1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/delay.h> 21 #include <linux/export.h> 22 #include <linux/bug.h> 23 #include <linux/kthread.h> 24 #include <linux/stop_machine.h> 25 #include <linux/mutex.h> 26 #include <linux/gfp.h> 27 #include <linux/suspend.h> 28 #include <linux/lockdep.h> 29 #include <linux/tick.h> 30 #include <linux/irq.h> 31 #include <linux/nmi.h> 32 #include <linux/smpboot.h> 33 #include <linux/relay.h> 34 #include <linux/slab.h> 35 #include <linux/scs.h> 36 #include <linux/percpu-rwsem.h> 37 #include <linux/cpuset.h> 38 #include <linux/random.h> 39 #include <linux/cc_platform.h> 40 41 #include <trace/events/power.h> 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/cpuhp.h> 44 45 #include "smpboot.h" 46 47 /** 48 * struct cpuhp_cpu_state - Per cpu hotplug state storage 49 * @state: The current cpu state 50 * @target: The target state 51 * @fail: Current CPU hotplug callback state 52 * @thread: Pointer to the hotplug thread 53 * @should_run: Thread should execute 54 * @rollback: Perform a rollback 55 * @single: Single callback invocation 56 * @bringup: Single callback bringup or teardown selector 57 * @node: Remote CPU node; for multi-instance, do a 58 * single entry callback for install/remove 59 * @last: For multi-instance rollback, remember how far we got 60 * @cb_state: The state for a single callback (install/uninstall) 61 * @result: Result of the operation 62 * @ap_sync_state: State for AP synchronization 63 * @done_up: Signal completion to the issuer of the task for cpu-up 64 * @done_down: Signal completion to the issuer of the task for cpu-down 65 */ 66 struct cpuhp_cpu_state { 67 enum cpuhp_state state; 68 enum cpuhp_state target; 69 enum cpuhp_state fail; 70 #ifdef CONFIG_SMP 71 struct task_struct *thread; 72 bool should_run; 73 bool rollback; 74 bool single; 75 bool bringup; 76 struct hlist_node *node; 77 struct hlist_node *last; 78 enum cpuhp_state cb_state; 79 int result; 80 atomic_t ap_sync_state; 81 struct completion done_up; 82 struct completion done_down; 83 #endif 84 }; 85 86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 87 .fail = CPUHP_INVALID, 88 }; 89 90 #ifdef CONFIG_SMP 91 cpumask_t cpus_booted_once_mask; 92 #endif 93 94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 95 static struct lockdep_map cpuhp_state_up_map = 96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 97 static struct lockdep_map cpuhp_state_down_map = 98 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 99 100 101 static inline void cpuhp_lock_acquire(bool bringup) 102 { 103 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 104 } 105 106 static inline void cpuhp_lock_release(bool bringup) 107 { 108 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 109 } 110 #else 111 112 static inline void cpuhp_lock_acquire(bool bringup) { } 113 static inline void cpuhp_lock_release(bool bringup) { } 114 115 #endif 116 117 /** 118 * struct cpuhp_step - Hotplug state machine step 119 * @name: Name of the step 120 * @startup: Startup function of the step 121 * @teardown: Teardown function of the step 122 * @cant_stop: Bringup/teardown can't be stopped at this step 123 * @multi_instance: State has multiple instances which get added afterwards 124 */ 125 struct cpuhp_step { 126 const char *name; 127 union { 128 int (*single)(unsigned int cpu); 129 int (*multi)(unsigned int cpu, 130 struct hlist_node *node); 131 } startup; 132 union { 133 int (*single)(unsigned int cpu); 134 int (*multi)(unsigned int cpu, 135 struct hlist_node *node); 136 } teardown; 137 /* private: */ 138 struct hlist_head list; 139 /* public: */ 140 bool cant_stop; 141 bool multi_instance; 142 }; 143 144 static DEFINE_MUTEX(cpuhp_state_mutex); 145 static struct cpuhp_step cpuhp_hp_states[]; 146 147 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 148 { 149 return cpuhp_hp_states + state; 150 } 151 152 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 153 { 154 return bringup ? !step->startup.single : !step->teardown.single; 155 } 156 157 /** 158 * cpuhp_invoke_callback - Invoke the callbacks for a given state 159 * @cpu: The cpu for which the callback should be invoked 160 * @state: The state to do callbacks for 161 * @bringup: True if the bringup callback should be invoked 162 * @node: For multi-instance, do a single entry callback for install/remove 163 * @lastp: For multi-instance rollback, remember how far we got 164 * 165 * Called from cpu hotplug and from the state register machinery. 166 * 167 * Return: %0 on success or a negative errno code 168 */ 169 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 170 bool bringup, struct hlist_node *node, 171 struct hlist_node **lastp) 172 { 173 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 174 struct cpuhp_step *step = cpuhp_get_step(state); 175 int (*cbm)(unsigned int cpu, struct hlist_node *node); 176 int (*cb)(unsigned int cpu); 177 int ret, cnt; 178 179 if (st->fail == state) { 180 st->fail = CPUHP_INVALID; 181 return -EAGAIN; 182 } 183 184 if (cpuhp_step_empty(bringup, step)) { 185 WARN_ON_ONCE(1); 186 return 0; 187 } 188 189 if (!step->multi_instance) { 190 WARN_ON_ONCE(lastp && *lastp); 191 cb = bringup ? step->startup.single : step->teardown.single; 192 193 trace_cpuhp_enter(cpu, st->target, state, cb); 194 ret = cb(cpu); 195 trace_cpuhp_exit(cpu, st->state, state, ret); 196 return ret; 197 } 198 cbm = bringup ? step->startup.multi : step->teardown.multi; 199 200 /* Single invocation for instance add/remove */ 201 if (node) { 202 WARN_ON_ONCE(lastp && *lastp); 203 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 204 ret = cbm(cpu, node); 205 trace_cpuhp_exit(cpu, st->state, state, ret); 206 return ret; 207 } 208 209 /* State transition. Invoke on all instances */ 210 cnt = 0; 211 hlist_for_each(node, &step->list) { 212 if (lastp && node == *lastp) 213 break; 214 215 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 216 ret = cbm(cpu, node); 217 trace_cpuhp_exit(cpu, st->state, state, ret); 218 if (ret) { 219 if (!lastp) 220 goto err; 221 222 *lastp = node; 223 return ret; 224 } 225 cnt++; 226 } 227 if (lastp) 228 *lastp = NULL; 229 return 0; 230 err: 231 /* Rollback the instances if one failed */ 232 cbm = !bringup ? step->startup.multi : step->teardown.multi; 233 if (!cbm) 234 return ret; 235 236 hlist_for_each(node, &step->list) { 237 if (!cnt--) 238 break; 239 240 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 241 ret = cbm(cpu, node); 242 trace_cpuhp_exit(cpu, st->state, state, ret); 243 /* 244 * Rollback must not fail, 245 */ 246 WARN_ON_ONCE(ret); 247 } 248 return ret; 249 } 250 251 #ifdef CONFIG_SMP 252 static bool cpuhp_is_ap_state(enum cpuhp_state state) 253 { 254 /* 255 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 256 * purposes as that state is handled explicitly in cpu_down. 257 */ 258 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 259 } 260 261 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 262 { 263 struct completion *done = bringup ? &st->done_up : &st->done_down; 264 wait_for_completion(done); 265 } 266 267 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 268 { 269 struct completion *done = bringup ? &st->done_up : &st->done_down; 270 complete(done); 271 } 272 273 /* 274 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 275 */ 276 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 277 { 278 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 279 } 280 281 /* Synchronization state management */ 282 enum cpuhp_sync_state { 283 SYNC_STATE_DEAD, 284 SYNC_STATE_KICKED, 285 SYNC_STATE_SHOULD_DIE, 286 SYNC_STATE_ALIVE, 287 SYNC_STATE_SHOULD_ONLINE, 288 SYNC_STATE_ONLINE, 289 }; 290 291 #ifdef CONFIG_HOTPLUG_CORE_SYNC 292 /** 293 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown 294 * @state: The synchronization state to set 295 * 296 * No synchronization point. Just update of the synchronization state, but implies 297 * a full barrier so that the AP changes are visible before the control CPU proceeds. 298 */ 299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) 300 { 301 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 302 303 (void)atomic_xchg(st, state); 304 } 305 306 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } 307 308 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, 309 enum cpuhp_sync_state next_state) 310 { 311 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 312 ktime_t now, end, start = ktime_get(); 313 int sync; 314 315 end = start + 10ULL * NSEC_PER_SEC; 316 317 sync = atomic_read(st); 318 while (1) { 319 if (sync == state) { 320 if (!atomic_try_cmpxchg(st, &sync, next_state)) 321 continue; 322 return true; 323 } 324 325 now = ktime_get(); 326 if (now > end) { 327 /* Timeout. Leave the state unchanged */ 328 return false; 329 } else if (now - start < NSEC_PER_MSEC) { 330 /* Poll for one millisecond */ 331 arch_cpuhp_sync_state_poll(); 332 } else { 333 usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE); 334 } 335 sync = atomic_read(st); 336 } 337 return true; 338 } 339 #else /* CONFIG_HOTPLUG_CORE_SYNC */ 340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } 341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ 342 343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD 344 /** 345 * cpuhp_ap_report_dead - Update synchronization state to DEAD 346 * 347 * No synchronization point. Just update of the synchronization state. 348 */ 349 void cpuhp_ap_report_dead(void) 350 { 351 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD); 352 } 353 354 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } 355 356 /* 357 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down 358 * because the AP cannot issue complete() at this stage. 359 */ 360 static void cpuhp_bp_sync_dead(unsigned int cpu) 361 { 362 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 363 int sync = atomic_read(st); 364 365 do { 366 /* CPU can have reported dead already. Don't overwrite that! */ 367 if (sync == SYNC_STATE_DEAD) 368 break; 369 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE)); 370 371 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) { 372 /* CPU reached dead state. Invoke the cleanup function */ 373 arch_cpuhp_cleanup_dead_cpu(cpu); 374 return; 375 } 376 377 /* No further action possible. Emit message and give up. */ 378 pr_err("CPU%u failed to report dead state\n", cpu); 379 } 380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 381 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } 382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 383 384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL 385 /** 386 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive 387 * 388 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits 389 * for the BP to release it. 390 */ 391 void cpuhp_ap_sync_alive(void) 392 { 393 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 394 395 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE); 396 397 /* Wait for the control CPU to release it. */ 398 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE) 399 cpu_relax(); 400 } 401 402 static bool cpuhp_can_boot_ap(unsigned int cpu) 403 { 404 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 405 int sync = atomic_read(st); 406 407 again: 408 switch (sync) { 409 case SYNC_STATE_DEAD: 410 /* CPU is properly dead */ 411 break; 412 case SYNC_STATE_KICKED: 413 /* CPU did not come up in previous attempt */ 414 break; 415 case SYNC_STATE_ALIVE: 416 /* CPU is stuck cpuhp_ap_sync_alive(). */ 417 break; 418 default: 419 /* CPU failed to report online or dead and is in limbo state. */ 420 return false; 421 } 422 423 /* Prepare for booting */ 424 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED)) 425 goto again; 426 427 return true; 428 } 429 430 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } 431 432 /* 433 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up 434 * because the AP cannot issue complete() so early in the bringup. 