1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct perf_cpu_context *cpuctx; 268 struct event_function_struct efs = { 269 .event = event, 270 .func = func, 271 .data = data, 272 }; 273 274 if (!event->parent) { 275 /* 276 * If this is a !child event, we must hold ctx::mutex to 277 * stabilize the event->ctx relation. See 278 * perf_event_ctx_lock(). 279 */ 280 lockdep_assert_held(&ctx->mutex); 281 } 282 283 if (!task) { 284 cpu_function_call(event->cpu, event_function, &efs); 285 return; 286 } 287 288 if (task == TASK_TOMBSTONE) 289 return; 290 291 again: 292 if (!task_function_call(task, event_function, &efs)) 293 return; 294 295 local_irq_disable(); 296 cpuctx = this_cpu_ptr(&perf_cpu_context); 297 perf_ctx_lock(cpuctx, ctx); 298 /* 299 * Reload the task pointer, it might have been changed by 300 * a concurrent perf_event_context_sched_out(). 301 */ 302 task = ctx->task; 303 if (task == TASK_TOMBSTONE) 304 goto unlock; 305 if (ctx->is_active) { 306 perf_ctx_unlock(cpuctx, ctx); 307 local_irq_enable(); 308 goto again; 309 } 310 func(event, NULL, ctx, data); 311 unlock: 312 perf_ctx_unlock(cpuctx, ctx); 313 local_irq_enable(); 314 } 315 316 /* 317 * Similar to event_function_call() + event_function(), but hard assumes IRQs 318 * are already disabled and we're on the right CPU. 319 */ 320 static void event_function_local(struct perf_event *event, event_f func, void *data) 321 { 322 struct perf_event_context *ctx = event->ctx; 323 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 324 struct task_struct *task = READ_ONCE(ctx->task); 325 struct perf_event_context *task_ctx = NULL; 326 327 lockdep_assert_irqs_disabled(); 328 329 if (task) { 330 if (task == TASK_TOMBSTONE) 331 return; 332 333 task_ctx = ctx; 334 } 335 336 perf_ctx_lock(cpuctx, task_ctx); 337 338 task = ctx->task; 339 if (task == TASK_TOMBSTONE) 340 goto unlock; 341 342 if (task) { 343 /* 344 * We must be either inactive or active and the right task, 345 * otherwise we're screwed, since we cannot IPI to somewhere 346 * else. 347 */ 348 if (ctx->is_active) { 349 if (WARN_ON_ONCE(task != current)) 350 goto unlock; 351 352 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 353 goto unlock; 354 } 355 } else { 356 WARN_ON_ONCE(&cpuctx->ctx != ctx); 357 } 358 359 func(event, cpuctx, ctx, data); 360 unlock: 361 perf_ctx_unlock(cpuctx, task_ctx); 362 } 363 364 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 365 PERF_FLAG_FD_OUTPUT |\ 366 PERF_FLAG_PID_CGROUP |\ 367 PERF_FLAG_FD_CLOEXEC) 368 369 /* 370 * branch priv levels that need permission checks 371 */ 372 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 373 (PERF_SAMPLE_BRANCH_KERNEL |\ 374 PERF_SAMPLE_BRANCH_HV) 375 376 enum event_type_t { 377 EVENT_FLEXIBLE = 0x1, 378 EVENT_PINNED = 0x2, 379 EVENT_TIME = 0x4, 380 /* see ctx_resched() for details */ 381 EVENT_CPU = 0x8, 382 EVENT_CGROUP = 0x10, 383 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 384 }; 385 386 /* 387 * perf_sched_events : >0 events exist 388 */ 389 390 static void perf_sched_delayed(struct work_struct *work); 391 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 392 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 393 static DEFINE_MUTEX(perf_sched_mutex); 394 static atomic_t perf_sched_count; 395 396 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 397 398 static atomic_t nr_mmap_events __read_mostly; 399 static atomic_t nr_comm_events __read_mostly; 400 static atomic_t nr_namespaces_events __read_mostly; 401 static atomic_t nr_task_events __read_mostly; 402 static atomic_t nr_freq_events __read_mostly; 403 static atomic_t nr_switch_events __read_mostly; 404 static atomic_t nr_ksymbol_events __read_mostly; 405 static atomic_t nr_bpf_events __read_mostly; 406 static atomic_t nr_cgroup_events __read_mostly; 407 static atomic_t nr_text_poke_events __read_mostly; 408 static atomic_t nr_build_id_events __read_mostly; 409 410 static LIST_HEAD(pmus); 411 static DEFINE_MUTEX(pmus_lock); 412 static struct srcu_struct pmus_srcu; 413 static cpumask_var_t perf_online_mask; 414 static struct kmem_cache *perf_event_cache; 415 416 /* 417 * perf event paranoia level: 418 * -1 - not paranoid at all 419 * 0 - disallow raw tracepoint access for unpriv 420 * 1 - disallow cpu events for unpriv 421 * 2 - disallow kernel profiling for unpriv 422 */ 423 int sysctl_perf_event_paranoid __read_mostly = 2; 424 425 /* Minimum for 512 kiB + 1 user control page */ 426 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 427 428 /* 429 * max perf event sample rate 430 */ 431 #define DEFAULT_MAX_SAMPLE_RATE 100000 432 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 433 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 434 435 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 436 437 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 438 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 439 440 static int perf_sample_allowed_ns __read_mostly = 441 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 442 443 static void update_perf_cpu_limits(void) 444 { 445 u64 tmp = perf_sample_period_ns; 446 447 tmp *= sysctl_perf_cpu_time_max_percent; 448 tmp = div_u64(tmp, 100); 449 if (!tmp) 450 tmp = 1; 451 452 WRITE_ONCE(perf_sample_allowed_ns, tmp); 453 } 454 455 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 456 457 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, 458 void *buffer, size_t *lenp, loff_t *ppos) 459 { 460 int ret; 461 int perf_cpu = sysctl_perf_cpu_time_max_percent; 462 /* 463 * If throttling is disabled don't allow the write: 464 */ 465 if (write && (perf_cpu == 100 || perf_cpu == 0)) 466 return -EINVAL; 467 468 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 469 if (ret || !write) 470 return ret; 471 472 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 473 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 474 update_perf_cpu_limits(); 475 476 return 0; 477 } 478 479 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 480 481 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, 482 void *buffer, size_t *lenp, loff_t *ppos) 483 { 484 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 485 486 if (ret || !write) 487 return ret; 488 489 if (sysctl_perf_cpu_time_max_percent == 100 || 490 sysctl_perf_cpu_time_max_percent == 0) { 491 printk(KERN_WARNING 492 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 493 WRITE_ONCE(perf_sample_allowed_ns, 0); 494 } else { 495 update_perf_cpu_limits(); 496 } 497 498 return 0; 499 } 500 501 /* 502 * perf samples are done in some very critical code paths (NMIs). 503 * If they take too much CPU time, the system can lock up and not 504 * get any real work done. This will drop the sample rate when 505 * we detect that events are taking too long. 506 */ 507 #define NR_ACCUMULATED_SAMPLES 128 508 static DEFINE_PER_CPU(u64, running_sample_length); 509 510 static u64 __report_avg; 511 static u64 __report_allowed; 512 513 static void perf_duration_warn(struct irq_work *w) 514 { 515 printk_ratelimited(KERN_INFO 516 "perf: interrupt took too long (%lld > %lld), lowering " 517 "kernel.perf_event_max_sample_rate to %d\n", 518 __report_avg, __report_allowed, 519 sysctl_perf_event_sample_rate); 520 } 521 522 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 523 524 void perf_sample_event_took(u64 sample_len_ns) 525 { 526 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 527 u64 running_len; 528 u64 avg_len; 529 u32 max; 530 531 if (max_len == 0) 532 return; 533 534 /* Decay the counter by 1 average sample. */ 535 running_len = __this_cpu_read(running_sample_length); 536 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 537 running_len += sample_len_ns; 538 __this_cpu_write(running_sample_length, running_len); 539 540 /* 541 * Note: this will be biased artificially low until we have 542 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 543 * from having to maintain a count. 544 */ 545 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 546 if (avg_len <= max_len) 547 return; 548 549 __report_avg = avg_len; 550 __report_allowed = max_len; 551 552 /* 553 * Compute a throttle threshold 25% below the current duration. 554 */ 555 avg_len += avg_len / 4; 556 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 557 if (avg_len < max) 558 max /= (u32)avg_len; 559 else 560 max = 1; 561 562 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 563 WRITE_ONCE(max_samples_per_tick, max); 564 565 sysctl_perf_event_sample_rate = max * HZ; 566 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 567 568 if (!irq_work_queue(&perf_duration_work)) { 569 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 570 "kernel.perf_event_max_sample_rate to %d\n", 571 __report_avg, __report_allowed, 572 sysctl_perf_event_sample_rate); 573 } 574 } 575 576 static atomic64_t perf_event_id; 577 578 static void update_context_time(struct perf_event_context *ctx); 579 static u64 perf_event_time(struct perf_event *event); 580 581 void __weak perf_event_print_debug(void) { } 582 583 static inline u64 perf_clock(void) 584 { 585 return local_clock(); 586 } 587 588 static inline u64 perf_event_clock(struct perf_event *event) 589 { 590 return event->clock(); 591 } 592 593 /* 594 * State based event timekeeping... 595 * 596 * The basic idea is to use event->state to determine which (if any) time 597 * fields to increment with the current delta. This means we only need to 598 * update timestamps when we change state or when they are explicitly requested 599 * (read). 600 * 601 * Event groups make things a little more complicated, but not terribly so. The 602 * rules for a group are that if the group leader is OFF the entire group is 603 * OFF, irrespective of what the group member states are. This results in 604 * __perf_effective_state(). 605 * 606 * A further ramification is that when a group leader flips between OFF and 607 * !OFF, we need to update all group member times. 608 * 609 * 610 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 611 * need to make sure the relevant context time is updated before we try and 612 * update our timestamps. 613 */ 614 615 static __always_inline enum perf_event_state 616 __perf_effective_state(struct perf_event *event) 617 { 618 struct perf_event *leader = event->group_leader; 619 620 if (leader->state <= PERF_EVENT_STATE_OFF) 621 return leader->state; 622 623 return event->state; 624 } 625 626 static __always_inline void 627 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 628 { 629 enum perf_event_state state = __perf_effective_state(event); 630 u64 delta = now - event->tstamp; 631 632 *enabled = event->total_time_enabled; 633 if (state >= PERF_EVENT_STATE_INACTIVE) 634 *enabled += delta; 635 636 *running = event->total_time_running; 637 if (state >= PERF_EVENT_STATE_ACTIVE) 638 *running += delta; 639 } 640 641 static void perf_event_update_time(struct perf_event *event) 642 { 643 u64 now = perf_event_time(event); 644 645 __perf_update_times(event, now, &event->total_time_enabled, 646 &event->total_time_running); 647 event->tstamp = now; 648 } 649 650 static void perf_event_update_sibling_time(struct perf_event *leader) 651 { 652 struct perf_event *sibling; 653 654 for_each_sibling_event(sibling, leader) 655 perf_event_update_time(sibling); 656 } 657 658 static void 659 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 660 { 661 if (event->state == state) 662 return; 663 664 perf_event_update_time(event); 665 /* 666 * If a group leader gets enabled/disabled all its siblings 667 * are affected too. 668 */ 669 if ((event->state < 0) ^ (state < 0)) 670 perf_event_update_sibling_time(event); 671 672 WRITE_ONCE(event->state, state); 673 } 674 675 /* 676 * UP store-release, load-acquire 677 */ 678 679 #define __store_release(ptr, val) \ 680 do { \ 681 barrier(); \ 682 WRITE_ONCE(*(ptr), (val)); \ 683 } while (0) 684 685 #define __load_acquire(ptr) \ 686 ({ \ 687 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 688 barrier(); \ 689 ___p; \ 690 }) 691 692 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 693 { 694 struct perf_event_pmu_context *pmu_ctx; 695 696 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 697 if (cgroup && !pmu_ctx->nr_cgroups) 698 continue; 699 perf_pmu_disable(pmu_ctx->pmu); 700 } 701 } 702 703 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 704 { 705 struct perf_event_pmu_context *pmu_ctx; 706 707 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 708 if (cgroup && !pmu_ctx->nr_cgroups) 709 continue; 710 perf_pmu_enable(pmu_ctx->pmu); 711 } 712 } 713 714 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 715 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 716 717 #ifdef CONFIG_CGROUP_PERF 718 719 static inline bool 720 perf_cgroup_match(struct perf_event *event) 721 { 722 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 723 724 /* @event doesn't care about cgroup */ 725 if (!event->cgrp) 726 return true; 727 728 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 729 if (!cpuctx->cgrp) 730 return false; 731 732 /* 733 * Cgroup scoping is recursive. An event enabled for a cgroup is 734 * also enabled for all its descendant cgroups. If @cpuctx's 735 * cgroup is a descendant of @event's (the test covers identity 736 * case), it's a match. 737 */ 738 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 739 event->cgrp->css.cgroup); 740 } 741 742 static inline void perf_detach_cgroup(struct perf_event *event) 743 { 744 css_put(&event->cgrp->css); 745 event->cgrp = NULL; 746 } 747 748 static inline int is_cgroup_event(struct perf_event *event) 749 { 750 return event->cgrp != NULL; 751 } 752 753 static inline u64 perf_cgroup_event_time(struct perf_event *event) 754 { 755 struct perf_cgroup_info *t; 756 757 t = per_cpu_ptr(event->cgrp->info, event->cpu); 758 return t->time; 759 } 760 761 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 762 { 763 struct perf_cgroup_info *t; 764 765 t = per_cpu_ptr(event->cgrp->info, event->cpu); 766 if (!