~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/dma/mapping.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * arch-independent dma-mapping routines
  4  *
  5  * Copyright (c) 2006  SUSE Linux Products GmbH
  6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
  7  */
  8 #include <linux/memblock.h> /* for max_pfn */
  9 #include <linux/acpi.h>
 10 #include <linux/dma-map-ops.h>
 11 #include <linux/export.h>
 12 #include <linux/gfp.h>
 13 #include <linux/kmsan.h>
 14 #include <linux/of_device.h>
 15 #include <linux/slab.h>
 16 #include <linux/vmalloc.h>
 17 #include "debug.h"
 18 #include "direct.h"
 19 
 20 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
 21         defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
 22         defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
 23 bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
 24 #endif
 25 
 26 /*
 27  * Managed DMA API
 28  */
 29 struct dma_devres {
 30         size_t          size;
 31         void            *vaddr;
 32         dma_addr_t      dma_handle;
 33         unsigned long   attrs;
 34 };
 35 
 36 static void dmam_release(struct device *dev, void *res)
 37 {
 38         struct dma_devres *this = res;
 39 
 40         dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
 41                         this->attrs);
 42 }
 43 
 44 static int dmam_match(struct device *dev, void *res, void *match_data)
 45 {
 46         struct dma_devres *this = res, *match = match_data;
 47 
 48         if (this->vaddr == match->vaddr) {
 49                 WARN_ON(this->size != match->size ||
 50                         this->dma_handle != match->dma_handle);
 51                 return 1;
 52         }
 53         return 0;
 54 }
 55 
 56 /**
 57  * dmam_free_coherent - Managed dma_free_coherent()
 58  * @dev: Device to free coherent memory for
 59  * @size: Size of allocation
 60  * @vaddr: Virtual address of the memory to free
 61  * @dma_handle: DMA handle of the memory to free
 62  *
 63  * Managed dma_free_coherent().
 64  */
 65 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
 66                         dma_addr_t dma_handle)
 67 {
 68         struct dma_devres match_data = { size, vaddr, dma_handle };
 69 
 70         WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
 71         dma_free_coherent(dev, size, vaddr, dma_handle);
 72 }
 73 EXPORT_SYMBOL(dmam_free_coherent);
 74 
 75 /**
 76  * dmam_alloc_attrs - Managed dma_alloc_attrs()
 77  * @dev: Device to allocate non_coherent memory for
 78  * @size: Size of allocation
 79  * @dma_handle: Out argument for allocated DMA handle
 80  * @gfp: Allocation flags
 81  * @attrs: Flags in the DMA_ATTR_* namespace.
 82  *
 83  * Managed dma_alloc_attrs().  Memory allocated using this function will be
 84  * automatically released on driver detach.
 85  *
 86  * RETURNS:
 87  * Pointer to allocated memory on success, NULL on failure.
 88  */
 89 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
 90                 gfp_t gfp, unsigned long attrs)
 91 {
 92         struct dma_devres *dr;
 93         void *vaddr;
 94 
 95         dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
 96         if (!dr)
 97                 return NULL;
 98 
 99         vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
100         if (!vaddr) {
101                 devres_free(dr);
102                 return NULL;
103         }
104 
105         dr->vaddr = vaddr;
106         dr->dma_handle = *dma_handle;
107         dr->size = size;
108         dr->attrs = attrs;
109 
110         devres_add(dev, dr);
111 
112         return vaddr;
113 }
114 EXPORT_SYMBOL(dmam_alloc_attrs);
115 
116 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
117                 const struct dma_map_ops *ops)
118 {
119         if (likely(!ops))
120                 return true;
121 #ifdef CONFIG_DMA_OPS_BYPASS
122         if (dev->dma_ops_bypass)
123                 return min_not_zero(mask, dev->bus_dma_limit) >=
124                             dma_direct_get_required_mask(dev);
125 #endif
126         return false;
127 }
128 
129 
130 /*
131  * Check if the devices uses a direct mapping for streaming DMA operations.
132  * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
133  * enough.
