~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/dma/direct.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2018-2020 Christoph Hellwig.
  4  *
  5  * DMA operations that map physical memory directly without using an IOMMU.
  6  */
  7 #include <linux/memblock.h> /* for max_pfn */
  8 #include <linux/export.h>
  9 #include <linux/mm.h>
 10 #include <linux/dma-map-ops.h>
 11 #include <linux/scatterlist.h>
 12 #include <linux/pfn.h>
 13 #include <linux/vmalloc.h>
 14 #include <linux/set_memory.h>
 15 #include <linux/slab.h>
 16 #include "direct.h"
 17 
 18 /*
 19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
 20  * it for entirely different regions. In that case the arch code needs to
 21  * override the variable below for dma-direct to work properly.
 22  */
 23 unsigned int zone_dma_bits __ro_after_init = 24;
 24 
 25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
 26                 phys_addr_t phys)
 27 {
 28         if (force_dma_unencrypted(dev))
 29                 return phys_to_dma_unencrypted(dev, phys);
 30         return phys_to_dma(dev, phys);
 31 }
 32 
 33 static inline struct page *dma_direct_to_page(struct device *dev,
 34                 dma_addr_t dma_addr)
 35 {
 36         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
 37 }
 38 
 39 u64 dma_direct_get_required_mask(struct device *dev)
 40 {
 41         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
 42         u64 max_dma = phys_to_dma_direct(dev, phys);
 43 
 44         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
 45 }
 46 
 47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
 48 {
 49         u64 dma_limit = min_not_zero(
 50                 dev->coherent_dma_mask,
 51                 dev->bus_dma_limit);
 52 
 53         /*
 54          * Optimistically try the zone that the physical address mask falls
 55          * into first.  If that returns memory that isn't actually addressable
 56          * we will fallback to the next lower zone and try again.
 57          *
 58          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
 59          * zones.
 60          */
 61         *phys_limit = dma_to_phys(dev, dma_limit);
 62         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
 63                 return GFP_DMA;
 64         if (*phys_limit <= DMA_BIT_MASK(32))
 65                 return GFP_DMA32;
 66         return 0;
 67 }
 68 
 69 bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
 70 {
 71         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
 72 
 73         if (dma_addr == DMA_MAPPING_ERROR)
 74                 return false;
 75         return dma_addr + size - 1 <=
 76                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 77 }
 78 
 79 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
 80 {
 81         if (!force_dma_unencrypted(dev))
 82                 return 0;
 83         return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
 84 }
 85 
 86 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
 87 {
 88         int ret;
 89 
 90         if (!force_dma_unencrypted(dev))
 91                 return 0;
 92         ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
 93         if (ret)
 94                 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
 95         return ret;
 96 }
 97 
 98 static void __dma_direct_free_pages(struct device *dev, struct page *page,
 99                                     size_t size)
100 {
101         if (swiotlb_free(dev, page, size))
102                 return;
103         dma_free_contiguous(dev, page, size);
104 }
105 
106 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
107 {
108         struct page *page = swiotlb_alloc(dev, size);
109 
110         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
111                 swiotlb_free(dev, page, size);
112                 return NULL;
113         }
114 
115         return page;
116 }
117 
118 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
119                 gfp_t gfp, bool allow_highmem)
120 {
121         int node = dev_to_node(dev);
122         struct page *page = NULL;
123         u64 phys_limit;
124 
125         WARN_ON_ONCE(!PAGE_ALIGNED(size));
126 
127         if (is_swiotlb_for_alloc(dev))
128                 return dma_direct_alloc_swiotlb(dev, size);
129 
130         gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
131         page = dma_alloc_contiguous(dev, size, gfp);
132         if (page) {
133                 if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
134                     (!allow_highmem && PageHighMem(page))) {
135                         dma_free_contiguous(dev, page, size);
136                         page = NULL;
137                 }
138         }
139 again:
140         if (!page)
141                 page = alloc_pages_node(node, gfp, get_order(size));
142         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143                 dma_free_contiguous(dev, page, size);
144                 page = NULL;
145 
146                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147                     phys_limit < DMA_BIT_MASK(64) &&
148                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
149                         gfp |= GFP_DMA32;
150                         goto again;
151                 }
152 
153                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155                         goto again;
156                 }
157         }
158 
159         return page;
160 }
161 
162 /*
163  * Check if a potentially blocking operations needs to dip into the atomic
164  * pools for the given device/gfp.
