~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/cpu.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* CPU control.
  2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
  3  *
  4  * This code is licenced under the GPL.
  5  */
  6 #include <linux/sched/mm.h>
  7 #include <linux/proc_fs.h>
  8 #include <linux/smp.h>
  9 #include <linux/init.h>
 10 #include <linux/notifier.h>
 11 #include <linux/sched/signal.h>
 12 #include <linux/sched/hotplug.h>
 13 #include <linux/sched/isolation.h>
 14 #include <linux/sched/task.h>
 15 #include <linux/sched/smt.h>
 16 #include <linux/unistd.h>
 17 #include <linux/cpu.h>
 18 #include <linux/oom.h>
 19 #include <linux/rcupdate.h>
 20 #include <linux/delay.h>
 21 #include <linux/export.h>
 22 #include <linux/bug.h>
 23 #include <linux/kthread.h>
 24 #include <linux/stop_machine.h>
 25 #include <linux/mutex.h>
 26 #include <linux/gfp.h>
 27 #include <linux/suspend.h>
 28 #include <linux/lockdep.h>
 29 #include <linux/tick.h>
 30 #include <linux/irq.h>
 31 #include <linux/nmi.h>
 32 #include <linux/smpboot.h>
 33 #include <linux/relay.h>
 34 #include <linux/slab.h>
 35 #include <linux/scs.h>
 36 #include <linux/percpu-rwsem.h>
 37 #include <linux/cpuset.h>
 38 #include <linux/random.h>
 39 #include <linux/cc_platform.h>
 40 
 41 #include <trace/events/power.h>
 42 #define CREATE_TRACE_POINTS
 43 #include <trace/events/cpuhp.h>
 44 
 45 #include "smpboot.h"
 46 
 47 /**
 48  * struct cpuhp_cpu_state - Per cpu hotplug state storage
 49  * @state:      The current cpu state
 50  * @target:     The target state
 51  * @fail:       Current CPU hotplug callback state
 52  * @thread:     Pointer to the hotplug thread
 53  * @should_run: Thread should execute
 54  * @rollback:   Perform a rollback
 55  * @single:     Single callback invocation
 56  * @bringup:    Single callback bringup or teardown selector
 57  * @node:       Remote CPU node; for multi-instance, do a
 58  *              single entry callback for install/remove
 59  * @last:       For multi-instance rollback, remember how far we got
 60  * @cb_state:   The state for a single callback (install/uninstall)
 61  * @result:     Result of the operation
 62  * @ap_sync_state:      State for AP synchronization
 63  * @done_up:    Signal completion to the issuer of the task for cpu-up
 64  * @done_down:  Signal completion to the issuer of the task for cpu-down
 65  */
 66 struct cpuhp_cpu_state {
 67         enum cpuhp_state        state;
 68         enum cpuhp_state        target;
 69         enum cpuhp_state        fail;
 70 #ifdef CONFIG_SMP
 71         struct task_struct      *thread;
 72         bool                    should_run;
 73         bool                    rollback;
 74         bool                    single;
 75         bool                    bringup;
 76         struct hlist_node       *node;
 77         struct hlist_node       *last;
 78         enum cpuhp_state        cb_state;
 79         int                     result;
 80         atomic_t                ap_sync_state;
 81         struct completion       done_up;
 82         struct completion       done_down;
 83 #endif
 84 };
 85 
 86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
 87         .fail = CPUHP_INVALID,
 88 };
 89 
 90 #ifdef CONFIG_SMP
 91 cpumask_t cpus_booted_once_mask;
 92 #endif
 93 
 94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
 95 static struct lockdep_map cpuhp_state_up_map =
 96         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
 97 static struct lockdep_map cpuhp_state_down_map =
 98         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
 99 
100 
101 static inline void cpuhp_lock_acquire(bool bringup)
102 {
103         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
104 }
105 
106 static inline void cpuhp_lock_release(bool bringup)
107 {
108         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
109 }
110 #else
111 
112 static inline void cpuhp_lock_acquire(bool bringup) { }
113 static inline void cpuhp_lock_release(bool bringup) { }
114 
115 #endif
116 
117 /**
118  * struct cpuhp_step - Hotplug state machine step
119  * @name:       Name of the step
120  * @startup:    Startup function of the step
121  * @teardown:   Teardown function of the step
122  * @cant_stop:  Bringup/teardown can't be stopped at this step
123  * @multi_instance:     State has multiple instances which get added afterwards
124  */
125 struct cpuhp_step {
126         const char              *name;
127         union {
128                 int             (*single)(unsigned int cpu);
129                 int             (*multi)(unsigned int cpu,
130                                          struct hlist_node *node);
131         } startup;
132         union {
133                 int             (*single)(unsigned int cpu);
134                 int             (*multi)(unsigned int cpu,
135                                          struct hlist_node *node);
136         } teardown;
137         /* private: */
138         struct hlist_head       list;
139         /* public: */
140         bool                    cant_stop;
141         bool                    multi_instance;
142 };
143 
144 static DEFINE_MUTEX(cpuhp_state_mutex);
145 static struct cpuhp_step cpuhp_hp_states[];
146 
147 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
148 {
149         return cpuhp_hp_states + state;
150 }
151 
152 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
153 {
154         return bringup ? !step->startup.single : !step->teardown.single;
155 }
156 
157 /**
158  * cpuhp_invoke_callback - Invoke the callbacks for a given state
159  * @cpu:        The cpu for which the callback should be invoked
160  * @state:      The state to do callbacks for
161  * @bringup:    True if the bringup callback should be invoked
162  * @node:       For multi-instance, do a single entry callback for install/remove
163  * @lastp:      For multi-instance rollback, remember how far we got
164  *
165  * Called from cpu hotplug and from the state register machinery.
166  *
167  * Return: %0 on success or a negative errno code
168  */
169 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
170                                  bool bringup, struct hlist_node *node,
171                                  struct hlist_node **lastp)
172 {
173         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
174         struct cpuhp_step *step = cpuhp_get_step(state);
175         int (*cbm)(unsigned int cpu, struct hlist_node *node);
176         int (*cb)(unsigned int cpu);
177         int ret, cnt;
178 
179         if (st->fail == state) {
180                 st->fail = CPUHP_INVALID;
181                 return -EAGAIN;
182         }
183 
184         if (cpuhp_step_empty(bringup, step)) {
185                 WARN_ON_ONCE(1);
186                 return 0;
187         }
188 
189         if (!step->multi_instance) {
190                 WARN_ON_ONCE(lastp && *lastp);
191                 cb = bringup ? step->startup.single : step->teardown.single;
192 
193                 trace_cpuhp_enter(cpu, st->target, state, cb);
194                 ret = cb(cpu);
195                 trace_cpuhp_exit(cpu, st->state, state, ret);
196                 return ret;
197         }
198         cbm = bringup ? step->startup.multi : step->teardown.multi;
199 
200         /* Single invocation for instance add/remove */
201         if (node) {
202                 WARN_ON_ONCE(lastp && *lastp);
203                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
204                 ret = cbm(cpu, node);
205                 trace_cpuhp_exit(cpu, st->state, state, ret);
206                 return ret;
207         }
208 
209         /* State transition. Invoke on all instances */
210         cnt = 0;
211         hlist_for_each(node, &step->list) {
212                 if (lastp && node == *lastp)
213                         break;
214 
215                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216                 ret = cbm(cpu, node);
217                 trace_cpuhp_exit(cpu, st->state, state, ret);
218                 if (ret) {
219                         if (!lastp)
220                                 goto err;
221 
222                         *lastp = node;
223                         return ret;
224                 }
225                 cnt++;
226         }
227         if (lastp)
228                 *lastp = NULL;
229         return 0;
230 err:
231         /* Rollback the instances if one failed */
232         cbm = !bringup ? step->startup.multi : step->teardown.multi;
233         if (!cbm)
234                 return ret;
235 
236         hlist_for_each(node, &step->list) {
237                 if (!cnt--)
238                         break;
239 
240                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
241                 ret = cbm(cpu, node);
242                 trace_cpuhp_exit(cpu, st->state, state, ret);
243                 /*
244                  * Rollback must not fail,
245                  */
246                 WARN_ON_ONCE(ret);
247         }
248         return ret;
249 }
250 
251 #ifdef CONFIG_SMP
252 static bool cpuhp_is_ap_state(enum cpuhp_state state)
253 {
254         /*
255          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
256          * purposes as that state is handled explicitly in cpu_down.
257          */
258         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
259 }
260 
261 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
262 {
263         struct completion *done = bringup ? &st->done_up : &st->done_down;
264         wait_for_completion(done);
265 }
266 
267 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
268 {
269         struct completion *done = bringup ? &st->done_up : &st->done_down;
270         complete(done);
271 }
272 
273 /*
274  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
275  */
276 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
277 {
278         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
279 }
280 
281 /* Synchronization state management */
282 enum cpuhp_sync_state {
283         SYNC_STATE_DEAD,
284         SYNC_STATE_KICKED,
285         SYNC_STATE_SHOULD_DIE,
286         SYNC_STATE_ALIVE,
287         SYNC_STATE_SHOULD_ONLINE,
288         SYNC_STATE_ONLINE,
289 };
290 
291 #ifdef CONFIG_HOTPLUG_CORE_SYNC
292 /**
293  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
294  * @state:      The synchronization state to set
295  *
296  * No synchronization point. Just update of the synchronization state, but implies
297  * a full barrier so that the AP changes are visible before the control CPU proceeds.
298  */
299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
300 {
301         atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
302 
303         (void)atomic_xchg(st, state);
304 }
305 
306 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
307 
308 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
309                                       enum cpuhp_sync_state next_state)
310 {
311         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
312         ktime_t now, end, start = ktime_get();
313         int sync;
314 
315         end = start + 10ULL * NSEC_PER_SEC;
316 
317         sync = atomic_read(st);
318         while (1) {
319                 if (sync == state) {
320                         if (!atomic_try_cmpxchg(st, &sync, next_state))
321                                 continue;
322                         return true;
323                 }
324 
325                 now = ktime_get();
326                 if (now > end) {
327                         /* Timeout. Leave the state unchanged */
328                         return false;
329                 } else if (now - start < NSEC_PER_MSEC) {
330                         /* Poll for one millisecond */
331                         arch_cpuhp_sync_state_poll();
332                 } else {
333                         usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
334                 }
335                 sync = atomic_read(st);
336         }
337         return true;
338 }
339 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
342 
343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
344 /**
345  * cpuhp_ap_report_dead - Update synchronization state to DEAD
346  *
347  * No synchronization point. Just update of the synchronization state.
348  */
349 void cpuhp_ap_report_dead(void)
350 {
351         cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
352 }
353 
354 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
355 
356 /*
357  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
358  * because the AP cannot issue complete() at this stage.
359  */
360 static void cpuhp_bp_sync_dead(unsigned int cpu)
361 {
362         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
363         int sync = atomic_read(st);
364 
365         do {
366                 /* CPU can have reported dead already. Don't overwrite that! */
367                 if (sync == SYNC_STATE_DEAD)
368                         break;
369         } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
370 
371         if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
372                 /* CPU reached dead state. Invoke the cleanup function */
373                 arch_cpuhp_cleanup_dead_cpu(cpu);
374                 return;
375         }
376 
377         /* No further action possible. Emit message and give up. */
378         pr_err("CPU%u failed to report dead state\n", cpu);
379 }
380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
381 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
383 
384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
385 /**
386  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
387  *
388  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
389  * for the BP to release it.