134  */
135 static inline bool dma_alloc_direct(struct device *dev,
136                 const struct dma_map_ops *ops)
137 {
138         return dma_go_direct(dev, dev->coherent_dma_mask, ops);
139 }
140 
141 static inline bool dma_map_direct(struct device *dev,
142                 const struct dma_map_ops *ops)
143 {
144         return dma_go_direct(dev, *dev->dma_mask, ops);
145 }
146 
147 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
148                 size_t offset, size_t size, enum dma_data_direction dir,
149                 unsigned long attrs)
150 {
151         const struct dma_map_ops *ops = get_dma_ops(dev);
152         dma_addr_t addr;
153 
154         BUG_ON(!valid_dma_direction(dir));
155 
156         if (WARN_ON_ONCE(!dev->dma_mask))
157                 return DMA_MAPPING_ERROR;
158 
159         if (dma_map_direct(dev, ops) ||
160             arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
161                 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
162         else
163                 addr = ops->map_page(dev, page, offset, size, dir, attrs);
164         kmsan_handle_dma(page, offset, size, dir);
165         debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
166 
167         return addr;
168 }
169 EXPORT_SYMBOL(dma_map_page_attrs);
170 
171 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
172                 enum dma_data_direction dir, unsigned long attrs)
173 {
174         const struct dma_map_ops *ops = get_dma_ops(dev);
175 
176         BUG_ON(!valid_dma_direction(dir));
177         if (dma_map_direct(dev, ops) ||
178             arch_dma_unmap_page_direct(dev, addr + size))
179                 dma_direct_unmap_page(dev, addr, size, dir, attrs);
180         else if (ops->unmap_page)
181                 ops->unmap_page(dev, addr, size, dir, attrs);
182         debug_dma_unmap_page(dev, addr, size, dir);
183 }
184 EXPORT_SYMBOL(dma_unmap_page_attrs);
185 
186 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
187          int nents, enum dma_data_direction dir, unsigned long attrs)
188 {
189         const struct dma_map_ops *ops = get_dma_ops(dev);
190         int ents;
191 
192         BUG_ON(!valid_dma_direction(dir));
193 
194         if (WARN_ON_ONCE(!dev->dma_mask))
195                 return 0;
196 
197         if (dma_map_direct(dev, ops) ||
198             arch_dma_map_sg_direct(dev, sg, nents))
199                 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
200         else
201                 ents = ops->map_sg(dev, sg, nents, dir, attrs);
202 
203         if (ents > 0) {
204                 kmsan_handle_dma_sg(sg, nents, dir);
205                 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
206         } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
207                                 ents != -EIO && ents != -EREMOTEIO)) {
208                 return -EIO;
209         }
210 
211         return ents;
212 }
213 
214 /**
215  * dma_map_sg_attrs - Map the given buffer for DMA
216  * @dev:        The device for which to perform the DMA operation
217  * @sg:         The sg_table object describing the buffer
218  * @nents:      Number of entries to map
219  * @dir:        DMA direction
220  * @attrs:      Optional DMA attributes for the map operation
221  *
222  * Maps a buffer described by a scatterlist passed in the sg argument with
223  * nents segments for the @dir DMA operation by the @dev device.
224  *
225  * Returns the number of mapped entries (which can be less than nents)
226  * on success. Zero is returned for any error.
227  *
228  * dma_unmap_sg_attrs() should be used to unmap the buffer with the
229  * original sg and original nents (not the value returned by this funciton).
230  */
231 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
232                     int nents, enum dma_data_direction dir, unsigned long attrs)
233 {
234         int ret;
235 
236         ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
237         if (ret < 0)
238                 return 0;
239         return ret;
240 }
241 EXPORT_SYMBOL(dma_map_sg_attrs);
242 
243 /**
244  * dma_map_sgtable - Map the given buffer for DMA
245  * @dev:        The device for which to perform the DMA operation
246  * @sgt:        The sg_table object describing the buffer
247  * @dir:        DMA direction
248  * @attrs:      Optional DMA attributes for the map operation
249  *
250  * Maps a buffer described by a scatterlist stored in the given sg_table
251  * object for the @dir DMA operation by the @dev device. After success, the
252  * ownership for the buffer is transferred to the DMA domain.  One has to
253  * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
254  * ownership of the buffer back to the CPU domain before touching the
255  * buffer by the CPU.