435 */ 436 static int cpuhp_bp_sync_alive(unsigned int cpu) 437 { 438 int ret = 0; 439 440 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) 441 return 0; 442 443 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) { 444 pr_err("CPU%u failed to report alive state\n", cpu); 445 ret = -EIO; 446 } 447 448 /* Let the architecture cleanup the kick alive mechanics. */ 449 arch_cpuhp_cleanup_kick_cpu(cpu); 450 return ret; 451 } 452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ 453 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } 454 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } 455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ 456 457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 458 static DEFINE_MUTEX(cpu_add_remove_lock); 459 bool cpuhp_tasks_frozen; 460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 461 462 /* 463 * The following two APIs (cpu_maps_update_begin/done) must be used when 464 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 465 */ 466 void cpu_maps_update_begin(void) 467 { 468 mutex_lock(&cpu_add_remove_lock); 469 } 470 471 void cpu_maps_update_done(void) 472 { 473 mutex_unlock(&cpu_add_remove_lock); 474 } 475 476 /* 477 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 478 * Should always be manipulated under cpu_add_remove_lock 479 */ 480 static int cpu_hotplug_disabled; 481 482 #ifdef CONFIG_HOTPLUG_CPU 483 484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 485 486 static bool cpu_hotplug_offline_disabled __ro_after_init; 487 488 void cpus_read_lock(void) 489 { 490 percpu_down_read(&cpu_hotplug_lock); 491 } 492 EXPORT_SYMBOL_GPL(cpus_read_lock); 493 494 int cpus_read_trylock(void) 495 { 496 return percpu_down_read_trylock(&cpu_hotplug_lock); 497 } 498 EXPORT_SYMBOL_GPL(cpus_read_trylock); 499 500 void cpus_read_unlock(void) 501 { 502 percpu_up_read(&cpu_hotplug_lock); 503 } 504 EXPORT_SYMBOL_GPL(cpus_read_unlock); 505 506 void cpus_write_lock(void) 507 { 508 percpu_down_write(&cpu_hotplug_lock); 509 } 510 511 void cpus_write_unlock(void) 512 { 513 percpu_up_write(&cpu_hotplug_lock); 514 } 515 516 void lockdep_assert_cpus_held(void) 517 { 518 /* 519 * We can't have hotplug operations before userspace starts running, 520 * and some init codepaths will knowingly not take the hotplug lock. 521 * This is all valid, so mute lockdep until it makes sense to report 522 * unheld locks. 523 */ 524 if (system_state < SYSTEM_RUNNING) 525 return; 526 527 percpu_rwsem_assert_held(&cpu_hotplug_lock); 528 } 529 530 #ifdef CONFIG_LOCKDEP 531 int lockdep_is_cpus_held(void) 532 { 533 return percpu_rwsem_is_held(&cpu_hotplug_lock); 534 } 535 #endif 536 537 static void lockdep_acquire_cpus_lock(void) 538 { 539 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 540 } 541 542 static void lockdep_release_cpus_lock(void) 543 { 544 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 545 } 546 547 /* Declare CPU offlining not supported */ 548 void cpu_hotplug_disable_offlining(void) 549 { 550 cpu_maps_update_begin(); 551 cpu_hotplug_offline_disabled = true; 552 cpu_maps_update_done(); 553 } 554 555 /* 556 * Wait for currently running CPU hotplug operations to complete (if any) and 557 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 558 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 559 * hotplug path before performing hotplug operations. So acquiring that lock 560 * guarantees mutual exclusion from any currently running hotplug operations. 561 */ 562 void cpu_hotplug_disable(void) 563 { 564 cpu_maps_update_begin(); 565 cpu_hotplug_disabled++; 566 cpu_maps_update_done(); 567 } 568 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 569 570 static void __cpu_hotplug_enable(void) 571 { 572 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 573 return; 574 cpu_hotplug_disabled--; 575 } 576 577 void cpu_hotplug_enable(void) 578 { 579 cpu_maps_update_begin(); 580 __cpu_hotplug_enable(); 581 cpu_maps_update_done(); 582 } 583 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 584 585 #else 586 587 static void lockdep_acquire_cpus_lock(void) 588 { 589 } 590 591 static void lockdep_release_cpus_lock(void) 592 { 593 } 594 595 #endif /* CONFIG_HOTPLUG_CPU */ 596 597 /* 598 * Architectures that need SMT-specific errata handling during SMT hotplug 599 * should override this. 600 */ 601 void __weak arch_smt_update(void) { } 602 603 #ifdef CONFIG_HOTPLUG_SMT 604 605 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 606 static unsigned int cpu_smt_max_threads __ro_after_init; 607 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX; 608 609 void __init cpu_smt_disable(bool force) 610 { 611 if (!cpu_smt_possible()) 612 return; 613 614 if (force) { 615 pr_info("SMT: Force disabled\n"); 616 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 617 } else { 618 pr_info("SMT: disabled\n"); 619 cpu_smt_control = CPU_SMT_DISABLED; 620 } 621 cpu_smt_num_threads = 1; 622 } 623 624 /* 625 * The decision whether SMT is supported can only be done after the full 626 * CPU identification. Called from architecture code. 627 */ 628 void __init cpu_smt_set_num_threads(unsigned int num_threads, 629 unsigned int max_threads) 630 { 631 WARN_ON(!num_threads || (num_threads > max_threads)); 632 633 if (max_threads == 1) 634 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 635 636 cpu_smt_max_threads = max_threads; 637 638 /* 639 * If SMT has been disabled via the kernel command line or SMT is 640 * not supported, set cpu_smt_num_threads to 1 for consistency. 641 * If enabled, take the architecture requested number of threads 642 * to bring up into account. 643 */ 644 if (cpu_smt_control != CPU_SMT_ENABLED) 645 cpu_smt_num_threads = 1; 646 else if (num_threads < cpu_smt_num_threads) 647 cpu_smt_num_threads = num_threads; 648 } 649 650 static int __init smt_cmdline_disable(char *str) 651 { 652 cpu_smt_disable(str && !strcmp(str, "force")); 653 return 0; 654 } 655 early_param("nosmt", smt_cmdline_disable); 656 657 /* 658 * For Archicture supporting partial SMT states check if the thread is allowed. 659 * Otherwise this has already been checked through cpu_smt_max_threads when 660 * setting the SMT level. 661 */ 662 static inline bool cpu_smt_thread_allowed(unsigned int cpu) 663 { 664 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC 665 return topology_smt_thread_allowed(cpu); 666 #else 667 return true; 668 #endif 669 } 670 671 static inline bool cpu_bootable(unsigned int cpu) 672 { 673 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 674 return true; 675 676 /* All CPUs are bootable if controls are not configured */ 677 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED) 678 return true; 679 680 /* All CPUs are bootable if CPU is not SMT capable */ 681 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 682 return true; 683 684 if (topology_is_primary_thread(cpu)) 685 return true; 686 687 /* 688 * On x86 it's required to boot all logical CPUs at least once so 689 * that the init code can get a chance to set CR4.MCE on each 690 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 691 * core will shutdown the machine. 692 */ 693 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 694 } 695 696 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */ 697 bool cpu_smt_possible(void) 698 { 699 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 700 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 701 } 702 EXPORT_SYMBOL_GPL(cpu_smt_possible); 703 704 #else 705 static inline bool cpu_bootable(unsigned int cpu) { return true; } 706 #endif 707 708 static inline enum cpuhp_state 709 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) 710 { 711 enum cpuhp_state prev_state = st->state; 712 bool bringup = st->state < target; 713 714 st->rollback = false; 715 st->last = NULL; 716 717 st->target = target; 718 st->single = false; 719 st->bringup = bringup; 720 if (cpu_dying(cpu) != !bringup) 721 set_cpu_dying(cpu, !bringup); 722 723 return prev_state; 724 } 725 726 static inline void 727 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, 728 enum cpuhp_state prev_state) 729 { 730 bool bringup = !st->bringup; 731 732 st->target = prev_state; 733 734 /* 735 * Already rolling back. No need invert the bringup value or to change 736 * the current state. 737 */ 738 if (st->rollback) 739 return; 740 741 st->rollback = true; 742 743 /* 744 * If we have st->last we need to undo partial multi_instance of this 745 * state first. Otherwise start undo at the previous state. 746 */ 747 if (!st->last) { 748 if (st->bringup) 749 st->state--; 750 else 751 st->state++; 752 } 753 754 st->bringup = bringup; 755 if (cpu_dying(cpu) != !bringup) 756 set_cpu_dying(cpu, !bringup); 757 } 758 759 /* Regular hotplug invocation of the AP hotplug thread */ 760 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 761 { 762 if (!st->single && st->state == st->target) 763 return; 764 765 st->result = 0; 766 /* 767 * Make sure the above stores are visible before should_run becomes 768 * true. Paired with the mb() above in cpuhp_thread_fun() 769 */ 770 smp_mb(); 771 st->should_run = true; 772 wake_up_process(st->thread); 773 wait_for_ap_thread(st, st->bringup); 774 } 775 776 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, 777 enum cpuhp_state target) 778 { 779 enum cpuhp_state prev_state; 780 int ret; 781 782 prev_state = cpuhp_set_state(cpu, st, target); 783 __cpuhp_kick_ap(st); 784 if ((ret = st->result)) { 785 cpuhp_reset_state(cpu, st, prev_state); 786 __cpuhp_kick_ap(st); 787 } 788 789 return ret; 790 } 791 792 static int bringup_wait_for_ap_online(unsigned int cpu) 793 { 794 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 795 796 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 797 wait_for_ap_thread(st, true); 798 if (WARN_ON_ONCE((!cpu_online(cpu)))) 799 return -ECANCELED; 800 801 /* Unpark the hotplug thread of the target cpu */ 802 kthread_unpark(st->thread); 803 804 /* 805 * SMT soft disabling on X86 requires to bring the CPU out of the 806 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 807 * CPU marked itself as booted_once in notify_cpu_starting() so the 808 * cpu_bootable() check will now return false if this is not the 809 * primary sibling. 