390  */
391 void cpuhp_ap_sync_alive(void)
392 {
393         atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
394 
395         cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
396 
397         /* Wait for the control CPU to release it. */
398         while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
399                 cpu_relax();
400 }
401 
402 static bool cpuhp_can_boot_ap(unsigned int cpu)
403 {
404         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
405         int sync = atomic_read(st);
406 
407 again:
408         switch (sync) {
409         case SYNC_STATE_DEAD:
410                 /* CPU is properly dead */
411                 break;
412         case SYNC_STATE_KICKED:
413                 /* CPU did not come up in previous attempt */
414                 break;
415         case SYNC_STATE_ALIVE:
416                 /* CPU is stuck cpuhp_ap_sync_alive(). */
417                 break;
418         default:
419                 /* CPU failed to report online or dead and is in limbo state. */
420                 return false;
421         }
422 
423         /* Prepare for booting */
424         if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
425                 goto again;
426 
427         return true;
428 }
429 
430 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
431 
432 /*
433  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
434  * because the AP cannot issue complete() so early in the bringup.
435  */
436 static int cpuhp_bp_sync_alive(unsigned int cpu)
437 {
438         int ret = 0;
439 
440         if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
441                 return 0;
442 
443         if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
444                 pr_err("CPU%u failed to report alive state\n", cpu);
445                 ret = -EIO;
446         }
447 
448         /* Let the architecture cleanup the kick alive mechanics. */
449         arch_cpuhp_cleanup_kick_cpu(cpu);
450         return ret;
451 }
452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
453 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
454 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
456 
457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
458 static DEFINE_MUTEX(cpu_add_remove_lock);
459 bool cpuhp_tasks_frozen;
460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
461 
462 /*
463  * The following two APIs (cpu_maps_update_begin/done) must be used when
464  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
465  */
466 void cpu_maps_update_begin(void)
467 {
468         mutex_lock(&cpu_add_remove_lock);
469 }
470 
471 void cpu_maps_update_done(void)
472 {
473         mutex_unlock(&cpu_add_remove_lock);
474 }
475 
476 /*
477  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
478  * Should always be manipulated under cpu_add_remove_lock
479  */
480 static int cpu_hotplug_disabled;
481 
482 #ifdef CONFIG_HOTPLUG_CPU
483 
484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
485 
486 static bool cpu_hotplug_offline_disabled __ro_after_init;
487 
488 void cpus_read_lock(void)
489 {
490         percpu_down_read(&cpu_hotplug_lock);
491 }
492 EXPORT_SYMBOL_GPL(cpus_read_lock);
493 
494 int cpus_read_trylock(void)
495 {
496         return percpu_down_read_trylock(&cpu_hotplug_lock);
497 }
498 EXPORT_SYMBOL_GPL(cpus_read_trylock);
499 
500 void cpus_read_unlock(void)
501 {
502         percpu_up_read(&cpu_hotplug_lock);
503 }
504 EXPORT_SYMBOL_GPL(cpus_read_unlock);
505 
506 void cpus_write_lock(void)
507 {
508         percpu_down_write(&cpu_hotplug_lock);
509 }
510 
511 void cpus_write_unlock(void)
512 {
513         percpu_up_write(&cpu_hotplug_lock);
514 }
515 
516 void lockdep_assert_cpus_held(void)
517 {
518         /*
519          * We can't have hotplug operations before userspace starts running,
520          * and some init codepaths will knowingly not take the hotplug lock.
521          * This is all valid, so mute lockdep until it makes sense to report
522          * unheld locks.
523          */
524         if (system_state < SYSTEM_RUNNING)
525                 return;
526 
527         percpu_rwsem_assert_held(&cpu_hotplug_lock);
528 }
529 
530 #ifdef CONFIG_LOCKDEP
531 int lockdep_is_cpus_held(void)
532 {
533         return percpu_rwsem_is_held(&cpu_hotplug_lock);
534 }
535 #endif
536 
537 static void lockdep_acquire_cpus_lock(void)
538 {
539         rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
540 }
541 
542 static void lockdep_release_cpus_lock(void)
543 {
544         rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
545 }
546 
547 /* Declare CPU offlining not supported */
548 void cpu_hotplug_disable_offlining(void)
549 {
550         cpu_maps_update_begin();
551         cpu_hotplug_offline_disabled = true;
552         cpu_maps_update_done();
553 }
554 
555 /*
556  * Wait for currently running CPU hotplug operations to complete (if any) and
557  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
558  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
559  * hotplug path before performing hotplug operations. So acquiring that lock
560  * guarantees mutual exclusion from any currently running hotplug operations.
561  */
562 void cpu_hotplug_disable(void)
563 {
564         cpu_maps_update_begin();
565         cpu_hotplug_disabled++;
566         cpu_maps_update_done();
567 }
568 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
569 
570 static void __cpu_hotplug_enable(void)
571 {
572         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
573                 return;
574         cpu_hotplug_disabled--;
575 }
576 
577 void cpu_hotplug_enable(void)
578 {
579         cpu_maps_update_begin();
580         __cpu_hotplug_enable();
581         cpu_maps_update_done();
582 }
583 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
584 
585 #else
586 
587 static void lockdep_acquire_cpus_lock(void)
588 {
589 }
590 
591 static void lockdep_release_cpus_lock(void)
592 {
593 }
594 
595 #endif  /* CONFIG_HOTPLUG_CPU */
596 
597 /*
598  * Architectures that need SMT-specific errata handling during SMT hotplug
599  * should override this.
600  */
601 void __weak arch_smt_update(void) { }
602 
603 #ifdef CONFIG_HOTPLUG_SMT
604 
605 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
606 static unsigned int cpu_smt_max_threads __ro_after_init;
607 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
608 
609 void __init cpu_smt_disable(bool force)
610 {
611         if (!cpu_smt_possible())
612                 return;
613 
614         if (force) {
615                 pr_info("SMT: Force disabled\n");
616                 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
617         } else {
618                 pr_info("SMT: disabled\n");
619                 cpu_smt_control = CPU_SMT_DISABLED;
620         }
621         cpu_smt_num_threads = 1;
622 }
623 
624 /*
625  * The decision whether SMT is supported can only be done after the full
626  * CPU identification. Called from architecture code.
627  */
628 void __init cpu_smt_set_num_threads(unsigned int num_threads,
629                                     unsigned int max_threads)
630 {
631         WARN_ON(!num_threads || (num_threads > max_threads));
632 
633         if (max_threads == 1)
634                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
635 
636         cpu_smt_max_threads = max_threads;
637 
638         /*
639          * If SMT has been disabled via the kernel command line or SMT is
640          * not supported, set cpu_smt_num_threads to 1 for consistency.
641          * If enabled, take the architecture requested number of threads
642          * to bring up into account.
643          */
644         if (cpu_smt_control != CPU_SMT_ENABLED)
645                 cpu_smt_num_threads = 1;
646         else if (num_threads < cpu_smt_num_threads)
647                 cpu_smt_num_threads = num_threads;
648 }
649 
650 static int __init smt_cmdline_disable(char *str)
651 {
652         cpu_smt_disable(str && !strcmp(str, "force"));
653         return 0;
654 }
655 early_param("nosmt", smt_cmdline_disable);
656 
657 /*
658  * For Archicture supporting partial SMT states check if the thread is allowed.
659  * Otherwise this has already been checked through cpu_smt_max_threads when
660  * setting the SMT level.
661  */
662 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
663 {
664 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
665         return topology_smt_thread_allowed(cpu);
666 #else
667         return true;
668 #endif
669 }
670 
671 static inline bool cpu_bootable(unsigned int cpu)
672 {
673         if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
674                 return true;
675 
676         /* All CPUs are bootable if controls are not configured */
677         if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
678                 return true;
679 
680         /* All CPUs are bootable if CPU is not SMT capable */
681         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
682                 return true;
683 
684         if (topology_is_primary_thread(cpu))
685                 return true;
686 
687         /*
688          * On x86 it's required to boot all logical CPUs at least once so
689          * that the init code can get a chance to set CR4.MCE on each
690          * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
691          * core will shutdown the machine.
692          */
693         return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
694 }
695 
696 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
697 bool cpu_smt_possible(void)
698 {
699         return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
700                 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
701 }
702 EXPORT_SYMBOL_GPL(cpu_smt_possible);
703 
704 #else
705 static inline bool cpu_bootable(unsigned int cpu) { return true; }
706 #endif
707 
708 static inline enum cpuhp_state
709 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
710 {
711         enum cpuhp_state prev_state = st->state;
712         bool bringup = st->state < target;
713 
714         st->rollback = false;
715         st->last = NULL;
716 
717         st->target = target;
718         st->single = false;
719         st->bringup = bringup;
720         if (cpu_dying(cpu) != !bringup)
721                 set_cpu_dying(cpu, !bringup);
722 
723         return prev_state;
724 }
725 
726 static inline void
727 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
728                   enum cpuhp_state prev_state)
729 {
730         bool bringup = !st->bringup;
731 
732         st->target = prev_state;
733 
734         /*
735          * Already rolling back. No need invert the bringup value or to change
736          * the current state.
737          */
738         if (st->rollback)
739                 return;
740 
741         st->rollback = true;
742 
743         /*
744          * If we have st->last we need to undo partial multi_instance of this
745          * state first. Otherwise start undo at the previous state.
746          */
747         if (!st->last) {
748                 if (st->bringup)
749                         st->state--;
750                 else
751                         st->state++;
752         }
753 
754         st->bringup = bringup;
755         if (cpu_dying(cpu) != !bringup)
756                 set_cpu_dying(cpu, !bringup);
757 }
758 
759 /* Regular hotplug invocation of the AP hotplug thread */
760 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
761 {
762         if (!st->single && st->state == st->target)
763                 return;
764 
765         st->result = 0;
766         /*
767          * Make sure the above stores are visible before should_run becomes
768          * true. Paired with the mb() above in cpuhp_thread_fun()
769          */
770         smp_mb();
771         st->should_run = true;
772         wake_up_process(st->thread);
773         wait_for_ap_thread(st, st->bringup);
774 }
775 
776 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
777                          enum cpuhp_state target)
778 {
779         enum cpuhp_state prev_state;
780         int ret;
781 
782         prev_state = cpuhp_set_state(cpu, st, target);
783         __cpuhp_kick_ap(st);
784         if ((ret = st->result)) {
785                 cpuhp_reset_state(cpu, st, prev_state);
786                 __cpuhp_kick_ap(st);
787         }
788 
789         return ret;
790 }
791 
792 static int bringup_wait_for_ap_online(unsigned int cpu)
793 {
794         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
795 
796         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
797         wait_for_ap_thread(st, true);
798         if (WARN_ON_ONCE((!cpu_online(cpu))))
799                 return -ECANCELED;
800 
801         /* Unpark the hotplug thread of the target cpu */
802         kthread_unpark(st->thread);
803 
804         /*
805          * SMT soft disabling on X86 requires to bring the CPU out of the
806          * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
807          * CPU marked itself as booted_once in notify_cpu_starting() so the
808          * cpu_bootable() check will now return false if this is not the
809          * primary sibling.
810          */
811         if (!cpu_bootable(cpu))
812                 return -ECANCELED;
813         return 0;
814 }
815 
816 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
817 static int cpuhp_kick_ap_alive(unsigned int cpu)
818 {
819         if (!cpuhp_can_boot_ap(cpu))
820                 return -EAGAIN;
821 
822         return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
823 }
824 
825 static int cpuhp_bringup_ap(unsigned int cpu)
826 {
827         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
828         int ret;
829 
830         /*
831          * Some architectures have to walk the irq descriptors to
832          * setup the vector space for the cpu which comes online.
833          * Prevent irq alloc/free across the bringup.
834          */
835         irq_lock_sparse();
836 
837         ret = cpuhp_bp_sync_alive(cpu);
838         if (ret)
839                 goto out_unlock;
840 
841         ret = bringup_wait_for_ap_online(cpu);
842         if (ret)
843                 goto out_unlock;
844 
845         irq_unlock_sparse();
846 
847         if (st->target <= CPUHP_AP_ONLINE_IDLE)
848                 return 0;
849 
850         return cpuhp_kick_ap(cpu, st, st->target);
851 
852 out_unlock:
853         irq_unlock_sparse();
854         return ret;
855 }
856 #else
857 static int bringup_cpu(unsigned int cpu)
858 {
859         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
860         struct task_struct *idle = idle_thread_get(cpu);
861         int ret;
862 
863         if (!cpuhp_can_boot_ap(cpu))
864                 return -EAGAIN;
865 
866         /*
867          * Some architectures have to walk the irq descriptors to
868          * setup the vector space for the cpu which comes online.
