
5980         if (!ret)
5981                 TRACE_CGROUP_PATH(rmdir, cgrp);
5982 
5983         cgroup_kn_unlock(kn);
5984         return ret;
5985 }
5986 
5987 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5988         .show_options           = cgroup_show_options,
5989         .mkdir                  = cgroup_mkdir,
5990         .rmdir                  = cgroup_rmdir,
5991         .show_path              = cgroup_show_path,
5992 };
5993 
5994 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5995 {
5996         struct cgroup_subsys_state *css;
5997 
5998         pr_debug("Initializing cgroup subsys %s\n", ss->name);
5999 
6000         cgroup_lock();
6001 
6002         idr_init(&ss->css_idr);
6003         INIT_LIST_HEAD(&ss->cfts);
6004 
6005         /* Create the root cgroup state for this subsystem */
6006         ss->root = &cgrp_dfl_root;
6007         css = ss->css_alloc(NULL);
6008         /* We don't handle early failures gracefully */
6009         BUG_ON(IS_ERR(css));
6010         init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
6011 
6012         /*
6013          * Root csses are never destroyed and we can't initialize
6014          * percpu_ref during early init.  Disable refcnting.
6015          */
6016         css->flags |= CSS_NO_REF;
6017 
6018         if (early) {
6019                 /* allocation can't be done safely during early init */
6020                 css->id = 1;
6021         } else {
6022                 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6023                 BUG_ON(css->id < 0);
6024         }
6025 
6026         /* Update the init_css_set to contain a subsys
6027          * pointer to this state - since the subsystem is
6028          * newly registered, all tasks and hence the
6029          * init_css_set is in the subsystem's root cgroup. */
6030         init_css_set.subsys[ss->id] = css;
6031 
6032         have_fork_callback |= (bool)ss->fork << ss->id;
6033         have_exit_callback |= (bool)ss->exit << ss->id;
6034         have_release_callback |= (bool)ss->release << ss->id;
6035         have_canfork_callback |= (bool)ss->can_fork << ss->id;
6036 
6037         /* At system boot, before all subsystems have been
6038          * registered, no tasks have been forked, so we don't
6039          * need to invoke fork callbacks here. */
6040         BUG_ON(!list_empty(&init_task.tasks));
6041 
6042         BUG_ON(online_css(css));
6043 
6044         cgroup_unlock();
6045 }
6046 
6047 /**
6048  * cgroup_init_early - cgroup initialization at system boot
6049  *
6050  * Initialize cgroups at system boot, and initialize any
6051  * subsystems that request early init.
6052  */
6053 int __init cgroup_init_early(void)
6054 {
6055         static struct cgroup_fs_context __initdata ctx;
6056         struct cgroup_subsys *ss;
6057         int i;
6058 
6059         ctx.root = &cgrp_dfl_root;
6060         init_cgroup_root(&ctx);
6061         cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6062 
6063         RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6064 
6065         for_each_subsys(ss, i) {
6066                 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6067                      "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6068                      i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6069                      ss->id, ss->name);
6070                 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6071                      "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6072 
6073                 ss->id = i;
6074                 ss->name = cgroup_subsys_name[i];
6075                 if (!ss->legacy_name)
6076                         ss->legacy_name = cgroup_subsys_name[i];
6077 
6078                 if (ss->early_init)
6079                         cgroup_init_subsys(ss, true);
6080         }
6081         return 0;
6082 }
6083 
6084 /**
6085  * cgroup_init - cgroup initialization
6086  *
6087  * Register cgroup filesystem and /proc file, and initialize
6088  * any subsystems that didn't request early init.
6089  */
6090 int __init cgroup_init(void)
6091 {
6092         struct cgroup_subsys *ss;
6093         int ssid;
6094 
6095         BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6096         BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6097         BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6098         BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6099 
6100         cgroup_rstat_boot();
6101 
6102         get_user_ns(init_cgroup_ns.user_ns);
6103 
6104         cgroup_lock();
6105 
6106         /*
6107          * Add init_css_set to the hash table so that dfl_root can link to
6108          * it during init.