__load_acquire(&t->active)) 767 return t->time; 768 now += READ_ONCE(t->timeoffset); 769 return now; 770 } 771 772 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 773 { 774 if (adv) 775 info->time += now - info->timestamp; 776 info->timestamp = now; 777 /* 778 * see update_context_time() 779 */ 780 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 781 } 782 783 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 784 { 785 struct perf_cgroup *cgrp = cpuctx->cgrp; 786 struct cgroup_subsys_state *css; 787 struct perf_cgroup_info *info; 788 789 if (cgrp) { 790 u64 now = perf_clock(); 791 792 for (css = &cgrp->css; css; css = css->parent) { 793 cgrp = container_of(css, struct perf_cgroup, css); 794 info = this_cpu_ptr(cgrp->info); 795 796 __update_cgrp_time(info, now, true); 797 if (final) 798 __store_release(&info->active, 0); 799 } 800 } 801 } 802 803 static inline void update_cgrp_time_from_event(struct perf_event *event) 804 { 805 struct perf_cgroup_info *info; 806 807 /* 808 * ensure we access cgroup data only when needed and 809 * when we know the cgroup is pinned (css_get) 810 */ 811 if (!is_cgroup_event(event)) 812 return; 813 814 info = this_cpu_ptr(event->cgrp->info); 815 /* 816 * Do not update time when cgroup is not active 817 */ 818 if (info->active) 819 __update_cgrp_time(info, perf_clock(), true); 820 } 821 822 static inline void 823 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 824 { 825 struct perf_event_context *ctx = &cpuctx->ctx; 826 struct perf_cgroup *cgrp = cpuctx->cgrp; 827 struct perf_cgroup_info *info; 828 struct cgroup_subsys_state *css; 829 830 /* 831 * ctx->lock held by caller 832 * ensure we do not access cgroup data 833 * unless we have the cgroup pinned (css_get) 834 */ 835 if (!cgrp) 836 return; 837 838 WARN_ON_ONCE(!ctx->nr_cgroups); 839 840 for (css = &cgrp->css; css; css = css->parent) { 841 cgrp = container_of(css, struct perf_cgroup, css); 842 info = this_cpu_ptr(cgrp->info); 843 __update_cgrp_time(info, ctx->timestamp, false); 844 __store_release(&info->active, 1); 845 } 846 } 847 848 /* 849 * reschedule events based on the cgroup constraint of task. 850 */ 851 static void perf_cgroup_switch(struct task_struct *task) 852 { 853 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 854 struct perf_cgroup *cgrp; 855 856 /* 857 * cpuctx->cgrp is set when the first cgroup event enabled, 858 * and is cleared when the last cgroup event disabled. 859 */ 860 if (READ_ONCE(cpuctx->cgrp) == NULL) 861 return; 862 863 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 864 865 cgrp = perf_cgroup_from_task(task, NULL); 866 if (READ_ONCE(cpuctx->cgrp) == cgrp) 867 return; 868 869 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 870 perf_ctx_disable(&cpuctx->ctx, true); 871 872 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 873 /* 874 * must not be done before ctxswout due 875 * to update_cgrp_time_from_cpuctx() in 876 * ctx_sched_out() 877 */ 878 cpuctx->cgrp = cgrp; 879 /* 880 * set cgrp before ctxsw in to allow 881 * perf_cgroup_set_timestamp() in ctx_sched_in() 882 * to not have to pass task around 883 */ 884 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 885 886 perf_ctx_enable(&cpuctx->ctx, true); 887 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 888 } 889 890 static int perf_cgroup_ensure_storage(struct perf_event *event, 891 struct cgroup_subsys_state *css) 892 { 893 struct perf_cpu_context *cpuctx; 894 struct perf_event **storage; 895 int cpu, heap_size, ret = 0; 896 897 /* 898 * Allow storage to have sufficient space for an iterator for each 899 * possibly nested cgroup plus an iterator for events with no cgroup. 900 */ 901 for (heap_size = 1; css; css = css->parent) 902 heap_size++; 903 904 for_each_possible_cpu(cpu) { 905 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 906 if (heap_size <= cpuctx->heap_size) 907 continue; 908 909 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 910 GFP_KERNEL, cpu_to_node(cpu)); 911 if (!storage) { 912 ret = -ENOMEM; 913 break; 914 } 915 916 raw_spin_lock_irq(&cpuctx->ctx.lock); 917 if (cpuctx->heap_size < heap_size) { 918 swap(cpuctx->heap, storage); 919 if (storage == cpuctx->heap_default) 920 storage = NULL; 921 cpuctx->heap_size = heap_size; 922 } 923 raw_spin_unlock_irq(&cpuctx->ctx.lock); 924 925 kfree(storage); 926 } 927 928 return ret; 929 } 930 931 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 932 struct perf_event_attr *attr, 933 struct perf_event *group_leader) 934 { 935 struct perf_cgroup *cgrp; 936 struct cgroup_subsys_state *css; 937 struct fd f = fdget(fd); 938 int ret = 0; 939 940 if (!f.file) 941 return -EBADF; 942 943 css = css_tryget_online_from_dir(f.file->f_path.dentry, 944 &perf_event_cgrp_subsys); 945 if (IS_ERR(css)) { 946 ret = PTR_ERR(css); 947 goto out; 948 } 949 950 ret = perf_cgroup_ensure_storage(event, css); 951 if (ret) 952 goto out; 953 954 cgrp = container_of(css, struct perf_cgroup, css); 955 event->cgrp = cgrp; 956 957 /* 958 * all events in a group must monitor 959 * the same cgroup because a task belongs 960 * to only one perf cgroup at a time 961 */ 962 if (group_leader && group_leader->cgrp != cgrp) { 963 perf_detach_cgroup(event); 964 ret = -EINVAL; 965 } 966 out: 967 fdput(f); 968 return ret; 969 } 970 971 static inline void 972 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 973 { 974 struct perf_cpu_context *cpuctx; 975 976 if (!is_cgroup_event(event)) 977 return; 978 979 event->pmu_ctx->nr_cgroups++; 980 981 /* 982 * Because cgroup events are always per-cpu events, 983 * @ctx == &cpuctx->ctx. 984 */ 985 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 986 987 if (ctx->nr_cgroups++) 988 return; 989 990 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 991 } 992 993 static inline void 994 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 995 { 996 struct perf_cpu_context *cpuctx; 997 998 if (!is_cgroup_event(event)) 999 return; 1000 1001 event->pmu_ctx->nr_cgroups--; 1002 1003 /* 1004 * Because cgroup events are always per-cpu events, 1005 * @ctx == &cpuctx->ctx. 1006 */ 1007 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1008 1009 if (--ctx->nr_cgroups) 1010 return; 1011 1012 cpuctx->cgrp = NULL; 1013 } 1014 1015 #else /* !CONFIG_CGROUP_PERF */ 1016 1017 static inline bool 1018 perf_cgroup_match(struct perf_event *event) 1019 { 1020 return true; 1021 } 1022 1023 static inline void perf_detach_cgroup(struct perf_event *event) 1024 {} 1025 1026 static inline int is_cgroup_event(struct perf_event *event) 1027 { 1028 return 0; 1029 } 1030 1031 static inline void update_cgrp_time_from_event(struct perf_event *event) 1032 { 1033 } 1034 1035 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1036 bool final) 1037 { 1038 } 1039 1040 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1041 struct perf_event_attr *attr, 1042 struct perf_event *group_leader) 1043 { 1044 return -EINVAL; 1045 } 1046 1047 static inline void 1048 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1049 { 1050 } 1051 1052 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1053 { 1054 return 0; 1055 } 1056 1057 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1058 { 1059 return 0; 1060 } 1061 1062 static inline void 1063 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1064 { 1065 } 1066 1067 static inline void 1068 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1069 { 1070 } 1071 1072 static void perf_cgroup_switch(struct task_struct *task) 1073 { 1074 } 1075 #endif 1076 1077 /* 1078 * set default to be dependent on timer tick just 1079 * like original code 1080 */ 1081 #define PERF_CPU_HRTIMER (1000 / HZ) 1082 /* 1083 * function must be called with interrupts disabled 1084 */ 1085 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1086 { 1087 struct perf_cpu_pmu_context *cpc; 1088 bool rotations; 1089 1090 lockdep_assert_irqs_disabled(); 1091 1092 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1093 rotations = perf_rotate_context(cpc); 1094 1095 raw_spin_lock(&cpc->hrtimer_lock); 1096 if (rotations) 1097 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1098 else 1099 cpc->hrtimer_active = 0; 1100 raw_spin_unlock(&cpc->hrtimer_lock); 1101 1102 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1103 } 1104 1105 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1106 { 1107 struct hrtimer *timer = &cpc->hrtimer; 1108 struct pmu *pmu = cpc->epc.pmu; 1109 u64 interval; 1110 1111 /* 1112 * check default is sane, if not set then force to 1113 * default interval (1/tick) 1114 */ 1115 interval = pmu->hrtimer_interval_ms; 1116 if (interval < 1) 1117 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1118 1119 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1120 1121 raw_spin_lock_init(&cpc->hrtimer_lock); 1122 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1123 timer->function = perf_mux_hrtimer_handler; 1124 } 1125 1126 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1127 { 1128 struct hrtimer *timer = &cpc->hrtimer; 1129 unsigned long flags; 1130 1131 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1132 if (!cpc->hrtimer_active) { 1133 cpc->hrtimer_active = 1; 1134 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1135 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1136 } 1137 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1138 1139 return 0; 1140 } 1141 1142 static int perf_mux_hrtimer_restart_ipi(void *arg) 1143 { 1144 return perf_mux_hrtimer_restart(arg); 1145 } 1146 1147 void perf_pmu_disable(struct pmu *pmu) 1148 { 1149 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1150 if (!(*count)++) 1151 pmu->pmu_disable(pmu); 1152 } 1153 1154 void perf_pmu_enable(struct pmu *pmu) 1155 { 1156 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1157 if (!--(*count)) 1158 pmu->pmu_enable(pmu); 1159 } 1160 1161 static void perf_assert_pmu_disabled(struct pmu *pmu) 1162 { 1163 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1164 } 1165 1166 static void get_ctx(struct perf_event_context *ctx) 1167 { 1168 refcount_inc(&ctx->refcount); 1169 } 1170 1171 static void *alloc_task_ctx_data(struct pmu *pmu) 1172 { 1173 if (pmu->task_ctx_cache) 1174 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1175 1176 return NULL; 1177 } 1178 1179 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1180 { 1181 if (pmu->task_ctx_cache && task_ctx_data) 1182 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1183 } 1184 1185 static void free_ctx(struct rcu_head *head) 1186 { 1187 struct perf_event_context *ctx; 1188 1189 ctx = container_of(head, struct perf_event_context, rcu_head); 1190 kfree(ctx); 1191 } 1192 1193 static void put_ctx(struct perf_event_context *ctx) 1194 { 1195 if (refcount_dec_and_test(&ctx->refcount)) { 1196 if (ctx->parent_ctx) 1197 put_ctx(ctx->parent_ctx); 1198 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1199 put_task_struct(ctx->task); 1200 call_rcu(&ctx->rcu_head, free_ctx); 1201 } 1202 } 1203 1204 /* 1205 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1206 * perf_pmu_migrate_context() we need some magic. 1207 * 1208 * Those places that change perf_event::ctx will hold both 1209 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1210 * 1211 * Lock ordering is by mutex address. There are two other sites where 1212 * perf_event_context::mutex nests and those are: 1213 * 1214 * - perf_event_exit_task_context() [ child , 0 ] 1215 * perf_event_exit_event() 1216 * put_event() [ parent, 1 ] 1217 * 1218 * - perf_event_init_context() [ parent, 0 ] 1219 * inherit_task_group() 1220 * inherit_group() 1221 * inherit_event() 1222 * perf_event_alloc() 1223 * perf_init_event() 1224 * perf_try_init_event() [ child , 1 ] 1225 * 1226 * While it appears there is an obvious deadlock here -- the parent and child 1227 * nesting levels are inverted between the two. This is in fact safe because 1228 * life-time rules separate them. That is an exiting task cannot fork, and a 1229 * spawning task cannot (yet) exit. 1230 * 1231 * But remember that these are parent<->child context relations, and 1232 * migration does not affect children, therefore these two orderings should not 1233 * interact. 1234 * 1235 * The change in perf_event::ctx does not affect children (as claimed above) 1236 * because the sys_perf_event_open() case will install a new event and break 1237 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1238 * concerned with cpuctx and that doesn't have children. 1239 * 1240 * The places that change perf_event::ctx will issue: 1241 * 1242 * perf_remove_from_context(); 1243 * synchronize_rcu(); 1244 * perf_install_in_context(); 1245 * 1246 * to affect the change. The remove_from_context() + synchronize_rcu() should 1247 * quiesce the event, after which we can install it in the new location. This 1248 * means that only external vectors (perf_fops, prctl) can perturb the event 1249 * while in transit. Therefore all such accessors should also acquire 1250 * perf_event_context::mutex to serialize against this. 1251 * 1252 * However; because event->ctx can change while we're waiting to acquire 1253 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1254 * function. 1255 * 1256 * Lock order: 1257 * exec_update_lock 1258 * task_struct::perf_event_mutex 1259 * perf_event_context::mutex 1260 * perf_event::child_mutex; 1261 * perf_event_context::lock 1262 * mmap_lock 1263 * perf_event::mmap_mutex 1264 * perf_buffer::aux_mutex 1265 * perf_addr_filters_head::lock 1266 * 1267 * cpu_hotplug_lock 1268 * pmus_lock 1269 * cpuctx->mutex / perf_event_context::mutex 1270 */ 1271 static struct perf_event_context * 1272 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1273 { 1274 struct perf_event_context *ctx; 1275 1276 again: 1277 rcu_read_lock(); 1278 ctx = READ_ONCE(event->ctx); 1279 if (!refcount_inc_not_zero(&ctx->refcount)) { 1280 rcu_read_unlock(); 1281 goto again; 1282 } 1283 rcu_read_unlock(); 1284 1285 mutex_lock_nested(&ctx->mutex, nesting); 1286 if (event->ctx != ctx) { 1287 mutex_unlock(&ctx->mutex); 1288 put_ctx(ctx); 1289 goto again; 1290 } 1291 1292 return ctx; 1293 } 1294 1295 static inline struct perf_event_context * 1296 perf_event_ctx_lock(struct perf_event *event) 1297 { 1298 return perf_event_ctx_lock_nested(event, 0); 1299 } 1300 1301 static void perf_event_ctx_unlock(struct perf_event *event, 1302 struct perf_event_context *ctx) 1303 { 1304 mutex_unlock(&ctx->mutex); 1305 put_ctx(ctx); 1306 } 1307 1308 /* 1309 * This must be done under the ctx->lock, such as to serialize against 1310 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1311 * calling scheduler related locks and ctx->lock nests inside those. 1312 */ 1313 static __must_check struct perf_event_context * 1314 unclone_ctx(struct perf_event_context *ctx) 1315 { 1316 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1317 1318 lockdep_assert_held(&ctx->lock); 1319 1320 if (parent_ctx) 1321 ctx->parent_ctx = NULL; 1322 ctx->generation++; 1323 1324 return parent_ctx; 1325 } 1326 1327 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1328 enum pid_type type) 1329 { 1330 u32 nr; 1331 /* 1332 * only top level events have the pid namespace they were created in 1333 */ 1334 if (event->parent) 1335 event = event->parent; 1336 1337 nr = __task_pid_nr_ns(p, type, event->ns); 1338 /* avoid -1 if it is idle thread or runs in another ns */ 1339 if (!nr && !pid_alive(p)) 1340 nr = -1; 1341 return nr; 1342 } 1343 1344 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1345 { 1346 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1347 } 1348 1349 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1350 { 1351 return perf_event_pid_type(event, p, PIDTYPE_PID); 1352 } 1353 1354 /* 1355 * If we inherit events we want to return the parent event id 1356 * to userspace. 