165  */
166 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
167 {
168         return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
169 }
170 
171 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172                 dma_addr_t *dma_handle, gfp_t gfp)
173 {
174         struct page *page;
175         u64 phys_limit;
176         void *ret;
177 
178         if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
179                 return NULL;
180 
181         gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
182         page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
183         if (!page)
184                 return NULL;
185         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
186         return ret;
187 }
188 
189 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
190                 dma_addr_t *dma_handle, gfp_t gfp)
191 {
192         struct page *page;
193 
194         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
195         if (!page)
196                 return NULL;
197 
198         /* remove any dirty cache lines on the kernel alias */
199         if (!PageHighMem(page))
200                 arch_dma_prep_coherent(page, size);
201 
202         /* return the page pointer as the opaque cookie */
203         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
204         return page;
205 }
206 
207 void *dma_direct_alloc(struct device *dev, size_t size,
208                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
209 {
210         bool remap = false, set_uncached = false;
211         struct page *page;
212         void *ret;
213 
214         size = PAGE_ALIGN(size);
215         if (attrs & DMA_ATTR_NO_WARN)
216                 gfp |= __GFP_NOWARN;
217 
218         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
219             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
220                 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
221 
222         if (!dev_is_dma_coherent(dev)) {
223                 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
224                     !is_swiotlb_for_alloc(dev))
225                         return arch_dma_alloc(dev, size, dma_handle, gfp,
226                                               attrs);
227 
228                 /*
229                  * If there is a global pool, always allocate from it for
230                  * non-coherent devices.
231                  */
232                 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
233                         return dma_alloc_from_global_coherent(dev, size,
234                                         dma_handle);
235 
236                 /*
237                  * Otherwise we require the architecture to either be able to
238                  * mark arbitrary parts of the kernel direct mapping uncached,
239                  * or remapped it uncached.
240                  */
241                 set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED);
242                 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
243                 if (!set_uncached && !remap) {
244                         pr_warn_once("coherent DMA allocations not supported on this platform.\n");
245                         return NULL;
246                 }
247         }
248 
249         /*
250          * Remapping or decrypting memory may block, allocate the memory from
251          * the atomic pools instead if we aren't allowed block.
252          */
253         if ((remap || force_dma_unencrypted(dev)) &&
254             dma_direct_use_pool(dev, gfp))
255                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
256 
257         /* we always manually zero the memory once we are done */
258         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
259         if (!page)
260                 return NULL;
261 
262         /*
263          * dma_alloc_contiguous can return highmem pages depending on a
264          * combination the cma= arguments and per-arch setup.  These need to be
265          * remapped to return a kernel virtual address.
266          */
267         if (PageHighMem(page)) {
268                 remap = true;
269                 set_uncached = false;
270         }
271 
272         if (remap) {
273                 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
274 
275                 if (force_dma_unencrypted(dev))
276                         prot = pgprot_decrypted(prot);
277 
278                 /* remove any dirty cache lines on the kernel alias */
279                 arch_dma_prep_coherent(page, size);
280 
281                 /* create a coherent mapping */
282                 ret = dma_common_contiguous_remap(page, size, prot,
283                                 __builtin_return_address(0));
284                 if (!ret)
285                         goto out_free_pages;
286         } else {
287                 ret = page_address(page);
288                 if (dma_set_decrypted(dev, ret, size))
289                         goto out_leak_pages;
290         }
291 
292         memset(ret, 0, size);
293 
294         if (set_uncached) {
295                 arch_dma_prep_coherent(page, size);
296                 ret = arch_dma_set_uncached(ret, size);
297                 if (IS_ERR(ret))
298                         goto out_encrypt_pages;
299         }
300 
301         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
302         return ret;
303 
304 out_encrypt_pages:
305         if (dma_set_encrypted(dev, page_address(page), size))
306                 return NULL;
307 out_free_pages:
308         __dma_direct_free_pages(dev, page, size);
309         return NULL;
310 out_leak_pages:
311         return NULL;
312 }
313 
314 void dma_direct_free(struct device *dev, size_t size,
315                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
316 {
317         unsigned int page_order = get_order(size);
318 
319         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
320             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
321                 /* cpu_addr is a struct page cookie, not a kernel address */