6109          */
6110         hash_add(css_set_table, &init_css_set.hlist,
6111                  css_set_hash(init_css_set.subsys));
6112 
6113         BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6114 
6115         cgroup_unlock();
6116 
6117         for_each_subsys(ss, ssid) {
6118                 if (ss->early_init) {
6119                         struct cgroup_subsys_state *css =
6120                                 init_css_set.subsys[ss->id];
6121 
6122                         css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6123                                                    GFP_KERNEL);
6124                         BUG_ON(css->id < 0);
6125                 } else {
6126                         cgroup_init_subsys(ss, false);
6127                 }
6128 
6129                 list_add_tail(&init_css_set.e_cset_node[ssid],
6130                               &cgrp_dfl_root.cgrp.e_csets[ssid]);
6131 
6132                 /*
6133                  * Setting dfl_root subsys_mask needs to consider the
6134                  * disabled flag and cftype registration needs kmalloc,
6135                  * both of which aren't available during early_init.
6136                  */
6137                 if (!cgroup_ssid_enabled(ssid))
6138                         continue;
6139 
6140                 if (cgroup1_ssid_disabled(ssid))
6141                         pr_info("Disabling %s control group subsystem in v1 mounts\n",
6142                                 ss->legacy_name);
6143 
6144                 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6145 
6146                 /* implicit controllers must be threaded too */
6147                 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6148 
6149                 if (ss->implicit_on_dfl)
6150                         cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6151                 else if (!ss->dfl_cftypes)
6152                         cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6153 
6154                 if (ss->threaded)
6155                         cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6156 
6157                 if (ss->dfl_cftypes == ss->legacy_cftypes) {
6158                         WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6159                 } else {
6160                         WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6161                         WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6162                 }
6163 
6164                 if (ss->bind)
6165                         ss->bind(init_css_set.subsys[ssid]);
6166 
6167                 cgroup_lock();
6168                 css_populate_dir(init_css_set.subsys[ssid]);
6169                 cgroup_unlock();
6170         }
6171 
6172         /* init_css_set.subsys[] has been updated, re-hash */
6173         hash_del(&init_css_set.hlist);
6174         hash_add(css_set_table, &init_css_set.hlist,
6175                  css_set_hash(init_css_set.subsys));
6176 
6177         WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6178         WARN_ON(register_filesystem(&cgroup_fs_type));
6179         WARN_ON(register_filesystem(&cgroup2_fs_type));
6180         WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6181 #ifdef CONFIG_CPUSETS
6182         WARN_ON(register_filesystem(&cpuset_fs_type));
6183 #endif
6184 
6185         return 0;
6186 }
6187 
6188 static int __init cgroup_wq_init(void)
6189 {
6190         /*
6191          * There isn't much point in executing destruction path in
6192          * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6193          * Use 1 for @max_active.
6194          *
6195          * We would prefer to do this in cgroup_init() above, but that
6196          * is called before init_workqueues(): so leave this until after.
6197          */
6198         cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6199         BUG_ON(!cgroup_destroy_wq);
6200         return 0;
6201 }
6202 core_initcall(cgroup_wq_init);
6203 
6204 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6205 {
6206         struct kernfs_node *kn;
6207 
6208         kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6209         if (!kn)
6210                 return;
6211         kernfs_path(kn, buf, buflen);
6212         kernfs_put(kn);
6213 }
6214 
6215 /*
6216  * cgroup_get_from_id : get the cgroup associated with cgroup id
6217  * @id: cgroup id
6218  * On success return the cgrp or ERR_PTR on failure
6219  * Only cgroups within current task's cgroup NS are valid.
6220  */
6221 struct cgroup *cgroup_get_from_id(u64 id)
6222 {
6223         struct kernfs_node *kn;
6224         struct cgroup *cgrp, *root_cgrp;
6225 
6226         kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6227         if (!kn)
6228                 return ERR_PTR(-ENOENT);
6229 
6230         if (kernfs_type(kn) != KERNFS_DIR) {
6231                 kernfs_put(kn);
6232                 return ERR_PTR(-ENOENT);
6233         }
6234 
6235         rcu_read_lock();
6236 
6237         cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6238         if (cgrp && !cgroup_tryget(cgrp))
6239                 cgrp = NULL;
6240 
6241         rcu_read_unlock();
6242         kernfs_put(kn);
6243 
6244         if (!cgrp)
6245                 return ERR_PTR(-ENOENT);
6246 
6247         root_cgrp = current_cgns_cgroup_dfl();
6248         if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6249                 cgroup_put(cgrp);
6250                 return ERR_PTR(-ENOENT);
6251         }
6252 
6253         return cgrp;
6254 }
6255 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6256 
6257 /*
6258  * proc_cgroup_show()
6259  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6260  *  - Used for /proc/<pid>/cgroup.
