~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/crash_core.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * crash.c - kernel crash support code.
  4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  5  */
  6 
  7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8 
  9 #include <linux/buildid.h>
 10 #include <linux/init.h>
 11 #include <linux/utsname.h>
 12 #include <linux/vmalloc.h>
 13 #include <linux/sizes.h>
 14 #include <linux/kexec.h>
 15 #include <linux/memory.h>
 16 #include <linux/mm.h>
 17 #include <linux/cpuhotplug.h>
 18 #include <linux/memblock.h>
 19 #include <linux/kmemleak.h>
 20 #include <linux/crash_core.h>
 21 #include <linux/reboot.h>
 22 #include <linux/btf.h>
 23 #include <linux/objtool.h>
 24 
 25 #include <asm/page.h>
 26 #include <asm/sections.h>
 27 
 28 #include <crypto/sha1.h>
 29 
 30 #include "kallsyms_internal.h"
 31 #include "kexec_internal.h"
 32 
 33 /* Per cpu memory for storing cpu states in case of system crash. */
 34 note_buf_t __percpu *crash_notes;
 35 
 36 #ifdef CONFIG_CRASH_DUMP
 37 
 38 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
 39 {
 40         struct page *vmcoreinfo_page;
 41         void *safecopy;
 42 
 43         if (!IS_ENABLED(CONFIG_CRASH_DUMP))
 44                 return 0;
 45         if (image->type != KEXEC_TYPE_CRASH)
 46                 return 0;
 47 
 48         /*
 49          * For kdump, allocate one vmcoreinfo safe copy from the
 50          * crash memory. as we have arch_kexec_protect_crashkres()
 51          * after kexec syscall, we naturally protect it from write
 52          * (even read) access under kernel direct mapping. But on
 53          * the other hand, we still need to operate it when crash
 54          * happens to generate vmcoreinfo note, hereby we rely on
 55          * vmap for this purpose.
 56          */
 57         vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
 58         if (!vmcoreinfo_page) {
 59                 pr_warn("Could not allocate vmcoreinfo buffer\n");
 60                 return -ENOMEM;
 61         }
 62         safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
 63         if (!safecopy) {
 64                 pr_warn("Could not vmap vmcoreinfo buffer\n");
 65                 return -ENOMEM;
 66         }
 67 
 68         image->vmcoreinfo_data_copy = safecopy;
 69         crash_update_vmcoreinfo_safecopy(safecopy);
 70 
 71         return 0;
 72 }
 73 
 74 
 75 
 76 int kexec_should_crash(struct task_struct *p)
 77 {
 78         /*
 79          * If crash_kexec_post_notifiers is enabled, don't run
 80          * crash_kexec() here yet, which must be run after panic
 81          * notifiers in panic().
 82          */
 83         if (crash_kexec_post_notifiers)
 84                 return 0;
 85         /*
 86          * There are 4 panic() calls in make_task_dead() path, each of which
 87          * corresponds to each of these 4 conditions.
 88          */
 89         if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
 90                 return 1;
 91         return 0;
 92 }
 93 
 94 int kexec_crash_loaded(void)
 95 {
 96         return !!kexec_crash_image;
 97 }
 98 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
 99 
100 /*
101  * No panic_cpu check version of crash_kexec().  This function is called
102  * only when panic_cpu holds the current CPU number; this is the only CPU
103  * which processes crash_kexec routines.
104  */
105 void __noclone __crash_kexec(struct pt_regs *regs)
106 {
107         /* Take the kexec_lock here to prevent sys_kexec_load
108          * running on one cpu from replacing the crash kernel
109          * we are using after a panic on a different cpu.
110          *
111          * If the crash kernel was not located in a fixed area
112          * of memory the xchg(&kexec_crash_image) would be
113          * sufficient.  But since I reuse the memory...