322                 dma_free_contiguous(dev, cpu_addr, size);
323                 return;
324         }
325 
326         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
327             !dev_is_dma_coherent(dev) &&
328             !is_swiotlb_for_alloc(dev)) {
329                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
330                 return;
331         }
332 
333         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
334             !dev_is_dma_coherent(dev)) {
335                 if (!dma_release_from_global_coherent(page_order, cpu_addr))
336                         WARN_ON_ONCE(1);
337                 return;
338         }
339 
340         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
341         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
342             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
343                 return;
344 
345         if (is_vmalloc_addr(cpu_addr)) {
346                 vunmap(cpu_addr);
347         } else {
348                 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
349                         arch_dma_clear_uncached(cpu_addr, size);
350                 if (dma_set_encrypted(dev, cpu_addr, size))
351                         return;
352         }
353 
354         __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
355 }
356 
357 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
358                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
359 {
360         struct page *page;
361         void *ret;
362 
363         if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
364                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
365 
366         page = __dma_direct_alloc_pages(dev, size, gfp, false);
367         if (!page)
368                 return NULL;
369 
370         ret = page_address(page);
371         if (dma_set_decrypted(dev, ret, size))
372                 goto out_leak_pages;
373         memset(ret, 0, size);
374         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
375         return page;
376 out_leak_pages:
377         return NULL;
378 }
379 
380 void dma_direct_free_pages(struct device *dev, size_t size,
381                 struct page *page, dma_addr_t dma_addr,
382                 enum dma_data_direction dir)
383 {
384         void *vaddr = page_address(page);
385 
386         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
387         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
388             dma_free_from_pool(dev, vaddr, size))
389                 return;
390 
391         if (dma_set_encrypted(dev, vaddr, size))
392                 return;
393         __dma_direct_free_pages(dev, page, size);
394 }
395 
396 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
397     defined(CONFIG_SWIOTLB)
398 void dma_direct_sync_sg_for_device(struct device *dev,
399                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
400 {
401         struct scatterlist *sg;
402         int i;
403 
404         for_each_sg(sgl, sg, nents, i) {
405                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
406 
407                 swiotlb_sync_single_for_device(dev, paddr, sg->length, dir);
408 
409                 if (!dev_is_dma_coherent(dev))
410                         arch_sync_dma_for_device(paddr, sg->length,
411                                         dir);
412         }
413 }
414 #endif
415 
416 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
417     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
418     defined(CONFIG_SWIOTLB)
419 void dma_direct_sync_sg_for_cpu(struct device *dev,
420                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
421 {
422         struct scatterlist *sg;
423         int i;
424 
425         for_each_sg(sgl, sg, nents, i) {
426                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
427 
428                 if (!dev_is_dma_coherent(dev))
429                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
430 
431                 swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir);
432 
433                 if (dir == DMA_FROM_DEVICE)
434                         arch_dma_mark_clean(paddr, sg->length);
435         }
436 
437         if (!dev_is_dma_coherent(dev))
438                 arch_sync_dma_for_cpu_all();
439 }
440 
441 /*
442  * Unmaps segments, except for ones marked as pci_p2pdma which do not
443  * require any further action as they contain a bus address.
444  */
445 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
446                 int nents, enum dma_data_direction dir, unsigned long attrs)
447 {
448         struct scatterlist *sg;
449         int i;
450 
451         for_each_sg(sgl,  sg, nents, i) {
452                 if (sg_dma_is_bus_address(sg))
453                         sg_dma_unmark_bus_address(sg);
454                 else
455                         dma_direct_unmap_page(dev, sg->dma_address,
456                                               sg_dma_len(sg), dir, attrs);
457         }
458 }
459 #endif
460 
461 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
462                 enum dma_data_direction dir, unsigned long attrs)
463 {
464         struct pci_p2pdma_map_state p2pdma_state = {};
465         enum pci_p2pdma_map_type map;
466         struct scatterlist *sg;
467         int i, ret;
468 
469         for_each_sg(sgl, sg, nents, i) {
470                 if (is_pci_p2pdma_page(sg_page(sg))) {
471                         map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
472                         switch (map) {
473                         case PCI_P2PDMA_MAP_BUS_ADDR:
474                                 continue;
475                         case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
476                                 /*
477                                  * Any P2P mapping that traverses the PCI
478                                  * host bridge must be mapped with CPU physical
479                                  * address and not PCI bus addresses. This is
480                                  * done with dma_direct_map_page() below.