6261  */
6262 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6263                      struct pid *pid, struct task_struct *tsk)
6264 {
6265         char *buf;
6266         int retval;
6267         struct cgroup_root *root;
6268 
6269         retval = -ENOMEM;
6270         buf = kmalloc(PATH_MAX, GFP_KERNEL);
6271         if (!buf)
6272                 goto out;
6273 
6274         rcu_read_lock();
6275         spin_lock_irq(&css_set_lock);
6276 
6277         for_each_root(root) {
6278                 struct cgroup_subsys *ss;
6279                 struct cgroup *cgrp;
6280                 int ssid, count = 0;
6281 
6282                 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6283                         continue;
6284 
6285                 cgrp = task_cgroup_from_root(tsk, root);
6286                 /* The root has already been unmounted. */
6287                 if (!cgrp)
6288                         continue;
6289 
6290                 seq_printf(m, "%d:", root->hierarchy_id);
6291                 if (root != &cgrp_dfl_root)
6292                         for_each_subsys(ss, ssid)
6293                                 if (root->subsys_mask & (1 << ssid))
6294                                         seq_printf(m, "%s%s", count++ ? "," : "",
6295                                                    ss->legacy_name);
6296                 if (strlen(root->name))
6297                         seq_printf(m, "%sname=%s", count ? "," : "",
6298                                    root->name);
6299                 seq_putc(m, ':');
6300                 /*
6301                  * On traditional hierarchies, all zombie tasks show up as
6302                  * belonging to the root cgroup.  On the default hierarchy,
6303                  * while a zombie doesn't show up in "cgroup.procs" and
6304                  * thus can't be migrated, its /proc/PID/cgroup keeps
6305                  * reporting the cgroup it belonged to before exiting.  If
6306                  * the cgroup is removed before the zombie is reaped,
6307                  * " (deleted)" is appended to the cgroup path.
6308                  */
6309                 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6310                         retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6311                                                 current->nsproxy->cgroup_ns);
6312                         if (retval == -E2BIG)
6313                                 retval = -ENAMETOOLONG;
6314                         if (retval < 0)
6315                                 goto out_unlock;
6316 
6317                         seq_puts(m, buf);
6318                 } else {
6319                         seq_puts(m, "/");
6320                 }
6321 
6322                 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6323                         seq_puts(m, " (deleted)\n");
6324                 else
6325                         seq_putc(m, '\n');
6326         }
6327 
6328         retval = 0;
6329 out_unlock:
6330         spin_unlock_irq(&css_set_lock);
6331         rcu_read_unlock();
6332         kfree(buf);
6333 out:
6334         return retval;
6335 }
6336 
6337 /**
6338  * cgroup_fork - initialize cgroup related fields during copy_process()
6339  * @child: pointer to task_struct of forking parent process.
6340  *
6341  * A task is associated with the init_css_set until cgroup_post_fork()
6342  * attaches it to the target css_set.
6343  */
6344 void cgroup_fork(struct task_struct *child)
6345 {
6346         RCU_INIT_POINTER(child->cgroups, &init_css_set);
6347         INIT_LIST_HEAD(&child->cg_list);
6348 }
6349 
6350 /**
6351  * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6352  * @f: file corresponding to cgroup_dir
6353  *
6354  * Find the cgroup from a file pointer associated with a cgroup directory.
6355  * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6356  * cgroup cannot be found.
6357  */
6358 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6359 {
6360         struct cgroup_subsys_state *css;
6361 
6362         css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6363         if (IS_ERR(css))
6364                 return ERR_CAST(css);
6365 
6366         return css->cgroup;
6367 }
6368 
6369 /**
6370  * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6371  * cgroup2.
6372  * @f: file corresponding to cgroup2_dir
6373  */
6374 static struct cgroup *cgroup_get_from_file(struct file *f)
6375 {
6376         struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6377 
6378         if (IS_ERR(cgrp))
6379                 return ERR_CAST(cgrp);
6380 
6381         if (!cgroup_on_dfl(cgrp)) {
6382                 cgroup_put(cgrp);
6383                 return ERR_PTR(-EBADF);
6384         }
6385 
6386         return cgrp;
6387 }
6388 
6389 /**
6390  * cgroup_css_set_fork - find or create a css_set for a child process
6391  * @kargs: the arguments passed to create the child process
6392  *
6393  * This functions finds or creates a new css_set which the child
6394  * process will be attached to in cgroup_post_fork(). By default,
6395  * the child process will be given the same css_set as its parent.