810 */ 811 if (!cpu_bootable(cpu)) 812 return -ECANCELED; 813 return 0; 814 } 815 816 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 817 static int cpuhp_kick_ap_alive(unsigned int cpu) 818 { 819 if (!cpuhp_can_boot_ap(cpu)) 820 return -EAGAIN; 821 822 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu)); 823 } 824 825 static int cpuhp_bringup_ap(unsigned int cpu) 826 { 827 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 828 int ret; 829 830 /* 831 * Some architectures have to walk the irq descriptors to 832 * setup the vector space for the cpu which comes online. 833 * Prevent irq alloc/free across the bringup. 834 */ 835 irq_lock_sparse(); 836 837 ret = cpuhp_bp_sync_alive(cpu); 838 if (ret) 839 goto out_unlock; 840 841 ret = bringup_wait_for_ap_online(cpu); 842 if (ret) 843 goto out_unlock; 844 845 irq_unlock_sparse(); 846 847 if (st->target <= CPUHP_AP_ONLINE_IDLE) 848 return 0; 849 850 return cpuhp_kick_ap(cpu, st, st->target); 851 852 out_unlock: 853 irq_unlock_sparse(); 854 return ret; 855 } 856 #else 857 static int bringup_cpu(unsigned int cpu) 858 { 859 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 860 struct task_struct *idle = idle_thread_get(cpu); 861 int ret; 862 863 if (!cpuhp_can_boot_ap(cpu)) 864 return -EAGAIN; 865 866 /* 867 * Some architectures have to walk the irq descriptors to 868 * setup the vector space for the cpu which comes online. 869 * 870 * Prevent irq alloc/free across the bringup by acquiring the 871 * sparse irq lock. Hold it until the upcoming CPU completes the 872 * startup in cpuhp_online_idle() which allows to avoid 873 * intermediate synchronization points in the architecture code. 874 */ 875 irq_lock_sparse(); 876 877 ret = __cpu_up(cpu, idle); 878 if (ret) 879 goto out_unlock; 880 881 ret = cpuhp_bp_sync_alive(cpu); 882 if (ret) 883 goto out_unlock; 884 885 ret = bringup_wait_for_ap_online(cpu); 886 if (ret) 887 goto out_unlock; 888 889 irq_unlock_sparse(); 890 891 if (st->target <= CPUHP_AP_ONLINE_IDLE) 892 return 0; 893 894 return cpuhp_kick_ap(cpu, st, st->target); 895 896 out_unlock: 897 irq_unlock_sparse(); 898 return ret; 899 } 900 #endif 901 902 static int finish_cpu(unsigned int cpu) 903 { 904 struct task_struct *idle = idle_thread_get(cpu); 905 struct mm_struct *mm = idle->active_mm; 906 907 /* 908 * idle_task_exit() will have switched to &init_mm, now 909 * clean up any remaining active_mm state. 910 */ 911 if (mm != &init_mm) 912 idle->active_mm = &init_mm; 913 mmdrop_lazy_tlb(mm); 914 return 0; 915 } 916 917 /* 918 * Hotplug state machine related functions 919 */ 920 921 /* 922 * Get the next state to run. Empty ones will be skipped. Returns true if a 923 * state must be run. 924 * 925 * st->state will be modified ahead of time, to match state_to_run, as if it 926 * has already ran. 927 */ 928 static bool cpuhp_next_state(bool bringup, 929 enum cpuhp_state *state_to_run, 930 struct cpuhp_cpu_state *st, 931 enum cpuhp_state target) 932 { 933 do { 934 if (bringup) { 935 if (st->state >= target) 936 return false; 937 938 *state_to_run = ++st->state; 939 } else { 940 if (st->state <= target) 941 return false; 942 943 *state_to_run = st->state--; 944 } 945 946 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 947 break; 948 } while (true); 949 950 return true; 951 } 952 953 static int __cpuhp_invoke_callback_range(bool bringup, 954 unsigned int cpu, 955 struct cpuhp_cpu_state *st, 956 enum cpuhp_state target, 957 bool nofail) 958 { 959 enum cpuhp_state state; 960 int ret = 0; 961 962 while (cpuhp_next_state(bringup, &state, st, target)) { 963 int err; 964 965 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 966 if (!err) 967 continue; 968 969 if (nofail) { 970 pr_warn("CPU %u %s state %s (%d) failed (%d)\n", 971 cpu, bringup ? "UP" : "DOWN", 972 cpuhp_get_step(st->state)->name, 973 st->state, err); 974 ret = -1; 975 } else { 976 ret = err; 977 break; 978 } 979 } 980 981 return ret; 982 } 983 984 static inline int cpuhp_invoke_callback_range(bool bringup, 985 unsigned int cpu, 986 struct cpuhp_cpu_state *st, 987 enum cpuhp_state target) 988 { 989 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); 990 } 991 992 static inline void cpuhp_invoke_callback_range_nofail(bool bringup, 993 unsigned int cpu, 994 struct cpuhp_cpu_state *st, 995 enum cpuhp_state target) 996 { 997 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true); 998 } 999 1000 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 1001 { 1002 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 1003 return true; 1004 /* 1005 * When CPU hotplug is disabled, then taking the CPU down is not 1006 * possible because takedown_cpu() and the architecture and 1007 * subsystem specific mechanisms are not available. So the CPU 1008 * which would be completely unplugged again needs to stay around 1009 * in the current state. 1010 */ 1011 return st->state <= CPUHP_BRINGUP_CPU; 1012 } 1013 1014 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1015 enum cpuhp_state target) 1016 { 1017 enum cpuhp_state prev_state = st->state; 1018 int ret = 0; 1019 1020 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1021 if (ret) { 1022 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 1023 ret, cpu, cpuhp_get_step(st->state)->name, 1024 st->state); 1025 1026 cpuhp_reset_state(cpu, st, prev_state); 1027 if (can_rollback_cpu(st)) 1028 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 1029 prev_state)); 1030 } 1031 return ret; 1032 } 1033 1034 /* 1035 * The cpu hotplug threads manage the bringup and teardown of the cpus 1036 */ 1037 static int cpuhp_should_run(unsigned int cpu) 1038 { 1039 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1040 1041 return st->should_run; 1042 } 1043 1044 /* 1045 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 1046 * callbacks when a state gets [un]installed at runtime. 1047 * 1048 * Each invocation of this function by the smpboot thread does a single AP 1049 * state callback. 1050 * 1051 * It has 3 modes of operation: 1052 * - single: runs st->cb_state 1053 * - up: runs ++st->state, while st->state < st->target 1054 * - down: runs st->state--, while st->state > st->target 1055 * 1056 * When complete or on error, should_run is cleared and the completion is fired. 1057 */ 1058 static void cpuhp_thread_fun(unsigned int cpu) 1059 { 1060 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1061 bool bringup = st->bringup; 1062 enum cpuhp_state state; 1063 1064 if (WARN_ON_ONCE(!st->should_run)) 1065 return; 1066 1067 /* 1068 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 1069 * that if we see ->should_run we also see the rest of the state. 1070 */ 1071 smp_mb(); 1072 1073 /* 1074 * The BP holds the hotplug lock, but we're now running on the AP, 1075 * ensure that anybody asserting the lock is held, will actually find 1076 * it so. 1077 */ 1078 lockdep_acquire_cpus_lock(); 1079 cpuhp_lock_acquire(bringup); 1080 1081 if (st->single) { 1082 state = st->cb_state; 1083 st->should_run = false; 1084 } else { 1085 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 1086 if (!st->should_run) 1087 goto end; 1088 } 1089 1090 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 1091 1092 if (cpuhp_is_atomic_state(state)) { 1093 local_irq_disable(); 1094 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1095 local_irq_enable(); 1096 1097 /* 1098 * STARTING/DYING must not fail! 1099 */ 1100 WARN_ON_ONCE(st->result); 1101 } else { 1102 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1103 } 1104 1105 if (st->result) { 1106 /* 1107 * If we fail on a rollback, we're up a creek without no 1108 * paddle, no way forward, no way back. We loose, thanks for 1109 * playing. 1110 */ 1111 WARN_ON_ONCE(st->rollback); 1112 st->should_run = false; 1113 } 1114 1115 end: 1116 cpuhp_lock_release(bringup); 1117 lockdep_release_cpus_lock(); 1118 1119 if (!st->should_run) 1120 complete_ap_thread(st, bringup); 1121 } 1122 1123 /* Invoke a single callback on a remote cpu */ 1124 static int 1125 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 1126 struct hlist_node *node) 1127 { 1128 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1129 int ret; 1130 1131 if (!cpu_online(cpu)) 1132 return 0; 1133 1134 cpuhp_lock_acquire(false); 1135 cpuhp_lock_release(false); 1136 1137 cpuhp_lock_acquire(true); 1138 cpuhp_lock_release(true); 1139 1140 /* 1141 * If we are up and running, use the hotplug thread. For early calls 1142 * we invoke the thread function directly. 1143 */ 1144 if (!st->thread) 1145 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1146 1147 st->rollback = false; 1148 st->last = NULL; 1149 1150 st->node = node; 1151 st->bringup = bringup; 1152 st->cb_state = state; 1153 st->single = true; 1154 1155 __cpuhp_kick_ap(st); 1156 1157 /* 1158 * If we failed and did a partial, do a rollback. 1159 */ 1160 if ((ret = st->result) && st->last) { 1161 st->rollback = true; 1162 st->bringup = !bringup; 1163 1164 __cpuhp_kick_ap(st); 1165 } 1166 1167 /* 1168 * Clean up the leftovers so the next hotplug operation wont use stale 1169 * data. 1170 */ 1171 st->node = st->last = NULL; 1172 return ret; 1173 } 1174 1175 static int cpuhp_kick_ap_work(unsigned int cpu) 1176 { 1177 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1178 enum cpuhp_state prev_state = st->state; 1179 int ret; 1180 1181 cpuhp_lock_acquire(false); 1182 cpuhp_lock_release(false); 1183 1184 cpuhp_lock_acquire(true); 1185 cpuhp_lock_release(true); 1186 1187 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 1188 ret = cpuhp_kick_ap(cpu, st, st->target); 1189 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 1190 1191 return ret; 1192 } 1193 1194 static struct smp_hotplug_thread cpuhp_threads = { 1195 .store = &cpuhp_state.thread, 1196 .thread_should_run = cpuhp_should_run, 1197 .thread_fn = cpuhp_thread_fun, 1198 .thread_comm = "cpuhp/%u", 1199 .selfparking = true, 1200 }; 1201 1202 static __init void cpuhp_init_state(void) 1203 { 1204 struct cpuhp_cpu_state *st; 1205 int cpu; 1206 1207 for_each_possible_cpu(cpu) { 1208 st = per_cpu_ptr(&cpuhp_state, cpu); 1209 init_completion(&st->done_up); 1210 init_completion(&st->done_down); 1211 } 1212 } 1213 1214 void __init cpuhp_threads_init(void) 1215 { 1216 cpuhp_init_state(); 1217 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 1218 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 1219 } 1220 1221 #ifdef CONFIG_HOTPLUG_CPU 1222 #ifndef arch_clear_mm_cpumask_cpu 1223 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 1224 #endif 1225 1226 /** 1227 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 1228 * @cpu: a CPU id 1229 * 1230 * This function walks all processes, finds a valid mm struct for each one and 1231 * then clears a corresponding bit in mm's cpumask. While this all sounds 1232 * trivial, there are various non-obvious corner cases, which this function 1233 * tries to solve in a safe manner. 