869          *
870          * Prevent irq alloc/free across the bringup by acquiring the
871          * sparse irq lock. Hold it until the upcoming CPU completes the
872          * startup in cpuhp_online_idle() which allows to avoid
873          * intermediate synchronization points in the architecture code.
874          */
875         irq_lock_sparse();
876 
877         ret = __cpu_up(cpu, idle);
878         if (ret)
879                 goto out_unlock;
880 
881         ret = cpuhp_bp_sync_alive(cpu);
882         if (ret)
883                 goto out_unlock;
884 
885         ret = bringup_wait_for_ap_online(cpu);
886         if (ret)
887                 goto out_unlock;
888 
889         irq_unlock_sparse();
890 
891         if (st->target <= CPUHP_AP_ONLINE_IDLE)
892                 return 0;
893 
894         return cpuhp_kick_ap(cpu, st, st->target);
895 
896 out_unlock:
897         irq_unlock_sparse();
898         return ret;
899 }
900 #endif
901 
902 static int finish_cpu(unsigned int cpu)
903 {
904         struct task_struct *idle = idle_thread_get(cpu);
905         struct mm_struct *mm = idle->active_mm;
906 
907         /*
908          * idle_task_exit() will have switched to &init_mm, now
909          * clean up any remaining active_mm state.
910          */
911         if (mm != &init_mm)
912                 idle->active_mm = &init_mm;
913         mmdrop_lazy_tlb(mm);
914         return 0;
915 }
916 
917 /*
918  * Hotplug state machine related functions
919  */
920 
921 /*
922  * Get the next state to run. Empty ones will be skipped. Returns true if a
923  * state must be run.
924  *
925  * st->state will be modified ahead of time, to match state_to_run, as if it
926  * has already ran.
927  */
928 static bool cpuhp_next_state(bool bringup,
929                              enum cpuhp_state *state_to_run,
930                              struct cpuhp_cpu_state *st,
931                              enum cpuhp_state target)
932 {
933         do {
934                 if (bringup) {
935                         if (st->state >= target)
936                                 return false;
937 
938                         *state_to_run = ++st->state;
939                 } else {
940                         if (st->state <= target)
941                                 return false;
942 
943                         *state_to_run = st->state--;
944                 }
945 
946                 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
947                         break;
948         } while (true);
949 
950         return true;
951 }
952 
953 static int __cpuhp_invoke_callback_range(bool bringup,
954                                          unsigned int cpu,
955                                          struct cpuhp_cpu_state *st,
956                                          enum cpuhp_state target,
957                                          bool nofail)
958 {
959         enum cpuhp_state state;
960         int ret = 0;
961 
962         while (cpuhp_next_state(bringup, &state, st, target)) {
963                 int err;
964 
965                 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
966                 if (!err)
967                         continue;
968 
969                 if (nofail) {
970                         pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
971                                 cpu, bringup ? "UP" : "DOWN",
972                                 cpuhp_get_step(st->state)->name,
973                                 st->state, err);
974                         ret = -1;
975                 } else {
976                         ret = err;
977                         break;
978                 }
979         }
980 
981         return ret;
982 }
983 
984 static inline int cpuhp_invoke_callback_range(bool bringup,
985                                               unsigned int cpu,
986                                               struct cpuhp_cpu_state *st,
987                                               enum cpuhp_state target)
988 {
989         return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
990 }
991 
992 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
993                                                       unsigned int cpu,
994                                                       struct cpuhp_cpu_state *st,
995                                                       enum cpuhp_state target)
996 {
997         __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
998 }
999 
1000 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
1001 {
1002         if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
1003                 return true;
1004         /*
1005          * When CPU hotplug is disabled, then taking the CPU down is not
1006          * possible because takedown_cpu() and the architecture and
1007          * subsystem specific mechanisms are not available. So the CPU
1008          * which would be completely unplugged again needs to stay around
1009          * in the current state.
1010          */
1011         return st->state <= CPUHP_BRINGUP_CPU;
1012 }
1013 
1014 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1015                               enum cpuhp_state target)
1016 {
1017         enum cpuhp_state prev_state = st->state;
1018         int ret = 0;
1019 
1020         ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1021         if (ret) {
1022                 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1023                          ret, cpu, cpuhp_get_step(st->state)->name,
1024                          st->state);
1025 
1026                 cpuhp_reset_state(cpu, st, prev_state);
1027                 if (can_rollback_cpu(st))
1028                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1029                                                             prev_state));
1030         }
1031         return ret;
1032 }
1033 
1034 /*
1035  * The cpu hotplug threads manage the bringup and teardown of the cpus
1036  */
1037 static int cpuhp_should_run(unsigned int cpu)
1038 {
1039         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1040 
1041         return st->should_run;
1042 }
1043 
1044 /*
1045  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1046  * callbacks when a state gets [un]installed at runtime.
1047  *
1048  * Each invocation of this function by the smpboot thread does a single AP
1049  * state callback.
1050  *
1051  * It has 3 modes of operation:
1052  *  - single: runs st->cb_state
1053  *  - up:     runs ++st->state, while st->state < st->target
1054  *  - down:   runs st->state--, while st->state > st->target
1055  *
1056  * When complete or on error, should_run is cleared and the completion is fired.
1057  */
1058 static void cpuhp_thread_fun(unsigned int cpu)
1059 {
1060         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1061         bool bringup = st->bringup;
1062         enum cpuhp_state state;
1063 
1064         if (WARN_ON_ONCE(!st->should_run))
1065                 return;
1066 
1067         /*
1068          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1069          * that if we see ->should_run we also see the rest of the state.
1070          */
1071         smp_mb();
1072 
1073         /*
1074          * The BP holds the hotplug lock, but we're now running on the AP,
1075          * ensure that anybody asserting the lock is held, will actually find
1076          * it so.
1077          */
1078         lockdep_acquire_cpus_lock();
1079         cpuhp_lock_acquire(bringup);
1080 
1081         if (st->single) {
1082                 state = st->cb_state;
1083                 st->should_run = false;
1084         } else {
1085                 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1086                 if (!st->should_run)
1087                         goto end;
1088         }
1089 
1090         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1091 
1092         if (cpuhp_is_atomic_state(state)) {
1093                 local_irq_disable();
1094                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1095                 local_irq_enable();
1096 
1097                 /*
1098                  * STARTING/DYING must not fail!
1099                  */
1100                 WARN_ON_ONCE(st->result);
1101         } else {
1102                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1103         }
1104 
1105         if (st->result) {
1106                 /*
1107                  * If we fail on a rollback, we're up a creek without no
1108                  * paddle, no way forward, no way back. We loose, thanks for
1109                  * playing.
1110                  */
1111                 WARN_ON_ONCE(st->rollback);
1112                 st->should_run = false;
1113         }
1114 
1115 end:
1116         cpuhp_lock_release(bringup);
1117         lockdep_release_cpus_lock();
1118 
1119         if (!st->should_run)
1120                 complete_ap_thread(st, bringup);
1121 }
1122 
1123 /* Invoke a single callback on a remote cpu */
1124 static int
1125 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1126                          struct hlist_node *node)
1127 {
1128         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1129         int ret;
1130 
1131         if (!cpu_online(cpu))
1132                 return 0;
1133 
1134         cpuhp_lock_acquire(false);
1135         cpuhp_lock_release(false);
1136 
1137         cpuhp_lock_acquire(true);
1138         cpuhp_lock_release(true);
1139 
1140         /*
1141          * If we are up and running, use the hotplug thread. For early calls
1142          * we invoke the thread function directly.
1143          */
1144         if (!st->thread)
1145                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1146 
1147         st->rollback = false;
1148         st->last = NULL;
1149 
1150         st->node = node;
1151         st->bringup = bringup;
1152         st->cb_state = state;
1153         st->single = true;
1154 
1155         __cpuhp_kick_ap(st);
1156 
1157         /*
1158          * If we failed and did a partial, do a rollback.
1159          */
1160         if ((ret = st->result) && st->last) {
1161                 st->rollback = true;
1162                 st->bringup = !bringup;
1163 
1164                 __cpuhp_kick_ap(st);
1165         }
1166 
1167         /*
1168          * Clean up the leftovers so the next hotplug operation wont use stale
1169          * data.
1170          */
1171         st->node = st->last = NULL;
1172         return ret;
1173 }
1174 
1175 static int cpuhp_kick_ap_work(unsigned int cpu)
1176 {
1177         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1178         enum cpuhp_state prev_state = st->state;
1179         int ret;
1180 
1181         cpuhp_lock_acquire(false);
1182         cpuhp_lock_release(false);
1183 
1184         cpuhp_lock_acquire(true);
1185         cpuhp_lock_release(true);
1186 
1187         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1188         ret = cpuhp_kick_ap(cpu, st, st->target);
1189         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1190 
1191         return ret;
1192 }
1193 
1194 static struct smp_hotplug_thread cpuhp_threads = {
1195         .store                  = &cpuhp_state.thread,
1196         .thread_should_run      = cpuhp_should_run,
1197         .thread_fn              = cpuhp_thread_fun,
1198         .thread_comm            = "cpuhp/%u",
1199         .selfparking            = true,
1200 };
1201 
1202 static __init void cpuhp_init_state(void)
1203 {
1204         struct cpuhp_cpu_state *st;
1205         int cpu;
1206 
1207         for_each_possible_cpu(cpu) {
1208                 st = per_cpu_ptr(&cpuhp_state, cpu);
1209                 init_completion(&st->done_up);
1210                 init_completion(&st->done_down);
1211         }
1212 }
1213 
1214 void __init cpuhp_threads_init(void)
1215 {
1216         cpuhp_init_state();
1217         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1218         kthread_unpark(this_cpu_read(cpuhp_state.thread));
1219 }
1220 
1221 #ifdef CONFIG_HOTPLUG_CPU
1222 #ifndef arch_clear_mm_cpumask_cpu
1223 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1224 #endif
1225 
1226 /**
1227  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1228  * @cpu: a CPU id
1229  *
1230  * This function walks all processes, finds a valid mm struct for each one and
1231  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1232  * trivial, there are various non-obvious corner cases, which this function
1233  * tries to solve in a safe manner.
1234  *
1235  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1236  * be called only for an already offlined CPU.
1237  */
1238 void clear_tasks_mm_cpumask(int cpu)
1239 {
1240         struct task_struct *p;
1241 
1242         /*
1243          * This function is called after the cpu is taken down and marked
1244          * offline, so its not like new tasks will ever get this cpu set in
1245          * their mm mask. -- Peter Zijlstra
1246          * Thus, we may use rcu_read_lock() here, instead of grabbing
1247          * full-fledged tasklist_lock.
1248          */
1249         WARN_ON(cpu_online(cpu));
1250         rcu_read_lock();
1251         for_each_process(p) {
1252                 struct task_struct *t;
1253 
1254                 /*
1255                  * Main thread might exit, but other threads may still have
1256                  * a valid mm. Find one.
1257                  */
1258                 t = find_lock_task_mm(p);
1259                 if (!t)
1260                         continue;
1261                 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1262                 task_unlock(t);
1263         }
1264         rcu_read_unlock();
1265 }
1266 
1267 /* Take this CPU down. */
1268 static int take_cpu_down(void *_param)
1269 {
1270         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1271         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1272         int err, cpu = smp_processor_id();
1273 
1274         /* Ensure this CPU doesn't handle any more interrupts. */
1275         err = __cpu_disable();
1276         if (err < 0)
1277                 return err;
1278 
1279         /*
1280          * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1281          * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1282          */
1283         WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1284 
1285         /*
1286          * Invoke the former CPU_DYING callbacks. DYING must not fail!