256  *
257  * Returns 0 on success or a negative error code on error. The following
258  * error codes are supported with the given meaning:
259  *
260  *   -EINVAL            An invalid argument, unaligned access or other error
261  *                      in usage. Will not succeed if retried.
262  *   -ENOMEM            Insufficient resources (like memory or IOVA space) to
263  *                      complete the mapping. Should succeed if retried later.
264  *   -EIO               Legacy error code with an unknown meaning. eg. this is
265  *                      returned if a lower level call returned
266  *                      DMA_MAPPING_ERROR.
267  *   -EREMOTEIO         The DMA device cannot access P2PDMA memory specified
268  *                      in the sg_table. This will not succeed if retried.
269  */
270 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
271                     enum dma_data_direction dir, unsigned long attrs)
272 {
273         int nents;
274 
275         nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
276         if (nents < 0)
277                 return nents;
278         sgt->nents = nents;
279         return 0;
280 }
281 EXPORT_SYMBOL_GPL(dma_map_sgtable);
282 
283 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
284                                       int nents, enum dma_data_direction dir,
285                                       unsigned long attrs)
286 {
287         const struct dma_map_ops *ops = get_dma_ops(dev);
288 
289         BUG_ON(!valid_dma_direction(dir));
290         debug_dma_unmap_sg(dev, sg, nents, dir);
291         if (dma_map_direct(dev, ops) ||
292             arch_dma_unmap_sg_direct(dev, sg, nents))
293                 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
294         else if (ops->unmap_sg)
295                 ops->unmap_sg(dev, sg, nents, dir, attrs);
296 }
297 EXPORT_SYMBOL(dma_unmap_sg_attrs);
298 
299 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
300                 size_t size, enum dma_data_direction dir, unsigned long attrs)
301 {
302         const struct dma_map_ops *ops = get_dma_ops(dev);
303         dma_addr_t addr = DMA_MAPPING_ERROR;
304 
305         BUG_ON(!valid_dma_direction(dir));
306 
307         if (WARN_ON_ONCE(!dev->dma_mask))
308                 return DMA_MAPPING_ERROR;
309 
310         if (dma_map_direct(dev, ops))
311                 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
312         else if (ops->map_resource)
313                 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
314 
315         debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
316         return addr;
317 }
318 EXPORT_SYMBOL(dma_map_resource);
319 
320 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
321                 enum dma_data_direction dir, unsigned long attrs)
322 {
323         const struct dma_map_ops *ops = get_dma_ops(dev);
324 
325         BUG_ON(!valid_dma_direction(dir));
326         if (!dma_map_direct(dev, ops) && ops->unmap_resource)
327                 ops->unmap_resource(dev, addr, size, dir, attrs);
328         debug_dma_unmap_resource(dev, addr, size, dir);
329 }
330 EXPORT_SYMBOL(dma_unmap_resource);
331 
332 #ifdef CONFIG_DMA_NEED_SYNC
333 void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
334                 enum dma_data_direction dir)
335 {
336         const struct dma_map_ops *ops = get_dma_ops(dev);
337 
338         BUG_ON(!valid_dma_direction(dir));
339         if (dma_map_direct(dev, ops))
340                 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
341         else if (ops->sync_single_for_cpu)
342                 ops->sync_single_for_cpu(dev, addr, size, dir);
343         debug_dma_sync_single_for_cpu(dev, addr, size, dir);
344 }
345 EXPORT_SYMBOL(__dma_sync_single_for_cpu);
346 
347 void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
348                 size_t size, enum dma_data_direction dir)
349 {
350         const struct dma_map_ops *ops = get_dma_ops(dev);
351 
352         BUG_ON(!valid_dma_direction(dir));
353         if (dma_map_direct(dev, ops))
354                 dma_direct_sync_single_for_device(dev, addr, size, dir);
355         else if (ops->sync_single_for_device)
356                 ops->sync_single_for_device(dev, addr, size, dir);
357         debug_dma_sync_single_for_device(dev, addr, size, dir);
358 }
359 EXPORT_SYMBOL(__dma_sync_single_for_device);
360 
361 void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
362                     int nelems, enum dma_data_direction dir)
363 {
364         const struct dma_map_ops *ops = get_dma_ops(dev);
365 
366         BUG_ON(!valid_dma_direction(dir));
367         if (dma_map_direct(dev, ops))
368                 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
369         else if (ops->sync_sg_for_cpu)
370                 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
371         debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
372 }
373 EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
374 
375 void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
376                        int nelems, enum dma_data_direction dir)
377 {
378         const struct dma_map_ops *ops = get_dma_ops(dev);
379 
380         BUG_ON(!valid_dma_direction(dir));
381         if (dma_map_direct(dev, ops))
382                 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
383         else if (ops->sync_sg_for_device)
384                 ops->sync_sg_for_device(dev, sg, nelems, dir);
385         debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
386 }
387 EXPORT_SYMBOL(__dma_sync_sg_for_device);
388 
389 bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
390 {
391         const struct dma_map_ops *ops = get_dma_ops(dev);
392 
393         if (dma_map_direct(dev, ops))
394                 /*
395                  * dma_skip_sync could've been reset on first SWIOTLB buffer
396                  * mapping, but @dma_addr is not necessary an SWIOTLB buffer.