1357 */ 1358 static u64 primary_event_id(struct perf_event *event) 1359 { 1360 u64 id = event->id; 1361 1362 if (event->parent) 1363 id = event->parent->id; 1364 1365 return id; 1366 } 1367 1368 /* 1369 * Get the perf_event_context for a task and lock it. 1370 * 1371 * This has to cope with the fact that until it is locked, 1372 * the context could get moved to another task. 1373 */ 1374 static struct perf_event_context * 1375 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1376 { 1377 struct perf_event_context *ctx; 1378 1379 retry: 1380 /* 1381 * One of the few rules of preemptible RCU is that one cannot do 1382 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1383 * part of the read side critical section was irqs-enabled -- see 1384 * rcu_read_unlock_special(). 1385 * 1386 * Since ctx->lock nests under rq->lock we must ensure the entire read 1387 * side critical section has interrupts disabled. 1388 */ 1389 local_irq_save(*flags); 1390 rcu_read_lock(); 1391 ctx = rcu_dereference(task->perf_event_ctxp); 1392 if (ctx) { 1393 /* 1394 * If this context is a clone of another, it might 1395 * get swapped for another underneath us by 1396 * perf_event_task_sched_out, though the 1397 * rcu_read_lock() protects us from any context 1398 * getting freed. Lock the context and check if it 1399 * got swapped before we could get the lock, and retry 1400 * if so. If we locked the right context, then it 1401 * can't get swapped on us any more. 1402 */ 1403 raw_spin_lock(&ctx->lock); 1404 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1405 raw_spin_unlock(&ctx->lock); 1406 rcu_read_unlock(); 1407 local_irq_restore(*flags); 1408 goto retry; 1409 } 1410 1411 if (ctx->task == TASK_TOMBSTONE || 1412 !refcount_inc_not_zero(&ctx->refcount)) { 1413 raw_spin_unlock(&ctx->lock); 1414 ctx = NULL; 1415 } else { 1416 WARN_ON_ONCE(ctx->task != task); 1417 } 1418 } 1419 rcu_read_unlock(); 1420 if (!ctx) 1421 local_irq_restore(*flags); 1422 return ctx; 1423 } 1424 1425 /* 1426 * Get the context for a task and increment its pin_count so it 1427 * can't get swapped to another task. This also increments its 1428 * reference count so that the context can't get freed. 1429 */ 1430 static struct perf_event_context * 1431 perf_pin_task_context(struct task_struct *task) 1432 { 1433 struct perf_event_context *ctx; 1434 unsigned long flags; 1435 1436 ctx = perf_lock_task_context(task, &flags); 1437 if (ctx) { 1438 ++ctx->pin_count; 1439 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1440 } 1441 return ctx; 1442 } 1443 1444 static void perf_unpin_context(struct perf_event_context *ctx) 1445 { 1446 unsigned long flags; 1447 1448 raw_spin_lock_irqsave(&ctx->lock, flags); 1449 --ctx->pin_count; 1450 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1451 } 1452 1453 /* 1454 * Update the record of the current time in a context. 1455 */ 1456 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1457 { 1458 u64 now = perf_clock(); 1459 1460 lockdep_assert_held(&ctx->lock); 1461 1462 if (adv) 1463 ctx->time += now - ctx->timestamp; 1464 ctx->timestamp = now; 1465 1466 /* 1467 * The above: time' = time + (now - timestamp), can be re-arranged 1468 * into: time` = now + (time - timestamp), which gives a single value 1469 * offset to compute future time without locks on. 1470 * 1471 * See perf_event_time_now(), which can be used from NMI context where 1472 * it's (obviously) not possible to acquire ctx->lock in order to read 1473 * both the above values in a consistent manner. 1474 */ 1475 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1476 } 1477 1478 static void update_context_time(struct perf_event_context *ctx) 1479 { 1480 __update_context_time(ctx, true); 1481 } 1482 1483 static u64 perf_event_time(struct perf_event *event) 1484 { 1485 struct perf_event_context *ctx = event->ctx; 1486 1487 if (unlikely(!ctx)) 1488 return 0; 1489 1490 if (is_cgroup_event(event)) 1491 return perf_cgroup_event_time(event); 1492 1493 return ctx->time; 1494 } 1495 1496 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1497 { 1498 struct perf_event_context *ctx = event->ctx; 1499 1500 if (unlikely(!ctx)) 1501 return 0; 1502 1503 if (is_cgroup_event(event)) 1504 return perf_cgroup_event_time_now(event, now); 1505 1506 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1507 return ctx->time; 1508 1509 now += READ_ONCE(ctx->timeoffset); 1510 return now; 1511 } 1512 1513 static enum event_type_t get_event_type(struct perf_event *event) 1514 { 1515 struct perf_event_context *ctx = event->ctx; 1516 enum event_type_t event_type; 1517 1518 lockdep_assert_held(&ctx->lock); 1519 1520 /* 1521 * It's 'group type', really, because if our group leader is 1522 * pinned, so are we. 1523 */ 1524 if (event->group_leader != event) 1525 event = event->group_leader; 1526 1527 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1528 if (!ctx->task) 1529 event_type |= EVENT_CPU; 1530 1531 return event_type; 1532 } 1533 1534 /* 1535 * Helper function to initialize event group nodes. 1536 */ 1537 static void init_event_group(struct perf_event *event) 1538 { 1539 RB_CLEAR_NODE(&event->group_node); 1540 event->group_index = 0; 1541 } 1542 1543 /* 1544 * Extract pinned or flexible groups from the context 1545 * based on event attrs bits. 1546 */ 1547 static struct perf_event_groups * 1548 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1549 { 1550 if (event->attr.pinned) 1551 return &ctx->pinned_groups; 1552 else 1553 return &ctx->flexible_groups; 1554 } 1555 1556 /* 1557 * Helper function to initializes perf_event_group trees. 1558 */ 1559 static void perf_event_groups_init(struct perf_event_groups *groups) 1560 { 1561 groups->tree = RB_ROOT; 1562 groups->index = 0; 1563 } 1564 1565 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1566 { 1567 struct cgroup *cgroup = NULL; 1568 1569 #ifdef CONFIG_CGROUP_PERF 1570 if (event->cgrp) 1571 cgroup = event->cgrp->css.cgroup; 1572 #endif 1573 1574 return cgroup; 1575 } 1576 1577 /* 1578 * Compare function for event groups; 1579 * 1580 * Implements complex key that first sorts by CPU and then by virtual index 1581 * which provides ordering when rotating groups for the same CPU. 1582 */ 1583 static __always_inline int 1584 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1585 const struct cgroup *left_cgroup, const u64 left_group_index, 1586 const struct perf_event *right) 1587 { 1588 if (left_cpu < right->cpu) 1589 return -1; 1590 if (left_cpu > right->cpu) 1591 return 1; 1592 1593 if (left_pmu) { 1594 if (left_pmu < right->pmu_ctx->pmu) 1595 return -1; 1596 if (left_pmu > right->pmu_ctx->pmu) 1597 return 1; 1598 } 1599 1600 #ifdef CONFIG_CGROUP_PERF 1601 { 1602 const struct cgroup *right_cgroup = event_cgroup(right); 1603 1604 if (left_cgroup != right_cgroup) { 1605 if (!left_cgroup) { 1606 /* 1607 * Left has no cgroup but right does, no 1608 * cgroups come first. 1609 */ 1610 return -1; 1611 } 1612 if (!right_cgroup) { 1613 /* 1614 * Right has no cgroup but left does, no 1615 * cgroups come first. 1616 */ 1617 return 1; 1618 } 1619 /* Two dissimilar cgroups, order by id. */ 1620 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1621 return -1; 1622 1623 return 1; 1624 } 1625 } 1626 #endif 1627 1628 if (left_group_index < right->group_index) 1629 return -1; 1630 if (left_group_index > right->group_index) 1631 return 1; 1632 1633 return 0; 1634 } 1635 1636 #define __node_2_pe(node) \ 1637 rb_entry((node), struct perf_event, group_node) 1638 1639 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1640 { 1641 struct perf_event *e = __node_2_pe(a); 1642 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1643 e->group_index, __node_2_pe(b)) < 0; 1644 } 1645 1646 struct __group_key { 1647 int cpu; 1648 struct pmu *pmu; 1649 struct cgroup *cgroup; 1650 }; 1651 1652 static inline int __group_cmp(const void *key, const struct rb_node *node) 1653 { 1654 const struct __group_key *a = key; 1655 const struct perf_event *b = __node_2_pe(node); 1656 1657 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1658 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1659 } 1660 1661 static inline int 1662 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1663 { 1664 const struct __group_key *a = key; 1665 const struct perf_event *b = __node_2_pe(node); 1666 1667 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1668 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1669 b->group_index, b); 1670 } 1671 1672 /* 1673 * Insert @event into @groups' tree; using 1674 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1675 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1676 */ 1677 static void 1678 perf_event_groups_insert(struct perf_event_groups *groups, 1679 struct perf_event *event) 1680 { 1681 event->group_index = ++groups->index; 1682 1683 rb_add(&event->group_node, &groups->tree, __group_less); 1684 } 1685 1686 /* 1687 * Helper function to insert event into the pinned or flexible groups. 1688 */ 1689 static void 1690 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1691 { 1692 struct perf_event_groups *groups; 1693 1694 groups = get_event_groups(event, ctx); 1695 perf_event_groups_insert(groups, event); 1696 } 1697 1698 /* 1699 * Delete a group from a tree. 1700 */ 1701 static void 1702 perf_event_groups_delete(struct perf_event_groups *groups, 1703 struct perf_event *event) 1704 { 1705 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1706 RB_EMPTY_ROOT(&groups->tree)); 1707 1708 rb_erase(&event->group_node, &groups->tree); 1709 init_event_group(event); 1710 } 1711 1712 /* 1713 * Helper function to delete event from its groups. 1714 */ 1715 static void 1716 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1717 { 1718 struct perf_event_groups *groups; 1719 1720 groups = get_event_groups(event, ctx); 1721 perf_event_groups_delete(groups, event); 1722 } 1723 1724 /* 1725 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1726 */ 1727 static struct perf_event * 1728 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1729 struct pmu *pmu, struct cgroup *cgrp) 1730 { 1731 struct __group_key key = { 1732 .cpu = cpu, 1733 .pmu = pmu, 1734 .cgroup = cgrp, 1735 }; 1736 struct rb_node *node; 1737 1738 node = rb_find_first(&key, &groups->tree, __group_cmp); 1739 if (node) 1740 return __node_2_pe(node); 1741 1742 return NULL; 1743 } 1744 1745 static struct perf_event * 1746 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1747 { 1748 struct __group_key key = { 1749 .cpu = event->cpu, 1750 .pmu = pmu, 1751 .cgroup = event_cgroup(event), 1752 }; 1753 struct rb_node *next; 1754 1755 next = rb_next_match(&key, &event->group_node, __group_cmp); 1756 if (next) 1757 return __node_2_pe(next); 1758 1759 return NULL; 1760 } 1761 1762 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1763 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1764 event; event = perf_event_groups_next(event, pmu)) 1765 1766 /* 1767 * Iterate through the whole groups tree. 1768 */ 1769 #define perf_event_groups_for_each(event, groups) \ 1770 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1771 typeof(*event), group_node); event; \ 1772 event = rb_entry_safe(rb_next(&event->group_node), \ 1773 typeof(*event), group_node)) 1774 1775 /* 1776 * Add an event from the lists for its context. 1777 * Must be called with ctx->mutex and ctx->lock held. 1778 */ 1779 static void 1780 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1781 { 1782 lockdep_assert_held(&ctx->lock); 1783 1784 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1785 event->attach_state |= PERF_ATTACH_CONTEXT; 1786 1787 event->tstamp = perf_event_time(event); 1788 1789 /* 1790 * If we're a stand alone event or group leader, we go to the context 1791 * list, group events are kept attached to the group so that 1792 * perf_group_detach can, at all times, locate all siblings. 1793 */ 1794 if (event->group_leader == event) { 1795 event->group_caps = event->event_caps; 1796 add_event_to_groups(event, ctx); 1797 } 1798 1799 list_add_rcu(&event->event_entry, &ctx->event_list); 1800 ctx->nr_events++; 1801 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1802 ctx->nr_user++; 1803 if (event->attr.inherit_stat) 1804 ctx->nr_stat++; 1805 1806 if (event->state > PERF_EVENT_STATE_OFF) 1807 perf_cgroup_event_enable(event, ctx); 1808 1809 ctx->generation++; 1810 event->pmu_ctx->nr_events++; 1811 } 1812 1813 /* 1814 * Initialize event state based on the perf_event_attr::disabled. 1815 */ 1816 static inline void perf_event__state_init(struct perf_event *event) 1817 { 1818 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1819 PERF_EVENT_STATE_INACTIVE; 1820 } 1821 1822 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1823 { 1824 int entry = sizeof(u64); /* value */ 1825 int size = 0; 1826 int nr = 1; 1827 1828 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1829 size += sizeof(u64); 1830 1831 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1832 size += sizeof(u64); 1833 1834 if (read_format & PERF_FORMAT_ID) 1835 entry += sizeof(u64); 1836 1837 if (read_format & PERF_FORMAT_LOST) 1838 entry += sizeof(u64); 1839 1840 if (read_format & PERF_FORMAT_GROUP) { 1841 nr += nr_siblings; 1842 size += sizeof(u64); 1843 } 1844 1845 /* 1846 * Since perf_event_validate_size() limits this to 16k and inhibits 1847 * adding more siblings, this will never overflow. 1848 */ 1849 return size + nr * entry; 1850 } 1851 1852 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1853 { 1854 struct perf_sample_data *data; 1855 u16 size = 0; 1856 1857 if (sample_type & PERF_SAMPLE_IP) 1858 size += sizeof(data->ip); 1859 1860 if (sample_type & PERF_SAMPLE_ADDR) 1861 size += sizeof(data->addr); 1862 1863 if (sample_type & PERF_SAMPLE_PERIOD) 1864 size += sizeof(data->period); 1865 1866 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1867 size += sizeof(data->weight.full); 1868 1869 if (sample_type & PERF_SAMPLE_READ) 1870 size += event->read_size; 1871 1872 if (sample_type & PERF_SAMPLE_DATA_SRC) 1873 size += sizeof(data->data_src.val); 1874 1875 if (sample_type & PERF_SAMPLE_TRANSACTION) 1876 size += sizeof(data->txn); 1877 1878 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1879 size += sizeof(data->phys_addr); 1880 1881 if (sample_type & PERF_SAMPLE_CGROUP) 1882 size += sizeof(data->cgroup); 1883 1884 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1885 size += sizeof(data->data_page_size); 1886 1887 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1888 size += sizeof(data->code_page_size); 1889 1890 event->header_size = size; 1891 } 1892 1893 /* 1894 * Called at perf_event creation and when events are attached/detached from a 1895 * group. 