1287          */
1288         cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1289 
1290         /* Park the stopper thread */
1291         stop_machine_park(cpu);
1292         return 0;
1293 }
1294 
1295 static int takedown_cpu(unsigned int cpu)
1296 {
1297         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1298         int err;
1299 
1300         /* Park the smpboot threads */
1301         kthread_park(st->thread);
1302 
1303         /*
1304          * Prevent irq alloc/free while the dying cpu reorganizes the
1305          * interrupt affinities.
1306          */
1307         irq_lock_sparse();
1308 
1309         /*
1310          * So now all preempt/rcu users must observe !cpu_active().
1311          */
1312         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1313         if (err) {
1314                 /* CPU refused to die */
1315                 irq_unlock_sparse();
1316                 /* Unpark the hotplug thread so we can rollback there */
1317                 kthread_unpark(st->thread);
1318                 return err;
1319         }
1320         BUG_ON(cpu_online(cpu));
1321 
1322         /*
1323          * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1324          * all runnable tasks from the CPU, there's only the idle task left now
1325          * that the migration thread is done doing the stop_machine thing.
1326          *
1327          * Wait for the stop thread to go away.
1328          */
1329         wait_for_ap_thread(st, false);
1330         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1331 
1332         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1333         irq_unlock_sparse();
1334 
1335         hotplug_cpu__broadcast_tick_pull(cpu);
1336         /* This actually kills the CPU. */
1337         __cpu_die(cpu);
1338 
1339         cpuhp_bp_sync_dead(cpu);
1340 
1341         tick_cleanup_dead_cpu(cpu);
1342 
1343         /*
1344          * Callbacks must be re-integrated right away to the RCU state machine.
1345          * Otherwise an RCU callback could block a further teardown function
1346          * waiting for its completion.
1347          */
1348         rcutree_migrate_callbacks(cpu);
1349 
1350         return 0;
1351 }
1352 
1353 static void cpuhp_complete_idle_dead(void *arg)
1354 {
1355         struct cpuhp_cpu_state *st = arg;
1356 
1357         complete_ap_thread(st, false);
1358 }
1359 
1360 void cpuhp_report_idle_dead(void)
1361 {
1362         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1363 
1364         BUG_ON(st->state != CPUHP_AP_OFFLINE);
1365         tick_assert_timekeeping_handover();
1366         rcutree_report_cpu_dead();
1367         st->state = CPUHP_AP_IDLE_DEAD;
1368         /*
1369          * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1370          * to an online cpu.
1371          */
1372         smp_call_function_single(cpumask_first(cpu_online_mask),
1373                                  cpuhp_complete_idle_dead, st, 0);
1374 }
1375 
1376 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1377                                 enum cpuhp_state target)
1378 {
1379         enum cpuhp_state prev_state = st->state;
1380         int ret = 0;
1381 
1382         ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1383         if (ret) {
1384                 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1385                          ret, cpu, cpuhp_get_step(st->state)->name,
1386                          st->state);
1387 
1388                 cpuhp_reset_state(cpu, st, prev_state);
1389 
1390                 if (st->state < prev_state)
1391                         WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1392                                                             prev_state));
1393         }
1394 
1395         return ret;
1396 }
1397 
1398 /* Requires cpu_add_remove_lock to be held */
1399 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1400                            enum cpuhp_state target)
1401 {
1402         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1403         int prev_state, ret = 0;
1404 
1405         if (num_online_cpus() == 1)
1406                 return -EBUSY;
1407 
1408         if (!cpu_present(cpu))
1409                 return -EINVAL;
1410 
1411         cpus_write_lock();
1412 
1413         cpuhp_tasks_frozen = tasks_frozen;
1414 
1415         prev_state = cpuhp_set_state(cpu, st, target);
1416         /*
1417          * If the current CPU state is in the range of the AP hotplug thread,
1418          * then we need to kick the thread.
1419          */
1420         if (st->state > CPUHP_TEARDOWN_CPU) {
1421                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1422                 ret = cpuhp_kick_ap_work(cpu);
1423                 /*
1424                  * The AP side has done the error rollback already. Just
1425                  * return the error code..
1426                  */
1427                 if (ret)
1428                         goto out;
1429 
1430                 /*
1431                  * We might have stopped still in the range of the AP hotplug
1432                  * thread. Nothing to do anymore.
1433                  */
1434                 if (st->state > CPUHP_TEARDOWN_CPU)
1435                         goto out;
1436 
1437                 st->target = target;
1438         }
1439         /*
1440          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1441          * to do the further cleanups.
1442          */
1443         ret = cpuhp_down_callbacks(cpu, st, target);
1444         if (ret && st->state < prev_state) {
1445                 if (st->state == CPUHP_TEARDOWN_CPU) {
1446                         cpuhp_reset_state(cpu, st, prev_state);
1447                         __cpuhp_kick_ap(st);
1448                 } else {
1449                         WARN(1, "DEAD callback error for CPU%d", cpu);
1450                 }
1451         }
1452 
1453 out:
1454         cpus_write_unlock();
1455         /*
1456          * Do post unplug cleanup. This is still protected against
1457          * concurrent CPU hotplug via cpu_add_remove_lock.
1458          */
1459         lockup_detector_cleanup();
1460         arch_smt_update();
1461         return ret;
1462 }
1463 
1464 struct cpu_down_work {
1465         unsigned int            cpu;
1466         enum cpuhp_state        target;
1467 };
1468 
1469 static long __cpu_down_maps_locked(void *arg)
1470 {
1471         struct cpu_down_work *work = arg;
1472 
1473         return _cpu_down(work->cpu, 0, work->target);
1474 }
1475 
1476 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1477 {
1478         struct cpu_down_work work = { .cpu = cpu, .target = target, };
1479 
1480         /*
1481          * If the platform does not support hotplug, report it explicitly to
1482          * differentiate it from a transient offlining failure.
1483          */
1484         if (cpu_hotplug_offline_disabled)
1485                 return -EOPNOTSUPP;
1486         if (cpu_hotplug_disabled)
1487                 return -EBUSY;
1488 
1489         /*
1490          * Ensure that the control task does not run on the to be offlined
1491          * CPU to prevent a deadlock against cfs_b->period_timer.
1492          * Also keep at least one housekeeping cpu onlined to avoid generating
1493          * an empty sched_domain span.
1494          */
1495         for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1496                 if (cpu != work.cpu)
1497                         return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1498         }
1499         return -EBUSY;
1500 }
1501 
1502 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1503 {
1504         int err;
1505 
1506         cpu_maps_update_begin();
1507         err = cpu_down_maps_locked(cpu, target);
1508         cpu_maps_update_done();
1509         return err;
1510 }
1511 
1512 /**
1513  * cpu_device_down - Bring down a cpu device
1514  * @dev: Pointer to the cpu device to offline
1515  *
1516  * This function is meant to be used by device core cpu subsystem only.
1517  *
1518  * Other subsystems should use remove_cpu() instead.
1519  *
1520  * Return: %0 on success or a negative errno code
1521  */
1522 int cpu_device_down(struct device *dev)
1523 {
1524         return cpu_down(dev->id, CPUHP_OFFLINE);
1525 }
1526 
1527 int remove_cpu(unsigned int cpu)
1528 {
1529         int ret;
1530 
1531         lock_device_hotplug();
1532         ret = device_offline(get_cpu_device(cpu));
1533         unlock_device_hotplug();
1534 
1535         return ret;
1536 }
1537 EXPORT_SYMBOL_GPL(remove_cpu);
1538 
1539 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1540 {
1541         unsigned int cpu;
1542         int error;
1543 
1544         cpu_maps_update_begin();
1545 
1546         /*
1547          * Make certain the cpu I'm about to reboot on is online.
1548          *
1549          * This is inline to what migrate_to_reboot_cpu() already do.
1550          */
1551         if (!cpu_online(primary_cpu))
1552                 primary_cpu = cpumask_first(cpu_online_mask);
1553 
1554         for_each_online_cpu(cpu) {
1555                 if (cpu == primary_cpu)
1556                         continue;
1557 
1558                 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1559                 if (error) {
1560                         pr_err("Failed to offline CPU%d - error=%d",
1561                                 cpu, error);
1562                         break;
1563                 }
1564         }
1565 
1566         /*
1567          * Ensure all but the reboot CPU are offline.
1568          */
1569         BUG_ON(num_online_cpus() > 1);
1570 
1571         /*
1572          * Make sure the CPUs won't be enabled by someone else after this
1573          * point. Kexec will reboot to a new kernel shortly resetting
1574          * everything along the way.
1575          */
1576         cpu_hotplug_disabled++;
1577 
1578         cpu_maps_update_done();
1579 }
1580 
1581 #else
1582 #define takedown_cpu            NULL
1583 #endif /*CONFIG_HOTPLUG_CPU*/
1584 
1585 /**
1586  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1587  * @cpu: cpu that just started
1588  *
1589  * It must be called by the arch code on the new cpu, before the new cpu
1590  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1591  */
1592 void notify_cpu_starting(unsigned int cpu)
1593 {
1594         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1595         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1596 
1597         rcutree_report_cpu_starting(cpu);       /* Enables RCU usage on this CPU. */
1598         cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1599 
1600         /*
1601          * STARTING must not fail!
1602          */
1603         cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1604 }
1605 
1606 /*
1607  * Called from the idle task. Wake up the controlling task which brings the
1608  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1609  * online bringup to the hotplug thread.
1610  */
1611 void cpuhp_online_idle(enum cpuhp_state state)
1612 {
1613         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1614 
1615         /* Happens for the boot cpu */
1616         if (state != CPUHP_AP_ONLINE_IDLE)
1617                 return;
1618 
1619         cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1620 
1621         /*
1622          * Unpark the stopper thread before we start the idle loop (and start
1623          * scheduling); this ensures the stopper task is always available.
1624          */
1625         stop_machine_unpark(smp_processor_id());
1626 
1627         st->state = CPUHP_AP_ONLINE_IDLE;
1628         complete_ap_thread(st, true);
1629 }
1630 
1631 /* Requires cpu_add_remove_lock to be held */
1632 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1633 {
1634         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1635         struct task_struct *idle;
1636         int ret = 0;
1637 
1638         cpus_write_lock();
1639 
1640         if (!cpu_present(cpu)) {
1641                 ret = -EINVAL;
1642                 goto out;
1643         }
1644 
1645         /*
1646          * The caller of cpu_up() might have raced with another
1647          * caller. Nothing to do.
1648          */
1649         if (st->state >= target)
1650                 goto out;
1651 
1652         if (st->state == CPUHP_OFFLINE) {
1653                 /* Let it fail before we try to bring the cpu up */
1654                 idle = idle_thread_get(cpu);
1655                 if (IS_ERR(idle)) {
1656                         ret = PTR_ERR(idle);
1657                         goto out;
1658                 }
1659 
1660                 /*
1661                  * Reset stale stack state from the last time this CPU was online.
1662                  */
1663                 scs_task_reset(idle);
1664                 kasan_unpoison_task_stack(idle);
1665         }
1666 
1667         cpuhp_tasks_frozen = tasks_frozen;
1668 
1669         cpuhp_set_state(cpu, st, target);
1670         /*
1671          * If the current CPU state is in the range of the AP hotplug thread,
1672          * then we need to kick the thread once more.
1673          */
1674         if (st->state > CPUHP_BRINGUP_CPU) {
1675                 ret = cpuhp_kick_ap_work(cpu);
1676                 /*
1677                  * The AP side has done the error rollback already. Just
1678                  * return the error code..
1679                  */
1680                 if (ret)
1681                         goto out;
1682         }
1683 
1684         /*
1685          * Try to reach the target state. We max out on the BP at
1686          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1687          * responsible for bringing it up to the target state.