114          */
115         if (kexec_trylock()) {
116                 if (kexec_crash_image) {
117                         struct pt_regs fixed_regs;
118 
119                         crash_setup_regs(&fixed_regs, regs);
120                         crash_save_vmcoreinfo();
121                         machine_crash_shutdown(&fixed_regs);
122                         machine_kexec(kexec_crash_image);
123                 }
124                 kexec_unlock();
125         }
126 }
127 STACK_FRAME_NON_STANDARD(__crash_kexec);
128 
129 __bpf_kfunc void crash_kexec(struct pt_regs *regs)
130 {
131         int old_cpu, this_cpu;
132 
133         /*
134          * Only one CPU is allowed to execute the crash_kexec() code as with
135          * panic().  Otherwise parallel calls of panic() and crash_kexec()
136          * may stop each other.  To exclude them, we use panic_cpu here too.
137          */
138         old_cpu = PANIC_CPU_INVALID;
139         this_cpu = raw_smp_processor_id();
140 
141         if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
142                 /* This is the 1st CPU which comes here, so go ahead. */
143                 __crash_kexec(regs);
144 
145                 /*
146                  * Reset panic_cpu to allow another panic()/crash_kexec()
147                  * call.
148                  */
149                 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
150         }
151 }
152 
153 static inline resource_size_t crash_resource_size(const struct resource *res)
154 {
155         return !res->end ? 0 : resource_size(res);
156 }
157 
158 
159 
160 
161 int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
162                           void **addr, unsigned long *sz)
163 {
164         Elf64_Ehdr *ehdr;
165         Elf64_Phdr *phdr;
166         unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
167         unsigned char *buf;
168         unsigned int cpu, i;
169         unsigned long long notes_addr;
170         unsigned long mstart, mend;
171 
172         /* extra phdr for vmcoreinfo ELF note */
173         nr_phdr = nr_cpus + 1;
174         nr_phdr += mem->nr_ranges;
175 
176         /*
177          * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
178          * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
179          * I think this is required by tools like gdb. So same physical
180          * memory will be mapped in two ELF headers. One will contain kernel
181          * text virtual addresses and other will have __va(physical) addresses.
182          */
183 
184         nr_phdr++;
185         elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
186         elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
187 
188         buf = vzalloc(elf_sz);
189         if (!buf)
190                 return -ENOMEM;
191 
192         ehdr = (Elf64_Ehdr *)buf;
193         phdr = (Elf64_Phdr *)(ehdr + 1);
194         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
195         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
196         ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
197         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
198         ehdr->e_ident[EI_OSABI] = ELF_OSABI;
199         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
200         ehdr->e_type = ET_CORE;
201         ehdr->e_machine = ELF_ARCH;
202         ehdr->e_version = EV_CURRENT;
203         ehdr->e_phoff = sizeof(Elf64_Ehdr);
204         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
205         ehdr->e_phentsize = sizeof(Elf64_Phdr);
206 
207         /* Prepare one phdr of type PT_NOTE for each possible CPU */
208         for_each_possible_cpu(cpu) {
209                 phdr->p_type = PT_NOTE;
210                 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
211                 phdr->p_offset = phdr->p_paddr = notes_addr;
212                 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
213                 (ehdr->e_phnum)++;
214                 phdr++;
215         }
216 
217         /* Prepare one PT_NOTE header for vmcoreinfo */
218         phdr->p_type = PT_NOTE;
219         phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
220         phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
221         (ehdr->e_phnum)++;
222         phdr++;
223 
224         /* Prepare PT_LOAD type program header for kernel text region */
225         if (need_kernel_map) {
226                 phdr->p_type = PT_LOAD;
227                 phdr->p_flags = PF_R|PF_W|PF_X;
228                 phdr->p_vaddr = (unsigned long) _text;
229                 phdr->p_filesz = phdr->p_memsz = _end - _text;
230                 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
231                 ehdr->e_phnum++;
232                 phdr++;
233         }
234 
235         /* Go through all the ranges in mem->ranges[] and prepare phdr */
236         for (i = 0; i < mem->nr_ranges; i++) {
237                 mstart = mem->ranges[i].start;
238                 mend = mem->ranges[i].end;
239 
240                 phdr->p_type = PT_LOAD;
241                 phdr->p_flags = PF_R|PF_W|PF_X;
242                 phdr->p_offset  = mstart;
243 
244                 phdr->p_paddr = mstart;
245                 phdr->p_vaddr = (unsigned long) __va(mstart);
246                 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
247                 phdr->p_align = 0;
248                 ehdr->e_phnum++;
249 #ifdef CONFIG_KEXEC_FILE
250                 kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
251                               phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
252                               ehdr->e_phnum, phdr->p_offset);
253 #endif
254                 phdr++;
255         }
256 
257         *addr = buf;
258         *sz = elf_sz;
259         return 0;
260 }
261 
262 int crash_exclude_mem_range(struct crash_mem *mem,
263                             unsigned long long mstart, unsigned long long mend)
264 {
265         int i;
266         unsigned long long start, end, p_start, p_end;
267 
268         for (i = 0; i < mem->nr_ranges; i++) {
269                 start = mem->ranges[i].start;
270                 end = mem->ranges[i].end;
271                 p_start = mstart;
272                 p_end = mend;
273 
274                 if (p_start > end)
275                         continue;
276 
277                 /*
278                  * Because the memory ranges in mem->ranges are stored in
279                  * ascending order, when we detect `p_end < start`, we can
280                  * immediately exit the for loop, as the subsequent memory
281                  * ranges will definitely be outside the range we are looking
282                  * for.