397                  * In this case, fall back to more granular check.
398                  */
399                 return dma_direct_need_sync(dev, dma_addr);
400         return true;
401 }
402 EXPORT_SYMBOL_GPL(__dma_need_sync);
403 
404 static void dma_setup_need_sync(struct device *dev)
405 {
406         const struct dma_map_ops *ops = get_dma_ops(dev);
407 
408         if (dma_map_direct(dev, ops) || (ops->flags & DMA_F_CAN_SKIP_SYNC))
409                 /*
410                  * dma_skip_sync will be reset to %false on first SWIOTLB buffer
411                  * mapping, if any. During the device initialization, it's
412                  * enough to check only for the DMA coherence.
413                  */
414                 dev->dma_skip_sync = dev_is_dma_coherent(dev);
415         else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
416                  !ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
417                 /*
418                  * Synchronization is not possible when none of DMA sync ops
419                  * is set.
420                  */
421                 dev->dma_skip_sync = true;
422         else
423                 dev->dma_skip_sync = false;
424 }
425 #else /* !CONFIG_DMA_NEED_SYNC */
426 static inline void dma_setup_need_sync(struct device *dev) { }
427 #endif /* !CONFIG_DMA_NEED_SYNC */
428 
429 /*
430  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
431  * that the intention is to allow exporting memory allocated via the
432  * coherent DMA APIs through the dma_buf API, which only accepts a
433  * scattertable.  This presents a couple of problems:
434  * 1. Not all memory allocated via the coherent DMA APIs is backed by
435  *    a struct page
436  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
437  *    as we will try to flush the memory through a different alias to that
438  *    actually being used (and the flushes are redundant.)
439  */
440 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
441                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
442                 unsigned long attrs)
443 {
444         const struct dma_map_ops *ops = get_dma_ops(dev);
445 
446         if (dma_alloc_direct(dev, ops))
447                 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
448                                 size, attrs);
449         if (!ops->get_sgtable)
450                 return -ENXIO;
451         return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
452 }
453 EXPORT_SYMBOL(dma_get_sgtable_attrs);
454 
455 #ifdef CONFIG_MMU
456 /*
457  * Return the page attributes used for mapping dma_alloc_* memory, either in
458  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
459  */
460 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
461 {
462         if (dev_is_dma_coherent(dev))
463                 return prot;
464 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
465         if (attrs & DMA_ATTR_WRITE_COMBINE)
466                 return pgprot_writecombine(prot);
467 #endif
468         return pgprot_dmacoherent(prot);
469 }
470 #endif /* CONFIG_MMU */
471 
472 /**
473  * dma_can_mmap - check if a given device supports dma_mmap_*
474  * @dev: device to check
475  *
476  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
477  * map DMA allocations to userspace.