1688          */
1689         target = min((int)target, CPUHP_BRINGUP_CPU);
1690         ret = cpuhp_up_callbacks(cpu, st, target);
1691 out:
1692         cpus_write_unlock();
1693         arch_smt_update();
1694         return ret;
1695 }
1696 
1697 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1698 {
1699         int err = 0;
1700 
1701         if (!cpu_possible(cpu)) {
1702                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1703                        cpu);
1704                 return -EINVAL;
1705         }
1706 
1707         err = try_online_node(cpu_to_node(cpu));
1708         if (err)
1709                 return err;
1710 
1711         cpu_maps_update_begin();
1712 
1713         if (cpu_hotplug_disabled) {
1714                 err = -EBUSY;
1715                 goto out;
1716         }
1717         if (!cpu_bootable(cpu)) {
1718                 err = -EPERM;
1719                 goto out;
1720         }
1721 
1722         err = _cpu_up(cpu, 0, target);
1723 out:
1724         cpu_maps_update_done();
1725         return err;
1726 }
1727 
1728 /**
1729  * cpu_device_up - Bring up a cpu device
1730  * @dev: Pointer to the cpu device to online
1731  *
1732  * This function is meant to be used by device core cpu subsystem only.
1733  *
1734  * Other subsystems should use add_cpu() instead.
1735  *
1736  * Return: %0 on success or a negative errno code
1737  */
1738 int cpu_device_up(struct device *dev)
1739 {
1740         return cpu_up(dev->id, CPUHP_ONLINE);
1741 }
1742 
1743 int add_cpu(unsigned int cpu)
1744 {
1745         int ret;
1746 
1747         lock_device_hotplug();
1748         ret = device_online(get_cpu_device(cpu));
1749         unlock_device_hotplug();
1750 
1751         return ret;
1752 }
1753 EXPORT_SYMBOL_GPL(add_cpu);
1754 
1755 /**
1756  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1757  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1758  *
1759  * On some architectures like arm64, we can hibernate on any CPU, but on
1760  * wake up the CPU we hibernated on might be offline as a side effect of
1761  * using maxcpus= for example.
1762  *
1763  * Return: %0 on success or a negative errno code
1764  */
1765 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1766 {
1767         int ret;
1768 
1769         if (!cpu_online(sleep_cpu)) {
1770                 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1771                 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1772                 if (ret) {
1773                         pr_err("Failed to bring hibernate-CPU up!\n");
1774                         return ret;
1775                 }
1776         }
1777         return 0;
1778 }
1779 
1780 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1781                                       enum cpuhp_state target)
1782 {
1783         unsigned int cpu;
1784 
1785         for_each_cpu(cpu, mask) {
1786                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1787 
1788                 if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1789                         /*
1790                          * If this failed then cpu_up() might have only
1791                          * rolled back to CPUHP_BP_KICK_AP for the final
1792                          * online. Clean it up. NOOP if already rolled back.
1793                          */
1794                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1795                 }
1796 
1797                 if (!--ncpus)
1798                         break;
1799         }
1800 }
1801 
1802 #ifdef CONFIG_HOTPLUG_PARALLEL
1803 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1804 
1805 static int __init parallel_bringup_parse_param(char *arg)
1806 {
1807         return kstrtobool(arg, &__cpuhp_parallel_bringup);
1808 }
1809 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1810 
1811 static inline bool cpuhp_smt_aware(void)
1812 {
1813         return cpu_smt_max_threads > 1;
1814 }
1815 
1816 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1817 {
1818         return cpu_primary_thread_mask;
1819 }
1820 
1821 /*
1822  * On architectures which have enabled parallel bringup this invokes all BP
1823  * prepare states for each of the to be onlined APs first. The last state
1824  * sends the startup IPI to the APs. The APs proceed through the low level
1825  * bringup code in parallel and then wait for the control CPU to release
1826  * them one by one for the final onlining procedure.
1827  *
1828  * This avoids waiting for each AP to respond to the startup IPI in
1829  * CPUHP_BRINGUP_CPU.
1830  */
1831 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1832 {
1833         const struct cpumask *mask = cpu_present_mask;
1834 
1835         if (__cpuhp_parallel_bringup)
1836                 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1837         if (!__cpuhp_parallel_bringup)
1838                 return false;
1839 
1840         if (cpuhp_smt_aware()) {
1841                 const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1842                 static struct cpumask tmp_mask __initdata;
1843 
1844                 /*
1845                  * X86 requires to prevent that SMT siblings stopped while
1846                  * the primary thread does a microcode update for various
1847                  * reasons. Bring the primary threads up first.
1848                  */
1849                 cpumask_and(&tmp_mask, mask, pmask);
1850                 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1851                 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1852                 /* Account for the online CPUs */
1853                 ncpus -= num_online_cpus();
1854                 if (!ncpus)
1855                         return true;
1856                 /* Create the mask for secondary CPUs */
1857                 cpumask_andnot(&tmp_mask, mask, pmask);
1858                 mask = &tmp_mask;
1859         }
1860 
1861         /* Bring the not-yet started CPUs up */
1862         cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1863         cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1864         return true;
1865 }
1866 #else
1867 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1868 #endif /* CONFIG_HOTPLUG_PARALLEL */
1869 
1870 void __init bringup_nonboot_cpus(unsigned int max_cpus)
1871 {
1872         if (!max_cpus)
1873                 return;
1874 
1875         /* Try parallel bringup optimization if enabled */
1876         if (cpuhp_bringup_cpus_parallel(max_cpus))
1877                 return;
1878 
1879         /* Full per CPU serialized bringup */
1880         cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
1881 }
1882 
1883 #ifdef CONFIG_PM_SLEEP_SMP
1884 static cpumask_var_t frozen_cpus;
1885 
1886 int freeze_secondary_cpus(int primary)
1887 {
1888         int cpu, error = 0;
1889 
1890         cpu_maps_update_begin();
1891         if (primary == -1) {
1892                 primary = cpumask_first(cpu_online_mask);
1893                 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1894                         primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1895         } else {
1896                 if (!cpu_online(primary))
1897                         primary = cpumask_first(cpu_online_mask);
1898         }
1899 
1900         /*
1901          * We take down all of the non-boot CPUs in one shot to avoid races
1902          * with the userspace trying to use the CPU hotplug at the same time
1903          */
1904         cpumask_clear(frozen_cpus);
1905 
1906         pr_info("Disabling non-boot CPUs ...\n");
1907         for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) {
1908                 if (!cpu_online(cpu) || cpu == primary)
1909                         continue;
1910 
1911                 if (pm_wakeup_pending()) {
1912                         pr_info("Wakeup pending. Abort CPU freeze\n");
1913                         error = -EBUSY;
1914                         break;
1915                 }
1916 
1917                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1918                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1919                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1920                 if (!error)
1921                         cpumask_set_cpu(cpu, frozen_cpus);
1922                 else {
1923                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1924                         break;
1925                 }
1926         }
1927 
1928         if (!error)
1929                 BUG_ON(num_online_cpus() > 1);
1930         else
1931                 pr_err("Non-boot CPUs are not disabled\n");
1932 
1933         /*
1934          * Make sure the CPUs won't be enabled by someone else. We need to do
1935          * this even in case of failure as all freeze_secondary_cpus() users are
1936          * supposed to do thaw_secondary_cpus() on the failure path.
1937          */
1938         cpu_hotplug_disabled++;
1939 
1940         cpu_maps_update_done();
1941         return error;
1942 }
1943 
1944 void __weak arch_thaw_secondary_cpus_begin(void)
1945 {
1946 }
1947 
1948 void __weak arch_thaw_secondary_cpus_end(void)
1949 {
1950 }
1951 
1952 void thaw_secondary_cpus(void)
1953 {
1954         int cpu, error;
1955 
1956         /* Allow everyone to use the CPU hotplug again */
1957         cpu_maps_update_begin();
1958         __cpu_hotplug_enable();
1959         if (cpumask_empty(frozen_cpus))
1960                 goto out;
1961 
1962         pr_info("Enabling non-boot CPUs ...\n");
1963 
1964         arch_thaw_secondary_cpus_begin();
1965 
1966         for_each_cpu(cpu, frozen_cpus) {
1967                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1968                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1969                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1970                 if (!error) {
1971                         pr_info("CPU%d is up\n", cpu);
1972                         continue;
1973                 }
1974                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1975         }
1976 
1977         arch_thaw_secondary_cpus_end();
1978 
1979         cpumask_clear(frozen_cpus);
1980 out:
1981         cpu_maps_update_done();
1982 }
1983 
1984 static int __init alloc_frozen_cpus(void)
1985 {
1986         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1987                 return -ENOMEM;
1988         return 0;
1989 }
1990 core_initcall(alloc_frozen_cpus);
1991 
1992 /*
1993  * When callbacks for CPU hotplug notifications are being executed, we must
1994  * ensure that the state of the system with respect to the tasks being frozen
1995  * or not, as reported by the notification, remains unchanged *throughout the
1996  * duration* of the execution of the callbacks.
1997  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1998  *
1999  * This synchronization is implemented by mutually excluding regular CPU
2000  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2001  * Hibernate notifications.
2002  */
2003 static int
2004 cpu_hotplug_pm_callback(struct notifier_block *nb,
2005                         unsigned long action, void *ptr)
2006 {
2007         switch (action) {
2008 
2009         case PM_SUSPEND_PREPARE:
2010         case PM_HIBERNATION_PREPARE:
2011                 cpu_hotplug_disable();
2012                 break;
2013 
2014         case PM_POST_SUSPEND:
2015         case PM_POST_HIBERNATION:
2016                 cpu_hotplug_enable();
2017                 break;
2018 
2019         default:
2020                 return NOTIFY_DONE;
2021         }
2022 
2023         return NOTIFY_OK;
2024 }
2025 
2026 
2027 static int __init cpu_hotplug_pm_sync_init(void)
2028 {
2029         /*
2030          * cpu_hotplug_pm_callback has higher priority than x86
2031          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2032          * to disable cpu hotplug to avoid cpu hotplug race.
2033          */
2034         pm_notifier(cpu_hotplug_pm_callback, 0);
2035         return 0;
2036 }
2037 core_initcall(cpu_hotplug_pm_sync_init);
2038 
2039 #endif /* CONFIG_PM_SLEEP_SMP */
2040 
2041 int __boot_cpu_id;
2042 
2043 #endif /* CONFIG_SMP */
2044 
2045 /* Boot processor state steps */
2046 static struct cpuhp_step cpuhp_hp_states[] = {
2047         [CPUHP_OFFLINE] = {
2048                 .name                   = "offline",
2049                 .startup.single         = NULL,
2050                 .teardown.single        = NULL,
2051         },
2052 #ifdef CONFIG_SMP
2053         [CPUHP_CREATE_THREADS]= {
2054                 .name                   = "threads:prepare",
2055                 .startup.single         = smpboot_create_threads,
2056                 .teardown.single        = NULL,
2057                 .cant_stop              = true,
2058         },
2059         [CPUHP_PERF_PREPARE] = {
2060                 .name                   = "perf:prepare",
2061                 .startup.single         = perf_event_init_cpu,
2062                 .teardown.single        = perf_event_exit_cpu,
2063         },
2064         [CPUHP_RANDOM_PREPARE] = {
2065                 .name                   = "random:prepare",
2066                 .startup.single         = random_prepare_cpu,
2067                 .teardown.single        = NULL,
2068         },
2069         [CPUHP_WORKQUEUE_PREP] = {
2070                 .name                   = "workqueue:prepare",
2071                 .startup.single         = workqueue_prepare_cpu,
2072                 .teardown.single        = NULL,
2073         },
2074         [CPUHP_HRTIMERS_PREPARE] = {
2075                 .name                   = "hrtimers:prepare",
2076                 .startup.single         = hrtimers_prepare_cpu,
2077                 .teardown.single        = NULL,
2078         },
2079         [CPUHP_SMPCFD_PREPARE] = {
2080                 .name                   = "smpcfd:prepare",
2081                 .startup.single         = smpcfd_prepare_cpu,
2082                 .teardown.single        = smpcfd_dead_cpu,
2083         },
2084         [CPUHP_RELAY_PREPARE] = {
2085                 .name                   = "relay:prepare",
2086                 .startup.single         = relay_prepare_cpu,
2087                 .teardown.single        = NULL,
2088         },
2089         [CPUHP_RCUTREE_PREP] = {
2090                 .name                   = "RCU/tree:prepare",
2091                 .startup.single         = rcutree_prepare_cpu,
2092                 .teardown.single        = rcutree_dead_cpu,
2093         },
2094         /*
2095          * On the tear-down path, timers_dead_cpu() must be invoked
2096          * before blk_mq_queue_reinit_notify() from notify_dead(),
2097          * otherwise a RCU stall occurs.