283                  */
284                 if (p_end < start)
285                         break;
286 
287                 /* Truncate any area outside of range */
288                 if (p_start < start)
289                         p_start = start;
290                 if (p_end > end)
291                         p_end = end;
292 
293                 /* Found completely overlapping range */
294                 if (p_start == start && p_end == end) {
295                         memmove(&mem->ranges[i], &mem->ranges[i + 1],
296                                 (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
297                         i--;
298                         mem->nr_ranges--;
299                 } else if (p_start > start && p_end < end) {
300                         /* Split original range */
301                         if (mem->nr_ranges >= mem->max_nr_ranges)
302                                 return -ENOMEM;
303 
304                         memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
305                                 (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
306 
307                         mem->ranges[i].end = p_start - 1;
308                         mem->ranges[i + 1].start = p_end + 1;
309                         mem->ranges[i + 1].end = end;
310 
311                         i++;
312                         mem->nr_ranges++;
313                 } else if (p_start != start)
314                         mem->ranges[i].end = p_start - 1;
315                 else
316                         mem->ranges[i].start = p_end + 1;
317         }
318 
319         return 0;
320 }
321 
322 ssize_t crash_get_memory_size(void)
323 {
324         ssize_t size = 0;
325 
326         if (!kexec_trylock())
327                 return -EBUSY;
328 
329         size += crash_resource_size(&crashk_res);
330         size += crash_resource_size(&crashk_low_res);
331 
332         kexec_unlock();
333         return size;
334 }
335 
336 static int __crash_shrink_memory(struct resource *old_res,
337                                  unsigned long new_size)
338 {
339         struct resource *ram_res;
340 
341         ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
342         if (!ram_res)
343                 return -ENOMEM;
344 
345         ram_res->start = old_res->start + new_size;
346         ram_res->end   = old_res->end;
347         ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
348         ram_res->name  = "System RAM";
349 
350         if (!new_size) {
351                 release_resource(old_res);
352                 old_res->start = 0;
353                 old_res->end   = 0;
354         } else {
355                 crashk_res.end = ram_res->start - 1;
356         }
357 
358         crash_free_reserved_phys_range(ram_res->start, ram_res->end);
359         insert_resource(&iomem_resource, ram_res);
360 
361         return 0;
362 }
363 
364 int crash_shrink_memory(unsigned long new_size)
365 {
366         int ret = 0;
367         unsigned long old_size, low_size;
368 
369         if (!kexec_trylock())
370                 return -EBUSY;
371 
372         if (kexec_crash_image) {
373                 ret = -ENOENT;
374                 goto unlock;
375         }
376 
377         low_size = crash_resource_size(&crashk_low_res);
378         old_size = crash_resource_size(&crashk_res) + low_size;
379         new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
380         if (new_size >= old_size) {
381                 ret = (new_size == old_size) ? 0 : -EINVAL;
382                 goto unlock;
383         }
384 
385         /*
386          * (low_size > new_size) implies that low_size is greater than zero.
387          * This also means that if low_size is zero, the else branch is taken.
388          *
389          * If low_size is greater than 0, (low_size > new_size) indicates that
390          * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
391          * needs to be shrunken.
