~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/dma/coherent.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Coherent per-device memory handling.
  4  * Borrowed from i386
  5  */
  6 #include <linux/io.h>
  7 #include <linux/slab.h>
  8 #include <linux/kernel.h>
  9 #include <linux/module.h>
 10 #include <linux/dma-direct.h>
 11 #include <linux/dma-map-ops.h>
 12 
 13 struct dma_coherent_mem {
 14         void            *virt_base;
 15         dma_addr_t      device_base;
 16         unsigned long   pfn_base;
 17         int             size;
 18         unsigned long   *bitmap;
 19         spinlock_t      spinlock;
 20         bool            use_dev_dma_pfn_offset;
 21 };
 22 
 23 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
 24 {
 25         if (dev && dev->dma_mem)
 26                 return dev->dma_mem;
 27         return NULL;
 28 }
 29 
 30 static inline dma_addr_t dma_get_device_base(struct device *dev,
 31                                              struct dma_coherent_mem * mem)
 32 {
 33         if (mem->use_dev_dma_pfn_offset)
 34                 return phys_to_dma(dev, PFN_PHYS(mem->pfn_base));
 35         return mem->device_base;
 36 }
 37 
 38 static struct dma_coherent_mem *dma_init_coherent_memory(phys_addr_t phys_addr,
 39                 dma_addr_t device_addr, size_t size, bool use_dma_pfn_offset)
 40 {
 41         struct dma_coherent_mem *dma_mem;
 42         int pages = size >> PAGE_SHIFT;
 43         void *mem_base;
 44 
 45         if (!size)
 46                 return ERR_PTR(-EINVAL);
 47 
 48         mem_base = memremap(phys_addr, size, MEMREMAP_WC);
 49         if (!mem_base)
 50                 return ERR_PTR(-EINVAL);
 51 
 52         dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
 53         if (!dma_mem)
 54                 goto out_unmap_membase;
 55         dma_mem->bitmap = bitmap_zalloc(pages, GFP_KERNEL);
 56         if (!dma_mem->bitmap)
 57                 goto out_free_dma_mem;
 58 
 59         dma_mem->virt_base = mem_base;
 60         dma_mem->device_base = device_addr;
 61         dma_mem->pfn_base = PFN_DOWN(phys_addr);
 62         dma_mem->size = pages;
 63         dma_mem->use_dev_dma_pfn_offset = use_dma_pfn_offset;
 64         spin_lock_init(&dma_mem->spinlock);
 65 
 66         return dma_mem;
 67 
 68 out_free_dma_mem:
 69         kfree(dma_mem);
 70 out_unmap_membase:
 71         memunmap(mem_base);
 72         pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %zd MiB\n",
 73                 &phys_addr, size / SZ_1M);
 74         return ERR_PTR(-ENOMEM);
 75 }
 76 
 77 static void _dma_release_coherent_memory(struct dma_coherent_mem *mem)
 78 {
 79         if (!mem)
 80                 return;
 81 
 82         memunmap(mem->virt_base);
 83         bitmap_free(mem->bitmap);
 84         kfree(mem);
 85 }
 86 
 87 static int dma_assign_coherent_memory(struct device *dev,
 88                                       struct dma_coherent_mem *mem)
 89 {
 90         if (!dev)
 91                 return -ENODEV;
 92 
 93         if (dev->dma_mem)
 94                 return -EBUSY;
 95 
 96         dev->dma_mem = mem;
 97         return 0;
 98 }
 99 
100 /*
101  * Declare a region of memory to be handed out by dma_alloc_coherent() when it
102  * is asked for coherent memory for this device.  This shall only be used
103  * from platform code, usually based on the device tree description.
104  *
105  * phys_addr is the CPU physical address to which the memory is currently
106  * assigned (this will be ioremapped so the CPU can access the region).
107  *
108  * device_addr is the DMA address the device needs to be programmed with to
109  * actually address this memory (this will be handed out as the dma_addr_t in
110  * dma_alloc_coherent()).
111  *
112  * size is the size of the area (must be a multiple of PAGE_SIZE).
113  *
114  * As a simplification for the platforms, only *one* such region of memory may
115  * be declared per device.