6396  *
6397  * If CLONE_INTO_CGROUP is specified this function will try to find an
6398  * existing css_set which includes the requested cgroup and if not create
6399  * a new css_set that the child will be attached to later. If this function
6400  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6401  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6402  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6403  * to the target cgroup.
6404  */
6405 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6406         __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6407 {
6408         int ret;
6409         struct cgroup *dst_cgrp = NULL;
6410         struct css_set *cset;
6411         struct super_block *sb;
6412         struct file *f;
6413 
6414         if (kargs->flags & CLONE_INTO_CGROUP)
6415                 cgroup_lock();
6416 
6417         cgroup_threadgroup_change_begin(current);
6418 
6419         spin_lock_irq(&css_set_lock);
6420         cset = task_css_set(current);
6421         get_css_set(cset);
6422         spin_unlock_irq(&css_set_lock);
6423 
6424         if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6425                 kargs->cset = cset;
6426                 return 0;
6427         }
6428 
6429         f = fget_raw(kargs->cgroup);
6430         if (!f) {
6431                 ret = -EBADF;
6432                 goto err;
6433         }
6434         sb = f->f_path.dentry->d_sb;
6435 
6436         dst_cgrp = cgroup_get_from_file(f);
6437         if (IS_ERR(dst_cgrp)) {
6438                 ret = PTR_ERR(dst_cgrp);
6439                 dst_cgrp = NULL;
6440                 goto err;
6441         }
6442 
6443         if (cgroup_is_dead(dst_cgrp)) {
6444                 ret = -ENODEV;
6445                 goto err;
6446         }
6447 
6448         /*
6449          * Verify that we the target cgroup is writable for us. This is
6450          * usually done by the vfs layer but since we're not going through
6451          * the vfs layer here we need to do it "manually".
6452          */
6453         ret = cgroup_may_write(dst_cgrp, sb);
6454         if (ret)
6455                 goto err;
6456 
6457         /*
6458          * Spawning a task directly into a cgroup works by passing a file
6459          * descriptor to the target cgroup directory. This can even be an O_PATH
6460          * file descriptor. But it can never be a cgroup.procs file descriptor.
6461          * This was done on purpose so spawning into a cgroup could be
6462          * conceptualized as an atomic
6463          *
6464          *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6465          *   write(fd, <child-pid>, ...);
6466          *
6467          * sequence, i.e. it's a shorthand for the caller opening and writing
6468          * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6469          * to always use the caller's credentials.
6470          */
6471         ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6472                                         !(kargs->flags & CLONE_THREAD),
6473                                         current->nsproxy->cgroup_ns);
6474         if (ret)
6475                 goto err;
6476 
6477         kargs->cset = find_css_set(cset, dst_cgrp);
6478         if (!kargs->cset) {
6479                 ret = -ENOMEM;
6480                 goto err;
6481         }
6482 
6483         put_css_set(cset);
6484         fput(f);
6485         kargs->cgrp = dst_cgrp;
6486         return ret;
6487 
6488 err:
6489         cgroup_threadgroup_change_end(current);
6490         cgroup_unlock();
6491         if (f)
6492                 fput(f);
6493         if (dst_cgrp)
6494                 cgroup_put(dst_cgrp);
6495         put_css_set(cset);
6496         if (kargs->cset)
6497                 put_css_set(kargs->cset);
6498         return ret;
6499 }
6500 
6501 /**
6502  * cgroup_css_set_put_fork - drop references we took during fork
6503  * @kargs: the arguments passed to create the child process
6504  *
6505  * Drop references to the prepared css_set and target cgroup if
6506  * CLONE_INTO_CGROUP was requested.
6507  */
6508 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6509         __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6510 {
6511         struct cgroup *cgrp = kargs->cgrp;
6512         struct css_set *cset = kargs->cset;
6513 
6514         cgroup_threadgroup_change_end(current);
6515 
6516         if (cset) {
6517                 put_css_set(cset);
6518                 kargs->cset = NULL;
6519         }
6520 
6521         if (kargs->flags & CLONE_INTO_CGROUP) {
6522                 cgroup_unlock();
6523                 if (cgrp) {
6524                         cgroup_put(cgrp);
6525                         kargs->cgrp = NULL;
6526                 }
6527         }
6528 }
6529 
6530 /**
6531  * cgroup_can_fork - called on a new task before the process is exposed
6532  * @child: the child process
6533  * @kargs: the arguments passed to create the child process
6534  *
6535  * This prepares a new css_set for the child process which the child will
6536  * be attached to in cgroup_post_fork().