478  */
479 bool dma_can_mmap(struct device *dev)
480 {
481         const struct dma_map_ops *ops = get_dma_ops(dev);
482 
483         if (dma_alloc_direct(dev, ops))
484                 return dma_direct_can_mmap(dev);
485         return ops->mmap != NULL;
486 }
487 EXPORT_SYMBOL_GPL(dma_can_mmap);
488 
489 /**
490  * dma_mmap_attrs - map a coherent DMA allocation into user space
491  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
492  * @vma: vm_area_struct describing requested user mapping
493  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
494  * @dma_addr: device-view address returned from dma_alloc_attrs
495  * @size: size of memory originally requested in dma_alloc_attrs
496  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
497  *
498  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
499  * space.  The coherent DMA buffer must not be freed by the driver until the
500  * user space mapping has been released.
501  */
502 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
503                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
504                 unsigned long attrs)
505 {
506         const struct dma_map_ops *ops = get_dma_ops(dev);
507 
508         if (dma_alloc_direct(dev, ops))
509                 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
510                                 attrs);
511         if (!ops->mmap)
512                 return -ENXIO;
513         return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
514 }
515 EXPORT_SYMBOL(dma_mmap_attrs);
516 
517 u64 dma_get_required_mask(struct device *dev)
518 {
519         const struct dma_map_ops *ops = get_dma_ops(dev);
520 
521         if (dma_alloc_direct(dev, ops))
522                 return dma_direct_get_required_mask(dev);
523         if (ops->get_required_mask)
524                 return ops->get_required_mask(dev);
525 
526         /*
527          * We require every DMA ops implementation to at least support a 32-bit
528          * DMA mask (and use bounce buffering if that isn't supported in
529          * hardware).  As the direct mapping code has its own routine to
530          * actually report an optimal mask we default to 32-bit here as that
531          * is the right thing for most IOMMUs, and at least not actively
532          * harmful in general.
533          */
534         return DMA_BIT_MASK(32);
535 }
536 EXPORT_SYMBOL_GPL(dma_get_required_mask);
537 
538 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
539                 gfp_t flag, unsigned long attrs)
540 {
541         const struct dma_map_ops *ops = get_dma_ops(dev);
542         void *cpu_addr;
543 
544         WARN_ON_ONCE(!dev->coherent_dma_mask);
545 
546         /*
547          * DMA allocations can never be turned back into a page pointer, so
548          * requesting compound pages doesn't make sense (and can't even be
549          * supported at all by various backends).
550          */
551         if (WARN_ON_ONCE(flag & __GFP_COMP))
552                 return NULL;
553 
554         if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
555                 return cpu_addr;
556 
557         /* let the implementation decide on the zone to allocate from: */
558         flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
559 
560         if (dma_alloc_direct(dev, ops))
561                 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
562         else if (ops->alloc)
563                 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
564         else
565                 return NULL;
566 
567         debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
568         return cpu_addr;
569 }
570 EXPORT_SYMBOL(dma_alloc_attrs);
571 
572 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
573                 dma_addr_t dma_handle, unsigned long attrs)
574 {
575         const struct dma_map_ops *ops = get_dma_ops(dev);
576 
577         if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
578                 return;
579         /*
580          * On non-coherent platforms which implement DMA-coherent buffers via
581          * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
582          * this far in IRQ context is a) at risk of a BUG_ON() or trying to
583          * sleep on some machines, and b) an indication that the driver is
584          * probably misusing the coherent API anyway.