392          */
393         if (low_size > new_size) {
394                 ret = __crash_shrink_memory(&crashk_res, 0);
395                 if (ret)
396                         goto unlock;
397 
398                 ret = __crash_shrink_memory(&crashk_low_res, new_size);
399         } else {
400                 ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
401         }
402 
403         /* Swap crashk_res and crashk_low_res if needed */
404         if (!crashk_res.end && crashk_low_res.end) {
405                 crashk_res.start = crashk_low_res.start;
406                 crashk_res.end   = crashk_low_res.end;
407                 release_resource(&crashk_low_res);
408                 crashk_low_res.start = 0;
409                 crashk_low_res.end   = 0;
410                 insert_resource(&iomem_resource, &crashk_res);
411         }
412 
413 unlock:
414         kexec_unlock();
415         return ret;
416 }
417 
418 void crash_save_cpu(struct pt_regs *regs, int cpu)
419 {
420         struct elf_prstatus prstatus;
421         u32 *buf;
422 
423         if ((cpu < 0) || (cpu >= nr_cpu_ids))
424                 return;
425 
426         /* Using ELF notes here is opportunistic.
427          * I need a well defined structure format
428          * for the data I pass, and I need tags
429          * on the data to indicate what information I have
430          * squirrelled away.  ELF notes happen to provide
431          * all of that, so there is no need to invent something new.
432          */
433         buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
434         if (!buf)
435                 return;
436         memset(&prstatus, 0, sizeof(prstatus));
437         prstatus.common.pr_pid = current->pid;
438         elf_core_copy_regs(&prstatus.pr_reg, regs);
439         buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
440                               &prstatus, sizeof(prstatus));
441         final_note(buf);
442 }
443 
444 
445 
446 static int __init crash_notes_memory_init(void)
447 {
448         /* Allocate memory for saving cpu registers. */
449         size_t size, align;
450 
451         /*
452          * crash_notes could be allocated across 2 vmalloc pages when percpu
453          * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
454          * pages are also on 2 continuous physical pages. In this case the
455          * 2nd part of crash_notes in 2nd page could be lost since only the
456          * starting address and size of crash_notes are exported through sysfs.
457          * Here round up the size of crash_notes to the nearest power of two
458          * and pass it to __alloc_percpu as align value. This can make sure
459          * crash_notes is allocated inside one physical page.
460          */
461         size = sizeof(note_buf_t);
462         align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
463 
464         /*
465          * Break compile if size is bigger than PAGE_SIZE since crash_notes
466          * definitely will be in 2 pages with that.
467          */
468         BUILD_BUG_ON(size > PAGE_SIZE);
469 
470         crash_notes = __alloc_percpu(size, align);
471         if (!crash_notes) {
472                 pr_warn("Memory allocation for saving cpu register states failed\n");
473                 return -ENOMEM;
474         }
475         return 0;
476 }
477 subsys_initcall(crash_notes_memory_init);
478 
479 #endif /*CONFIG_CRASH_DUMP*/
480 
481 #ifdef CONFIG_CRASH_HOTPLUG
482 #undef pr_fmt
483 #define pr_fmt(fmt) "crash hp: " fmt
484 
485 /*
486  * Different than kexec/kdump loading/unloading/jumping/shrinking which
487  * usually rarely happen, there will be many crash hotplug events notified
488  * during one short period, e.g one memory board is hot added and memory
489  * regions are online. So mutex lock  __crash_hotplug_lock is used to
490  * serialize the crash hotplug handling specifically.
491  */
492 static DEFINE_MUTEX(__crash_hotplug_lock);
493 #define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
494 #define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
495 
496 /*
497  * This routine utilized when the crash_hotplug sysfs node is read.
498  * It reflects the kernel's ability/permission to update the kdump
499  * image directly.
500  */
501 int crash_check_hotplug_support(void)
502 {
503         int rc = 0;
504 
505         crash_hotplug_lock();
506         /* Obtain lock while reading crash information */
507         if (!kexec_trylock()) {
508                 pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
509                 crash_hotplug_unlock();
510                 return 0;
511         }
512         if (kexec_crash_image) {
513                 rc = kexec_crash_image->hotplug_support;
514         }
515         /* Release lock now that update complete */
516         kexec_unlock();
517         crash_hotplug_unlock();
518 
519         return rc;
520 }
521 
522 /*
523  * To accurately reflect hot un/plug changes of cpu and memory resources
524  * (including onling and offlining of those resources), the elfcorehdr
525  * (which is passed to the crash kernel via the elfcorehdr= parameter)
526  * must be updated with the new list of CPUs and memories.