6537  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6538  * callback returns an error, the fork aborts with that error code. This
6539  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6540  */
6541 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6542 {
6543         struct cgroup_subsys *ss;
6544         int i, j, ret;
6545 
6546         ret = cgroup_css_set_fork(kargs);
6547         if (ret)
6548                 return ret;
6549 
6550         do_each_subsys_mask(ss, i, have_canfork_callback) {
6551                 ret = ss->can_fork(child, kargs->cset);
6552                 if (ret)
6553                         goto out_revert;
6554         } while_each_subsys_mask();
6555 
6556         return 0;
6557 
6558 out_revert:
6559         for_each_subsys(ss, j) {
6560                 if (j >= i)
6561                         break;
6562                 if (ss->cancel_fork)
6563                         ss->cancel_fork(child, kargs->cset);
6564         }
6565 
6566         cgroup_css_set_put_fork(kargs);
6567 
6568         return ret;
6569 }
6570 
6571 /**
6572  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6573  * @child: the child process
6574  * @kargs: the arguments passed to create the child process
6575  *
6576  * This calls the cancel_fork() callbacks if a fork failed *after*
6577  * cgroup_can_fork() succeeded and cleans up references we took to
6578  * prepare a new css_set for the child process in cgroup_can_fork().
6579  */
6580 void cgroup_cancel_fork(struct task_struct *child,
6581                         struct kernel_clone_args *kargs)
6582 {
6583         struct cgroup_subsys *ss;
6584         int i;
6585 
6586         for_each_subsys(ss, i)
6587                 if (ss->cancel_fork)
6588                         ss->cancel_fork(child, kargs->cset);
6589 
6590         cgroup_css_set_put_fork(kargs);
6591 }
6592 
6593 /**
6594  * cgroup_post_fork - finalize cgroup setup for the child process
6595  * @child: the child process
6596  * @kargs: the arguments passed to create the child process
6597  *
6598  * Attach the child process to its css_set calling the subsystem fork()
6599  * callbacks.
6600  */
6601 void cgroup_post_fork(struct task_struct *child,
6602                       struct kernel_clone_args *kargs)
6603         __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6604 {
6605         unsigned long cgrp_flags = 0;
6606         bool kill = false;
6607         struct cgroup_subsys *ss;
6608         struct css_set *cset;
6609         int i;
6610 
6611         cset = kargs->cset;
6612         kargs->cset = NULL;
6613 
6614         spin_lock_irq(&css_set_lock);
6615 
6616         /* init tasks are special, only link regular threads */
6617         if (likely(child->pid)) {
6618                 if (kargs->cgrp)
6619                         cgrp_flags = kargs->cgrp->flags;
6620                 else
6621                         cgrp_flags = cset->dfl_cgrp->flags;
6622 
6623                 WARN_ON_ONCE(!list_empty(&child->cg_list));
6624                 cset->nr_tasks++;
6625                 css_set_move_task(child, NULL, cset, false);
6626         } else {
6627                 put_css_set(cset);
6628                 cset = NULL;
6629         }
6630 
6631         if (!(child->flags & PF_KTHREAD)) {
6632                 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6633                         /*
6634                          * If the cgroup has to be frozen, the new task has
6635                          * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6636                          * get the task into the frozen state.
6637                          */
6638                         spin_lock(&child->sighand->siglock);
6639                         WARN_ON_ONCE(child->frozen);
6640                         child->jobctl |= JOBCTL_TRAP_FREEZE;
6641                         spin_unlock(&child->sighand->siglock);
6642 
6643                         /*
6644                          * Calling cgroup_update_frozen() isn't required here,
6645                          * because it will be called anyway a bit later from
6646                          * do_freezer_trap(). So we avoid cgroup's transient
6647                          * switch from the frozen state and back.
6648                          */
6649                 }
6650 
6651                 /*
6652                  * If the cgroup is to be killed notice it now and take the
6653                  * child down right after we finished preparing it for
6654                  * userspace.
6655                  */
6656                 kill = test_bit(CGRP_KILL, &cgrp_flags);
6657         }
6658 
6659         spin_unlock_irq(&css_set_lock);
6660 
6661         /*
6662          * Call ss->fork().  This must happen after @child is linked on
6663          * css_set; otherwise, @child might change state between ->fork()
6664          * and addition to css_set.