1896 */ 1897 static void perf_event__header_size(struct perf_event *event) 1898 { 1899 event->read_size = 1900 __perf_event_read_size(event->attr.read_format, 1901 event->group_leader->nr_siblings); 1902 __perf_event_header_size(event, event->attr.sample_type); 1903 } 1904 1905 static void perf_event__id_header_size(struct perf_event *event) 1906 { 1907 struct perf_sample_data *data; 1908 u64 sample_type = event->attr.sample_type; 1909 u16 size = 0; 1910 1911 if (sample_type & PERF_SAMPLE_TID) 1912 size += sizeof(data->tid_entry); 1913 1914 if (sample_type & PERF_SAMPLE_TIME) 1915 size += sizeof(data->time); 1916 1917 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1918 size += sizeof(data->id); 1919 1920 if (sample_type & PERF_SAMPLE_ID) 1921 size += sizeof(data->id); 1922 1923 if (sample_type & PERF_SAMPLE_STREAM_ID) 1924 size += sizeof(data->stream_id); 1925 1926 if (sample_type & PERF_SAMPLE_CPU) 1927 size += sizeof(data->cpu_entry); 1928 1929 event->id_header_size = size; 1930 } 1931 1932 /* 1933 * Check that adding an event to the group does not result in anybody 1934 * overflowing the 64k event limit imposed by the output buffer. 1935 * 1936 * Specifically, check that the read_size for the event does not exceed 16k, 1937 * read_size being the one term that grows with groups size. Since read_size 1938 * depends on per-event read_format, also (re)check the existing events. 1939 * 1940 * This leaves 48k for the constant size fields and things like callchains, 1941 * branch stacks and register sets. 1942 */ 1943 static bool perf_event_validate_size(struct perf_event *event) 1944 { 1945 struct perf_event *sibling, *group_leader = event->group_leader; 1946 1947 if (__perf_event_read_size(event->attr.read_format, 1948 group_leader->nr_siblings + 1) > 16*1024) 1949 return false; 1950 1951 if (__perf_event_read_size(group_leader->attr.read_format, 1952 group_leader->nr_siblings + 1) > 16*1024) 1953 return false; 1954 1955 /* 1956 * When creating a new group leader, group_leader->ctx is initialized 1957 * after the size has been validated, but we cannot safely use 1958 * for_each_sibling_event() until group_leader->ctx is set. A new group 1959 * leader cannot have any siblings yet, so we can safely skip checking 1960 * the non-existent siblings. 1961 */ 1962 if (event == group_leader) 1963 return true; 1964 1965 for_each_sibling_event(sibling, group_leader) { 1966 if (__perf_event_read_size(sibling->attr.read_format, 1967 group_leader->nr_siblings + 1) > 16*1024) 1968 return false; 1969 } 1970 1971 return true; 1972 } 1973 1974 static void perf_group_attach(struct perf_event *event) 1975 { 1976 struct perf_event *group_leader = event->group_leader, *pos; 1977 1978 lockdep_assert_held(&event->ctx->lock); 1979 1980 /* 1981 * We can have double attach due to group movement (move_group) in 1982 * perf_event_open(). 1983 */ 1984 if (event->attach_state & PERF_ATTACH_GROUP) 1985 return; 1986 1987 event->attach_state |= PERF_ATTACH_GROUP; 1988 1989 if (group_leader == event) 1990 return; 1991 1992 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1993 1994 group_leader->group_caps &= event->event_caps; 1995 1996 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1997 group_leader->nr_siblings++; 1998 group_leader->group_generation++; 1999 2000 perf_event__header_size(group_leader); 2001 2002 for_each_sibling_event(pos, group_leader) 2003 perf_event__header_size(pos); 2004 } 2005 2006 /* 2007 * Remove an event from the lists for its context. 2008 * Must be called with ctx->mutex and ctx->lock held. 2009 */ 2010 static void 2011 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2012 { 2013 WARN_ON_ONCE(event->ctx != ctx); 2014 lockdep_assert_held(&ctx->lock); 2015 2016 /* 2017 * We can have double detach due to exit/hot-unplug + close. 2018 */ 2019 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2020 return; 2021 2022 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2023 2024 ctx->nr_events--; 2025 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2026 ctx->nr_user--; 2027 if (event->attr.inherit_stat) 2028 ctx->nr_stat--; 2029 2030 list_del_rcu(&event->event_entry); 2031 2032 if (event->group_leader == event) 2033 del_event_from_groups(event, ctx); 2034 2035 /* 2036 * If event was in error state, then keep it 2037 * that way, otherwise bogus counts will be 2038 * returned on read(). The only way to get out 2039 * of error state is by explicit re-enabling 2040 * of the event 2041 */ 2042 if (event->state > PERF_EVENT_STATE_OFF) { 2043 perf_cgroup_event_disable(event, ctx); 2044 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2045 } 2046 2047 ctx->generation++; 2048 event->pmu_ctx->nr_events--; 2049 } 2050 2051 static int 2052 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2053 { 2054 if (!has_aux(aux_event)) 2055 return 0; 2056 2057 if (!event->pmu->aux_output_match) 2058 return 0; 2059 2060 return event->pmu->aux_output_match(aux_event); 2061 } 2062 2063 static void put_event(struct perf_event *event); 2064 static void event_sched_out(struct perf_event *event, 2065 struct perf_event_context *ctx); 2066 2067 static void perf_put_aux_event(struct perf_event *event) 2068 { 2069 struct perf_event_context *ctx = event->ctx; 2070 struct perf_event *iter; 2071 2072 /* 2073 * If event uses aux_event tear down the link 2074 */ 2075 if (event->aux_event) { 2076 iter = event->aux_event; 2077 event->aux_event = NULL; 2078 put_event(iter); 2079 return; 2080 } 2081 2082 /* 2083 * If the event is an aux_event, tear down all links to 2084 * it from other events. 2085 */ 2086 for_each_sibling_event(iter, event->group_leader) { 2087 if (iter->aux_event != event) 2088 continue; 2089 2090 iter->aux_event = NULL; 2091 put_event(event); 2092 2093 /* 2094 * If it's ACTIVE, schedule it out and put it into ERROR 2095 * state so that we don't try to schedule it again. Note 2096 * that perf_event_enable() will clear the ERROR status. 2097 */ 2098 event_sched_out(iter, ctx); 2099 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2100 } 2101 } 2102 2103 static bool perf_need_aux_event(struct perf_event *event) 2104 { 2105 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2106 } 2107 2108 static int perf_get_aux_event(struct perf_event *event, 2109 struct perf_event *group_leader) 2110 { 2111 /* 2112 * Our group leader must be an aux event if we want to be 2113 * an aux_output. This way, the aux event will precede its 2114 * aux_output events in the group, and therefore will always 2115 * schedule first. 2116 */ 2117 if (!group_leader) 2118 return 0; 2119 2120 /* 2121 * aux_output and aux_sample_size are mutually exclusive. 2122 */ 2123 if (event->attr.aux_output && event->attr.aux_sample_size) 2124 return 0; 2125 2126 if (event->attr.aux_output && 2127 !perf_aux_output_match(event, group_leader)) 2128 return 0; 2129 2130 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2131 return 0; 2132 2133 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2134 return 0; 2135 2136 /* 2137 * Link aux_outputs to their aux event; this is undone in 2138 * perf_group_detach() by perf_put_aux_event(). When the 2139 * group in torn down, the aux_output events loose their 2140 * link to the aux_event and can't schedule any more. 2141 */ 2142 event->aux_event = group_leader; 2143 2144 return 1; 2145 } 2146 2147 static inline struct list_head *get_event_list(struct perf_event *event) 2148 { 2149 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2150 &event->pmu_ctx->flexible_active; 2151 } 2152 2153 /* 2154 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2155 * cannot exist on their own, schedule them out and move them into the ERROR 2156 * state. Also see _perf_event_enable(), it will not be able to recover 2157 * this ERROR state. 2158 */ 2159 static inline void perf_remove_sibling_event(struct perf_event *event) 2160 { 2161 event_sched_out(event, event->ctx); 2162 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2163 } 2164 2165 static void perf_group_detach(struct perf_event *event) 2166 { 2167 struct perf_event *leader = event->group_leader; 2168 struct perf_event *sibling, *tmp; 2169 struct perf_event_context *ctx = event->ctx; 2170 2171 lockdep_assert_held(&ctx->lock); 2172 2173 /* 2174 * We can have double detach due to exit/hot-unplug + close. 2175 */ 2176 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2177 return; 2178 2179 event->attach_state &= ~PERF_ATTACH_GROUP; 2180 2181 perf_put_aux_event(event); 2182 2183 /* 2184 * If this is a sibling, remove it from its group. 2185 */ 2186 if (leader != event) { 2187 list_del_init(&event->sibling_list); 2188 event->group_leader->nr_siblings--; 2189 event->group_leader->group_generation++; 2190 goto out; 2191 } 2192 2193 /* 2194 * If this was a group event with sibling events then 2195 * upgrade the siblings to singleton events by adding them 2196 * to whatever list we are on. 2197 */ 2198 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2199 2200 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2201 perf_remove_sibling_event(sibling); 2202 2203 sibling->group_leader = sibling; 2204 list_del_init(&sibling->sibling_list); 2205 2206 /* Inherit group flags from the previous leader */ 2207 sibling->group_caps = event->group_caps; 2208 2209 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2210 add_event_to_groups(sibling, event->ctx); 2211 2212 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2213 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2214 } 2215 2216 WARN_ON_ONCE(sibling->ctx != event->ctx); 2217 } 2218 2219 out: 2220 for_each_sibling_event(tmp, leader) 2221 perf_event__header_size(tmp); 2222 2223 perf_event__header_size(leader); 2224 } 2225 2226 static void sync_child_event(struct perf_event *child_event); 2227 2228 static void perf_child_detach(struct perf_event *event) 2229 { 2230 struct perf_event *parent_event = event->parent; 2231 2232 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2233 return; 2234 2235 event->attach_state &= ~PERF_ATTACH_CHILD; 2236 2237 if (WARN_ON_ONCE(!parent_event)) 2238 return; 2239 2240 lockdep_assert_held(&parent_event->child_mutex); 2241 2242 sync_child_event(event); 2243 list_del_init(&event->child_list); 2244 } 2245 2246 static bool is_orphaned_event(struct perf_event *event) 2247 { 2248 return event->state == PERF_EVENT_STATE_DEAD; 2249 } 2250 2251 static inline int 2252 event_filter_match(struct perf_event *event) 2253 { 2254 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2255 perf_cgroup_match(event); 2256 } 2257 2258 static void 2259 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2260 { 2261 struct perf_event_pmu_context *epc = event->pmu_ctx; 2262 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2263 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2264 2265 // XXX cpc serialization, probably per-cpu IRQ disabled 2266 2267 WARN_ON_ONCE(event->ctx != ctx); 2268 lockdep_assert_held(&ctx->lock); 2269 2270 if (event->state != PERF_EVENT_STATE_ACTIVE) 2271 return; 2272 2273 /* 2274 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2275 * we can schedule events _OUT_ individually through things like 2276 * __perf_remove_from_context(). 2277 */ 2278 list_del_init(&event->active_list); 2279 2280 perf_pmu_disable(event->pmu); 2281 2282 event->pmu->del(event, 0); 2283 event->oncpu = -1; 2284 2285 if (event->pending_disable) { 2286 event->pending_disable = 0; 2287 perf_cgroup_event_disable(event, ctx); 2288 state = PERF_EVENT_STATE_OFF; 2289 } 2290 2291 perf_event_set_state(event, state); 2292 2293 if (!is_software_event(event)) 2294 cpc->active_oncpu--; 2295 if (event->attr.freq && event->attr.sample_freq) { 2296 ctx->nr_freq--; 2297 epc->nr_freq--; 2298 } 2299 if (event->attr.exclusive || !cpc->active_oncpu) 2300 cpc->exclusive = 0; 2301 2302 perf_pmu_enable(event->pmu); 2303 } 2304 2305 static void 2306 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2307 { 2308 struct perf_event *event; 2309 2310 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2311 return; 2312 2313 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2314 2315 event_sched_out(group_event, ctx); 2316 2317 /* 2318 * Schedule out siblings (if any): 2319 */ 2320 for_each_sibling_event(event, group_event) 2321 event_sched_out(event, ctx); 2322 } 2323 2324 #define DETACH_GROUP 0x01UL 2325 #define DETACH_CHILD 0x02UL 2326 #define DETACH_DEAD 0x04UL 2327 2328 /* 2329 * Cross CPU call to remove a performance event 2330 * 2331 * We disable the event on the hardware level first. After that we 2332 * remove it from the context list. 2333 */ 2334 static void 2335 __perf_remove_from_context(struct perf_event *event, 2336 struct perf_cpu_context *cpuctx, 2337 struct perf_event_context *ctx, 2338 void *info) 2339 { 2340 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2341 unsigned long flags = (unsigned long)info; 2342 2343 if (ctx->is_active & EVENT_TIME) { 2344 update_context_time(ctx); 2345 update_cgrp_time_from_cpuctx(cpuctx, false); 2346 } 2347 2348 /* 2349 * Ensure event_sched_out() switches to OFF, at the very least 2350 * this avoids raising perf_pending_task() at this time. 2351 */ 2352 if (flags & DETACH_DEAD) 2353 event->pending_disable = 1; 2354 event_sched_out(event, ctx); 2355 if (flags & DETACH_GROUP) 2356 perf_group_detach(event); 2357 if (flags & DETACH_CHILD) 2358 perf_child_detach(event); 2359 list_del_event(event, ctx); 2360 if (flags & DETACH_DEAD) 2361 event->state = PERF_EVENT_STATE_DEAD; 2362 2363 if (!pmu_ctx->nr_events) { 2364 pmu_ctx->rotate_necessary = 0; 2365 2366 if (ctx->task && ctx->is_active) { 2367 struct perf_cpu_pmu_context *cpc; 2368 2369 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2370 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2371 cpc->task_epc = NULL; 2372 } 2373 } 2374 2375 if (!ctx->nr_events && ctx->is_active) { 2376 if (ctx == &cpuctx->ctx) 2377 update_cgrp_time_from_cpuctx(cpuctx, true); 2378 2379 ctx->is_active = 0; 2380 if (ctx->task) { 2381 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2382 cpuctx->task_ctx = NULL; 2383 } 2384 } 2385 } 2386 2387 /* 2388 * Remove the event from a task's (or a CPU's) list of events. 2389 * 2390 * If event->ctx is a cloned context, callers must make sure that 2391 * every task struct that event->ctx->task could possibly point to 2392 * remains valid. This is OK when called from perf_release since 2393 * that only calls us on the top-level context, which can't be a clone. 