2098          */
2099         [CPUHP_TIMERS_PREPARE] = {
2100                 .name                   = "timers:prepare",
2101                 .startup.single         = timers_prepare_cpu,
2102                 .teardown.single        = timers_dead_cpu,
2103         },
2104 
2105 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2106         /*
2107          * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2108          * the next step will release it.
2109          */
2110         [CPUHP_BP_KICK_AP] = {
2111                 .name                   = "cpu:kick_ap",
2112                 .startup.single         = cpuhp_kick_ap_alive,
2113         },
2114 
2115         /*
2116          * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2117          * releases it for the complete bringup.
2118          */
2119         [CPUHP_BRINGUP_CPU] = {
2120                 .name                   = "cpu:bringup",
2121                 .startup.single         = cpuhp_bringup_ap,
2122                 .teardown.single        = finish_cpu,
2123                 .cant_stop              = true,
2124         },
2125 #else
2126         /*
2127          * All-in-one CPU bringup state which includes the kick alive.
2128          */
2129         [CPUHP_BRINGUP_CPU] = {
2130                 .name                   = "cpu:bringup",
2131                 .startup.single         = bringup_cpu,
2132                 .teardown.single        = finish_cpu,
2133                 .cant_stop              = true,
2134         },
2135 #endif
2136         /* Final state before CPU kills itself */
2137         [CPUHP_AP_IDLE_DEAD] = {
2138                 .name                   = "idle:dead",
2139         },
2140         /*
2141          * Last state before CPU enters the idle loop to die. Transient state
2142          * for synchronization.
2143          */
2144         [CPUHP_AP_OFFLINE] = {
2145                 .name                   = "ap:offline",
2146                 .cant_stop              = true,
2147         },
2148         /* First state is scheduler control. Interrupts are disabled */
2149         [CPUHP_AP_SCHED_STARTING] = {
2150                 .name                   = "sched:starting",
2151                 .startup.single         = sched_cpu_starting,
2152                 .teardown.single        = sched_cpu_dying,
2153         },
2154         [CPUHP_AP_RCUTREE_DYING] = {
2155                 .name                   = "RCU/tree:dying",
2156                 .startup.single         = NULL,
2157                 .teardown.single        = rcutree_dying_cpu,
2158         },
2159         [CPUHP_AP_SMPCFD_DYING] = {
2160                 .name                   = "smpcfd:dying",
2161                 .startup.single         = NULL,
2162                 .teardown.single        = smpcfd_dying_cpu,
2163         },
2164         [CPUHP_AP_HRTIMERS_DYING] = {
2165                 .name                   = "hrtimers:dying",
2166                 .startup.single         = NULL,
2167                 .teardown.single        = hrtimers_cpu_dying,
2168         },
2169         [CPUHP_AP_TICK_DYING] = {
2170                 .name                   = "tick:dying",
2171                 .startup.single         = NULL,
2172                 .teardown.single        = tick_cpu_dying,
2173         },
2174         /* Entry state on starting. Interrupts enabled from here on. Transient
2175          * state for synchronsization */
2176         [CPUHP_AP_ONLINE] = {
2177                 .name                   = "ap:online",
2178         },
2179         /*
2180          * Handled on control processor until the plugged processor manages
2181          * this itself.
2182          */
2183         [CPUHP_TEARDOWN_CPU] = {
2184                 .name                   = "cpu:teardown",
2185                 .startup.single         = NULL,
2186                 .teardown.single        = takedown_cpu,
2187                 .cant_stop              = true,
2188         },
2189 
2190         [CPUHP_AP_SCHED_WAIT_EMPTY] = {
2191                 .name                   = "sched:waitempty",
2192                 .startup.single         = NULL,
2193                 .teardown.single        = sched_cpu_wait_empty,
2194         },
2195 
2196         /* Handle smpboot threads park/unpark */
2197         [CPUHP_AP_SMPBOOT_THREADS] = {
2198                 .name                   = "smpboot/threads:online",
2199                 .startup.single         = smpboot_unpark_threads,
2200                 .teardown.single        = smpboot_park_threads,
2201         },
2202         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2203                 .name                   = "irq/affinity:online",
2204                 .startup.single         = irq_affinity_online_cpu,
2205                 .teardown.single        = NULL,
2206         },
2207         [CPUHP_AP_PERF_ONLINE] = {
2208                 .name                   = "perf:online",
2209                 .startup.single         = perf_event_init_cpu,
2210                 .teardown.single        = perf_event_exit_cpu,
2211         },
2212         [CPUHP_AP_WATCHDOG_ONLINE] = {
2213                 .name                   = "lockup_detector:online",
2214                 .startup.single         = lockup_detector_online_cpu,
2215                 .teardown.single        = lockup_detector_offline_cpu,
2216         },
2217         [CPUHP_AP_WORKQUEUE_ONLINE] = {
2218                 .name                   = "workqueue:online",
2219                 .startup.single         = workqueue_online_cpu,
2220                 .teardown.single        = workqueue_offline_cpu,
2221         },
2222         [CPUHP_AP_RANDOM_ONLINE] = {
2223                 .name                   = "random:online",
2224                 .startup.single         = random_online_cpu,
2225                 .teardown.single        = NULL,
2226         },
2227         [CPUHP_AP_RCUTREE_ONLINE] = {
2228                 .name                   = "RCU/tree:online",
2229                 .startup.single         = rcutree_online_cpu,
2230                 .teardown.single        = rcutree_offline_cpu,
2231         },
2232 #endif
2233         /*
2234          * The dynamically registered state space is here
2235          */
2236 
2237 #ifdef CONFIG_SMP
2238         /* Last state is scheduler control setting the cpu active */
2239         [CPUHP_AP_ACTIVE] = {
2240                 .name                   = "sched:active",
2241                 .startup.single         = sched_cpu_activate,
2242                 .teardown.single        = sched_cpu_deactivate,
2243         },
2244 #endif
2245 
2246         /* CPU is fully up and running. */
2247         [CPUHP_ONLINE] = {
2248                 .name                   = "online",
2249                 .startup.single         = NULL,
2250                 .teardown.single        = NULL,
2251         },
2252 };
2253 
2254 /* Sanity check for callbacks */
2255 static int cpuhp_cb_check(enum cpuhp_state state)
2256 {
2257         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2258                 return -EINVAL;
2259         return 0;
2260 }
2261 
2262 /*
2263  * Returns a free for dynamic slot assignment of the Online state. The states
2264  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2265  * by having no name assigned.
2266  */
2267 static int cpuhp_reserve_state(enum cpuhp_state state)
2268 {
2269         enum cpuhp_state i, end;
2270         struct cpuhp_step *step;
2271 
2272         switch (state) {
2273         case CPUHP_AP_ONLINE_DYN:
2274                 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2275                 end = CPUHP_AP_ONLINE_DYN_END;
2276                 break;
2277         case CPUHP_BP_PREPARE_DYN:
2278                 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2279                 end = CPUHP_BP_PREPARE_DYN_END;
2280                 break;
2281         default:
2282                 return -EINVAL;
2283         }
2284 
2285         for (i = state; i <= end; i++, step++) {
2286                 if (!step->name)
2287                         return i;
2288         }
2289         WARN(1, "No more dynamic states available for CPU hotplug\n");
2290         return -ENOSPC;
2291 }
2292 
2293 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2294                                  int (*startup)(unsigned int cpu),
2295                                  int (*teardown)(unsigned int cpu),
2296                                  bool multi_instance)
2297 {
2298         /* (Un)Install the callbacks for further cpu hotplug operations */
2299         struct cpuhp_step *sp;
2300         int ret = 0;
2301 
2302         /*
2303          * If name is NULL, then the state gets removed.
2304          *
2305          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2306          * the first allocation from these dynamic ranges, so the removal
2307          * would trigger a new allocation and clear the wrong (already
2308          * empty) state, leaving the callbacks of the to be cleared state
2309          * dangling, which causes wreckage on the next hotplug operation.
2310          */
2311         if (name && (state == CPUHP_AP_ONLINE_DYN ||
2312                      state == CPUHP_BP_PREPARE_DYN)) {
2313                 ret = cpuhp_reserve_state(state);
2314                 if (ret < 0)
2315                         return ret;
2316                 state = ret;
2317         }
2318         sp = cpuhp_get_step(state);
2319         if (name && sp->name)
2320                 return -EBUSY;
2321 
2322         sp->startup.single = startup;
2323         sp->teardown.single = teardown;
2324         sp->name = name;
2325         sp->multi_instance = multi_instance;
2326         INIT_HLIST_HEAD(&sp->list);
2327         return ret;
2328 }
2329 
2330 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2331 {
2332         return cpuhp_get_step(state)->teardown.single;
2333 }
2334 
2335 /*
2336  * Call the startup/teardown function for a step either on the AP or
2337  * on the current CPU.
2338  */
2339 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2340                             struct hlist_node *node)
2341 {
2342         struct cpuhp_step *sp = cpuhp_get_step(state);
2343         int ret;
2344 
2345         /*
2346          * If there's nothing to do, we done.
2347          * Relies on the union for multi_instance.
2348          */
2349         if (cpuhp_step_empty(bringup, sp))
2350                 return 0;
2351         /*
2352          * The non AP bound callbacks can fail on bringup. On teardown
2353          * e.g. module removal we crash for now.
2354          */
2355 #ifdef CONFIG_SMP
2356         if (cpuhp_is_ap_state(state))
2357                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2358         else
2359                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2360 #else
2361         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2362 #endif
2363         BUG_ON(ret && !bringup);
2364         return ret;
2365 }
2366 
2367 /*
2368  * Called from __cpuhp_setup_state on a recoverable failure.
2369  *
2370  * Note: The teardown callbacks for rollback are not allowed to fail!
2371  */
2372 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2373                                    struct hlist_node *node)
2374 {
2375         int cpu;
2376 
2377         /* Roll back the already executed steps on the other cpus */
2378         for_each_present_cpu(cpu) {
2379                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2380                 int cpustate = st->state;
2381 
2382                 if (cpu >= failedcpu)
2383                         break;
2384 
2385                 /* Did we invoke the startup call on that cpu ? */
2386                 if (cpustate >= state)
2387                         cpuhp_issue_call(cpu, state, false, node);
2388         }
2389 }
2390 
2391 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2392                                           struct hlist_node *node,
2393                                           bool invoke)
2394 {
2395         struct cpuhp_step *sp;
2396         int cpu;
2397         int ret;
2398 
2399         lockdep_assert_cpus_held();
2400 
2401         sp = cpuhp_get_step(state);
2402         if (sp->multi_instance == false)
2403                 return -EINVAL;
2404 
2405         mutex_lock(&cpuhp_state_mutex);
2406 
2407         if (!invoke || !sp->startup.multi)
2408                 goto add_node;
2409 
2410         /*
2411          * Try to call the startup callback for each present cpu
2412          * depending on the hotplug state of the cpu.