6665          */
6666         do_each_subsys_mask(ss, i, have_fork_callback) {
6667                 ss->fork(child);
6668         } while_each_subsys_mask();
6669 
6670         /* Make the new cset the root_cset of the new cgroup namespace. */
6671         if (kargs->flags & CLONE_NEWCGROUP) {
6672                 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6673 
6674                 get_css_set(cset);
6675                 child->nsproxy->cgroup_ns->root_cset = cset;
6676                 put_css_set(rcset);
6677         }
6678 
6679         /* Cgroup has to be killed so take down child immediately. */
6680         if (unlikely(kill))
6681                 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6682 
6683         cgroup_css_set_put_fork(kargs);
6684 }
6685 
6686 /**
6687  * cgroup_exit - detach cgroup from exiting task
6688  * @tsk: pointer to task_struct of exiting process
6689  *
6690  * Description: Detach cgroup from @tsk.
6691  *
6692  */
6693 void cgroup_exit(struct task_struct *tsk)
6694 {
6695         struct cgroup_subsys *ss;
6696         struct css_set *cset;
6697         int i;
6698 
6699         spin_lock_irq(&css_set_lock);
6700 
6701         WARN_ON_ONCE(list_empty(&tsk->cg_list));
6702         cset = task_css_set(tsk);
6703         css_set_move_task(tsk, cset, NULL, false);
6704         cset->nr_tasks--;
6705         /* matches the signal->live check in css_task_iter_advance() */
6706         if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live))
6707                 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6708 
6709         if (dl_task(tsk))
6710                 dec_dl_tasks_cs(tsk);
6711 
6712         WARN_ON_ONCE(cgroup_task_frozen(tsk));
6713         if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6714                      test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6715                 cgroup_update_frozen(task_dfl_cgroup(tsk));
6716 
6717         spin_unlock_irq(&css_set_lock);
6718 
6719         /* see cgroup_post_fork() for details */
6720         do_each_subsys_mask(ss, i, have_exit_callback) {
6721                 ss->exit(tsk);
6722         } while_each_subsys_mask();
6723 }
6724 
6725 void cgroup_release(struct task_struct *task)
6726 {
6727         struct cgroup_subsys *ss;
6728         int ssid;
6729 
6730         do_each_subsys_mask(ss, ssid, have_release_callback) {
6731                 ss->release(task);
6732         } while_each_subsys_mask();
6733 
6734         if (!list_empty(&task->cg_list)) {
6735                 spin_lock_irq(&css_set_lock);
6736                 css_set_skip_task_iters(task_css_set(task), task);
6737                 list_del_init(&task->cg_list);
6738                 spin_unlock_irq(&css_set_lock);
6739         }
6740 }
6741 
6742 void cgroup_free(struct task_struct *task)
6743 {
6744         struct css_set *cset = task_css_set(task);
6745         put_css_set(cset);
6746 }
6747 
6748 static int __init cgroup_disable(char *str)
6749 {
6750         struct cgroup_subsys *ss;
6751         char *token;
6752         int i;
6753 
6754         while ((token = strsep(&str, ",")) != NULL) {
6755                 if (!*token)
6756                         continue;
6757 
6758                 for_each_subsys(ss, i) {
6759                         if (strcmp(token, ss->name) &&
6760                             strcmp(token, ss->legacy_name))
6761                                 continue;
6762 
6763                         static_branch_disable(cgroup_subsys_enabled_key[i]);
6764                         pr_info("Disabling %s control group subsystem\n",
6765                                 ss->name);
6766                 }
6767 
6768                 for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6769                         if (strcmp(token, cgroup_opt_feature_names[i]))
6770                                 continue;
6771                         cgroup_feature_disable_mask |= 1 << i;
6772                         pr_info("Disabling %s control group feature\n",
6773                                 cgroup_opt_feature_names[i]);
6774                         break;
6775                 }
6776         }
6777         return 1;
6778 }
6779 __setup("cgroup_disable=", cgroup_disable);
6780 
6781 void __init __weak enable_debug_cgroup(void) { }
6782 
6783 static int __init enable_cgroup_debug(char *str)
6784 {
6785         cgroup_debug = true;
6786         enable_debug_cgroup();
6787         return 1;
6788 }
6789 __setup("cgroup_debug", enable_cgroup_debug);
6790 
6791 static int __init cgroup_favordynmods_setup(char *str)
6792 {
6793         return (kstrtobool(str, &have_favordynmods) == 0);
6794 }
6795 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
6796 
6797 /**
6798  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6799  * @dentry: directory dentry of interest
6800  * @ss: subsystem of interest
6801  *
6802  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6803  * to get the corresponding css and return it.  If such css doesn't exist
6804  * or can't be pinned, an ERR_PTR value is returned.