116  */
117 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
118                                 dma_addr_t device_addr, size_t size)
119 {
120         struct dma_coherent_mem *mem;
121         int ret;
122 
123         mem = dma_init_coherent_memory(phys_addr, device_addr, size, false);
124         if (IS_ERR(mem))
125                 return PTR_ERR(mem);
126 
127         ret = dma_assign_coherent_memory(dev, mem);
128         if (ret)
129                 _dma_release_coherent_memory(mem);
130         return ret;
131 }
132 
133 void dma_release_coherent_memory(struct device *dev)
134 {
135         if (dev) {
136                 _dma_release_coherent_memory(dev->dma_mem);
137                 dev->dma_mem = NULL;
138         }
139 }
140 
141 static void *__dma_alloc_from_coherent(struct device *dev,
142                                        struct dma_coherent_mem *mem,
143                                        ssize_t size, dma_addr_t *dma_handle)
144 {
145         int order = get_order(size);
146         unsigned long flags;
147         int pageno;
148         void *ret;
149 
150         spin_lock_irqsave(&mem->spinlock, flags);
151 
152         if (unlikely(size > ((dma_addr_t)mem->size << PAGE_SHIFT)))
153                 goto err;
154 
155         pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
156         if (unlikely(pageno < 0))
157                 goto err;
158 
159         /*
160          * Memory was found in the coherent area.
161          */
162         *dma_handle = dma_get_device_base(dev, mem) +
163                         ((dma_addr_t)pageno << PAGE_SHIFT);
164         ret = mem->virt_base + ((dma_addr_t)pageno << PAGE_SHIFT);
165         spin_unlock_irqrestore(&mem->spinlock, flags);
166         memset(ret, 0, size);
167         return ret;
168 err:
169         spin_unlock_irqrestore(&mem->spinlock, flags);
170         return NULL;
171 }
172 
173 /**
174  * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
175  * @dev:        device from which we allocate memory
176  * @size:       size of requested memory area
177  * @dma_handle: This will be filled with the correct dma handle
178  * @ret:        This pointer will be filled with the virtual address
179  *              to allocated area.
180  *
181  * This function should be only called from per-arch dma_alloc_coherent()
182  * to support allocation from per-device coherent memory pools.
183  *
184  * Returns 0 if dma_alloc_coherent should continue with allocating from
185  * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
186  */
187 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
188                 dma_addr_t *dma_handle, void **ret)
189 {
190         struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
191 
192         if (!mem)
193                 return 0;
194 
195         *ret = __dma_alloc_from_coherent(dev, mem, size, dma_handle);
196         return 1;
197 }
198 
199 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
200                                        int order, void *vaddr)
201 {
202         if (mem && vaddr >= mem->virt_base && vaddr <
203                    (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
204                 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
205                 unsigned long flags;
206 
207                 spin_lock_irqsave(&mem->spinlock, flags);
208                 bitmap_release_region(mem->bitmap, page, order);
209                 spin_unlock_irqrestore(&mem->spinlock, flags);
210                 return 1;
211         }
212         return 0;
213 }
214 
215 /**
216  * dma_release_from_dev_coherent() - free memory to device coherent memory pool
217  * @dev:        device from which the memory was allocated
218  * @order:      the order of pages allocated
219  * @vaddr:      virtual address of allocated pages
220  *
221  * This checks whether the memory was allocated from the per-device
222  * coherent memory pool and if so, releases that memory.
223  *
224  * Returns 1 if we correctly released the memory, or 0 if the caller should
225  * proceed with releasing memory from generic pools.
226  */
227 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
228 {
229         struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
230 
231         return __dma_release_from_coherent(mem, order, vaddr);
232 }
233 
234 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
235                 struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
236 {
237         if (mem && vaddr >= mem->virt_base && vaddr + size <=
238                    (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
239                 unsigned long off = vma->vm_pgoff;
240                 int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
241                 unsigned long user_count = vma_pages(vma);
242                 int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
243 
244                 *ret = -ENXIO;
245                 if (off < count && user_count <= count - off) {
246                         unsigned long pfn = mem->pfn_base + start + off;
247                         *ret = remap_pfn_range(vma, vma->vm_start, pfn,
248                                                user_count << PAGE_SHIFT,
249                                                vma->vm_page_prot);
250                 }
251                 return 1;
252         }
253         return 0;
254 }
255 
256 /**
257  * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
258  * @dev:        device from which the memory was allocated
259  * @vma:        vm_area for the userspace memory
260  * @vaddr:      cpu address returned by dma_alloc_from_dev_coherent
261  * @size:       size of the memory buffer allocated
262  * @ret:        result from remap_pfn_range()
263  *
264  * This checks whether the memory was allocated from the per-device
265  * coherent memory pool and if so, maps that memory to the provided vma.