1234 * 1235 * Also note that the function uses a somewhat relaxed locking scheme, so it may 1236 * be called only for an already offlined CPU. 1237 */ 1238 void clear_tasks_mm_cpumask(int cpu) 1239 { 1240 struct task_struct *p; 1241 1242 /* 1243 * This function is called after the cpu is taken down and marked 1244 * offline, so its not like new tasks will ever get this cpu set in 1245 * their mm mask. -- Peter Zijlstra 1246 * Thus, we may use rcu_read_lock() here, instead of grabbing 1247 * full-fledged tasklist_lock. 1248 */ 1249 WARN_ON(cpu_online(cpu)); 1250 rcu_read_lock(); 1251 for_each_process(p) { 1252 struct task_struct *t; 1253 1254 /* 1255 * Main thread might exit, but other threads may still have 1256 * a valid mm. Find one. 1257 */ 1258 t = find_lock_task_mm(p); 1259 if (!t) 1260 continue; 1261 arch_clear_mm_cpumask_cpu(cpu, t->mm); 1262 task_unlock(t); 1263 } 1264 rcu_read_unlock(); 1265 } 1266 1267 /* Take this CPU down. */ 1268 static int take_cpu_down(void *_param) 1269 { 1270 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1271 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 1272 int err, cpu = smp_processor_id(); 1273 1274 /* Ensure this CPU doesn't handle any more interrupts. */ 1275 err = __cpu_disable(); 1276 if (err < 0) 1277 return err; 1278 1279 /* 1280 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1281 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1282 */ 1283 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1284 1285 /* 1286 * Invoke the former CPU_DYING callbacks. DYING must not fail! 1287 */ 1288 cpuhp_invoke_callback_range_nofail(false, cpu, st, target); 1289 1290 /* Park the stopper thread */ 1291 stop_machine_park(cpu); 1292 return 0; 1293 } 1294 1295 static int takedown_cpu(unsigned int cpu) 1296 { 1297 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1298 int err; 1299 1300 /* Park the smpboot threads */ 1301 kthread_park(st->thread); 1302 1303 /* 1304 * Prevent irq alloc/free while the dying cpu reorganizes the 1305 * interrupt affinities. 1306 */ 1307 irq_lock_sparse(); 1308 1309 /* 1310 * So now all preempt/rcu users must observe !cpu_active(). 1311 */ 1312 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1313 if (err) { 1314 /* CPU refused to die */ 1315 irq_unlock_sparse(); 1316 /* Unpark the hotplug thread so we can rollback there */ 1317 kthread_unpark(st->thread); 1318 return err; 1319 } 1320 BUG_ON(cpu_online(cpu)); 1321 1322 /* 1323 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1324 * all runnable tasks from the CPU, there's only the idle task left now 1325 * that the migration thread is done doing the stop_machine thing. 1326 * 1327 * Wait for the stop thread to go away. 1328 */ 1329 wait_for_ap_thread(st, false); 1330 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1331 1332 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1333 irq_unlock_sparse(); 1334 1335 hotplug_cpu__broadcast_tick_pull(cpu); 1336 /* This actually kills the CPU. */ 1337 __cpu_die(cpu); 1338 1339 cpuhp_bp_sync_dead(cpu); 1340 1341 tick_cleanup_dead_cpu(cpu); 1342 1343 /* 1344 * Callbacks must be re-integrated right away to the RCU state machine. 1345 * Otherwise an RCU callback could block a further teardown function 1346 * waiting for its completion. 1347 */ 1348 rcutree_migrate_callbacks(cpu); 1349 1350 return 0; 1351 } 1352 1353 static void cpuhp_complete_idle_dead(void *arg) 1354 { 1355 struct cpuhp_cpu_state *st = arg; 1356 1357 complete_ap_thread(st, false); 1358 } 1359 1360 void cpuhp_report_idle_dead(void) 1361 { 1362 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1363 1364 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1365 tick_assert_timekeeping_handover(); 1366 rcutree_report_cpu_dead(); 1367 st->state = CPUHP_AP_IDLE_DEAD; 1368 /* 1369 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it 1370 * to an online cpu. 1371 */ 1372 smp_call_function_single(cpumask_first(cpu_online_mask), 1373 cpuhp_complete_idle_dead, st, 0); 1374 } 1375 1376 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1377 enum cpuhp_state target) 1378 { 1379 enum cpuhp_state prev_state = st->state; 1380 int ret = 0; 1381 1382 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1383 if (ret) { 1384 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1385 ret, cpu, cpuhp_get_step(st->state)->name, 1386 st->state); 1387 1388 cpuhp_reset_state(cpu, st, prev_state); 1389 1390 if (st->state < prev_state) 1391 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1392 prev_state)); 1393 } 1394 1395 return ret; 1396 } 1397 1398 /* Requires cpu_add_remove_lock to be held */ 1399 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1400 enum cpuhp_state target) 1401 { 1402 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1403 int prev_state, ret = 0; 1404 1405 if (num_online_cpus() == 1) 1406 return -EBUSY; 1407 1408 if (!cpu_present(cpu)) 1409 return -EINVAL; 1410 1411 cpus_write_lock(); 1412 1413 cpuhp_tasks_frozen = tasks_frozen; 1414 1415 prev_state = cpuhp_set_state(cpu, st, target); 1416 /* 1417 * If the current CPU state is in the range of the AP hotplug thread, 1418 * then we need to kick the thread. 1419 */ 1420 if (st->state > CPUHP_TEARDOWN_CPU) { 1421 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1422 ret = cpuhp_kick_ap_work(cpu); 1423 /* 1424 * The AP side has done the error rollback already. Just 1425 * return the error code.. 1426 */ 1427 if (ret) 1428 goto out; 1429 1430 /* 1431 * We might have stopped still in the range of the AP hotplug 1432 * thread. Nothing to do anymore. 1433 */ 1434 if (st->state > CPUHP_TEARDOWN_CPU) 1435 goto out; 1436 1437 st->target = target; 1438 } 1439 /* 1440 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1441 * to do the further cleanups. 1442 */ 1443 ret = cpuhp_down_callbacks(cpu, st, target); 1444 if (ret && st->state < prev_state) { 1445 if (st->state == CPUHP_TEARDOWN_CPU) { 1446 cpuhp_reset_state(cpu, st, prev_state); 1447 __cpuhp_kick_ap(st); 1448 } else { 1449 WARN(1, "DEAD callback error for CPU%d", cpu); 1450 } 1451 } 1452 1453 out: 1454 cpus_write_unlock(); 1455 /* 1456 * Do post unplug cleanup. This is still protected against 1457 * concurrent CPU hotplug via cpu_add_remove_lock. 1458 */ 1459 lockup_detector_cleanup(); 1460 arch_smt_update(); 1461 return ret; 1462 } 1463 1464 struct cpu_down_work { 1465 unsigned int cpu; 1466 enum cpuhp_state target; 1467 }; 1468 1469 static long __cpu_down_maps_locked(void *arg) 1470 { 1471 struct cpu_down_work *work = arg; 1472 1473 return _cpu_down(work->cpu, 0, work->target); 1474 } 1475 1476 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1477 { 1478 struct cpu_down_work work = { .cpu = cpu, .target = target, }; 1479 1480 /* 1481 * If the platform does not support hotplug, report it explicitly to 1482 * differentiate it from a transient offlining failure. 1483 */ 1484 if (cpu_hotplug_offline_disabled) 1485 return -EOPNOTSUPP; 1486 if (cpu_hotplug_disabled) 1487 return -EBUSY; 1488 1489 /* 1490 * Ensure that the control task does not run on the to be offlined 1491 * CPU to prevent a deadlock against cfs_b->period_timer. 1492 * Also keep at least one housekeeping cpu onlined to avoid generating 1493 * an empty sched_domain span. 1494 */ 1495 for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) { 1496 if (cpu != work.cpu) 1497 return work_on_cpu(cpu, __cpu_down_maps_locked, &work); 1498 } 1499 return -EBUSY; 1500 } 1501 1502 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1503 { 1504 int err; 1505 1506 cpu_maps_update_begin(); 1507 err = cpu_down_maps_locked(cpu, target); 1508 cpu_maps_update_done(); 1509 return err; 1510 } 1511 1512 /** 1513 * cpu_device_down - Bring down a cpu device 1514 * @dev: Pointer to the cpu device to offline 1515 * 1516 * This function is meant to be used by device core cpu subsystem only. 1517 * 1518 * Other subsystems should use remove_cpu() instead. 1519 * 1520 * Return: %0 on success or a negative errno code 1521 */ 1522 int cpu_device_down(struct device *dev) 1523 { 1524 return cpu_down(dev->id, CPUHP_OFFLINE); 1525 } 1526 1527 int remove_cpu(unsigned int cpu) 1528 { 1529 int ret; 1530 1531 lock_device_hotplug(); 1532 ret = device_offline(get_cpu_device(cpu)); 1533 unlock_device_hotplug(); 1534 1535 return ret; 1536 } 1537 EXPORT_SYMBOL_GPL(remove_cpu); 1538 1539 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1540 { 1541 unsigned int cpu; 1542 int error; 1543 1544 cpu_maps_update_begin(); 1545 1546 /* 1547 * Make certain the cpu I'm about to reboot on is online. 1548 * 1549 * This is inline to what migrate_to_reboot_cpu() already do. 1550 */ 1551 if (!cpu_online(primary_cpu)) 1552 primary_cpu = cpumask_first(cpu_online_mask); 1553 1554 for_each_online_cpu(cpu) { 1555 if (cpu == primary_cpu) 1556 continue; 1557 1558 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1559 if (error) { 1560 pr_err("Failed to offline CPU%d - error=%d", 1561 cpu, error); 1562 break; 1563 } 1564 } 1565 1566 /* 1567 * Ensure all but the reboot CPU are offline. 1568 */ 1569 BUG_ON(num_online_cpus() > 1); 1570 1571 /* 1572 * Make sure the CPUs won't be enabled by someone else after this 1573 * point. Kexec will reboot to a new kernel shortly resetting 1574 * everything along the way. 1575 */ 1576 cpu_hotplug_disabled++; 1577 1578 cpu_maps_update_done(); 1579 } 1580 1581 #else 1582 #define takedown_cpu NULL 1583 #endif /*CONFIG_HOTPLUG_CPU*/ 1584 1585 /** 1586 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1587 * @cpu: cpu that just started 1588 * 1589 * It must be called by the arch code on the new cpu, before the new cpu 1590 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1591 */ 1592 void notify_cpu_starting(unsigned int cpu) 1593 { 1594 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1595 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1596 1597 rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1598 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1599 1600 /* 1601 * STARTING must not fail! 1602 */ 1603 cpuhp_invoke_callback_range_nofail(true, cpu, st, target); 1604 } 1605 1606 /* 1607 * Called from the idle task. Wake up the controlling task which brings the 1608 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1609 * online bringup to the hotplug thread. 1610 */ 1611 void cpuhp_online_idle(enum cpuhp_state state) 1612 { 1613 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1614 1615 /* Happens for the boot cpu */ 1616 if (state != CPUHP_AP_ONLINE_IDLE) 1617 return; 1618 1619 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE); 1620 1621 /* 1622 * Unpark the stopper thread before we start the idle loop (and start 1623 * scheduling); this ensures the stopper task is always available. 1624 */ 1625 stop_machine_unpark(smp_processor_id()); 1626 1627 st->state = CPUHP_AP_ONLINE_IDLE; 1628 complete_ap_thread(st, true); 1629 } 1630 1631 /* Requires cpu_add_remove_lock to be held */ 1632 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1633 { 1634 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1635 struct task_struct *idle; 1636 int ret = 0; 1637 1638 cpus_write_lock(); 1639 1640 if (!cpu_present(cpu)) { 1641 ret = -EINVAL; 1642 goto out; 1643 } 1644 1645 /* 1646 * The caller of cpu_up() might have raced with another 1647 * caller. Nothing to do. 1648 */ 1649 if (st->state >= target) 1650 goto out; 1651 1652 if (st->state == CPUHP_OFFLINE) { 1653 /* Let it fail before we try to bring the cpu up */ 1654 idle = idle_thread_get(cpu); 1655 if (IS_ERR(idle)) { 1656 ret = PTR_ERR(idle); 1657 goto out; 1658 } 1659 1660 /* 1661 * Reset stale stack state from the last time this CPU was online. 