2394 * When called from perf_event_exit_task, it's OK because the 2395 * context has been detached from its task. 2396 */ 2397 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2398 { 2399 struct perf_event_context *ctx = event->ctx; 2400 2401 lockdep_assert_held(&ctx->mutex); 2402 2403 /* 2404 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2405 * to work in the face of TASK_TOMBSTONE, unlike every other 2406 * event_function_call() user. 2407 */ 2408 raw_spin_lock_irq(&ctx->lock); 2409 if (!ctx->is_active) { 2410 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2411 ctx, (void *)flags); 2412 raw_spin_unlock_irq(&ctx->lock); 2413 return; 2414 } 2415 raw_spin_unlock_irq(&ctx->lock); 2416 2417 event_function_call(event, __perf_remove_from_context, (void *)flags); 2418 } 2419 2420 /* 2421 * Cross CPU call to disable a performance event 2422 */ 2423 static void __perf_event_disable(struct perf_event *event, 2424 struct perf_cpu_context *cpuctx, 2425 struct perf_event_context *ctx, 2426 void *info) 2427 { 2428 if (event->state < PERF_EVENT_STATE_INACTIVE) 2429 return; 2430 2431 if (ctx->is_active & EVENT_TIME) { 2432 update_context_time(ctx); 2433 update_cgrp_time_from_event(event); 2434 } 2435 2436 perf_pmu_disable(event->pmu_ctx->pmu); 2437 2438 if (event == event->group_leader) 2439 group_sched_out(event, ctx); 2440 else 2441 event_sched_out(event, ctx); 2442 2443 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2444 perf_cgroup_event_disable(event, ctx); 2445 2446 perf_pmu_enable(event->pmu_ctx->pmu); 2447 } 2448 2449 /* 2450 * Disable an event. 2451 * 2452 * If event->ctx is a cloned context, callers must make sure that 2453 * every task struct that event->ctx->task could possibly point to 2454 * remains valid. This condition is satisfied when called through 2455 * perf_event_for_each_child or perf_event_for_each because they 2456 * hold the top-level event's child_mutex, so any descendant that 2457 * goes to exit will block in perf_event_exit_event(). 2458 * 2459 * When called from perf_pending_disable it's OK because event->ctx 2460 * is the current context on this CPU and preemption is disabled, 2461 * hence we can't get into perf_event_task_sched_out for this context. 2462 */ 2463 static void _perf_event_disable(struct perf_event *event) 2464 { 2465 struct perf_event_context *ctx = event->ctx; 2466 2467 raw_spin_lock_irq(&ctx->lock); 2468 if (event->state <= PERF_EVENT_STATE_OFF) { 2469 raw_spin_unlock_irq(&ctx->lock); 2470 return; 2471 } 2472 raw_spin_unlock_irq(&ctx->lock); 2473 2474 event_function_call(event, __perf_event_disable, NULL); 2475 } 2476 2477 void perf_event_disable_local(struct perf_event *event) 2478 { 2479 event_function_local(event, __perf_event_disable, NULL); 2480 } 2481 2482 /* 2483 * Strictly speaking kernel users cannot create groups and therefore this 2484 * interface does not need the perf_event_ctx_lock() magic. 2485 */ 2486 void perf_event_disable(struct perf_event *event) 2487 { 2488 struct perf_event_context *ctx; 2489 2490 ctx = perf_event_ctx_lock(event); 2491 _perf_event_disable(event); 2492 perf_event_ctx_unlock(event, ctx); 2493 } 2494 EXPORT_SYMBOL_GPL(perf_event_disable); 2495 2496 void perf_event_disable_inatomic(struct perf_event *event) 2497 { 2498 event->pending_disable = 1; 2499 irq_work_queue(&event->pending_disable_irq); 2500 } 2501 2502 #define MAX_INTERRUPTS (~0ULL) 2503 2504 static void perf_log_throttle(struct perf_event *event, int enable); 2505 static void perf_log_itrace_start(struct perf_event *event); 2506 2507 static int 2508 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2509 { 2510 struct perf_event_pmu_context *epc = event->pmu_ctx; 2511 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2512 int ret = 0; 2513 2514 WARN_ON_ONCE(event->ctx != ctx); 2515 2516 lockdep_assert_held(&ctx->lock); 2517 2518 if (event->state <= PERF_EVENT_STATE_OFF) 2519 return 0; 2520 2521 WRITE_ONCE(event->oncpu, smp_processor_id()); 2522 /* 2523 * Order event::oncpu write to happen before the ACTIVE state is 2524 * visible. This allows perf_event_{stop,read}() to observe the correct 2525 * ->oncpu if it sees ACTIVE. 2526 */ 2527 smp_wmb(); 2528 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2529 2530 /* 2531 * Unthrottle events, since we scheduled we might have missed several 2532 * ticks already, also for a heavily scheduling task there is little 2533 * guarantee it'll get a tick in a timely manner. 2534 */ 2535 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2536 perf_log_throttle(event, 1); 2537 event->hw.interrupts = 0; 2538 } 2539 2540 perf_pmu_disable(event->pmu); 2541 2542 perf_log_itrace_start(event); 2543 2544 if (event->pmu->add(event, PERF_EF_START)) { 2545 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2546 event->oncpu = -1; 2547 ret = -EAGAIN; 2548 goto out; 2549 } 2550 2551 if (!is_software_event(event)) 2552 cpc->active_oncpu++; 2553 if (event->attr.freq && event->attr.sample_freq) { 2554 ctx->nr_freq++; 2555 epc->nr_freq++; 2556 } 2557 if (event->attr.exclusive) 2558 cpc->exclusive = 1; 2559 2560 out: 2561 perf_pmu_enable(event->pmu); 2562 2563 return ret; 2564 } 2565 2566 static int 2567 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2568 { 2569 struct perf_event *event, *partial_group = NULL; 2570 struct pmu *pmu = group_event->pmu_ctx->pmu; 2571 2572 if (group_event->state == PERF_EVENT_STATE_OFF) 2573 return 0; 2574 2575 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2576 2577 if (event_sched_in(group_event, ctx)) 2578 goto error; 2579 2580 /* 2581 * Schedule in siblings as one group (if any): 2582 */ 2583 for_each_sibling_event(event, group_event) { 2584 if (event_sched_in(event, ctx)) { 2585 partial_group = event; 2586 goto group_error; 2587 } 2588 } 2589 2590 if (!pmu->commit_txn(pmu)) 2591 return 0; 2592 2593 group_error: 2594 /* 2595 * Groups can be scheduled in as one unit only, so undo any 2596 * partial group before returning: 2597 * The events up to the failed event are scheduled out normally. 2598 */ 2599 for_each_sibling_event(event, group_event) { 2600 if (event == partial_group) 2601 break; 2602 2603 event_sched_out(event, ctx); 2604 } 2605 event_sched_out(group_event, ctx); 2606 2607 error: 2608 pmu->cancel_txn(pmu); 2609 return -EAGAIN; 2610 } 2611 2612 /* 2613 * Work out whether we can put this event group on the CPU now. 2614 */ 2615 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2616 { 2617 struct perf_event_pmu_context *epc = event->pmu_ctx; 2618 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2619 2620 /* 2621 * Groups consisting entirely of software events can always go on. 2622 */ 2623 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2624 return 1; 2625 /* 2626 * If an exclusive group is already on, no other hardware 2627 * events can go on. 2628 */ 2629 if (cpc->exclusive) 2630 return 0; 2631 /* 2632 * If this group is exclusive and there are already 2633 * events on the CPU, it can't go on. 2634 */ 2635 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2636 return 0; 2637 /* 2638 * Otherwise, try to add it if all previous groups were able 2639 * to go on. 2640 */ 2641 return can_add_hw; 2642 } 2643 2644 static void add_event_to_ctx(struct perf_event *event, 2645 struct perf_event_context *ctx) 2646 { 2647 list_add_event(event, ctx); 2648 perf_group_attach(event); 2649 } 2650 2651 static void task_ctx_sched_out(struct perf_event_context *ctx, 2652 enum event_type_t event_type) 2653 { 2654 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2655 2656 if (!cpuctx->task_ctx) 2657 return; 2658 2659 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2660 return; 2661 2662 ctx_sched_out(ctx, event_type); 2663 } 2664 2665 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2666 struct perf_event_context *ctx) 2667 { 2668 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2669 if (ctx) 2670 ctx_sched_in(ctx, EVENT_PINNED); 2671 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2672 if (ctx) 2673 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2674 } 2675 2676 /* 2677 * We want to maintain the following priority of scheduling: 2678 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2679 * - task pinned (EVENT_PINNED) 2680 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2681 * - task flexible (EVENT_FLEXIBLE). 2682 * 2683 * In order to avoid unscheduling and scheduling back in everything every 2684 * time an event is added, only do it for the groups of equal priority and 2685 * below. 2686 * 2687 * This can be called after a batch operation on task events, in which case 2688 * event_type is a bit mask of the types of events involved. For CPU events, 2689 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2690 */ 2691 /* 2692 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2693 * event to the context or enabling existing event in the context. We can 2694 * probably optimize it by rescheduling only affected pmu_ctx. 2695 */ 2696 static void ctx_resched(struct perf_cpu_context *cpuctx, 2697 struct perf_event_context *task_ctx, 2698 enum event_type_t event_type) 2699 { 2700 bool cpu_event = !!(event_type & EVENT_CPU); 2701 2702 /* 2703 * If pinned groups are involved, flexible groups also need to be 2704 * scheduled out. 2705 */ 2706 if (event_type & EVENT_PINNED) 2707 event_type |= EVENT_FLEXIBLE; 2708 2709 event_type &= EVENT_ALL; 2710 2711 perf_ctx_disable(&cpuctx->ctx, false); 2712 if (task_ctx) { 2713 perf_ctx_disable(task_ctx, false); 2714 task_ctx_sched_out(task_ctx, event_type); 2715 } 2716 2717 /* 2718 * Decide which cpu ctx groups to schedule out based on the types 2719 * of events that caused rescheduling: 2720 * - EVENT_CPU: schedule out corresponding groups; 2721 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2722 * - otherwise, do nothing more. 2723 */ 2724 if (cpu_event) 2725 ctx_sched_out(&cpuctx->ctx, event_type); 2726 else if (event_type & EVENT_PINNED) 2727 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2728 2729 perf_event_sched_in(cpuctx, task_ctx); 2730 2731 perf_ctx_enable(&cpuctx->ctx, false); 2732 if (task_ctx) 2733 perf_ctx_enable(task_ctx, false); 2734 } 2735 2736 void perf_pmu_resched(struct pmu *pmu) 2737 { 2738 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2739 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2740 2741 perf_ctx_lock(cpuctx, task_ctx); 2742 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2743 perf_ctx_unlock(cpuctx, task_ctx); 2744 } 2745 2746 /* 2747 * Cross CPU call to install and enable a performance event 2748 * 2749 * Very similar to remote_function() + event_function() but cannot assume that 2750 * things like ctx->is_active and cpuctx->task_ctx are set. 2751 */ 2752 static int __perf_install_in_context(void *info) 2753 { 2754 struct perf_event *event = info; 2755 struct perf_event_context *ctx = event->ctx; 2756 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2757 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2758 bool reprogram = true; 2759 int ret = 0; 2760 2761 raw_spin_lock(&cpuctx->ctx.lock); 2762 if (ctx->task) { 2763 raw_spin_lock(&ctx->lock); 2764 task_ctx = ctx; 2765 2766 reprogram = (ctx->task == current); 2767 2768 /* 2769 * If the task is running, it must be running on this CPU, 2770 * otherwise we cannot reprogram things. 2771 * 2772 * If its not running, we don't care, ctx->lock will 2773 * serialize against it becoming runnable. 2774 */ 2775 if (task_curr(ctx->task) && !reprogram) { 2776 ret = -ESRCH; 2777 goto unlock; 2778 } 2779 2780 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2781 } else if (task_ctx) { 2782 raw_spin_lock(&task_ctx->lock); 2783 } 2784 2785 #ifdef CONFIG_CGROUP_PERF 2786 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2787 /* 2788 * If the current cgroup doesn't match the event's 2789 * cgroup, we should not try to schedule it. 2790 */ 2791 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2792 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2793 event->cgrp->css.cgroup); 2794 } 2795 #endif 2796 2797 if (reprogram) { 2798 ctx_sched_out(ctx, EVENT_TIME); 2799 add_event_to_ctx(event, ctx); 2800 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2801 } else { 2802 add_event_to_ctx(event, ctx); 2803 } 2804 2805 unlock: 2806 perf_ctx_unlock(cpuctx, task_ctx); 2807 2808 return ret; 2809 } 2810 2811 static bool exclusive_event_installable(struct perf_event *event, 2812 struct perf_event_context *ctx); 2813 2814 /* 2815 * Attach a performance event to a context. 2816 * 2817 * Very similar to event_function_call, see comment there. 2818 */ 2819 static void 2820 perf_install_in_context(struct perf_event_context *ctx, 2821 struct perf_event *event, 2822 int cpu) 2823 { 2824 struct task_struct *task = READ_ONCE(ctx->task); 2825 2826 lockdep_assert_held(&ctx->mutex); 2827 2828 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2829 2830 if (event->cpu != -1) 2831 WARN_ON_ONCE(event->cpu != cpu); 2832 2833 /* 2834 * Ensures that if we can observe event->ctx, both the event and ctx 2835 * will be 'complete'. See perf_iterate_sb_cpu(). 2836 */ 2837 smp_store_release(&event->ctx, ctx); 2838 2839 /* 2840 * perf_event_attr::disabled events will not run and can be initialized 2841 * without IPI. Except when this is the first event for the context, in 2842 * that case we need the magic of the IPI to set ctx->is_active. 2843 * 2844 * The IOC_ENABLE that is sure to follow the creation of a disabled 2845 * event will issue the IPI and reprogram the hardware. 2846 */ 2847 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2848 ctx->nr_events && !is_cgroup_event(event)) { 2849 raw_spin_lock_irq(&ctx->lock); 2850 if (ctx->task == TASK_TOMBSTONE) { 2851 raw_spin_unlock_irq(&ctx->lock); 2852 return; 2853 } 2854 add_event_to_ctx(event, ctx); 2855 raw_spin_unlock_irq(&ctx->lock); 2856 return; 2857 } 2858 2859 if (!task) { 2860 cpu_function_call(cpu, __perf_install_in_context, event); 2861 return; 2862 } 2863 2864 /* 2865 * Should not happen, we validate the ctx is still alive before calling. 2866 */ 2867 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2868 return; 2869 2870 /* 2871 * Installing events is tricky because we cannot rely on ctx->is_active 2872 * to be set in case this is the nr_events 0 -> 1 transition. 2873 * 2874 * Instead we use task_curr(), which tells us if the task is running. 2875 * However, since we use task_curr() outside of rq::lock, we can race 2876 * against the actual state. This means the result can be wrong. 2877 * 2878 * If we get a false positive, we retry, this is harmless. 2879 * 2880 * If we get a false negative, things are complicated. If we are after 2881 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2882 * value must be correct. If we're before, it doesn't matter since 2883 * perf_event_context_sched_in() will program the counter. 2884 * 2885 * However, this hinges on the remote context switch having observed 2886 * our task->perf_event_ctxp[] store, such that it will in fact take 2887 * ctx::lock in perf_event_context_sched_in(). 2888 * 2889 * We do this by task_function_call(), if the IPI fails to hit the task 2890 * we know any future context switch of task must see the 2891 * perf_event_ctpx[] store. 