6805  */
6806 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6807                                                        struct cgroup_subsys *ss)
6808 {
6809         struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6810         struct file_system_type *s_type = dentry->d_sb->s_type;
6811         struct cgroup_subsys_state *css = NULL;
6812         struct cgroup *cgrp;
6813 
6814         /* is @dentry a cgroup dir? */
6815         if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6816             !kn || kernfs_type(kn) != KERNFS_DIR)
6817                 return ERR_PTR(-EBADF);
6818 
6819         rcu_read_lock();
6820 
6821         /*
6822          * This path doesn't originate from kernfs and @kn could already
6823          * have been or be removed at any point.  @kn->priv is RCU
6824          * protected for this access.  See css_release_work_fn() for details.
6825          */
6826         cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6827         if (cgrp)
6828                 css = cgroup_css(cgrp, ss);
6829 
6830         if (!css || !css_tryget_online(css))
6831                 css = ERR_PTR(-ENOENT);
6832 
6833         rcu_read_unlock();
6834         return css;
6835 }
6836 
6837 /**
6838  * css_from_id - lookup css by id
6839  * @id: the cgroup id
6840  * @ss: cgroup subsys to be looked into
6841  *
6842  * Returns the css if there's valid one with @id, otherwise returns NULL.
6843  * Should be called under rcu_read_lock().
6844  */
6845 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6846 {
6847         WARN_ON_ONCE(!rcu_read_lock_held());
6848         return idr_find(&ss->css_idr, id);
6849 }
6850 
6851 /**
6852  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6853  * @path: path on the default hierarchy
6854  *
6855  * Find the cgroup at @path on the default hierarchy, increment its
6856  * reference count and return it.  Returns pointer to the found cgroup on
6857  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6858  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6859  */
6860 struct cgroup *cgroup_get_from_path(const char *path)
6861 {
6862         struct kernfs_node *kn;
6863         struct cgroup *cgrp = ERR_PTR(-ENOENT);
6864         struct cgroup *root_cgrp;
6865 
6866         root_cgrp = current_cgns_cgroup_dfl();
6867         kn = kernfs_walk_and_get(root_cgrp->kn, path);
6868         if (!kn)
6869                 goto out;
6870 
6871         if (kernfs_type(kn) != KERNFS_DIR) {
6872                 cgrp = ERR_PTR(-ENOTDIR);
6873                 goto out_kernfs;
6874         }
6875 
6876         rcu_read_lock();
6877 
6878         cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6879         if (!cgrp || !cgroup_tryget(cgrp))
6880                 cgrp = ERR_PTR(-ENOENT);
6881 
6882         rcu_read_unlock();
6883 
6884 out_kernfs:
6885         kernfs_put(kn);
6886 out:
6887         return cgrp;
6888 }
6889 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6890 
6891 /**
6892  * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
6893  * @fd: fd obtained by open(cgroup_dir)
6894  *
6895  * Find the cgroup from a fd which should be obtained
6896  * by opening a cgroup directory.  Returns a pointer to the
6897  * cgroup on success. ERR_PTR is returned if the cgroup
6898  * cannot be found.
6899  */
6900 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
6901 {
6902         struct cgroup *cgrp;
6903         struct fd f = fdget_raw(fd);
6904         if (!f.file)
6905                 return ERR_PTR(-EBADF);
6906 
6907         cgrp = cgroup_v1v2_get_from_file(f.file);
6908         fdput(f);
6909         return cgrp;
6910 }
6911 
6912 /**
6913  * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
6914  * cgroup2.
6915  * @fd: fd obtained by open(cgroup2_dir)
6916  */
6917 struct cgroup *cgroup_get_from_fd(int fd)
6918 {
6919         struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
6920 
6921         if (IS_ERR(cgrp))
6922                 return ERR_CAST(cgrp);
6923 
6924         if (!cgroup_on_dfl(cgrp)) {
6925                 cgroup_put(cgrp);
6926                 return ERR_PTR(-EBADF);
6927         }
6928         return cgrp;
6929 }
6930 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6931 
6932 static u64 power_of_ten(int power)
6933 {
6934         u64 v = 1;
6935         while (power--)
6936                 v *= 10;
6937         return v;
6938 }
6939 
6940 /**
6941  * cgroup_parse_float - parse a floating number
6942  * @input: input string
6943  * @dec_shift: number of decimal digits to shift
6944  * @v: output
6945  *
6946  * Parse a decimal floating point number in @input and store the result in
6947  * @v with decimal point right shifted @dec_shift times.  For example, if
6948  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6949  * Returns 0 on success, -errno otherwise.