1662 */ 1663 scs_task_reset(idle); 1664 kasan_unpoison_task_stack(idle); 1665 } 1666 1667 cpuhp_tasks_frozen = tasks_frozen; 1668 1669 cpuhp_set_state(cpu, st, target); 1670 /* 1671 * If the current CPU state is in the range of the AP hotplug thread, 1672 * then we need to kick the thread once more. 1673 */ 1674 if (st->state > CPUHP_BRINGUP_CPU) { 1675 ret = cpuhp_kick_ap_work(cpu); 1676 /* 1677 * The AP side has done the error rollback already. Just 1678 * return the error code.. 1679 */ 1680 if (ret) 1681 goto out; 1682 } 1683 1684 /* 1685 * Try to reach the target state. We max out on the BP at 1686 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1687 * responsible for bringing it up to the target state. 1688 */ 1689 target = min((int)target, CPUHP_BRINGUP_CPU); 1690 ret = cpuhp_up_callbacks(cpu, st, target); 1691 out: 1692 cpus_write_unlock(); 1693 arch_smt_update(); 1694 return ret; 1695 } 1696 1697 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1698 { 1699 int err = 0; 1700 1701 if (!cpu_possible(cpu)) { 1702 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1703 cpu); 1704 return -EINVAL; 1705 } 1706 1707 err = try_online_node(cpu_to_node(cpu)); 1708 if (err) 1709 return err; 1710 1711 cpu_maps_update_begin(); 1712 1713 if (cpu_hotplug_disabled) { 1714 err = -EBUSY; 1715 goto out; 1716 } 1717 if (!cpu_bootable(cpu)) { 1718 err = -EPERM; 1719 goto out; 1720 } 1721 1722 err = _cpu_up(cpu, 0, target); 1723 out: 1724 cpu_maps_update_done(); 1725 return err; 1726 } 1727 1728 /** 1729 * cpu_device_up - Bring up a cpu device 1730 * @dev: Pointer to the cpu device to online 1731 * 1732 * This function is meant to be used by device core cpu subsystem only. 1733 * 1734 * Other subsystems should use add_cpu() instead. 1735 * 1736 * Return: %0 on success or a negative errno code 1737 */ 1738 int cpu_device_up(struct device *dev) 1739 { 1740 return cpu_up(dev->id, CPUHP_ONLINE); 1741 } 1742 1743 int add_cpu(unsigned int cpu) 1744 { 1745 int ret; 1746 1747 lock_device_hotplug(); 1748 ret = device_online(get_cpu_device(cpu)); 1749 unlock_device_hotplug(); 1750 1751 return ret; 1752 } 1753 EXPORT_SYMBOL_GPL(add_cpu); 1754 1755 /** 1756 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1757 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1758 * 1759 * On some architectures like arm64, we can hibernate on any CPU, but on 1760 * wake up the CPU we hibernated on might be offline as a side effect of 1761 * using maxcpus= for example. 1762 * 1763 * Return: %0 on success or a negative errno code 1764 */ 1765 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1766 { 1767 int ret; 1768 1769 if (!cpu_online(sleep_cpu)) { 1770 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1771 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1772 if (ret) { 1773 pr_err("Failed to bring hibernate-CPU up!\n"); 1774 return ret; 1775 } 1776 } 1777 return 0; 1778 } 1779 1780 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, 1781 enum cpuhp_state target) 1782 { 1783 unsigned int cpu; 1784 1785 for_each_cpu(cpu, mask) { 1786 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1787 1788 if (cpu_up(cpu, target) && can_rollback_cpu(st)) { 1789 /* 1790 * If this failed then cpu_up() might have only 1791 * rolled back to CPUHP_BP_KICK_AP for the final 1792 * online. Clean it up. NOOP if already rolled back. 1793 */ 1794 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); 1795 } 1796 1797 if (!--ncpus) 1798 break; 1799 } 1800 } 1801 1802 #ifdef CONFIG_HOTPLUG_PARALLEL 1803 static bool __cpuhp_parallel_bringup __ro_after_init = true; 1804 1805 static int __init parallel_bringup_parse_param(char *arg) 1806 { 1807 return kstrtobool(arg, &__cpuhp_parallel_bringup); 1808 } 1809 early_param("cpuhp.parallel", parallel_bringup_parse_param); 1810 1811 static inline bool cpuhp_smt_aware(void) 1812 { 1813 return cpu_smt_max_threads > 1; 1814 } 1815 1816 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1817 { 1818 return cpu_primary_thread_mask; 1819 } 1820 1821 /* 1822 * On architectures which have enabled parallel bringup this invokes all BP 1823 * prepare states for each of the to be onlined APs first. The last state 1824 * sends the startup IPI to the APs. The APs proceed through the low level 1825 * bringup code in parallel and then wait for the control CPU to release 1826 * them one by one for the final onlining procedure. 1827 * 1828 * This avoids waiting for each AP to respond to the startup IPI in 1829 * CPUHP_BRINGUP_CPU. 1830 */ 1831 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) 1832 { 1833 const struct cpumask *mask = cpu_present_mask; 1834 1835 if (__cpuhp_parallel_bringup) 1836 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); 1837 if (!__cpuhp_parallel_bringup) 1838 return false; 1839 1840 if (cpuhp_smt_aware()) { 1841 const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); 1842 static struct cpumask tmp_mask __initdata; 1843 1844 /* 1845 * X86 requires to prevent that SMT siblings stopped while 1846 * the primary thread does a microcode update for various 1847 * reasons. Bring the primary threads up first. 1848 */ 1849 cpumask_and(&tmp_mask, mask, pmask); 1850 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP); 1851 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE); 1852 /* Account for the online CPUs */ 1853 ncpus -= num_online_cpus(); 1854 if (!ncpus) 1855 return true; 1856 /* Create the mask for secondary CPUs */ 1857 cpumask_andnot(&tmp_mask, mask, pmask); 1858 mask = &tmp_mask; 1859 } 1860 1861 /* Bring the not-yet started CPUs up */ 1862 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP); 1863 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE); 1864 return true; 1865 } 1866 #else 1867 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } 1868 #endif /* CONFIG_HOTPLUG_PARALLEL */ 1869 1870 void __init bringup_nonboot_cpus(unsigned int max_cpus) 1871 { 1872 if (!max_cpus) 1873 return; 1874 1875 /* Try parallel bringup optimization if enabled */ 1876 if (cpuhp_bringup_cpus_parallel(max_cpus)) 1877 return; 1878 1879 /* Full per CPU serialized bringup */ 1880 cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE); 1881 } 1882 1883 #ifdef CONFIG_PM_SLEEP_SMP 1884 static cpumask_var_t frozen_cpus; 1885 1886 int freeze_secondary_cpus(int primary) 1887 { 1888 int cpu, error = 0; 1889 1890 cpu_maps_update_begin(); 1891 if (primary == -1) { 1892 primary = cpumask_first(cpu_online_mask); 1893 if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) 1894 primary = housekeeping_any_cpu(HK_TYPE_TIMER); 1895 } else { 1896 if (!cpu_online(primary)) 1897 primary = cpumask_first(cpu_online_mask); 1898 } 1899 1900 /* 1901 * We take down all of the non-boot CPUs in one shot to avoid races 1902 * with the userspace trying to use the CPU hotplug at the same time 1903 */ 1904 cpumask_clear(frozen_cpus); 1905 1906 pr_info("Disabling non-boot CPUs ...\n"); 1907 for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) { 1908 if (!cpu_online(cpu) || cpu == primary) 1909 continue; 1910 1911 if (pm_wakeup_pending()) { 1912 pr_info("Wakeup pending. Abort CPU freeze\n"); 1913 error = -EBUSY; 1914 break; 1915 } 1916 1917 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1918 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1919 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1920 if (!error) 1921 cpumask_set_cpu(cpu, frozen_cpus); 1922 else { 1923 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1924 break; 1925 } 1926 } 1927 1928 if (!error) 1929 BUG_ON(num_online_cpus() > 1); 1930 else 1931 pr_err("Non-boot CPUs are not disabled\n"); 1932 1933 /* 1934 * Make sure the CPUs won't be enabled by someone else. We need to do 1935 * this even in case of failure as all freeze_secondary_cpus() users are 1936 * supposed to do thaw_secondary_cpus() on the failure path. 1937 */ 1938 cpu_hotplug_disabled++; 1939 1940 cpu_maps_update_done(); 1941 return error; 1942 } 1943 1944 void __weak arch_thaw_secondary_cpus_begin(void) 1945 { 1946 } 1947 1948 void __weak arch_thaw_secondary_cpus_end(void) 1949 { 1950 } 1951 1952 void thaw_secondary_cpus(void) 1953 { 1954 int cpu, error; 1955 1956 /* Allow everyone to use the CPU hotplug again */ 1957 cpu_maps_update_begin(); 1958 __cpu_hotplug_enable(); 1959 if (cpumask_empty(frozen_cpus)) 1960 goto out; 1961 1962 pr_info("Enabling non-boot CPUs ...\n"); 1963 1964 arch_thaw_secondary_cpus_begin(); 1965 1966 for_each_cpu(cpu, frozen_cpus) { 1967 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1968 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1969 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1970 if (!error) { 1971 pr_info("CPU%d is up\n", cpu); 1972 continue; 1973 } 1974 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1975 } 1976 1977 arch_thaw_secondary_cpus_end(); 1978 1979 cpumask_clear(frozen_cpus); 1980 out: 1981 cpu_maps_update_done(); 1982 } 1983 1984 static int __init alloc_frozen_cpus(void) 1985 { 1986 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1987 return -ENOMEM; 1988 return 0; 1989 } 1990 core_initcall(alloc_frozen_cpus); 1991 1992 /* 1993 * When callbacks for CPU hotplug notifications are being executed, we must 1994 * ensure that the state of the system with respect to the tasks being frozen 1995 * or not, as reported by the notification, remains unchanged *throughout the 1996 * duration* of the execution of the callbacks. 1997 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1998 * 1999 * This synchronization is implemented by mutually excluding regular CPU 2000 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 2001 * Hibernate notifications. 