585          */
586         WARN_ON(irqs_disabled());
587 
588         if (!cpu_addr)
589                 return;
590 
591         debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
592         if (dma_alloc_direct(dev, ops))
593                 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
594         else if (ops->free)
595                 ops->free(dev, size, cpu_addr, dma_handle, attrs);
596 }
597 EXPORT_SYMBOL(dma_free_attrs);
598 
599 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
600                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
601 {
602         const struct dma_map_ops *ops = get_dma_ops(dev);
603 
604         if (WARN_ON_ONCE(!dev->coherent_dma_mask))
605                 return NULL;
606         if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
607                 return NULL;
608         if (WARN_ON_ONCE(gfp & __GFP_COMP))
609                 return NULL;
610 
611         size = PAGE_ALIGN(size);
612         if (dma_alloc_direct(dev, ops))
613                 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
614         if (!ops->alloc_pages_op)
615                 return NULL;
616         return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp);
617 }
618 
619 struct page *dma_alloc_pages(struct device *dev, size_t size,
620                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
621 {
622         struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
623 
624         if (page)
625                 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
626         return page;
627 }
628 EXPORT_SYMBOL_GPL(dma_alloc_pages);
629 
630 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
631                 dma_addr_t dma_handle, enum dma_data_direction dir)
632 {
633         const struct dma_map_ops *ops = get_dma_ops(dev);
634 
635         size = PAGE_ALIGN(size);
636         if (dma_alloc_direct(dev, ops))
637                 dma_direct_free_pages(dev, size, page, dma_handle, dir);
638         else if (ops->free_pages)
639                 ops->free_pages(dev, size, page, dma_handle, dir);
640 }
641 
642 void dma_free_pages(struct device *dev, size_t size, struct page *page,
643                 dma_addr_t dma_handle, enum dma_data_direction dir)
644 {
645         debug_dma_unmap_page(dev, dma_handle, size, dir);
646         __dma_free_pages(dev, size, page, dma_handle, dir);
647 }
648 EXPORT_SYMBOL_GPL(dma_free_pages);
649 
650 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
651                 size_t size, struct page *page)
652 {
653         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
654 
655         if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
656                 return -ENXIO;
657         return remap_pfn_range(vma, vma->vm_start,
658                                page_to_pfn(page) + vma->vm_pgoff,
659                                vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
660 }
661 EXPORT_SYMBOL_GPL(dma_mmap_pages);
662 
663 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
664                 enum dma_data_direction dir, gfp_t gfp)
665 {
666         struct sg_table *sgt;
667         struct page *page;
668 
669         sgt = kmalloc(sizeof(*sgt), gfp);
670         if (!sgt)
671                 return NULL;
672         if (sg_alloc_table(sgt, 1, gfp))
673                 goto out_free_sgt;
674         page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
675         if (!page)
676                 goto out_free_table;
677         sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
678         sg_dma_len(sgt->sgl) = sgt->sgl->length;
679         return sgt;
680 out_free_table:
681         sg_free_table(sgt);
682 out_free_sgt:
683         kfree(sgt);
684         return NULL;
685 }
686 
687 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
688                 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
689 {
690         const struct dma_map_ops *ops = get_dma_ops(dev);
691         struct sg_table *sgt;
692 
693         if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
694                 return NULL;
695         if (WARN_ON_ONCE(gfp & __GFP_COMP))
696                 return NULL;
697 
698         if (ops && ops->alloc_noncontiguous)
699                 sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
700         else
701                 sgt = alloc_single_sgt(dev, size, dir, gfp);
702 
703         if (sgt) {
704                 sgt->nents = 1;
705                 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
706         }
707         return sgt;
708 }
709 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
710 
711 static void free_single_sgt(struct device *dev, size_t size,
712                 struct sg_table *sgt, enum dma_data_direction dir)
713 {
714         __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
715                          dir);
716         sg_free_table(sgt);
717         kfree(sgt);
718 }
719 
720 void dma_free_noncontiguous(struct device *dev, size_t size,
721                 struct sg_table *sgt, enum dma_data_direction dir)
722 {
723         const struct dma_map_ops *ops = get_dma_ops(dev);
724 
725         debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
726         if (ops && ops->free_noncontiguous)
727                 ops->free_noncontiguous(dev, size, sgt, dir);
728         else
729                 free_single_sgt(dev, size, sgt, dir);
730 }
731 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
732 
733 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
734                 struct sg_table *sgt)
735 {
736         const struct dma_map_ops *ops = get_dma_ops(dev);
737         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
738 
739         if (ops && ops->alloc_noncontiguous)
740                 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
741         return page_address(sg_page(sgt->sgl));
742 }
743 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
744 
745 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
746 {
747         const struct dma_map_ops *ops = get_dma_ops(dev);
748 
749         if (ops && ops->alloc_noncontiguous)
750                 vunmap(vaddr);
751 }
752 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
753 
754 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
755                 size_t size, struct sg_table *sgt)
756 {
757         const struct dma_map_ops *ops = get_dma_ops(dev);
758 
759         if (ops && ops->alloc_noncontiguous) {
760                 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
761 
762                 if (vma->vm_pgoff >= count ||
763                     vma_pages(vma) > count - vma->vm_pgoff)
764                         return -ENXIO;
765                 return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
766         }
767         return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
768 }
769 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
770 
771 static int dma_supported(struct device *dev, u64 mask)
772 {
773         const struct dma_map_ops *ops = get_dma_ops(dev);
774 
775         /*
776          * ->dma_supported sets the bypass flag, so we must always call
777          * into the method here unless the device is truly direct mapped.