6950  *
6951  * There's nothing cgroup specific about this function except that it's
6952  * currently the only user.
6953  */
6954 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6955 {
6956         s64 whole, frac = 0;
6957         int fstart = 0, fend = 0, flen;
6958 
6959         if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6960                 return -EINVAL;
6961         if (frac < 0)
6962                 return -EINVAL;
6963 
6964         flen = fend > fstart ? fend - fstart : 0;
6965         if (flen < dec_shift)
6966                 frac *= power_of_ten(dec_shift - flen);
6967         else
6968                 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6969 
6970         *v = whole * power_of_ten(dec_shift) + frac;
6971         return 0;
6972 }
6973 
6974 /*
6975  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6976  * definition in cgroup-defs.h.
6977  */
6978 #ifdef CONFIG_SOCK_CGROUP_DATA
6979 
6980 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6981 {
6982         struct cgroup *cgroup;
6983 
6984         rcu_read_lock();
6985         /* Don't associate the sock with unrelated interrupted task's cgroup. */
6986         if (in_interrupt()) {
6987                 cgroup = &cgrp_dfl_root.cgrp;
6988                 cgroup_get(cgroup);
6989                 goto out;
6990         }
6991 
6992         while (true) {
6993                 struct css_set *cset;
6994 
6995                 cset = task_css_set(current);
6996                 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6997                         cgroup = cset->dfl_cgrp;
6998                         break;
6999                 }
7000                 cpu_relax();
7001         }
7002 out:
7003         skcd->cgroup = cgroup;
7004         cgroup_bpf_get(cgroup);
7005         rcu_read_unlock();
7006 }
7007 
7008 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
7009 {
7010         struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7011 
7012         /*
7013          * We might be cloning a socket which is left in an empty
7014          * cgroup and the cgroup might have already been rmdir'd.
7015          * Don't use cgroup_get_live().
7016          */
7017         cgroup_get(cgrp);
7018         cgroup_bpf_get(cgrp);
7019 }
7020 
7021 void cgroup_sk_free(struct sock_cgroup_data *skcd)
7022 {
7023         struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7024 
7025         cgroup_bpf_put(cgrp);
7026         cgroup_put(cgrp);
7027 }
7028 
7029 #endif  /* CONFIG_SOCK_CGROUP_DATA */
7030 
7031 #ifdef CONFIG_SYSFS
7032 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7033                                       ssize_t size, const char *prefix)
7034 {
7035         struct cftype *cft;
7036         ssize_t ret = 0;
7037 
7038         for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7039                 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7040                         continue;
7041 
7042                 if (prefix)
7043                         ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7044 
7045                 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7046 
7047                 if (WARN_ON(ret >= size))
7048                         break;
7049         }
7050 
7051         return ret;
7052 }
7053 
7054 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7055                               char *buf)
7056 {
7057         struct cgroup_subsys *ss;
7058         int ssid;
7059         ssize_t ret = 0;
7060 
7061         ret = show_delegatable_files(cgroup_base_files, buf + ret,
7062                                      PAGE_SIZE - ret, NULL);
7063         if (cgroup_psi_enabled())
7064                 ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7065                                               PAGE_SIZE - ret, NULL);
7066 
7067         for_each_subsys(ss, ssid)
7068                 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7069                                               PAGE_SIZE - ret,
7070                                               cgroup_subsys_name[ssid]);
7071 
7072         return ret;
7073 }
7074 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7075 
7076 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7077                              char *buf)
7078 {
7079         return snprintf(buf, PAGE_SIZE,
7080                         "nsdelegate\n"
7081                         "favordynmods\n"
7082                         "memory_localevents\n"
7083                         "memory_recursiveprot\n"
7084                         "memory_hugetlb_accounting\n"
7085                         "pids_localevents\n");
7086 }
7087 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7088 
7089 static struct attribute *cgroup_sysfs_attrs[] = {
7090         &cgroup_delegate_attr.attr,
7091         &cgroup_features_attr.attr,
7092         NULL,
7093 };
7094 
7095 static const struct attribute_group cgroup_sysfs_attr_group = {
7096         .attrs = cgroup_sysfs_attrs,
7097         .name = "cgroup",
7098 };
7099 
7100 static int __init cgroup_sysfs_init(void)
7101 {
7102         return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7103 }
7104 subsys_initcall(cgroup_sysfs_init);
7105 
7106 #endif /* CONFIG_SYSFS */
7107 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php