2002 */ 2003 static int 2004 cpu_hotplug_pm_callback(struct notifier_block *nb, 2005 unsigned long action, void *ptr) 2006 { 2007 switch (action) { 2008 2009 case PM_SUSPEND_PREPARE: 2010 case PM_HIBERNATION_PREPARE: 2011 cpu_hotplug_disable(); 2012 break; 2013 2014 case PM_POST_SUSPEND: 2015 case PM_POST_HIBERNATION: 2016 cpu_hotplug_enable(); 2017 break; 2018 2019 default: 2020 return NOTIFY_DONE; 2021 } 2022 2023 return NOTIFY_OK; 2024 } 2025 2026 2027 static int __init cpu_hotplug_pm_sync_init(void) 2028 { 2029 /* 2030 * cpu_hotplug_pm_callback has higher priority than x86 2031 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 2032 * to disable cpu hotplug to avoid cpu hotplug race. 2033 */ 2034 pm_notifier(cpu_hotplug_pm_callback, 0); 2035 return 0; 2036 } 2037 core_initcall(cpu_hotplug_pm_sync_init); 2038 2039 #endif /* CONFIG_PM_SLEEP_SMP */ 2040 2041 int __boot_cpu_id; 2042 2043 #endif /* CONFIG_SMP */ 2044 2045 /* Boot processor state steps */ 2046 static struct cpuhp_step cpuhp_hp_states[] = { 2047 [CPUHP_OFFLINE] = { 2048 .name = "offline", 2049 .startup.single = NULL, 2050 .teardown.single = NULL, 2051 }, 2052 #ifdef CONFIG_SMP 2053 [CPUHP_CREATE_THREADS]= { 2054 .name = "threads:prepare", 2055 .startup.single = smpboot_create_threads, 2056 .teardown.single = NULL, 2057 .cant_stop = true, 2058 }, 2059 [CPUHP_PERF_PREPARE] = { 2060 .name = "perf:prepare", 2061 .startup.single = perf_event_init_cpu, 2062 .teardown.single = perf_event_exit_cpu, 2063 }, 2064 [CPUHP_RANDOM_PREPARE] = { 2065 .name = "random:prepare", 2066 .startup.single = random_prepare_cpu, 2067 .teardown.single = NULL, 2068 }, 2069 [CPUHP_WORKQUEUE_PREP] = { 2070 .name = "workqueue:prepare", 2071 .startup.single = workqueue_prepare_cpu, 2072 .teardown.single = NULL, 2073 }, 2074 [CPUHP_HRTIMERS_PREPARE] = { 2075 .name = "hrtimers:prepare", 2076 .startup.single = hrtimers_prepare_cpu, 2077 .teardown.single = NULL, 2078 }, 2079 [CPUHP_SMPCFD_PREPARE] = { 2080 .name = "smpcfd:prepare", 2081 .startup.single = smpcfd_prepare_cpu, 2082 .teardown.single = smpcfd_dead_cpu, 2083 }, 2084 [CPUHP_RELAY_PREPARE] = { 2085 .name = "relay:prepare", 2086 .startup.single = relay_prepare_cpu, 2087 .teardown.single = NULL, 2088 }, 2089 [CPUHP_RCUTREE_PREP] = { 2090 .name = "RCU/tree:prepare", 2091 .startup.single = rcutree_prepare_cpu, 2092 .teardown.single = rcutree_dead_cpu, 2093 }, 2094 /* 2095 * On the tear-down path, timers_dead_cpu() must be invoked 2096 * before blk_mq_queue_reinit_notify() from notify_dead(), 2097 * otherwise a RCU stall occurs. 2098 */ 2099 [CPUHP_TIMERS_PREPARE] = { 2100 .name = "timers:prepare", 2101 .startup.single = timers_prepare_cpu, 2102 .teardown.single = timers_dead_cpu, 2103 }, 2104 2105 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 2106 /* 2107 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until 2108 * the next step will release it. 2109 */ 2110 [CPUHP_BP_KICK_AP] = { 2111 .name = "cpu:kick_ap", 2112 .startup.single = cpuhp_kick_ap_alive, 2113 }, 2114 2115 /* 2116 * Waits for the AP to reach cpuhp_ap_sync_alive() and then 2117 * releases it for the complete bringup. 2118 */ 2119 [CPUHP_BRINGUP_CPU] = { 2120 .name = "cpu:bringup", 2121 .startup.single = cpuhp_bringup_ap, 2122 .teardown.single = finish_cpu, 2123 .cant_stop = true, 2124 }, 2125 #else 2126 /* 2127 * All-in-one CPU bringup state which includes the kick alive. 2128 */ 2129 [CPUHP_BRINGUP_CPU] = { 2130 .name = "cpu:bringup", 2131 .startup.single = bringup_cpu, 2132 .teardown.single = finish_cpu, 2133 .cant_stop = true, 2134 }, 2135 #endif 2136 /* Final state before CPU kills itself */ 2137 [CPUHP_AP_IDLE_DEAD] = { 2138 .name = "idle:dead", 2139 }, 2140 /* 2141 * Last state before CPU enters the idle loop to die. Transient state 2142 * for synchronization. 2143 */ 2144 [CPUHP_AP_OFFLINE] = { 2145 .name = "ap:offline", 2146 .cant_stop = true, 2147 }, 2148 /* First state is scheduler control. Interrupts are disabled */ 2149 [CPUHP_AP_SCHED_STARTING] = { 2150 .name = "sched:starting", 2151 .startup.single = sched_cpu_starting, 2152 .teardown.single = sched_cpu_dying, 2153 }, 2154 [CPUHP_AP_RCUTREE_DYING] = { 2155 .name = "RCU/tree:dying", 2156 .startup.single = NULL, 2157 .teardown.single = rcutree_dying_cpu, 2158 }, 2159 [CPUHP_AP_SMPCFD_DYING] = { 2160 .name = "smpcfd:dying", 2161 .startup.single = NULL, 2162 .teardown.single = smpcfd_dying_cpu, 2163 }, 2164 [CPUHP_AP_HRTIMERS_DYING] = { 2165 .name = "hrtimers:dying", 2166 .startup.single = NULL, 2167 .teardown.single = hrtimers_cpu_dying, 2168 }, 2169 [CPUHP_AP_TICK_DYING] = { 2170 .name = "tick:dying", 2171 .startup.single = NULL, 2172 .teardown.single = tick_cpu_dying, 2173 }, 2174 /* Entry state on starting. Interrupts enabled from here on. Transient 2175 * state for synchronsization */ 2176 [CPUHP_AP_ONLINE] = { 2177 .name = "ap:online", 2178 }, 2179 /* 2180 * Handled on control processor until the plugged processor manages 2181 * this itself. 2182 */ 2183 [CPUHP_TEARDOWN_CPU] = { 2184 .name = "cpu:teardown", 2185 .startup.single = NULL, 2186 .teardown.single = takedown_cpu, 2187 .cant_stop = true, 2188 }, 2189 2190 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 2191 .name = "sched:waitempty", 2192 .startup.single = NULL, 2193 .teardown.single = sched_cpu_wait_empty, 2194 }, 2195 2196 /* Handle smpboot threads park/unpark */ 2197 [CPUHP_AP_SMPBOOT_THREADS] = { 2198 .name = "smpboot/threads:online", 2199 .startup.single = smpboot_unpark_threads, 2200 .teardown.single = smpboot_park_threads, 2201 }, 2202 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 2203 .name = "irq/affinity:online", 2204 .startup.single = irq_affinity_online_cpu, 2205 .teardown.single = NULL, 2206 }, 2207 [CPUHP_AP_PERF_ONLINE] = { 2208 .name = "perf:online", 2209 .startup.single = perf_event_init_cpu, 2210 .teardown.single = perf_event_exit_cpu, 2211 }, 2212 [CPUHP_AP_WATCHDOG_ONLINE] = { 2213 .name = "lockup_detector:online", 2214 .startup.single = lockup_detector_online_cpu, 2215 .teardown.single = lockup_detector_offline_cpu, 2216 }, 2217 [CPUHP_AP_WORKQUEUE_ONLINE] = { 2218 .name = "workqueue:online", 2219 .startup.single = workqueue_online_cpu, 2220 .teardown.single = workqueue_offline_cpu, 2221 }, 2222 [CPUHP_AP_RANDOM_ONLINE] = { 2223 .name = "random:online", 2224 .startup.single = random_online_cpu, 2225 .teardown.single = NULL, 2226 }, 2227 [CPUHP_AP_RCUTREE_ONLINE] = { 2228 .name = "RCU/tree:online", 2229 .startup.single = rcutree_online_cpu, 2230 .teardown.single = rcutree_offline_cpu, 2231 }, 2232 #endif 2233 /* 2234 * The dynamically registered state space is here 2235 */ 2236 2237 #ifdef CONFIG_SMP 2238 /* Last state is scheduler control setting the cpu active */ 2239 [CPUHP_AP_ACTIVE] = { 2240 .name = "sched:active", 2241 .startup.single = sched_cpu_activate, 2242 .teardown.single = sched_cpu_deactivate, 2243 }, 2244 #endif 2245 2246 /* CPU is fully up and running. */ 2247 [CPUHP_ONLINE] = { 2248 .name = "online", 2249 .startup.single = NULL, 2250 .teardown.single = NULL, 2251 }, 2252 }; 2253 2254 /* Sanity check for callbacks */ 2255 static int cpuhp_cb_check(enum cpuhp_state state) 2256 { 2257 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 2258 return -EINVAL; 2259 return 0; 2260 } 2261 2262 /* 2263 * Returns a free for dynamic slot assignment of the Online state. The states 2264 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 2265 * by having no name assigned. 2266 */ 2267 static int cpuhp_reserve_state(enum cpuhp_state state) 2268 { 2269 enum cpuhp_state i, end; 2270 struct cpuhp_step *step; 2271 2272 switch (state) { 2273 case CPUHP_AP_ONLINE_DYN: 2274 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 2275 end = CPUHP_AP_ONLINE_DYN_END; 2276 break; 2277 case CPUHP_BP_PREPARE_DYN: 2278 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 2279 end = CPUHP_BP_PREPARE_DYN_END; 2280 break; 2281 default: 2282 return -EINVAL; 2283 } 2284 2285 for (i = state; i <= end; i++, step++) { 2286 if (!step->name) 2287 return i; 2288 } 2289 WARN(1, "No more dynamic states available for CPU hotplug\n"); 2290 return -ENOSPC; 2291 } 2292 2293 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 2294 int (*startup)(unsigned int cpu), 2295 int (*teardown)(unsigned int cpu), 2296 bool multi_instance) 2297 { 2298 /* (Un)Install the callbacks for further cpu hotplug operations */ 2299 struct cpuhp_step *sp; 2300 int ret = 0; 2301 2302 /* 2303 * If name is NULL, then the state gets removed. 2304 * 2305 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 2306 * the first allocation from these dynamic ranges, so the removal 2307 * would trigger a new allocation and clear the wrong (already 2308 * empty) state, leaving the callbacks of the to be cleared state 2309 * dangling, which causes wreckage on the next hotplug operation. 2310 */ 2311 if (name && (state == CPUHP_AP_ONLINE_DYN || 2312 state == CPUHP_BP_PREPARE_DYN)) { 2313 ret = cpuhp_reserve_state(state); 2314 if (ret < 0) 2315 return ret; 2316 state = ret; 2317 } 2318 sp = cpuhp_get_step(state); 2319 if (name && sp->name) 2320 return -EBUSY; 2321 2322 sp->startup.single = startup; 2323 sp->teardown.single = teardown; 2324 sp->name = name; 2325 sp->multi_instance = multi_instance; 2326 INIT_HLIST_HEAD(&sp->list); 2327 return ret; 2328 } 2329 2330 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 2331 { 2332 return cpuhp_get_step(state)->teardown.single; 2333 } 2334 2335 /* 2336 * Call the startup/teardown function for a step either on the AP or 2337 * on the current CPU. 2338 */ 2339 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 2340 struct hlist_node *node) 2341 { 2342 struct cpuhp_step *sp = cpuhp_get_step(state); 2343 int ret; 2344 2345 /* 2346 * If there's nothing to do, we done. 2347 * Relies on the union for multi_instance. 2348 */ 2349 if (cpuhp_step_empty(bringup, sp)) 2350 return 0; 2351 /* 2352 * The non AP bound callbacks can fail on bringup. On teardown 2353 * e.g. module removal we crash for now. 2354 */ 2355 #ifdef CONFIG_SMP 2356 if (cpuhp_is_ap_state(state)) 2357 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 2358 else 2359 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2360 #else 2361 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2362 #endif 2363 BUG_ON(ret && !bringup); 2364 return ret; 2365 } 2366 2367 /* 2368 * Called from __cpuhp_setup_state on a recoverable failure. 2369 * 2370 * Note: The teardown callbacks for rollback are not allowed to fail! 2371 */ 2372 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 2373 struct hlist_node *node) 2374 { 2375 int cpu; 2376 2377 /* Roll back the already executed steps on the other cpus */ 2378 for_each_present_cpu(cpu) { 2379 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2380 int cpustate = st->state; 2381 2382 if (cpu >= failedcpu) 2383 break; 2384 2385 /* Did we invoke the startup call on that cpu ? */ 2386 if (cpustate >= state) 2387 cpuhp_issue_call(cpu, state, false, node); 2388 } 2389 } 2390 2391 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 2392 struct hlist_node *node, 2393 bool invoke) 2394 { 2395 struct cpuhp_step *sp; 2396 int cpu; 2397 int ret; 2398 2399 lockdep_assert_cpus_held(); 2400 2401 sp = cpuhp_get_step(state); 2402 if (sp->multi_instance == false) 2403 return -EINVAL; 2404 2405 mutex_lock(&cpuhp_state_mutex); 2406 2407 if (!invoke || !sp->startup.multi) 2408 goto add_node; 2409 2410 /* 2411 * Try to call the startup callback for each present cpu 2412 * depending on the hotplug state of the cpu. 2413 */ 2414 for_each_present_cpu(cpu) { 2415 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2416 int cpustate = st->state; 2417 2418 if (cpustate < state) 2419 continue; 2420 2421 ret = cpuhp_issue_call(cpu, state, true, node); 2422 if (ret) { 2423 if (sp->teardown.multi) 2424 cpuhp_rollback_install(cpu, state, node); 2425 goto unlock; 2426 } 2427 } 2428 add_node: 2429 ret = 0; 2430 hlist_add_head(node, &sp->list); 2431 unlock: 2432 mutex_unlock(&cpuhp_state_mutex); 2433 return ret; 2434 } 2435 2436 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2437 bool invoke) 2438 { 2439 int ret; 2440 2441 cpus_read_lock(); 2442 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2443 cpus_read_unlock(); 2444 return ret; 2445 } 2446 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2447 2448 /** 2449 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2450 * @state: The state to setup 2451 * @name: Name of the step 2452 * @invoke: If true, the startup function is invoked for cpus where 2453 * cpu state >= @state 2454 * @startup: startup callback function 2455 * @teardown: teardown callback function 2456 * @multi_instance: State is set up for multiple instances which get 2457 * added afterwards. 