527  *
528  * In order to make changes to elfcorehdr, two conditions are needed:
529  * First, the segment containing the elfcorehdr must be large enough
530  * to permit a growing number of resources; the elfcorehdr memory size
531  * is based on NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES.
532  * Second, purgatory must explicitly exclude the elfcorehdr from the
533  * list of segments it checks (since the elfcorehdr changes and thus
534  * would require an update to purgatory itself to update the digest).
535  */
536 static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg)
537 {
538         struct kimage *image;
539 
540         crash_hotplug_lock();
541         /* Obtain lock while changing crash information */
542         if (!kexec_trylock()) {
543                 pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
544                 crash_hotplug_unlock();
545                 return;
546         }
547 
548         /* Check kdump is not loaded */
549         if (!kexec_crash_image)
550                 goto out;
551 
552         image = kexec_crash_image;
553 
554         /* Check that kexec segments update is permitted */
555         if (!image->hotplug_support)
556                 goto out;
557 
558         if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
559                 hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
560                 pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
561         else
562                 pr_debug("hp_action %u\n", hp_action);
563 
564         /*
565          * The elfcorehdr_index is set to -1 when the struct kimage
566          * is allocated. Find the segment containing the elfcorehdr,
567          * if not already found.
568          */
569         if (image->elfcorehdr_index < 0) {
570                 unsigned long mem;
571                 unsigned char *ptr;
572                 unsigned int n;
573 
574                 for (n = 0; n < image->nr_segments; n++) {
575                         mem = image->segment[n].mem;
576                         ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
577                         if (ptr) {
578                                 /* The segment containing elfcorehdr */
579                                 if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
580                                         image->elfcorehdr_index = (int)n;
581                                 kunmap_local(ptr);
582                         }
583                 }
584         }
585 
586         if (image->elfcorehdr_index < 0) {
587                 pr_err("unable to locate elfcorehdr segment");
588                 goto out;
589         }
590 
591         /* Needed in order for the segments to be updated */
592         arch_kexec_unprotect_crashkres();
593 
594         /* Differentiate between normal load and hotplug update */
595         image->hp_action = hp_action;
596 
597         /* Now invoke arch-specific update handler */
598         arch_crash_handle_hotplug_event(image, arg);
599 
600         /* No longer handling a hotplug event */
601         image->hp_action = KEXEC_CRASH_HP_NONE;
602         image->elfcorehdr_updated = true;
603 
604         /* Change back to read-only */
605         arch_kexec_protect_crashkres();
606 
607         /* Errors in the callback is not a reason to rollback state */
608 out:
609         /* Release lock now that update complete */
610         kexec_unlock();
611         crash_hotplug_unlock();
612 }
613 
614 static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg)
615 {
616         switch (val) {
617         case MEM_ONLINE:
618                 crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
619                         KEXEC_CRASH_HP_INVALID_CPU, arg);
620                 break;
621 
622         case MEM_OFFLINE:
623                 crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
624                         KEXEC_CRASH_HP_INVALID_CPU, arg);
625                 break;
626         }
627         return NOTIFY_OK;
628 }
629 
630 static struct notifier_block crash_memhp_nb = {
631         .notifier_call = crash_memhp_notifier,
632         .priority = 0
633 };
634 
635 static int crash_cpuhp_online(unsigned int cpu)
636 {
637         crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL);
638         return 0;
639 }
640 
641 static int crash_cpuhp_offline(unsigned int cpu)
642 {
643         crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL);
644         return 0;
645 }
646 
647 static int __init crash_hotplug_init(void)
648 {
649         int result = 0;
650 
651         if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
652                 register_memory_notifier(&crash_memhp_nb);
653 
654         if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
655                 result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
656                         "crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
657         }
658 
659         return result;
660 }
661 
662 subsys_initcall(crash_hotplug_init);
663 #endif
664 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php