2892 */ 2893 2894 /* 2895 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2896 * task_cpu() load, such that if the IPI then does not find the task 2897 * running, a future context switch of that task must observe the 2898 * store. 2899 */ 2900 smp_mb(); 2901 again: 2902 if (!task_function_call(task, __perf_install_in_context, event)) 2903 return; 2904 2905 raw_spin_lock_irq(&ctx->lock); 2906 task = ctx->task; 2907 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2908 /* 2909 * Cannot happen because we already checked above (which also 2910 * cannot happen), and we hold ctx->mutex, which serializes us 2911 * against perf_event_exit_task_context(). 2912 */ 2913 raw_spin_unlock_irq(&ctx->lock); 2914 return; 2915 } 2916 /* 2917 * If the task is not running, ctx->lock will avoid it becoming so, 2918 * thus we can safely install the event. 2919 */ 2920 if (task_curr(task)) { 2921 raw_spin_unlock_irq(&ctx->lock); 2922 goto again; 2923 } 2924 add_event_to_ctx(event, ctx); 2925 raw_spin_unlock_irq(&ctx->lock); 2926 } 2927 2928 /* 2929 * Cross CPU call to enable a performance event 2930 */ 2931 static void __perf_event_enable(struct perf_event *event, 2932 struct perf_cpu_context *cpuctx, 2933 struct perf_event_context *ctx, 2934 void *info) 2935 { 2936 struct perf_event *leader = event->group_leader; 2937 struct perf_event_context *task_ctx; 2938 2939 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2940 event->state <= PERF_EVENT_STATE_ERROR) 2941 return; 2942 2943 if (ctx->is_active) 2944 ctx_sched_out(ctx, EVENT_TIME); 2945 2946 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2947 perf_cgroup_event_enable(event, ctx); 2948 2949 if (!ctx->is_active) 2950 return; 2951 2952 if (!event_filter_match(event)) { 2953 ctx_sched_in(ctx, EVENT_TIME); 2954 return; 2955 } 2956 2957 /* 2958 * If the event is in a group and isn't the group leader, 2959 * then don't put it on unless the group is on. 2960 */ 2961 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2962 ctx_sched_in(ctx, EVENT_TIME); 2963 return; 2964 } 2965 2966 task_ctx = cpuctx->task_ctx; 2967 if (ctx->task) 2968 WARN_ON_ONCE(task_ctx != ctx); 2969 2970 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2971 } 2972 2973 /* 2974 * Enable an event. 2975 * 2976 * If event->ctx is a cloned context, callers must make sure that 2977 * every task struct that event->ctx->task could possibly point to 2978 * remains valid. This condition is satisfied when called through 2979 * perf_event_for_each_child or perf_event_for_each as described 2980 * for perf_event_disable. 2981 */ 2982 static void _perf_event_enable(struct perf_event *event) 2983 { 2984 struct perf_event_context *ctx = event->ctx; 2985 2986 raw_spin_lock_irq(&ctx->lock); 2987 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2988 event->state < PERF_EVENT_STATE_ERROR) { 2989 out: 2990 raw_spin_unlock_irq(&ctx->lock); 2991 return; 2992 } 2993 2994 /* 2995 * If the event is in error state, clear that first. 2996 * 2997 * That way, if we see the event in error state below, we know that it 2998 * has gone back into error state, as distinct from the task having 2999 * been scheduled away before the cross-call arrived. 3000 */ 3001 if (event->state == PERF_EVENT_STATE_ERROR) { 3002 /* 3003 * Detached SIBLING events cannot leave ERROR state. 3004 */ 3005 if (event->event_caps & PERF_EV_CAP_SIBLING && 3006 event->group_leader == event) 3007 goto out; 3008 3009 event->state = PERF_EVENT_STATE_OFF; 3010 } 3011 raw_spin_unlock_irq(&ctx->lock); 3012 3013 event_function_call(event, __perf_event_enable, NULL); 3014 } 3015 3016 /* 3017 * See perf_event_disable(); 3018 */ 3019 void perf_event_enable(struct perf_event *event) 3020 { 3021 struct perf_event_context *ctx; 3022 3023 ctx = perf_event_ctx_lock(event); 3024 _perf_event_enable(event); 3025 perf_event_ctx_unlock(event, ctx); 3026 } 3027 EXPORT_SYMBOL_GPL(perf_event_enable); 3028 3029 struct stop_event_data { 3030 struct perf_event *event; 3031 unsigned int restart; 3032 }; 3033 3034 static int __perf_event_stop(void *info) 3035 { 3036 struct stop_event_data *sd = info; 3037 struct perf_event *event = sd->event; 3038 3039 /* if it's already INACTIVE, do nothing */ 3040 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3041 return 0; 3042 3043 /* matches smp_wmb() in event_sched_in() */ 3044 smp_rmb(); 3045 3046 /* 3047 * There is a window with interrupts enabled before we get here, 3048 * so we need to check again lest we try to stop another CPU's event. 3049 */ 3050 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3051 return -EAGAIN; 3052 3053 event->pmu->stop(event, PERF_EF_UPDATE); 3054 3055 /* 3056 * May race with the actual stop (through perf_pmu_output_stop()), 3057 * but it is only used for events with AUX ring buffer, and such 3058 * events will refuse to restart because of rb::aux_mmap_count==0, 3059 * see comments in perf_aux_output_begin(). 3060 * 3061 * Since this is happening on an event-local CPU, no trace is lost 3062 * while restarting. 3063 */ 3064 if (sd->restart) 3065 event->pmu->start(event, 0); 3066 3067 return 0; 3068 } 3069 3070 static int perf_event_stop(struct perf_event *event, int restart) 3071 { 3072 struct stop_event_data sd = { 3073 .event = event, 3074 .restart = restart, 3075 }; 3076 int ret = 0; 3077 3078 do { 3079 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3080 return 0; 3081 3082 /* matches smp_wmb() in event_sched_in() */ 3083 smp_rmb(); 3084 3085 /* 3086 * We only want to restart ACTIVE events, so if the event goes 3087 * inactive here (event->oncpu==-1), there's nothing more to do; 3088 * fall through with ret==-ENXIO. 3089 */ 3090 ret = cpu_function_call(READ_ONCE(event->oncpu), 3091 __perf_event_stop, &sd); 3092 } while (ret == -EAGAIN); 3093 3094 return ret; 3095 } 3096 3097 /* 3098 * In order to contain the amount of racy and tricky in the address filter 3099 * configuration management, it is a two part process: 3100 * 3101 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3102 * we update the addresses of corresponding vmas in 3103 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3104 * (p2) when an event is scheduled in (pmu::add), it calls 3105 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3106 * if the generation has changed since the previous call. 3107 * 3108 * If (p1) happens while the event is active, we restart it to force (p2). 3109 * 3110 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3111 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3112 * ioctl; 3113 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3114 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3115 * for reading; 3116 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3117 * of exec. 3118 */ 3119 void perf_event_addr_filters_sync(struct perf_event *event) 3120 { 3121 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3122 3123 if (!has_addr_filter(event)) 3124 return; 3125 3126 raw_spin_lock(&ifh->lock); 3127 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3128 event->pmu->addr_filters_sync(event); 3129 event->hw.addr_filters_gen = event->addr_filters_gen; 3130 } 3131 raw_spin_unlock(&ifh->lock); 3132 } 3133 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3134 3135 static int _perf_event_refresh(struct perf_event *event, int refresh) 3136 { 3137 /* 3138 * not supported on inherited events 3139 */ 3140 if (event->attr.inherit || !is_sampling_event(event)) 3141 return -EINVAL; 3142 3143 atomic_add(refresh, &event->event_limit); 3144 _perf_event_enable(event); 3145 3146 return 0; 3147 } 3148 3149 /* 3150 * See perf_event_disable() 3151 */ 3152 int perf_event_refresh(struct perf_event *event, int refresh) 3153 { 3154 struct perf_event_context *ctx; 3155 int ret; 3156 3157 ctx = perf_event_ctx_lock(event); 3158 ret = _perf_event_refresh(event, refresh); 3159 perf_event_ctx_unlock(event, ctx); 3160 3161 return ret; 3162 } 3163 EXPORT_SYMBOL_GPL(perf_event_refresh); 3164 3165 static int perf_event_modify_breakpoint(struct perf_event *bp, 3166 struct perf_event_attr *attr) 3167 { 3168 int err; 3169 3170 _perf_event_disable(bp); 3171 3172 err = modify_user_hw_breakpoint_check(bp, attr, true); 3173 3174 if (!bp->attr.disabled) 3175 _perf_event_enable(bp); 3176 3177 return err; 3178 } 3179 3180 /* 3181 * Copy event-type-independent attributes that may be modified. 3182 */ 3183 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3184 const struct perf_event_attr *from) 3185 { 3186 to->sig_data = from->sig_data; 3187 } 3188 3189 static int perf_event_modify_attr(struct perf_event *event, 3190 struct perf_event_attr *attr) 3191 { 3192 int (*func)(struct perf_event *, struct perf_event_attr *); 3193 struct perf_event *child; 3194 int err; 3195 3196 if (event->attr.type != attr->type) 3197 return -EINVAL; 3198 3199 switch (event->attr.type) { 3200 case PERF_TYPE_BREAKPOINT: 3201 func = perf_event_modify_breakpoint; 3202 break; 3203 default: 3204 /* Place holder for future additions. */ 3205 return -EOPNOTSUPP; 3206 } 3207 3208 WARN_ON_ONCE(event->ctx->parent_ctx); 3209 3210 mutex_lock(&event->child_mutex); 3211 /* 3212 * Event-type-independent attributes must be copied before event-type 3213 * modification, which will validate that final attributes match the 3214 * source attributes after all relevant attributes have been copied. 3215 */ 3216 perf_event_modify_copy_attr(&event->attr, attr); 3217 err = func(event, attr); 3218 if (err) 3219 goto out; 3220 list_for_each_entry(child, &event->child_list, child_list) { 3221 perf_event_modify_copy_attr(&child->attr, attr); 3222 err = func(child, attr); 3223 if (err) 3224 goto out; 3225 } 3226 out: 3227 mutex_unlock(&event->child_mutex); 3228 return err; 3229 } 3230 3231 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3232 enum event_type_t event_type) 3233 { 3234 struct perf_event_context *ctx = pmu_ctx->ctx; 3235 struct perf_event *event, *tmp; 3236 struct pmu *pmu = pmu_ctx->pmu; 3237 3238 if (ctx->task && !ctx->is_active) { 3239 struct perf_cpu_pmu_context *cpc; 3240 3241 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3242 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3243 cpc->task_epc = NULL; 3244 } 3245 3246 if (!event_type) 3247 return; 3248 3249 perf_pmu_disable(pmu); 3250 if (event_type & EVENT_PINNED) { 3251 list_for_each_entry_safe(event, tmp, 3252 &pmu_ctx->pinned_active, 3253 active_list) 3254 group_sched_out(event, ctx); 3255 } 3256 3257 if (event_type & EVENT_FLEXIBLE) { 3258 list_for_each_entry_safe(event, tmp, 3259 &pmu_ctx->flexible_active, 3260 active_list) 3261 group_sched_out(event, ctx); 3262 /* 3263 * Since we cleared EVENT_FLEXIBLE, also clear 3264 * rotate_necessary, is will be reset by 3265 * ctx_flexible_sched_in() when needed. 3266 */ 3267 pmu_ctx->rotate_necessary = 0; 3268 } 3269 perf_pmu_enable(pmu); 3270 } 3271 3272 static void 3273 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3274 { 3275 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3276 struct perf_event_pmu_context *pmu_ctx; 3277 int is_active = ctx->is_active; 3278 bool cgroup = event_type & EVENT_CGROUP; 3279 3280 event_type &= ~EVENT_CGROUP; 3281 3282 lockdep_assert_held(&ctx->lock); 3283 3284 if (likely(!ctx->nr_events)) { 3285 /* 3286 * See __perf_remove_from_context(). 3287 */ 3288 WARN_ON_ONCE(ctx->is_active); 3289 if (ctx->task) 3290 WARN_ON_ONCE(cpuctx->task_ctx); 3291 return; 3292 } 3293 3294 /* 3295 * Always update time if it was set; not only when it changes. 3296 * Otherwise we can 'forget' to update time for any but the last 3297 * context we sched out. For example: 3298 * 3299 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3300 * ctx_sched_out(.event_type = EVENT_PINNED) 3301 * 3302 * would only update time for the pinned events. 3303 */ 3304 if (is_active & EVENT_TIME) { 3305 /* update (and stop) ctx time */ 3306 update_context_time(ctx); 3307 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3308 /* 3309 * CPU-release for the below ->is_active store, 3310 * see __load_acquire() in perf_event_time_now() 3311 */ 3312 barrier(); 3313 } 3314 3315 ctx->is_active &= ~event_type; 3316 if (!(ctx->is_active & EVENT_ALL)) 3317 ctx->is_active = 0; 3318 3319 if (ctx->task) { 3320 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3321 if (!ctx->is_active) 3322 cpuctx->task_ctx = NULL; 3323 } 3324 3325 is_active ^= ctx->is_active; /* changed bits */ 3326 3327 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3328 if (cgroup && !pmu_ctx->nr_cgroups) 3329 continue; 3330 __pmu_ctx_sched_out(pmu_ctx, is_active); 3331 } 3332 } 3333 3334 /* 3335 * Test whether two contexts are equivalent, i.e. whether they have both been 3336 * cloned from the same version of the same context. 3337 * 3338 * Equivalence is measured using a generation number in the context that is 3339 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3340 * and list_del_event(). 3341 */ 3342 static int context_equiv(struct perf_event_context *ctx1, 3343 struct perf_event_context *ctx2) 3344 { 3345 lockdep_assert_held(&ctx1->lock); 3346 lockdep_assert_held(&ctx2->lock); 3347 3348 /* Pinning disables the swap optimization */ 3349 if (ctx1->pin_count || ctx2->pin_count) 3350 return 0; 3351 3352 /* If ctx1 is the parent of ctx2 */ 3353 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3354 return 1; 3355 3356 /* If ctx2 is the parent of ctx1 */ 3357 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3358 return 1; 3359 3360 /* 3361 * If ctx1 and ctx2 have the same parent; we flatten the parent 3362 * hierarchy, see perf_event_init_context(). 3363 */ 3364 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3365 ctx1->parent_gen == ctx2->parent_gen) 3366 return 1; 3367 3368 /* Unmatched */ 3369 return 0; 3370 } 3371 3372 static void __perf_event_sync_stat(struct perf_event *event, 3373 struct perf_event *next_event) 3374 { 3375 u64 value; 3376 3377 if (!event->attr.inherit_stat) 3378 return; 3379 3380 /* 3381 * Update the event value, we cannot use perf_event_read() 3382 * because we're in the middle of a context switch and have IRQs 3383 * disabled, which upsets smp_call_function_single(), however 3384 * we know the event must be on the current CPU, therefore we 3385 * don't need to use it. 3386 */ 3387 if (event->state == PERF_EVENT_STATE_ACTIVE) 3388 event->pmu->read(event); 3389 3390 perf_event_update_time(event); 3391 3392 /* 3393 * In order to keep per-task stats reliable we need to flip the event 3394 * values when we flip the contexts. 