2458 * 2459 * The caller needs to hold cpus read locked while calling this function. 2460 * Return: 2461 * On success: 2462 * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN; 2463 * 0 for all other states 2464 * On failure: proper (negative) error code 2465 */ 2466 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2467 const char *name, bool invoke, 2468 int (*startup)(unsigned int cpu), 2469 int (*teardown)(unsigned int cpu), 2470 bool multi_instance) 2471 { 2472 int cpu, ret = 0; 2473 bool dynstate; 2474 2475 lockdep_assert_cpus_held(); 2476 2477 if (cpuhp_cb_check(state) || !name) 2478 return -EINVAL; 2479 2480 mutex_lock(&cpuhp_state_mutex); 2481 2482 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2483 multi_instance); 2484 2485 dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN; 2486 if (ret > 0 && dynstate) { 2487 state = ret; 2488 ret = 0; 2489 } 2490 2491 if (ret || !invoke || !startup) 2492 goto out; 2493 2494 /* 2495 * Try to call the startup callback for each present cpu 2496 * depending on the hotplug state of the cpu. 2497 */ 2498 for_each_present_cpu(cpu) { 2499 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2500 int cpustate = st->state; 2501 2502 if (cpustate < state) 2503 continue; 2504 2505 ret = cpuhp_issue_call(cpu, state, true, NULL); 2506 if (ret) { 2507 if (teardown) 2508 cpuhp_rollback_install(cpu, state, NULL); 2509 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2510 goto out; 2511 } 2512 } 2513 out: 2514 mutex_unlock(&cpuhp_state_mutex); 2515 /* 2516 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN, 2517 * return the dynamically allocated state in case of success. 2518 */ 2519 if (!ret && dynstate) 2520 return state; 2521 return ret; 2522 } 2523 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2524 2525 int __cpuhp_setup_state(enum cpuhp_state state, 2526 const char *name, bool invoke, 2527 int (*startup)(unsigned int cpu), 2528 int (*teardown)(unsigned int cpu), 2529 bool multi_instance) 2530 { 2531 int ret; 2532 2533 cpus_read_lock(); 2534 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2535 teardown, multi_instance); 2536 cpus_read_unlock(); 2537 return ret; 2538 } 2539 EXPORT_SYMBOL(__cpuhp_setup_state); 2540 2541 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2542 struct hlist_node *node, bool invoke) 2543 { 2544 struct cpuhp_step *sp = cpuhp_get_step(state); 2545 int cpu; 2546 2547 BUG_ON(cpuhp_cb_check(state)); 2548 2549 if (!sp->multi_instance) 2550 return -EINVAL; 2551 2552 cpus_read_lock(); 2553 mutex_lock(&cpuhp_state_mutex); 2554 2555 if (!invoke || !cpuhp_get_teardown_cb(state)) 2556 goto remove; 2557 /* 2558 * Call the teardown callback for each present cpu depending 2559 * on the hotplug state of the cpu. This function is not 2560 * allowed to fail currently! 2561 */ 2562 for_each_present_cpu(cpu) { 2563 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2564 int cpustate = st->state; 2565 2566 if (cpustate >= state) 2567 cpuhp_issue_call(cpu, state, false, node); 2568 } 2569 2570 remove: 2571 hlist_del(node); 2572 mutex_unlock(&cpuhp_state_mutex); 2573 cpus_read_unlock(); 2574 2575 return 0; 2576 } 2577 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2578 2579 /** 2580 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2581 * @state: The state to remove 2582 * @invoke: If true, the teardown function is invoked for cpus where 2583 * cpu state >= @state 2584 * 2585 * The caller needs to hold cpus read locked while calling this function. 2586 * The teardown callback is currently not allowed to fail. Think 2587 * about module removal! 2588 */ 2589 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2590 { 2591 struct cpuhp_step *sp = cpuhp_get_step(state); 2592 int cpu; 2593 2594 BUG_ON(cpuhp_cb_check(state)); 2595 2596 lockdep_assert_cpus_held(); 2597 2598 mutex_lock(&cpuhp_state_mutex); 2599 if (sp->multi_instance) { 2600 WARN(!hlist_empty(&sp->list), 2601 "Error: Removing state %d which has instances left.\n", 2602 state); 2603 goto remove; 2604 } 2605 2606 if (!invoke || !cpuhp_get_teardown_cb(state)) 2607 goto remove; 2608 2609 /* 2610 * Call the teardown callback for each present cpu depending 2611 * on the hotplug state of the cpu. This function is not 2612 * allowed to fail currently! 2613 */ 2614 for_each_present_cpu(cpu) { 2615 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2616 int cpustate = st->state; 2617 2618 if (cpustate >= state) 2619 cpuhp_issue_call(cpu, state, false, NULL); 2620 } 2621 remove: 2622 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2623 mutex_unlock(&cpuhp_state_mutex); 2624 } 2625 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2626 2627 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2628 { 2629 cpus_read_lock(); 2630 __cpuhp_remove_state_cpuslocked(state, invoke); 2631 cpus_read_unlock(); 2632 } 2633 EXPORT_SYMBOL(__cpuhp_remove_state); 2634 2635 #ifdef CONFIG_HOTPLUG_SMT 2636 static void cpuhp_offline_cpu_device(unsigned int cpu) 2637 { 2638 struct device *dev = get_cpu_device(cpu); 2639 2640 dev->offline = true; 2641 /* Tell user space about the state change */ 2642 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2643 } 2644 2645 static void cpuhp_online_cpu_device(unsigned int cpu) 2646 { 2647 struct device *dev = get_cpu_device(cpu); 2648 2649 dev->offline = false; 2650 /* Tell user space about the state change */ 2651 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2652 } 2653 2654 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2655 { 2656 int cpu, ret = 0; 2657 2658 cpu_maps_update_begin(); 2659 for_each_online_cpu(cpu) { 2660 if (topology_is_primary_thread(cpu)) 2661 continue; 2662 /* 2663 * Disable can be called with CPU_SMT_ENABLED when changing 2664 * from a higher to lower number of SMT threads per core. 2665 */ 2666 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 2667 continue; 2668 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2669 if (ret) 2670 break; 2671 /* 2672 * As this needs to hold the cpu maps lock it's impossible 2673 * to call device_offline() because that ends up calling 2674 * cpu_down() which takes cpu maps lock. cpu maps lock 2675 * needs to be held as this might race against in kernel 2676 * abusers of the hotplug machinery (thermal management). 2677 * 2678 * So nothing would update device:offline state. That would 2679 * leave the sysfs entry stale and prevent onlining after 2680 * smt control has been changed to 'off' again. This is 2681 * called under the sysfs hotplug lock, so it is properly 2682 * serialized against the regular offline usage. 2683 */ 2684 cpuhp_offline_cpu_device(cpu); 2685 } 2686 if (!ret) 2687 cpu_smt_control = ctrlval; 2688 cpu_maps_update_done(); 2689 return ret; 2690 } 2691 2692 /** 2693 * Check if the core a CPU belongs to is online 2694 */ 2695 #if !defined(topology_is_core_online) 2696 static inline bool topology_is_core_online(unsigned int cpu) 2697 { 2698 return true; 2699 } 2700 #endif 2701 2702 int cpuhp_smt_enable(void) 2703 { 2704 int cpu, ret = 0; 2705 2706 cpu_maps_update_begin(); 2707 cpu_smt_control = CPU_SMT_ENABLED; 2708 for_each_present_cpu(cpu) { 2709 /* Skip online CPUs and CPUs on offline nodes */ 2710 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2711 continue; 2712 if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu)) 2713 continue; 2714 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2715 if (ret) 2716 break; 2717 /* See comment in cpuhp_smt_disable() */ 2718 cpuhp_online_cpu_device(cpu); 2719 } 2720 cpu_maps_update_done(); 2721 return ret; 2722 } 2723 #endif 2724 2725 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2726 static ssize_t state_show(struct device *dev, 2727 struct device_attribute *attr, char *buf) 2728 { 2729 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2730 2731 return sprintf(buf, "%d\n", st->state); 2732 } 2733 static DEVICE_ATTR_RO(state); 2734 2735 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2736 const char *buf, size_t count) 2737 { 2738 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2739 struct cpuhp_step *sp; 2740 int target, ret; 2741 2742 ret = kstrtoint(buf, 10, &target); 2743 if (ret) 2744 return ret; 2745 2746 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2747 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2748 return -EINVAL; 2749 #else 2750 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2751 return -EINVAL; 2752 #endif 2753 2754 ret = lock_device_hotplug_sysfs(); 2755 if (ret) 2756 return ret; 2757 2758 mutex_lock(&cpuhp_state_mutex); 2759 sp = cpuhp_get_step(target); 2760 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2761 mutex_unlock(&cpuhp_state_mutex); 2762 if (ret) 2763 goto out; 2764 2765 if (st->state < target) 2766 ret = cpu_up(dev->id, target); 2767 else if (st->state > target) 2768 ret = cpu_down(dev->id, target); 2769 else if (WARN_ON(st->target != target)) 2770 st->target = target; 2771 out: 2772 unlock_device_hotplug(); 2773 return ret ? ret : count; 2774 } 2775 2776 static ssize_t target_show(struct device *dev, 2777 struct device_attribute *attr, char *buf) 2778 { 2779 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2780 2781 return sprintf(buf, "%d\n", st->target); 2782 } 2783 static DEVICE_ATTR_RW(target); 2784 2785 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2786 const char *buf, size_t count) 2787 { 2788 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2789 struct cpuhp_step *sp; 2790 int fail, ret; 2791 2792 ret = kstrtoint(buf, 10, &fail); 2793 if (ret) 2794 return ret; 2795 2796 if (fail == CPUHP_INVALID) { 2797 st->fail = fail; 2798 return count; 2799 } 2800 2801 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2802 return -EINVAL; 2803 2804 /* 2805 * Cannot fail STARTING/DYING callbacks. 2806 */ 2807 if (cpuhp_is_atomic_state(fail)) 2808 return -EINVAL; 2809 2810 /* 2811 * DEAD callbacks cannot fail... 2812 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2813 * triggering STARTING callbacks, a failure in this state would 2814 * hinder rollback. 2815 */ 2816 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2817 return -EINVAL; 2818 2819 /* 2820 * Cannot fail anything that doesn't have callbacks. 