778          */
779         if (!ops)
780                 return dma_direct_supported(dev, mask);
781         if (!ops->dma_supported)
782                 return 1;
783         return ops->dma_supported(dev, mask);
784 }
785 
786 bool dma_pci_p2pdma_supported(struct device *dev)
787 {
788         const struct dma_map_ops *ops = get_dma_ops(dev);
789 
790         /* if ops is not set, dma direct will be used which supports P2PDMA */
791         if (!ops)
792                 return true;
793 
794         /*
795          * Note: dma_ops_bypass is not checked here because P2PDMA should
796          * not be used with dma mapping ops that do not have support even
797          * if the specific device is bypassing them.
798          */
799 
800         return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
801 }
802 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
803 
804 int dma_set_mask(struct device *dev, u64 mask)
805 {
806         /*
807          * Truncate the mask to the actually supported dma_addr_t width to
808          * avoid generating unsupportable addresses.
809          */
810         mask = (dma_addr_t)mask;
811 
812         if (!dev->dma_mask || !dma_supported(dev, mask))
813                 return -EIO;
814 
815         arch_dma_set_mask(dev, mask);
816         *dev->dma_mask = mask;
817         dma_setup_need_sync(dev);
818 
819         return 0;
820 }
821 EXPORT_SYMBOL(dma_set_mask);
822 
823 int dma_set_coherent_mask(struct device *dev, u64 mask)
824 {
825         /*
826          * Truncate the mask to the actually supported dma_addr_t width to
827          * avoid generating unsupportable addresses.
828          */
829         mask = (dma_addr_t)mask;
830 
831         if (!dma_supported(dev, mask))
832                 return -EIO;
833 
834         dev->coherent_dma_mask = mask;
835         return 0;
836 }
837 EXPORT_SYMBOL(dma_set_coherent_mask);
838 
839 /**
840  * dma_addressing_limited - return if the device is addressing limited
841  * @dev:        device to check
842  *
843  * Return %true if the devices DMA mask is too small to address all memory in
844  * the system, else %false.  Lack of addressing bits is the prime reason for
845  * bounce buffering, but might not be the only one.
846  */
847 bool dma_addressing_limited(struct device *dev)
848 {
849         const struct dma_map_ops *ops = get_dma_ops(dev);
850 
851         if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
852                          dma_get_required_mask(dev))
853                 return true;
854 
855         if (unlikely(ops))
856                 return false;
857         return !dma_direct_all_ram_mapped(dev);
858 }
859 EXPORT_SYMBOL_GPL(dma_addressing_limited);
860 
861 size_t dma_max_mapping_size(struct device *dev)
862 {
863         const struct dma_map_ops *ops = get_dma_ops(dev);
864         size_t size = SIZE_MAX;
865 
866         if (dma_map_direct(dev, ops))
867                 size = dma_direct_max_mapping_size(dev);
868         else if (ops && ops->max_mapping_size)
869                 size = ops->max_mapping_size(dev);
870 
871         return size;
872 }
873 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
874 
875 size_t dma_opt_mapping_size(struct device *dev)
876 {
877         const struct dma_map_ops *ops = get_dma_ops(dev);
878         size_t size = SIZE_MAX;
879 
880         if (ops && ops->opt_mapping_size)
881                 size = ops->opt_mapping_size();
882 
883         return min(dma_max_mapping_size(dev), size);
884 }
885 EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
886 
887 unsigned long dma_get_merge_boundary(struct device *dev)
888 {
889         const struct dma_map_ops *ops = get_dma_ops(dev);
890 
891         if (!ops || !ops->get_merge_boundary)
892                 return 0;       /* can't merge */
893 
894         return ops->get_merge_boundary(dev);
895 }
896 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
897 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php