481                                  */
482                                 break;
483                         default:
484                                 ret = -EREMOTEIO;
485                                 goto out_unmap;
486                         }
487                 }
488 
489                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
490                                 sg->offset, sg->length, dir, attrs);
491                 if (sg->dma_address == DMA_MAPPING_ERROR) {
492                         ret = -EIO;
493                         goto out_unmap;
494                 }
495                 sg_dma_len(sg) = sg->length;
496         }
497 
498         return nents;
499 
500 out_unmap:
501         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
502         return ret;
503 }
504 
505 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
506                 size_t size, enum dma_data_direction dir, unsigned long attrs)
507 {
508         dma_addr_t dma_addr = paddr;
509 
510         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
511                 dev_err_once(dev,
512                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
513                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
514                 WARN_ON_ONCE(1);
515                 return DMA_MAPPING_ERROR;
516         }
517 
518         return dma_addr;
519 }
520 
521 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
522                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
523                 unsigned long attrs)
524 {
525         struct page *page = dma_direct_to_page(dev, dma_addr);
526         int ret;
527 
528         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
529         if (!ret)
530                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
531         return ret;
532 }
533 
534 bool dma_direct_can_mmap(struct device *dev)
535 {
536         return dev_is_dma_coherent(dev) ||
537                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
538 }
539 
540 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
541                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
542                 unsigned long attrs)
543 {
544         unsigned long user_count = vma_pages(vma);
545         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
546         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
547         int ret = -ENXIO;
548 
549         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
550         if (force_dma_unencrypted(dev))
551                 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
552 
553         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
554                 return ret;
555         if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
556                 return ret;
557 
558         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
559                 return -ENXIO;
560         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
561                         user_count << PAGE_SHIFT, vma->vm_page_prot);
562 }
563 
564 int dma_direct_supported(struct device *dev, u64 mask)
565 {
566         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
567 
568         /*
569          * Because 32-bit DMA masks are so common we expect every architecture
570          * to be able to satisfy them - either by not supporting more physical
571          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
572          * architecture needs to use an IOMMU instead of the direct mapping.
573          */
574         if (mask >= DMA_BIT_MASK(32))
575                 return 1;
576 
577         /*
578          * This check needs to be against the actual bit mask value, so use
579          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
580          * part of the check.
581          */
582         if (IS_ENABLED(CONFIG_ZONE_DMA))
583                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
584         return mask >= phys_to_dma_unencrypted(dev, min_mask);
585 }
586 
587 /*
588  * To check whether all ram resource ranges are covered by dma range map
589  * Returns 0 when further check is needed
590  * Returns 1 if there is some RAM range can't be covered by dma_range_map
591  */
592 static int check_ram_in_range_map(unsigned long start_pfn,
593                                   unsigned long nr_pages, void *data)
594 {
595         unsigned long end_pfn = start_pfn + nr_pages;
596         const struct bus_dma_region *bdr = NULL;
597         const struct bus_dma_region *m;
598         struct device *dev = data;
599 
600         while (start_pfn < end_pfn) {
601                 for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) {
602                         unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start);
603 
604                         if (start_pfn >= cpu_start_pfn &&
605                             start_pfn - cpu_start_pfn < PFN_DOWN(m->size)) {
606                                 bdr = m;
607                                 break;
608                         }
609                 }
610                 if (!bdr)
611                         return 1;
612 
613                 start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size);
614         }
615 
616         return 0;
617 }
618 
619 bool dma_direct_all_ram_mapped(struct device *dev)
620 {
621         if (!dev->dma_range_map)
622                 return true;
623         return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev,
624                                       check_ram_in_range_map);
625 }
626 
627 size_t dma_direct_max_mapping_size(struct device *dev)
628 {
629         /* If SWIOTLB is active, use its maximum mapping size */
630         if (is_swiotlb_active(dev) &&
631             (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
632                 return swiotlb_max_mapping_size(dev);
633         return SIZE_MAX;
634 }
635 
636 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
637 {
638         return !dev_is_dma_coherent(dev) ||
639                swiotlb_find_pool(dev, dma_to_phys(dev, dma_addr));
640 }
641 
642 /**
643  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
644  * @dev:        device pointer; needed to "own" the alloced memory.
645  * @cpu_start:  beginning of memory region covered by this offset.
646  * @dma_start:  beginning of DMA/PCI region covered by this offset.
647  * @size:       size of the region.
648  *
649  * This is for the simple case of a uniform offset which cannot
650  * be discovered by "dma-ranges".
651  *
652  * It returns -ENOMEM if out of memory, -EINVAL if a map
653  * already exists, 0 otherwise.
654  *
655  * Note: any call to this from a driver is a bug.  The mapping needs
656  * to be described by the device tree or other firmware interfaces.
657  */
658 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
659                          dma_addr_t dma_start, u64 size)
660 {
661         struct bus_dma_region *map;
662         u64 offset = (u64)cpu_start - (u64)dma_start;
663 
664         if (dev->dma_range_map) {
665                 dev_err(dev, "attempt to add DMA range to existing map\n");
666                 return -EINVAL;
667         }
668 
669         if (!offset)
670                 return 0;
671 
672         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
673         if (!map)
674                 return -ENOMEM;
675         map[0].cpu_start = cpu_start;
676         map[0].dma_start = dma_start;
677         map[0].size = size;
678         dev->dma_range_map = map;
679         return 0;
680 }
681 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php