2821 */ 2822 mutex_lock(&cpuhp_state_mutex); 2823 sp = cpuhp_get_step(fail); 2824 if (!sp->startup.single && !sp->teardown.single) 2825 ret = -EINVAL; 2826 mutex_unlock(&cpuhp_state_mutex); 2827 if (ret) 2828 return ret; 2829 2830 st->fail = fail; 2831 2832 return count; 2833 } 2834 2835 static ssize_t fail_show(struct device *dev, 2836 struct device_attribute *attr, char *buf) 2837 { 2838 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2839 2840 return sprintf(buf, "%d\n", st->fail); 2841 } 2842 2843 static DEVICE_ATTR_RW(fail); 2844 2845 static struct attribute *cpuhp_cpu_attrs[] = { 2846 &dev_attr_state.attr, 2847 &dev_attr_target.attr, 2848 &dev_attr_fail.attr, 2849 NULL 2850 }; 2851 2852 static const struct attribute_group cpuhp_cpu_attr_group = { 2853 .attrs = cpuhp_cpu_attrs, 2854 .name = "hotplug", 2855 NULL 2856 }; 2857 2858 static ssize_t states_show(struct device *dev, 2859 struct device_attribute *attr, char *buf) 2860 { 2861 ssize_t cur, res = 0; 2862 int i; 2863 2864 mutex_lock(&cpuhp_state_mutex); 2865 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2866 struct cpuhp_step *sp = cpuhp_get_step(i); 2867 2868 if (sp->name) { 2869 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2870 buf += cur; 2871 res += cur; 2872 } 2873 } 2874 mutex_unlock(&cpuhp_state_mutex); 2875 return res; 2876 } 2877 static DEVICE_ATTR_RO(states); 2878 2879 static struct attribute *cpuhp_cpu_root_attrs[] = { 2880 &dev_attr_states.attr, 2881 NULL 2882 }; 2883 2884 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2885 .attrs = cpuhp_cpu_root_attrs, 2886 .name = "hotplug", 2887 NULL 2888 }; 2889 2890 #ifdef CONFIG_HOTPLUG_SMT 2891 2892 static bool cpu_smt_num_threads_valid(unsigned int threads) 2893 { 2894 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC)) 2895 return threads >= 1 && threads <= cpu_smt_max_threads; 2896 return threads == 1 || threads == cpu_smt_max_threads; 2897 } 2898 2899 static ssize_t 2900 __store_smt_control(struct device *dev, struct device_attribute *attr, 2901 const char *buf, size_t count) 2902 { 2903 int ctrlval, ret, num_threads, orig_threads; 2904 bool force_off; 2905 2906 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2907 return -EPERM; 2908 2909 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2910 return -ENODEV; 2911 2912 if (sysfs_streq(buf, "on")) { 2913 ctrlval = CPU_SMT_ENABLED; 2914 num_threads = cpu_smt_max_threads; 2915 } else if (sysfs_streq(buf, "off")) { 2916 ctrlval = CPU_SMT_DISABLED; 2917 num_threads = 1; 2918 } else if (sysfs_streq(buf, "forceoff")) { 2919 ctrlval = CPU_SMT_FORCE_DISABLED; 2920 num_threads = 1; 2921 } else if (kstrtoint(buf, 10, &num_threads) == 0) { 2922 if (num_threads == 1) 2923 ctrlval = CPU_SMT_DISABLED; 2924 else if (cpu_smt_num_threads_valid(num_threads)) 2925 ctrlval = CPU_SMT_ENABLED; 2926 else 2927 return -EINVAL; 2928 } else { 2929 return -EINVAL; 2930 } 2931 2932 ret = lock_device_hotplug_sysfs(); 2933 if (ret) 2934 return ret; 2935 2936 orig_threads = cpu_smt_num_threads; 2937 cpu_smt_num_threads = num_threads; 2938 2939 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED; 2940 2941 if (num_threads > orig_threads) 2942 ret = cpuhp_smt_enable(); 2943 else if (num_threads < orig_threads || force_off) 2944 ret = cpuhp_smt_disable(ctrlval); 2945 2946 unlock_device_hotplug(); 2947 return ret ? ret : count; 2948 } 2949 2950 #else /* !CONFIG_HOTPLUG_SMT */ 2951 static ssize_t 2952 __store_smt_control(struct device *dev, struct device_attribute *attr, 2953 const char *buf, size_t count) 2954 { 2955 return -ENODEV; 2956 } 2957 #endif /* CONFIG_HOTPLUG_SMT */ 2958 2959 static const char *smt_states[] = { 2960 [CPU_SMT_ENABLED] = "on", 2961 [CPU_SMT_DISABLED] = "off", 2962 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2963 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2964 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2965 }; 2966 2967 static ssize_t control_show(struct device *dev, 2968 struct device_attribute *attr, char *buf) 2969 { 2970 const char *state = smt_states[cpu_smt_control]; 2971 2972 #ifdef CONFIG_HOTPLUG_SMT 2973 /* 2974 * If SMT is enabled but not all threads are enabled then show the 2975 * number of threads. If all threads are enabled show "on". Otherwise 2976 * show the state name. 2977 */ 2978 if (cpu_smt_control == CPU_SMT_ENABLED && 2979 cpu_smt_num_threads != cpu_smt_max_threads) 2980 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads); 2981 #endif 2982 2983 return sysfs_emit(buf, "%s\n", state); 2984 } 2985 2986 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 2987 const char *buf, size_t count) 2988 { 2989 return __store_smt_control(dev, attr, buf, count); 2990 } 2991 static DEVICE_ATTR_RW(control); 2992 2993 static ssize_t active_show(struct device *dev, 2994 struct device_attribute *attr, char *buf) 2995 { 2996 return sysfs_emit(buf, "%d\n", sched_smt_active()); 2997 } 2998 static DEVICE_ATTR_RO(active); 2999 3000 static struct attribute *cpuhp_smt_attrs[] = { 3001 &dev_attr_control.attr, 3002 &dev_attr_active.attr, 3003 NULL 3004 }; 3005 3006 static const struct attribute_group cpuhp_smt_attr_group = { 3007 .attrs = cpuhp_smt_attrs, 3008 .name = "smt", 3009 NULL 3010 }; 3011 3012 static int __init cpu_smt_sysfs_init(void) 3013 { 3014 struct device *dev_root; 3015 int ret = -ENODEV; 3016 3017 dev_root = bus_get_dev_root(&cpu_subsys); 3018 if (dev_root) { 3019 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group); 3020 put_device(dev_root); 3021 } 3022 return ret; 3023 } 3024 3025 static int __init cpuhp_sysfs_init(void) 3026 { 3027 struct device *dev_root; 3028 int cpu, ret; 3029 3030 ret = cpu_smt_sysfs_init(); 3031 if (ret) 3032 return ret; 3033 3034 dev_root = bus_get_dev_root(&cpu_subsys); 3035 if (dev_root) { 3036 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group); 3037 put_device(dev_root); 3038 if (ret) 3039 return ret; 3040 } 3041 3042 for_each_possible_cpu(cpu) { 3043 struct device *dev = get_cpu_device(cpu); 3044 3045 if (!dev) 3046 continue; 3047 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 3048 if (ret) 3049 return ret; 3050 } 3051 return 0; 3052 } 3053 device_initcall(cpuhp_sysfs_init); 3054 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 3055 3056 /* 3057 * cpu_bit_bitmap[] is a special, "compressed" data structure that 3058 * represents all NR_CPUS bits binary values of 1<<nr. 3059 * 3060 * It is used by cpumask_of() to get a constant address to a CPU 3061 * mask value that has a single bit set only. 3062 */ 3063 3064 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 3065 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 3066 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 3067 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 3068 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 3069 3070 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 3071 3072 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 3073 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 3074 #if BITS_PER_LONG > 32 3075 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 3076 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 3077 #endif 3078 }; 3079 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 3080 3081 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 3082 EXPORT_SYMBOL(cpu_all_bits); 3083 3084 #ifdef CONFIG_INIT_ALL_POSSIBLE 3085 struct cpumask __cpu_possible_mask __ro_after_init 3086 = {CPU_BITS_ALL}; 3087 #else 3088 struct cpumask __cpu_possible_mask __ro_after_init; 3089 #endif 3090 EXPORT_SYMBOL(__cpu_possible_mask); 3091 3092 struct cpumask __cpu_online_mask __read_mostly; 3093 EXPORT_SYMBOL(__cpu_online_mask); 3094 3095 struct cpumask __cpu_enabled_mask __read_mostly; 3096 EXPORT_SYMBOL(__cpu_enabled_mask); 3097 3098 struct cpumask __cpu_present_mask __read_mostly; 3099 EXPORT_SYMBOL(__cpu_present_mask); 3100 3101 struct cpumask __cpu_active_mask __read_mostly; 3102 EXPORT_SYMBOL(__cpu_active_mask); 3103 3104 struct cpumask __cpu_dying_mask __read_mostly; 3105 EXPORT_SYMBOL(__cpu_dying_mask); 3106 3107 atomic_t __num_online_cpus __read_mostly; 3108 EXPORT_SYMBOL(__num_online_cpus); 3109 3110 void init_cpu_present(const struct cpumask *src) 3111 { 3112 cpumask_copy(&__cpu_present_mask, src); 3113 } 3114 3115 void init_cpu_possible(const struct cpumask *src) 3116 { 3117 cpumask_copy(&__cpu_possible_mask, src); 3118 } 3119 3120 void init_cpu_online(const struct cpumask *src) 3121 { 3122 cpumask_copy(&__cpu_online_mask, src); 3123 } 3124 3125 void set_cpu_online(unsigned int cpu, bool online) 3126 { 3127 /* 3128 * atomic_inc/dec() is required to handle the horrid abuse of this 3129 * function by the reboot and kexec code which invoke it from 3130 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 3131 * regular CPU hotplug is properly serialized. 3132 * 3133 * Note, that the fact that __num_online_cpus is of type atomic_t 3134 * does not protect readers which are not serialized against 3135 * concurrent hotplug operations. 3136 */ 3137 if (online) { 3138 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 3139 atomic_inc(&__num_online_cpus); 3140 } else { 3141 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 3142 atomic_dec(&__num_online_cpus); 3143 } 3144 } 3145 3146 /* 3147 * Activate the first processor. 3148 */ 3149 void __init boot_cpu_init(void) 3150 { 3151 int cpu = smp_processor_id(); 3152 3153 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 3154 set_cpu_online(cpu, true); 3155 set_cpu_active(cpu, true); 3156 set_cpu_present(cpu, true); 3157 set_cpu_possible(cpu, true); 3158 3159 #ifdef CONFIG_SMP 3160 __boot_cpu_id = cpu; 3161 #endif 3162 } 3163 3164 /* 3165 * Must be called _AFTER_ setting up the per_cpu areas 3166 */ 3167 void __init boot_cpu_hotplug_init(void) 3168 { 3169 #ifdef CONFIG_SMP 3170 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 3171 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE); 3172 #endif 3173 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 3174 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); 3175 } 3176 3177 #ifdef CONFIG_CPU_MITIGATIONS 3178 /* 3179 * These are used for a global "mitigations=" cmdline option for toggling 3180 * optional CPU mitigations. 3181 */ 3182 enum cpu_mitigations { 3183 CPU_MITIGATIONS_OFF, 3184 CPU_MITIGATIONS_AUTO, 3185 CPU_MITIGATIONS_AUTO_NOSMT, 3186 }; 3187 3188 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO; 3189 3190 static int __init mitigations_parse_cmdline(char *arg) 3191 { 3192 if (!strcmp(arg, "off")) 3193 cpu_mitigations = CPU_MITIGATIONS_OFF; 3194 else if (!strcmp(arg, "auto")) 3195 cpu_mitigations = CPU_MITIGATIONS_AUTO; 3196 else if (!strcmp(arg, "auto,nosmt")) 3197 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 3198 else 3199 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 3200 arg); 3201 3202 return 0; 3203 } 3204 3205 /* mitigations=off */ 3206 bool cpu_mitigations_off(void) 3207 { 3208 return cpu_mitigations == CPU_MITIGATIONS_OFF; 3209 } 3210 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 3211 3212 /* mitigations=auto,nosmt */ 3213 bool cpu_mitigations_auto_nosmt(void) 3214 { 3215 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 3216 } 3217 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 3218 #else 3219 static int __init mitigations_parse_cmdline(char *arg) 3220 { 3221 pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n"); 3222 return 0; 3223 } 3224 #endif 3225 early_param("mitigations", mitigations_parse_cmdline); 3226
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.