266  *
267  * Returns 1 if @vaddr belongs to the device coherent pool and the caller
268  * should return @ret, or 0 if they should proceed with mapping memory from
269  * generic areas.
270  */
271 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
272                            void *vaddr, size_t size, int *ret)
273 {
274         struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
275 
276         return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
277 }
278 
279 #ifdef CONFIG_DMA_GLOBAL_POOL
280 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
281 
282 void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
283                                      dma_addr_t *dma_handle)
284 {
285         if (!dma_coherent_default_memory)
286                 return NULL;
287 
288         return __dma_alloc_from_coherent(dev, dma_coherent_default_memory, size,
289                                          dma_handle);
290 }
291 
292 int dma_release_from_global_coherent(int order, void *vaddr)
293 {
294         if (!dma_coherent_default_memory)
295                 return 0;
296 
297         return __dma_release_from_coherent(dma_coherent_default_memory, order,
298                         vaddr);
299 }
300 
301 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
302                                    size_t size, int *ret)
303 {
304         if (!dma_coherent_default_memory)
305                 return 0;
306 
307         return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
308                                         vaddr, size, ret);
309 }
310 
311 int dma_init_global_coherent(phys_addr_t phys_addr, size_t size)
312 {
313         struct dma_coherent_mem *mem;
314 
315         mem = dma_init_coherent_memory(phys_addr, phys_addr, size, true);
316         if (IS_ERR(mem))
317                 return PTR_ERR(mem);
318         dma_coherent_default_memory = mem;
319         pr_info("DMA: default coherent area is set\n");
320         return 0;
321 }
322 #endif /* CONFIG_DMA_GLOBAL_POOL */
323 
324 /*
325  * Support for reserved memory regions defined in device tree
326  */
327 #ifdef CONFIG_OF_RESERVED_MEM
328 #include <linux/of.h>
329 #include <linux/of_fdt.h>
330 #include <linux/of_reserved_mem.h>
331 
332 #ifdef CONFIG_DMA_GLOBAL_POOL
333 static struct reserved_mem *dma_reserved_default_memory __initdata;
334 #endif
335 
336 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
337 {
338         if (!rmem->priv) {
339                 struct dma_coherent_mem *mem;
340 
341                 mem = dma_init_coherent_memory(rmem->base, rmem->base,
342                                                rmem->size, true);
343                 if (IS_ERR(mem))
344                         return PTR_ERR(mem);
345                 rmem->priv = mem;
346         }
347         dma_assign_coherent_memory(dev, rmem->priv);
348         return 0;
349 }
350 
351 static void rmem_dma_device_release(struct reserved_mem *rmem,
352                                     struct device *dev)
353 {
354         if (dev)
355                 dev->dma_mem = NULL;
356 }
357 
358 static const struct reserved_mem_ops rmem_dma_ops = {
359         .device_init    = rmem_dma_device_init,
360         .device_release = rmem_dma_device_release,
361 };
362 
363 static int __init rmem_dma_setup(struct reserved_mem *rmem)
364 {
365         unsigned long node = rmem->fdt_node;
366 
367         if (of_get_flat_dt_prop(node, "reusable", NULL))
368                 return -EINVAL;
369 
370 #ifdef CONFIG_ARM
371         if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
372                 pr_err("Reserved memory: regions without no-map are not yet supported\n");
373                 return -EINVAL;
374         }
375 #endif
376 
377 #ifdef CONFIG_DMA_GLOBAL_POOL
378         if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
379                 WARN(dma_reserved_default_memory,
380                      "Reserved memory: region for default DMA coherent area is redefined\n");
381                 dma_reserved_default_memory = rmem;
382         }
383 #endif
384 
385         rmem->ops = &rmem_dma_ops;
386         pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
387                 &rmem->base, (unsigned long)rmem->size / SZ_1M);
388         return 0;
389 }
390 
391 #ifdef CONFIG_DMA_GLOBAL_POOL
392 static int __init dma_init_reserved_memory(void)
393 {
394         if (!dma_reserved_default_memory)
395                 return -ENOMEM;
396         return dma_init_global_coherent(dma_reserved_default_memory->base,
397                                         dma_reserved_default_memory->size);
398 }
399 core_initcall(dma_init_reserved_memory);
400 #endif /* CONFIG_DMA_GLOBAL_POOL */
401 
402 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
403 #endif
404 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php