2413          */
2414         for_each_present_cpu(cpu) {
2415                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2416                 int cpustate = st->state;
2417 
2418                 if (cpustate < state)
2419                         continue;
2420 
2421                 ret = cpuhp_issue_call(cpu, state, true, node);
2422                 if (ret) {
2423                         if (sp->teardown.multi)
2424                                 cpuhp_rollback_install(cpu, state, node);
2425                         goto unlock;
2426                 }
2427         }
2428 add_node:
2429         ret = 0;
2430         hlist_add_head(node, &sp->list);
2431 unlock:
2432         mutex_unlock(&cpuhp_state_mutex);
2433         return ret;
2434 }
2435 
2436 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2437                                bool invoke)
2438 {
2439         int ret;
2440 
2441         cpus_read_lock();
2442         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2443         cpus_read_unlock();
2444         return ret;
2445 }
2446 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2447 
2448 /**
2449  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2450  * @state:              The state to setup
2451  * @name:               Name of the step
2452  * @invoke:             If true, the startup function is invoked for cpus where
2453  *                      cpu state >= @state
2454  * @startup:            startup callback function
2455  * @teardown:           teardown callback function
2456  * @multi_instance:     State is set up for multiple instances which get
2457  *                      added afterwards.
2458  *
2459  * The caller needs to hold cpus read locked while calling this function.
2460  * Return:
2461  *   On success:
2462  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN;
2463  *      0 for all other states
2464  *   On failure: proper (negative) error code
2465  */
2466 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2467                                    const char *name, bool invoke,
2468                                    int (*startup)(unsigned int cpu),
2469                                    int (*teardown)(unsigned int cpu),
2470                                    bool multi_instance)
2471 {
2472         int cpu, ret = 0;
2473         bool dynstate;
2474 
2475         lockdep_assert_cpus_held();
2476 
2477         if (cpuhp_cb_check(state) || !name)
2478                 return -EINVAL;
2479 
2480         mutex_lock(&cpuhp_state_mutex);
2481 
2482         ret = cpuhp_store_callbacks(state, name, startup, teardown,
2483                                     multi_instance);
2484 
2485         dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN;
2486         if (ret > 0 && dynstate) {
2487                 state = ret;
2488                 ret = 0;
2489         }
2490 
2491         if (ret || !invoke || !startup)
2492                 goto out;
2493 
2494         /*
2495          * Try to call the startup callback for each present cpu
2496          * depending on the hotplug state of the cpu.
2497          */
2498         for_each_present_cpu(cpu) {
2499                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2500                 int cpustate = st->state;
2501 
2502                 if (cpustate < state)
2503                         continue;
2504 
2505                 ret = cpuhp_issue_call(cpu, state, true, NULL);
2506                 if (ret) {
2507                         if (teardown)
2508                                 cpuhp_rollback_install(cpu, state, NULL);
2509                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2510                         goto out;
2511                 }
2512         }
2513 out:
2514         mutex_unlock(&cpuhp_state_mutex);
2515         /*
2516          * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN,
2517          * return the dynamically allocated state in case of success.
2518          */
2519         if (!ret && dynstate)
2520                 return state;
2521         return ret;
2522 }
2523 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2524 
2525 int __cpuhp_setup_state(enum cpuhp_state state,
2526                         const char *name, bool invoke,
2527                         int (*startup)(unsigned int cpu),
2528                         int (*teardown)(unsigned int cpu),
2529                         bool multi_instance)
2530 {
2531         int ret;
2532 
2533         cpus_read_lock();
2534         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2535                                              teardown, multi_instance);
2536         cpus_read_unlock();
2537         return ret;
2538 }
2539 EXPORT_SYMBOL(__cpuhp_setup_state);
2540 
2541 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2542                                   struct hlist_node *node, bool invoke)
2543 {
2544         struct cpuhp_step *sp = cpuhp_get_step(state);
2545         int cpu;
2546 
2547         BUG_ON(cpuhp_cb_check(state));
2548 
2549         if (!sp->multi_instance)
2550                 return -EINVAL;
2551 
2552         cpus_read_lock();
2553         mutex_lock(&cpuhp_state_mutex);
2554 
2555         if (!invoke || !cpuhp_get_teardown_cb(state))
2556                 goto remove;
2557         /*
2558          * Call the teardown callback for each present cpu depending
2559          * on the hotplug state of the cpu. This function is not
2560          * allowed to fail currently!
2561          */
2562         for_each_present_cpu(cpu) {
2563                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2564                 int cpustate = st->state;
2565 
2566                 if (cpustate >= state)
2567                         cpuhp_issue_call(cpu, state, false, node);
2568         }
2569 
2570 remove:
2571         hlist_del(node);
2572         mutex_unlock(&cpuhp_state_mutex);
2573         cpus_read_unlock();
2574 
2575         return 0;
2576 }
2577 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2578 
2579 /**
2580  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2581  * @state:      The state to remove
2582  * @invoke:     If true, the teardown function is invoked for cpus where
2583  *              cpu state >= @state
2584  *
2585  * The caller needs to hold cpus read locked while calling this function.
2586  * The teardown callback is currently not allowed to fail. Think
2587  * about module removal!
2588  */
2589 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2590 {
2591         struct cpuhp_step *sp = cpuhp_get_step(state);
2592         int cpu;
2593 
2594         BUG_ON(cpuhp_cb_check(state));
2595 
2596         lockdep_assert_cpus_held();
2597 
2598         mutex_lock(&cpuhp_state_mutex);
2599         if (sp->multi_instance) {
2600                 WARN(!hlist_empty(&sp->list),
2601                      "Error: Removing state %d which has instances left.\n",
2602                      state);
2603                 goto remove;
2604         }
2605 
2606         if (!invoke || !cpuhp_get_teardown_cb(state))
2607                 goto remove;
2608 
2609         /*
2610          * Call the teardown callback for each present cpu depending
2611          * on the hotplug state of the cpu. This function is not
2612          * allowed to fail currently!
2613          */
2614         for_each_present_cpu(cpu) {
2615                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2616                 int cpustate = st->state;
2617 
2618                 if (cpustate >= state)
2619                         cpuhp_issue_call(cpu, state, false, NULL);
2620         }
2621 remove:
2622         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2623         mutex_unlock(&cpuhp_state_mutex);
2624 }
2625 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2626 
2627 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2628 {
2629         cpus_read_lock();
2630         __cpuhp_remove_state_cpuslocked(state, invoke);
2631         cpus_read_unlock();
2632 }
2633 EXPORT_SYMBOL(__cpuhp_remove_state);
2634 
2635 #ifdef CONFIG_HOTPLUG_SMT
2636 static void cpuhp_offline_cpu_device(unsigned int cpu)
2637 {
2638         struct device *dev = get_cpu_device(cpu);
2639 
2640         dev->offline = true;
2641         /* Tell user space about the state change */
2642         kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2643 }
2644 
2645 static void cpuhp_online_cpu_device(unsigned int cpu)
2646 {
2647         struct device *dev = get_cpu_device(cpu);
2648 
2649         dev->offline = false;
2650         /* Tell user space about the state change */
2651         kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2652 }
2653 
2654 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2655 {
2656         int cpu, ret = 0;
2657 
2658         cpu_maps_update_begin();
2659         for_each_online_cpu(cpu) {
2660                 if (topology_is_primary_thread(cpu))
2661                         continue;
2662                 /*
2663                  * Disable can be called with CPU_SMT_ENABLED when changing
2664                  * from a higher to lower number of SMT threads per core.
2665                  */
2666                 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2667                         continue;
2668                 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2669                 if (ret)
2670                         break;
2671                 /*
2672                  * As this needs to hold the cpu maps lock it's impossible
2673                  * to call device_offline() because that ends up calling
2674                  * cpu_down() which takes cpu maps lock. cpu maps lock
2675                  * needs to be held as this might race against in kernel
2676                  * abusers of the hotplug machinery (thermal management).
2677                  *
2678                  * So nothing would update device:offline state. That would
2679                  * leave the sysfs entry stale and prevent onlining after
2680                  * smt control has been changed to 'off' again. This is
2681                  * called under the sysfs hotplug lock, so it is properly
2682                  * serialized against the regular offline usage.
2683                  */
2684                 cpuhp_offline_cpu_device(cpu);
2685         }
2686         if (!ret)
2687                 cpu_smt_control = ctrlval;
2688         cpu_maps_update_done();
2689         return ret;
2690 }
2691 
2692 int cpuhp_smt_enable(void)
2693 {
2694         int cpu, ret = 0;
2695 
2696         cpu_maps_update_begin();
2697         cpu_smt_control = CPU_SMT_ENABLED;
2698         for_each_present_cpu(cpu) {
2699                 /* Skip online CPUs and CPUs on offline nodes */
2700                 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2701                         continue;
2702                 if (!cpu_smt_thread_allowed(cpu))
2703                         continue;
2704                 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2705                 if (ret)
2706                         break;
2707                 /* See comment in cpuhp_smt_disable() */
2708                 cpuhp_online_cpu_device(cpu);
2709         }
2710         cpu_maps_update_done();
2711         return ret;
2712 }
2713 #endif
2714 
2715 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2716 static ssize_t state_show(struct device *dev,
2717                           struct device_attribute *attr, char *buf)
2718 {
2719         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2720 
2721         return sprintf(buf, "%d\n", st->state);
2722 }
2723 static DEVICE_ATTR_RO(state);
2724 
2725 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2726                             const char *buf, size_t count)
2727 {
2728         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2729         struct cpuhp_step *sp;
2730         int target, ret;
2731 
2732         ret = kstrtoint(buf, 10, &target);
2733         if (ret)
2734                 return ret;
2735 
2736 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2737         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2738                 return -EINVAL;
2739 #else
2740         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2741                 return -EINVAL;
2742 #endif
2743 
2744         ret = lock_device_hotplug_sysfs();
2745         if (ret)
2746                 return ret;
2747 
2748         mutex_lock(&cpuhp_state_mutex);
2749         sp = cpuhp_get_step(target);
2750         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2751         mutex_unlock(&cpuhp_state_mutex);
2752         if (ret)
2753                 goto out;
2754 
2755         if (st->state < target)
2756                 ret = cpu_up(dev->id, target);
2757         else if (st->state > target)
2758                 ret = cpu_down(dev->id, target);
2759         else if (WARN_ON(st->target != target))
2760                 st->target = target;
2761 out:
2762         unlock_device_hotplug();
2763         return ret ? ret : count;
2764 }
2765 
2766 static ssize_t target_show(struct device *dev,
2767                            struct device_attribute *attr, char *buf)
2768 {
2769         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2770 
2771         return sprintf(buf, "%d\n", st->target);
2772 }
2773 static DEVICE_ATTR_RW(target);
2774 
2775 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2776                           const char *buf, size_t count)
2777 {
2778         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2779         struct cpuhp_step *sp;
2780         int fail, ret;
2781 
2782         ret = kstrtoint(buf, 10, &fail);
2783         if (ret)
2784                 return ret;
2785 
2786         if (fail == CPUHP_INVALID) {
2787                 st->fail = fail;
2788                 return count;
2789         }
2790 
2791         if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2792                 return -EINVAL;
2793 
2794         /*
2795          * Cannot fail STARTING/DYING callbacks.
2796          */
2797         if (cpuhp_is_atomic_state(fail))
2798                 return -EINVAL;
2799 
2800         /*
2801          * DEAD callbacks cannot fail...
2802          * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2803          * triggering STARTING callbacks, a failure in this state would
2804          * hinder rollback.
2805          */
2806         if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2807                 return -EINVAL;
2808 
2809         /*
2810          * Cannot fail anything that doesn't have callbacks.