3395 */ 3396 value = local64_read(&next_event->count); 3397 value = local64_xchg(&event->count, value); 3398 local64_set(&next_event->count, value); 3399 3400 swap(event->total_time_enabled, next_event->total_time_enabled); 3401 swap(event->total_time_running, next_event->total_time_running); 3402 3403 /* 3404 * Since we swizzled the values, update the user visible data too. 3405 */ 3406 perf_event_update_userpage(event); 3407 perf_event_update_userpage(next_event); 3408 } 3409 3410 static void perf_event_sync_stat(struct perf_event_context *ctx, 3411 struct perf_event_context *next_ctx) 3412 { 3413 struct perf_event *event, *next_event; 3414 3415 if (!ctx->nr_stat) 3416 return; 3417 3418 update_context_time(ctx); 3419 3420 event = list_first_entry(&ctx->event_list, 3421 struct perf_event, event_entry); 3422 3423 next_event = list_first_entry(&next_ctx->event_list, 3424 struct perf_event, event_entry); 3425 3426 while (&event->event_entry != &ctx->event_list && 3427 &next_event->event_entry != &next_ctx->event_list) { 3428 3429 __perf_event_sync_stat(event, next_event); 3430 3431 event = list_next_entry(event, event_entry); 3432 next_event = list_next_entry(next_event, event_entry); 3433 } 3434 } 3435 3436 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3437 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3438 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3439 !list_entry_is_head(pos1, head1, member) && \ 3440 !list_entry_is_head(pos2, head2, member); \ 3441 pos1 = list_next_entry(pos1, member), \ 3442 pos2 = list_next_entry(pos2, member)) 3443 3444 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3445 struct perf_event_context *next_ctx) 3446 { 3447 struct perf_event_pmu_context *prev_epc, *next_epc; 3448 3449 if (!prev_ctx->nr_task_data) 3450 return; 3451 3452 double_list_for_each_entry(prev_epc, next_epc, 3453 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3454 pmu_ctx_entry) { 3455 3456 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3457 continue; 3458 3459 /* 3460 * PMU specific parts of task perf context can require 3461 * additional synchronization. As an example of such 3462 * synchronization see implementation details of Intel 3463 * LBR call stack data profiling; 3464 */ 3465 if (prev_epc->pmu->swap_task_ctx) 3466 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3467 else 3468 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3469 } 3470 } 3471 3472 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3473 { 3474 struct perf_event_pmu_context *pmu_ctx; 3475 struct perf_cpu_pmu_context *cpc; 3476 3477 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3478 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3479 3480 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3481 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3482 } 3483 } 3484 3485 static void 3486 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3487 { 3488 struct perf_event_context *ctx = task->perf_event_ctxp; 3489 struct perf_event_context *next_ctx; 3490 struct perf_event_context *parent, *next_parent; 3491 int do_switch = 1; 3492 3493 if (likely(!ctx)) 3494 return; 3495 3496 rcu_read_lock(); 3497 next_ctx = rcu_dereference(next->perf_event_ctxp); 3498 if (!next_ctx) 3499 goto unlock; 3500 3501 parent = rcu_dereference(ctx->parent_ctx); 3502 next_parent = rcu_dereference(next_ctx->parent_ctx); 3503 3504 /* If neither context have a parent context; they cannot be clones. */ 3505 if (!parent && !next_parent) 3506 goto unlock; 3507 3508 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3509 /* 3510 * Looks like the two contexts are clones, so we might be 3511 * able to optimize the context switch. We lock both 3512 * contexts and check that they are clones under the 3513 * lock (including re-checking that neither has been 3514 * uncloned in the meantime). It doesn't matter which 3515 * order we take the locks because no other cpu could 3516 * be trying to lock both of these tasks. 3517 */ 3518 raw_spin_lock(&ctx->lock); 3519 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3520 if (context_equiv(ctx, next_ctx)) { 3521 3522 perf_ctx_disable(ctx, false); 3523 3524 /* PMIs are disabled; ctx->nr_pending is stable. */ 3525 if (local_read(&ctx->nr_pending) || 3526 local_read(&next_ctx->nr_pending)) { 3527 /* 3528 * Must not swap out ctx when there's pending 3529 * events that rely on the ctx->task relation. 3530 */ 3531 raw_spin_unlock(&next_ctx->lock); 3532 rcu_read_unlock(); 3533 goto inside_switch; 3534 } 3535 3536 WRITE_ONCE(ctx->task, next); 3537 WRITE_ONCE(next_ctx->task, task); 3538 3539 perf_ctx_sched_task_cb(ctx, false); 3540 perf_event_swap_task_ctx_data(ctx, next_ctx); 3541 3542 perf_ctx_enable(ctx, false); 3543 3544 /* 3545 * RCU_INIT_POINTER here is safe because we've not 3546 * modified the ctx and the above modification of 3547 * ctx->task and ctx->task_ctx_data are immaterial 3548 * since those values are always verified under 3549 * ctx->lock which we're now holding. 3550 */ 3551 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3552 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3553 3554 do_switch = 0; 3555 3556 perf_event_sync_stat(ctx, next_ctx); 3557 } 3558 raw_spin_unlock(&next_ctx->lock); 3559 raw_spin_unlock(&ctx->lock); 3560 } 3561 unlock: 3562 rcu_read_unlock(); 3563 3564 if (do_switch) { 3565 raw_spin_lock(&ctx->lock); 3566 perf_ctx_disable(ctx, false); 3567 3568 inside_switch: 3569 perf_ctx_sched_task_cb(ctx, false); 3570 task_ctx_sched_out(ctx, EVENT_ALL); 3571 3572 perf_ctx_enable(ctx, false); 3573 raw_spin_unlock(&ctx->lock); 3574 } 3575 } 3576 3577 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3578 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3579 3580 void perf_sched_cb_dec(struct pmu *pmu) 3581 { 3582 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3583 3584 this_cpu_dec(perf_sched_cb_usages); 3585 barrier(); 3586 3587 if (!--cpc->sched_cb_usage) 3588 list_del(&cpc->sched_cb_entry); 3589 } 3590 3591 3592 void perf_sched_cb_inc(struct pmu *pmu) 3593 { 3594 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3595 3596 if (!cpc->sched_cb_usage++) 3597 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3598 3599 barrier(); 3600 this_cpu_inc(perf_sched_cb_usages); 3601 } 3602 3603 /* 3604 * This function provides the context switch callback to the lower code 3605 * layer. It is invoked ONLY when the context switch callback is enabled. 3606 * 3607 * This callback is relevant even to per-cpu events; for example multi event 3608 * PEBS requires this to provide PID/TID information. This requires we flush 3609 * all queued PEBS records before we context switch to a new task. 3610 */ 3611 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3612 { 3613 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3614 struct pmu *pmu; 3615 3616 pmu = cpc->epc.pmu; 3617 3618 /* software PMUs will not have sched_task */ 3619 if (WARN_ON_ONCE(!pmu->sched_task)) 3620 return; 3621 3622 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3623 perf_pmu_disable(pmu); 3624 3625 pmu->sched_task(cpc->task_epc, sched_in); 3626 3627 perf_pmu_enable(pmu); 3628 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3629 } 3630 3631 static void perf_pmu_sched_task(struct task_struct *prev, 3632 struct task_struct *next, 3633 bool sched_in) 3634 { 3635 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3636 struct perf_cpu_pmu_context *cpc; 3637 3638 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3639 if (prev == next || cpuctx->task_ctx) 3640 return; 3641 3642 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3643 __perf_pmu_sched_task(cpc, sched_in); 3644 } 3645 3646 static void perf_event_switch(struct task_struct *task, 3647 struct task_struct *next_prev, bool sched_in); 3648 3649 /* 3650 * Called from scheduler to remove the events of the current task, 3651 * with interrupts disabled. 3652 * 3653 * We stop each event and update the event value in event->count. 3654 * 3655 * This does not protect us against NMI, but disable() 3656 * sets the disabled bit in the control field of event _before_ 3657 * accessing the event control register. If a NMI hits, then it will 3658 * not restart the event. 3659 */ 3660 void __perf_event_task_sched_out(struct task_struct *task, 3661 struct task_struct *next) 3662 { 3663 if (__this_cpu_read(perf_sched_cb_usages)) 3664 perf_pmu_sched_task(task, next, false); 3665 3666 if (atomic_read(&nr_switch_events)) 3667 perf_event_switch(task, next, false); 3668 3669 perf_event_context_sched_out(task, next); 3670 3671 /* 3672 * if cgroup events exist on this CPU, then we need 3673 * to check if we have to switch out PMU state. 3674 * cgroup event are system-wide mode only 3675 */ 3676 perf_cgroup_switch(next); 3677 } 3678 3679 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args) 3680 { 3681 const struct perf_event *le = *(const struct perf_event **)l; 3682 const struct perf_event *re = *(const struct perf_event **)r; 3683 3684 return le->group_index < re->group_index; 3685 } 3686 3687 static void swap_ptr(void *l, void *r, void __always_unused *args) 3688 { 3689 void **lp = l, **rp = r; 3690 3691 swap(*lp, *rp); 3692 } 3693 3694 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap); 3695 3696 static const struct min_heap_callbacks perf_min_heap = { 3697 .less = perf_less_group_idx, 3698 .swp = swap_ptr, 3699 }; 3700 3701 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event) 3702 { 3703 struct perf_event **itrs = heap->data; 3704 3705 if (event) { 3706 itrs[heap->nr] = event; 3707 heap->nr++; 3708 } 3709 } 3710 3711 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3712 { 3713 struct perf_cpu_pmu_context *cpc; 3714 3715 if (!pmu_ctx->ctx->task) 3716 return; 3717 3718 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3719 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3720 cpc->task_epc = pmu_ctx; 3721 } 3722 3723 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3724 struct perf_event_groups *groups, int cpu, 3725 struct pmu *pmu, 3726 int (*func)(struct perf_event *, void *), 3727 void *data) 3728 { 3729 #ifdef CONFIG_CGROUP_PERF 3730 struct cgroup_subsys_state *css = NULL; 3731 #endif 3732 struct perf_cpu_context *cpuctx = NULL; 3733 /* Space for per CPU and/or any CPU event iterators. */ 3734 struct perf_event *itrs[2]; 3735 struct perf_event_min_heap event_heap; 3736 struct perf_event **evt; 3737 int ret; 3738 3739 if (pmu->filter && pmu->filter(pmu, cpu)) 3740 return 0; 3741 3742 if (!ctx->task) { 3743 cpuctx = this_cpu_ptr(&perf_cpu_context); 3744 event_heap = (struct perf_event_min_heap){ 3745 .data = cpuctx->heap, 3746 .nr = 0, 3747 .size = cpuctx->heap_size, 3748 }; 3749 3750 lockdep_assert_held(&cpuctx->ctx.lock); 3751 3752 #ifdef CONFIG_CGROUP_PERF 3753 if (cpuctx->cgrp) 3754 css = &cpuctx->cgrp->css; 3755 #endif 3756 } else { 3757 event_heap = (struct perf_event_min_heap){ 3758 .data = itrs, 3759 .nr = 0, 3760 .size = ARRAY_SIZE(itrs), 3761 }; 3762 /* Events not within a CPU context may be on any CPU. */ 3763 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3764 } 3765 evt = event_heap.data; 3766 3767 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3768 3769 #ifdef CONFIG_CGROUP_PERF 3770 for (; css; css = css->parent) 3771 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3772 #endif 3773 3774 if (event_heap.nr) { 3775 __link_epc((*evt)->pmu_ctx); 3776 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3777 } 3778 3779 min_heapify_all(&event_heap, &perf_min_heap, NULL); 3780 3781 while (event_heap.nr) { 3782 ret = func(*evt, data); 3783 if (ret) 3784 return ret; 3785 3786 *evt = perf_event_groups_next(*evt, pmu); 3787 if (*evt) 3788 min_heap_sift_down(&event_heap, 0, &perf_min_heap, NULL); 3789 else 3790 min_heap_pop(&event_heap, &perf_min_heap, NULL); 3791 } 3792 3793 return 0; 3794 } 3795 3796 /* 3797 * Because the userpage is strictly per-event (there is no concept of context, 3798 * so there cannot be a context indirection), every userpage must be updated 3799 * when context time starts :-( 3800 * 3801 * IOW, we must not miss EVENT_TIME edges. 3802 */ 3803 static inline bool event_update_userpage(struct perf_event *event) 3804 { 3805 if (likely(!atomic_read(&event->mmap_count))) 3806 return false; 3807 3808 perf_event_update_time(event); 3809 perf_event_update_userpage(event); 3810 3811 return true; 3812 } 3813 3814 static inline void group_update_userpage(struct perf_event *group_event) 3815 { 3816 struct perf_event *event; 3817 3818 if (!event_update_userpage(group_event)) 3819 return; 3820 3821 for_each_sibling_event(event, group_event) 3822 event_update_userpage(event); 3823 } 3824 3825 static int merge_sched_in(struct perf_event *event, void *data) 3826 { 3827 struct perf_event_context *ctx = event->ctx; 3828 int *can_add_hw = data; 3829 3830 if (event->state <= PERF_EVENT_STATE_OFF) 3831 return 0; 3832 3833 if (!event_filter_match(event)) 3834 return 0; 3835 3836 if (group_can_go_on(event, *can_add_hw)) { 3837 if (!group_sched_in(event, ctx)) 3838 list_add_tail(&event->active_list, get_event_list(event)); 3839 } 3840 3841 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3842 *can_add_hw = 0; 3843 if (event->attr.pinned) { 3844 perf_cgroup_event_disable(event, ctx); 3845 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3846 } else { 3847 struct perf_cpu_pmu_context *cpc; 3848 3849 event->pmu_ctx->rotate_necessary = 1; 3850 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3851 perf_mux_hrtimer_restart(cpc); 3852 group_update_userpage(event); 3853 } 3854 } 3855 3856 return 0; 3857 } 3858 3859 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3860 struct perf_event_groups *groups, 3861 struct pmu *pmu) 3862 { 3863 int can_add_hw = 1; 3864 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3865 merge_sched_in, &can_add_hw); 3866 } 3867 3868 static void ctx_groups_sched_in(struct perf_event_context *ctx, 3869 struct perf_event_groups *groups, 3870 bool cgroup) 3871 { 3872 struct perf_event_pmu_context *pmu_ctx; 3873 3874 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3875 if (cgroup && !pmu_ctx->nr_cgroups) 3876 continue; 3877 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu); 3878 } 3879 } 3880 3881 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, 3882 struct pmu *pmu) 3883 { 3884 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu); 3885 } 3886 3887 static void 3888 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3889 { 3890 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3891 int is_active = ctx->is_active; 3892 bool cgroup = event_type & EVENT_CGROUP; 3893 3894 event_type &= ~EVENT_CGROUP; 3895 3896 lockdep_assert_held(&ctx->lock); 3897 3898 if (likely(!ctx->nr_events)) 3899 return; 3900 3901 if (!