2811          */
2812         mutex_lock(&cpuhp_state_mutex);
2813         sp = cpuhp_get_step(fail);
2814         if (!sp->startup.single && !sp->teardown.single)
2815                 ret = -EINVAL;
2816         mutex_unlock(&cpuhp_state_mutex);
2817         if (ret)
2818                 return ret;
2819 
2820         st->fail = fail;
2821 
2822         return count;
2823 }
2824 
2825 static ssize_t fail_show(struct device *dev,
2826                          struct device_attribute *attr, char *buf)
2827 {
2828         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2829 
2830         return sprintf(buf, "%d\n", st->fail);
2831 }
2832 
2833 static DEVICE_ATTR_RW(fail);
2834 
2835 static struct attribute *cpuhp_cpu_attrs[] = {
2836         &dev_attr_state.attr,
2837         &dev_attr_target.attr,
2838         &dev_attr_fail.attr,
2839         NULL
2840 };
2841 
2842 static const struct attribute_group cpuhp_cpu_attr_group = {
2843         .attrs = cpuhp_cpu_attrs,
2844         .name = "hotplug",
2845         NULL
2846 };
2847 
2848 static ssize_t states_show(struct device *dev,
2849                                  struct device_attribute *attr, char *buf)
2850 {
2851         ssize_t cur, res = 0;
2852         int i;
2853 
2854         mutex_lock(&cpuhp_state_mutex);
2855         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2856                 struct cpuhp_step *sp = cpuhp_get_step(i);
2857 
2858                 if (sp->name) {
2859                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2860                         buf += cur;
2861                         res += cur;
2862                 }
2863         }
2864         mutex_unlock(&cpuhp_state_mutex);
2865         return res;
2866 }
2867 static DEVICE_ATTR_RO(states);
2868 
2869 static struct attribute *cpuhp_cpu_root_attrs[] = {
2870         &dev_attr_states.attr,
2871         NULL
2872 };
2873 
2874 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2875         .attrs = cpuhp_cpu_root_attrs,
2876         .name = "hotplug",
2877         NULL
2878 };
2879 
2880 #ifdef CONFIG_HOTPLUG_SMT
2881 
2882 static bool cpu_smt_num_threads_valid(unsigned int threads)
2883 {
2884         if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2885                 return threads >= 1 && threads <= cpu_smt_max_threads;
2886         return threads == 1 || threads == cpu_smt_max_threads;
2887 }
2888 
2889 static ssize_t
2890 __store_smt_control(struct device *dev, struct device_attribute *attr,
2891                     const char *buf, size_t count)
2892 {
2893         int ctrlval, ret, num_threads, orig_threads;
2894         bool force_off;
2895 
2896         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2897                 return -EPERM;
2898 
2899         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2900                 return -ENODEV;
2901 
2902         if (sysfs_streq(buf, "on")) {
2903                 ctrlval = CPU_SMT_ENABLED;
2904                 num_threads = cpu_smt_max_threads;
2905         } else if (sysfs_streq(buf, "off")) {
2906                 ctrlval = CPU_SMT_DISABLED;
2907                 num_threads = 1;
2908         } else if (sysfs_streq(buf, "forceoff")) {
2909                 ctrlval = CPU_SMT_FORCE_DISABLED;
2910                 num_threads = 1;
2911         } else if (kstrtoint(buf, 10, &num_threads) == 0) {
2912                 if (num_threads == 1)
2913                         ctrlval = CPU_SMT_DISABLED;
2914                 else if (cpu_smt_num_threads_valid(num_threads))
2915                         ctrlval = CPU_SMT_ENABLED;
2916                 else
2917                         return -EINVAL;
2918         } else {
2919                 return -EINVAL;
2920         }
2921 
2922         ret = lock_device_hotplug_sysfs();
2923         if (ret)
2924                 return ret;
2925 
2926         orig_threads = cpu_smt_num_threads;
2927         cpu_smt_num_threads = num_threads;
2928 
2929         force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2930 
2931         if (num_threads > orig_threads)
2932                 ret = cpuhp_smt_enable();
2933         else if (num_threads < orig_threads || force_off)
2934                 ret = cpuhp_smt_disable(ctrlval);
2935 
2936         unlock_device_hotplug();
2937         return ret ? ret : count;
2938 }
2939 
2940 #else /* !CONFIG_HOTPLUG_SMT */
2941 static ssize_t
2942 __store_smt_control(struct device *dev, struct device_attribute *attr,
2943                     const char *buf, size_t count)
2944 {
2945         return -ENODEV;
2946 }
2947 #endif /* CONFIG_HOTPLUG_SMT */
2948 
2949 static const char *smt_states[] = {
2950         [CPU_SMT_ENABLED]               = "on",
2951         [CPU_SMT_DISABLED]              = "off",
2952         [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2953         [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2954         [CPU_SMT_NOT_IMPLEMENTED]       = "notimplemented",
2955 };
2956 
2957 static ssize_t control_show(struct device *dev,
2958                             struct device_attribute *attr, char *buf)
2959 {
2960         const char *state = smt_states[cpu_smt_control];
2961 
2962 #ifdef CONFIG_HOTPLUG_SMT
2963         /*
2964          * If SMT is enabled but not all threads are enabled then show the
2965          * number of threads. If all threads are enabled show "on". Otherwise
2966          * show the state name.
2967          */
2968         if (cpu_smt_control == CPU_SMT_ENABLED &&
2969             cpu_smt_num_threads != cpu_smt_max_threads)
2970                 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2971 #endif
2972 
2973         return sysfs_emit(buf, "%s\n", state);
2974 }
2975 
2976 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2977                              const char *buf, size_t count)
2978 {
2979         return __store_smt_control(dev, attr, buf, count);
2980 }
2981 static DEVICE_ATTR_RW(control);
2982 
2983 static ssize_t active_show(struct device *dev,
2984                            struct device_attribute *attr, char *buf)
2985 {
2986         return sysfs_emit(buf, "%d\n", sched_smt_active());
2987 }
2988 static DEVICE_ATTR_RO(active);
2989 
2990 static struct attribute *cpuhp_smt_attrs[] = {
2991         &dev_attr_control.attr,
2992         &dev_attr_active.attr,
2993         NULL
2994 };
2995 
2996 static const struct attribute_group cpuhp_smt_attr_group = {
2997         .attrs = cpuhp_smt_attrs,
2998         .name = "smt",
2999         NULL
3000 };
3001 
3002 static int __init cpu_smt_sysfs_init(void)
3003 {
3004         struct device *dev_root;
3005         int ret = -ENODEV;
3006 
3007         dev_root = bus_get_dev_root(&cpu_subsys);
3008         if (dev_root) {
3009                 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3010                 put_device(dev_root);
3011         }
3012         return ret;
3013 }
3014 
3015 static int __init cpuhp_sysfs_init(void)
3016 {
3017         struct device *dev_root;
3018         int cpu, ret;
3019 
3020         ret = cpu_smt_sysfs_init();
3021         if (ret)
3022                 return ret;
3023 
3024         dev_root = bus_get_dev_root(&cpu_subsys);
3025         if (dev_root) {
3026                 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3027                 put_device(dev_root);
3028                 if (ret)
3029                         return ret;
3030         }
3031 
3032         for_each_possible_cpu(cpu) {
3033                 struct device *dev = get_cpu_device(cpu);
3034 
3035                 if (!dev)
3036                         continue;
3037                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3038                 if (ret)
3039                         return ret;
3040         }
3041         return 0;
3042 }
3043 device_initcall(cpuhp_sysfs_init);
3044 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3045 
3046 /*
3047  * cpu_bit_bitmap[] is a special, "compressed" data structure that
3048  * represents all NR_CPUS bits binary values of 1<<nr.
3049  *
3050  * It is used by cpumask_of() to get a constant address to a CPU
3051  * mask value that has a single bit set only.
3052  */
3053 
3054 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3055 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
3056 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3057 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3058 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3059 
3060 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3061 
3062         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
3063         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
3064 #if BITS_PER_LONG > 32
3065         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
3066         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
3067 #endif
3068 };
3069 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3070 
3071 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3072 EXPORT_SYMBOL(cpu_all_bits);
3073 
3074 #ifdef CONFIG_INIT_ALL_POSSIBLE
3075 struct cpumask __cpu_possible_mask __ro_after_init
3076         = {CPU_BITS_ALL};
3077 #else
3078 struct cpumask __cpu_possible_mask __ro_after_init;
3079 #endif
3080 EXPORT_SYMBOL(__cpu_possible_mask);
3081 
3082 struct cpumask __cpu_online_mask __read_mostly;
3083 EXPORT_SYMBOL(__cpu_online_mask);
3084 
3085 struct cpumask __cpu_enabled_mask __read_mostly;
3086 EXPORT_SYMBOL(__cpu_enabled_mask);
3087 
3088 struct cpumask __cpu_present_mask __read_mostly;
3089 EXPORT_SYMBOL(__cpu_present_mask);
3090 
3091 struct cpumask __cpu_active_mask __read_mostly;
3092 EXPORT_SYMBOL(__cpu_active_mask);
3093 
3094 struct cpumask __cpu_dying_mask __read_mostly;
3095 EXPORT_SYMBOL(__cpu_dying_mask);
3096 
3097 atomic_t __num_online_cpus __read_mostly;
3098 EXPORT_SYMBOL(__num_online_cpus);
3099 
3100 void init_cpu_present(const struct cpumask *src)
3101 {
3102         cpumask_copy(&__cpu_present_mask, src);
3103 }
3104 
3105 void init_cpu_possible(const struct cpumask *src)
3106 {
3107         cpumask_copy(&__cpu_possible_mask, src);
3108 }
3109 
3110 void init_cpu_online(const struct cpumask *src)
3111 {
3112         cpumask_copy(&__cpu_online_mask, src);
3113 }
3114 
3115 void set_cpu_online(unsigned int cpu, bool online)
3116 {
3117         /*
3118          * atomic_inc/dec() is required to handle the horrid abuse of this
3119          * function by the reboot and kexec code which invoke it from
3120          * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3121          * regular CPU hotplug is properly serialized.
3122          *
3123          * Note, that the fact that __num_online_cpus is of type atomic_t
3124          * does not protect readers which are not serialized against
3125          * concurrent hotplug operations.
3126          */
3127         if (online) {
3128                 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3129                         atomic_inc(&__num_online_cpus);
3130         } else {
3131                 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3132                         atomic_dec(&__num_online_cpus);
3133         }
3134 }
3135 
3136 /*
3137  * Activate the first processor.
3138  */
3139 void __init boot_cpu_init(void)
3140 {
3141         int cpu = smp_processor_id();
3142 
3143         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
3144         set_cpu_online(cpu, true);
3145         set_cpu_active(cpu, true);
3146         set_cpu_present(cpu, true);
3147         set_cpu_possible(cpu, true);
3148 
3149 #ifdef CONFIG_SMP
3150         __boot_cpu_id = cpu;
3151 #endif
3152 }
3153 
3154 /*
3155  * Must be called _AFTER_ setting up the per_cpu areas
3156  */
3157 void __init boot_cpu_hotplug_init(void)
3158 {
3159 #ifdef CONFIG_SMP
3160         cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3161         atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3162 #endif
3163         this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3164         this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3165 }
3166 
3167 #ifdef CONFIG_CPU_MITIGATIONS
3168 /*
3169  * These are used for a global "mitigations=" cmdline option for toggling
3170  * optional CPU mitigations.
3171  */
3172 enum cpu_mitigations {
3173         CPU_MITIGATIONS_OFF,
3174         CPU_MITIGATIONS_AUTO,
3175         CPU_MITIGATIONS_AUTO_NOSMT,
3176 };
3177 
3178 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
3179 
3180 static int __init mitigations_parse_cmdline(char *arg)
3181 {
3182         if (!strcmp(arg, "off"))
3183                 cpu_mitigations = CPU_MITIGATIONS_OFF;
3184         else if (!strcmp(arg, "auto"))
3185                 cpu_mitigations = CPU_MITIGATIONS_AUTO;
3186         else if (!strcmp(arg, "auto,nosmt"))
3187                 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3188         else
3189                 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3190                         arg);
3191 
3192         return 0;
3193 }
3194 
3195 /* mitigations=off */
3196 bool cpu_mitigations_off(void)
3197 {
3198         return cpu_mitigations == CPU_MITIGATIONS_OFF;
3199 }
3200 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3201 
3202 /* mitigations=auto,nosmt */
3203 bool cpu_mitigations_auto_nosmt(void)
3204 {
3205         return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3206 }
3207 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3208 #else
3209 static int __init mitigations_parse_cmdline(char *arg)
3210 {
3211         pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n");
3212         return 0;
3213 }
3214 #endif
3215 early_param("mitigations", mitigations_parse_cmdline);
3216 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php