(is_active & EVENT_TIME)) { 3902 /* start ctx time */ 3903 __update_context_time(ctx, false); 3904 perf_cgroup_set_timestamp(cpuctx); 3905 /* 3906 * CPU-release for the below ->is_active store, 3907 * see __load_acquire() in perf_event_time_now() 3908 */ 3909 barrier(); 3910 } 3911 3912 ctx->is_active |= (event_type | EVENT_TIME); 3913 if (ctx->task) { 3914 if (!is_active) 3915 cpuctx->task_ctx = ctx; 3916 else 3917 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3918 } 3919 3920 is_active ^= ctx->is_active; /* changed bits */ 3921 3922 /* 3923 * First go through the list and put on any pinned groups 3924 * in order to give them the best chance of going on. 3925 */ 3926 if (is_active & EVENT_PINNED) 3927 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup); 3928 3929 /* Then walk through the lower prio flexible groups */ 3930 if (is_active & EVENT_FLEXIBLE) 3931 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup); 3932 } 3933 3934 static void perf_event_context_sched_in(struct task_struct *task) 3935 { 3936 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3937 struct perf_event_context *ctx; 3938 3939 rcu_read_lock(); 3940 ctx = rcu_dereference(task->perf_event_ctxp); 3941 if (!ctx) 3942 goto rcu_unlock; 3943 3944 if (cpuctx->task_ctx == ctx) { 3945 perf_ctx_lock(cpuctx, ctx); 3946 perf_ctx_disable(ctx, false); 3947 3948 perf_ctx_sched_task_cb(ctx, true); 3949 3950 perf_ctx_enable(ctx, false); 3951 perf_ctx_unlock(cpuctx, ctx); 3952 goto rcu_unlock; 3953 } 3954 3955 perf_ctx_lock(cpuctx, ctx); 3956 /* 3957 * We must check ctx->nr_events while holding ctx->lock, such 3958 * that we serialize against perf_install_in_context(). 3959 */ 3960 if (!ctx->nr_events) 3961 goto unlock; 3962 3963 perf_ctx_disable(ctx, false); 3964 /* 3965 * We want to keep the following priority order: 3966 * cpu pinned (that don't need to move), task pinned, 3967 * cpu flexible, task flexible. 3968 * 3969 * However, if task's ctx is not carrying any pinned 3970 * events, no need to flip the cpuctx's events around. 3971 */ 3972 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3973 perf_ctx_disable(&cpuctx->ctx, false); 3974 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3975 } 3976 3977 perf_event_sched_in(cpuctx, ctx); 3978 3979 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3980 3981 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3982 perf_ctx_enable(&cpuctx->ctx, false); 3983 3984 perf_ctx_enable(ctx, false); 3985 3986 unlock: 3987 perf_ctx_unlock(cpuctx, ctx); 3988 rcu_unlock: 3989 rcu_read_unlock(); 3990 } 3991 3992 /* 3993 * Called from scheduler to add the events of the current task 3994 * with interrupts disabled. 3995 * 3996 * We restore the event value and then enable it. 3997 * 3998 * This does not protect us against NMI, but enable() 3999 * sets the enabled bit in the control field of event _before_ 4000 * accessing the event control register. If a NMI hits, then it will 4001 * keep the event running. 4002 */ 4003 void __perf_event_task_sched_in(struct task_struct *prev, 4004 struct task_struct *task) 4005 { 4006 perf_event_context_sched_in(task); 4007 4008 if (atomic_read(&nr_switch_events)) 4009 perf_event_switch(task, prev, true); 4010 4011 if (__this_cpu_read(perf_sched_cb_usages)) 4012 perf_pmu_sched_task(prev, task, true); 4013 } 4014 4015 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4016 { 4017 u64 frequency = event->attr.sample_freq; 4018 u64 sec = NSEC_PER_SEC; 4019 u64 divisor, dividend; 4020 4021 int count_fls, nsec_fls, frequency_fls, sec_fls; 4022 4023 count_fls = fls64(count); 4024 nsec_fls = fls64(nsec); 4025 frequency_fls = fls64(frequency); 4026 sec_fls = 30; 4027 4028 /* 4029 * We got @count in @nsec, with a target of sample_freq HZ 4030 * the target period becomes: 4031 * 4032 * @count * 10^9 4033 * period = ------------------- 4034 * @nsec * sample_freq 4035 * 4036 */ 4037 4038 /* 4039 * Reduce accuracy by one bit such that @a and @b converge 4040 * to a similar magnitude. 4041 */ 4042 #define REDUCE_FLS(a, b) \ 4043 do { \ 4044 if (a##_fls > b##_fls) { \ 4045 a >>= 1; \ 4046 a##_fls--; \ 4047 } else { \ 4048 b >>= 1; \ 4049 b##_fls--; \ 4050 } \ 4051 } while (0) 4052 4053 /* 4054 * Reduce accuracy until either term fits in a u64, then proceed with 4055 * the other, so that finally we can do a u64/u64 division. 4056 */ 4057 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4058 REDUCE_FLS(nsec, frequency); 4059 REDUCE_FLS(sec, count); 4060 } 4061 4062 if (count_fls + sec_fls > 64) { 4063 divisor = nsec * frequency; 4064 4065 while (count_fls + sec_fls > 64) { 4066 REDUCE_FLS(count, sec); 4067 divisor >>= 1; 4068 } 4069 4070 dividend = count * sec; 4071 } else { 4072 dividend = count * sec; 4073 4074 while (nsec_fls + frequency_fls > 64) { 4075 REDUCE_FLS(nsec, frequency); 4076 dividend >>= 1; 4077 } 4078 4079 divisor = nsec * frequency; 4080 } 4081 4082 if (!divisor) 4083 return dividend; 4084 4085 return div64_u64(dividend, divisor); 4086 } 4087 4088 static DEFINE_PER_CPU(int, perf_throttled_count); 4089 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4090 4091 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4092 { 4093 struct hw_perf_event *hwc = &event->hw; 4094 s64 period, sample_period; 4095 s64 delta; 4096 4097 period = perf_calculate_period(event, nsec, count); 4098 4099 delta = (s64)(period - hwc->sample_period); 4100 if (delta >= 0) 4101 delta += 7; 4102 else 4103 delta -= 7; 4104 delta /= 8; /* low pass filter */ 4105 4106 sample_period = hwc->sample_period + delta; 4107 4108 if (!sample_period) 4109 sample_period = 1; 4110 4111 hwc->sample_period = sample_period; 4112 4113 if (local64_read(&hwc->period_left) > 8*sample_period) { 4114 if (disable) 4115 event->pmu->stop(event, PERF_EF_UPDATE); 4116 4117 local64_set(&hwc->period_left, 0); 4118 4119 if (disable) 4120 event->pmu->start(event, PERF_EF_RELOAD); 4121 } 4122 } 4123 4124 static void perf_adjust_freq_unthr_events(struct list_head *event_list) 4125 { 4126 struct perf_event *event; 4127 struct hw_perf_event *hwc; 4128 u64 now, period = TICK_NSEC; 4129 s64 delta; 4130 4131 list_for_each_entry(event, event_list, active_list) { 4132 if (event->state != PERF_EVENT_STATE_ACTIVE) 4133 continue; 4134 4135 // XXX use visit thingy to avoid the -1,cpu match 4136 if (!event_filter_match(event)) 4137 continue; 4138 4139 hwc = &event->hw; 4140 4141 if (hwc->interrupts == MAX_INTERRUPTS) { 4142 hwc->interrupts = 0; 4143 perf_log_throttle(event, 1); 4144 if (!event->attr.freq || !event->attr.sample_freq) 4145 event->pmu->start(event, 0); 4146 } 4147 4148 if (!event->attr.freq || !event->attr.sample_freq) 4149 continue; 4150 4151 /* 4152 * stop the event and update event->count 4153 */ 4154 event->pmu->stop(event, PERF_EF_UPDATE); 4155 4156 now = local64_read(&event->count); 4157 delta = now - hwc->freq_count_stamp; 4158 hwc->freq_count_stamp = now; 4159 4160 /* 4161 * restart the event 4162 * reload only if value has changed 4163 * we have stopped the event so tell that 4164 * to perf_adjust_period() to avoid stopping it 4165 * twice. 4166 */ 4167 if (delta > 0) 4168 perf_adjust_period(event, period, delta, false); 4169 4170 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4171 } 4172 } 4173 4174 /* 4175 * combine freq adjustment with unthrottling to avoid two passes over the 4176 * events. At the same time, make sure, having freq events does not change 4177 * the rate of unthrottling as that would introduce bias. 4178 */ 4179 static void 4180 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4181 { 4182 struct perf_event_pmu_context *pmu_ctx; 4183 4184 /* 4185 * only need to iterate over all events iff: 4186 * - context have events in frequency mode (needs freq adjust) 4187 * - there are events to unthrottle on this cpu 4188 */ 4189 if (!(ctx->nr_freq || unthrottle)) 4190 return; 4191 4192 raw_spin_lock(&ctx->lock); 4193 4194 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4195 if (!(pmu_ctx->nr_freq || unthrottle)) 4196 continue; 4197 if (!perf_pmu_ctx_is_active(pmu_ctx)) 4198 continue; 4199 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) 4200 continue; 4201 4202 perf_pmu_disable(pmu_ctx->pmu); 4203 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); 4204 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); 4205 perf_pmu_enable(pmu_ctx->pmu); 4206 } 4207 4208 raw_spin_unlock(&ctx->lock); 4209 } 4210 4211 /* 4212 * Move @event to the tail of the @ctx's elegible events. 4213 */ 4214 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4215 { 4216 /* 4217 * Rotate the first entry last of non-pinned groups. Rotation might be 4218 * disabled by the inheritance code. 4219 */ 4220 if (ctx->rotate_disable) 4221 return; 4222 4223 perf_event_groups_delete(&ctx->flexible_groups, event); 4224 perf_event_groups_insert(&ctx->flexible_groups, event); 4225 } 4226 4227 /* pick an event from the flexible_groups to rotate */ 4228 static inline struct perf_event * 4229 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4230 { 4231 struct perf_event *event; 4232 struct rb_node *node; 4233 struct rb_root *tree; 4234 struct __group_key key = { 4235 .pmu = pmu_ctx->pmu, 4236 }; 4237 4238 /* pick the first active flexible event */ 4239 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4240 struct perf_event, active_list); 4241 if (event) 4242 goto out; 4243 4244 /* if no active flexible event, pick the first event */ 4245 tree = &pmu_ctx->ctx->flexible_groups.tree; 4246 4247 if (!pmu_ctx->ctx->task) { 4248 key.cpu = smp_processor_id(); 4249 4250 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4251 if (node) 4252 event = __node_2_pe(node); 4253 goto out; 4254 } 4255 4256 key.cpu = -1; 4257 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4258 if (node) { 4259 event = __node_2_pe(node); 4260 goto out; 4261 } 4262 4263 key.cpu = smp_processor_id(); 4264 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4265 if (node) 4266 event = __node_2_pe(node); 4267 4268 out: 4269 /* 4270 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4271 * finds there are unschedulable events, it will set it again. 4272 */ 4273 pmu_ctx->rotate_necessary = 0; 4274 4275 return event; 4276 } 4277 4278 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4279 { 4280 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4281 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4282 struct perf_event *cpu_event = NULL, *task_event = NULL; 4283 int cpu_rotate, task_rotate; 4284 struct pmu *pmu; 4285 4286 /* 4287 * Since we run this from IRQ context, nobody can install new 4288 * events, thus the event count values are stable. 4289 */ 4290 4291 cpu_epc = &cpc->epc; 4292 pmu = cpu_epc->pmu; 4293 task_epc = cpc->task_epc; 4294 4295 cpu_rotate = cpu_epc->rotate_necessary; 4296 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4297 4298 if (!(cpu_rotate || task_rotate)) 4299 return false; 4300 4301 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4302 perf_pmu_disable(pmu); 4303 4304 if (task_rotate) 4305 task_event = ctx_event_to_rotate(task_epc); 4306 if (cpu_rotate) 4307 cpu_event = ctx_event_to_rotate(cpu_epc); 4308 4309 /* 4310 * As per the order given at ctx_resched() first 'pop' task flexible 4311 * and then, if needed CPU flexible. 4312 */ 4313 if (task_event || (task_epc && cpu_event)) { 4314 update_context_time(task_epc->ctx); 4315 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4316 } 4317 4318 if (cpu_event) { 4319 update_context_time(&cpuctx->ctx); 4320 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4321 rotate_ctx(&cpuctx->ctx, cpu_event); 4322 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4323 } 4324 4325 if (task_event) 4326 rotate_ctx(task_epc->ctx, task_event); 4327 4328 if (task_event || (task_epc && cpu_event)) 4329 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4330 4331 perf_pmu_enable(pmu); 4332 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4333 4334 return true; 4335 } 4336 4337 void perf_event_task_tick(void) 4338 { 4339 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4340 struct perf_event_context *ctx; 4341 int throttled; 4342 4343 lockdep_assert_irqs_disabled(); 4344 4345 __this_cpu_inc(perf_throttled_seq); 4346 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4347 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4348 4349 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4350 4351 rcu_read_lock(); 4352 ctx = rcu_dereference(current->perf_event_ctxp); 4353 if (ctx) 4354 perf_adjust_freq_unthr_context(ctx, !!throttled); 4355 rcu_read_unlock(); 4356 } 4357 4358 static int event_enable_on_exec(struct perf_event *event, 4359 struct perf_event_context *ctx) 4360 { 4361 if (!event->attr.enable_on_exec) 4362 return 0; 4363 4364 event->attr.enable_on_exec = 0; 4365 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4366 return 0; 4367 4368 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4369 4370 return 1; 4371 } 4372 4373 /* 4374 * Enable all of a task's events that have been marked enable-on-exec. 4375 * This expects task == current. 4376 */ 4377 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4378 { 4379 struct perf_event_context *clone_ctx = NULL; 4380 enum event_type_t event_type = 0; 4381 struct perf_cpu_context *cpuctx; 4382 struct perf_event *event; 4383 unsigned long flags; 4384 int enabled = 0; 4385 4386 local_irq_save(flags); 4387 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4388 goto out; 4389 4390 if (!ctx->nr_events) 4391 goto out; 4392 4393 cpuctx = this_cpu_ptr(&perf_cpu_context); 4394 perf_ctx_lock(cpuctx, ctx); 4395 ctx_sched_out(ctx, EVENT_TIME); 4396 4397 list_for_each_entry(event, &ctx->event_list, event_entry) { 4398 enabled |= event_enable_on_exec(event, ctx); 4399 event_type |= get_event_type(event); 4400 } 4401 4402 /* 4403 * Unclone and reschedule this context if we enabled any event. 4404 */ 4405 if (enabled) { 4406 clone_ctx = unclone_ctx(ctx); 4407 ctx_resched(cpuctx, ctx, event_type); 4408 } else { 4409 ctx_sched_in(ctx, EVENT_TIME); 4410 } 4411 perf_ctx_unlock(cpuctx, ctx); 4412 4413 out: 4414 local_irq_restore(flags); 4415 4416 if (clone_ctx) 4417 put_ctx(clone_ctx); 4418 } 4419 4420 static void perf_remove_from_owner(struct perf_event *event); 4421 static void perf_event_exit_event(struct perf_event *event, 4422 struct perf_event_context *ctx); 4423 4424 /* 4425 * Removes all events from the current task that have been marked 4426 * remove-on-exec, and feeds their values back to parent events. 4427 */ 4428 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4429 { 4430 struct perf_event_context *clone_ctx = NULL; 4431 struct perf_event *event, *next; 4432 unsigned long flags; 4433 bool modified = false; 4434 4435 mutex_lock(&ctx->mutex); 4436 4437 if (WARN_ON_ONCE(ctx->task != current)) 4438 goto unlock; 4439 4440 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4441 if (!event->attr.remove_on_exec) 4442 continue; 4443 4444 if (!is_kernel_event(event)) 4445 perf_remove_from_owner(event); 4446 4447 modified = true; 4448 4449 perf_event_exit_event(event, ctx); 4450 } 4451 4452 raw_spin_lock_irqsave(&ctx->lock, flags); 4453 if (modified) 4454 clone_ctx = unclone_ctx(ctx); 4455 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4456 4457 unlock: 4458 mutex_unlock(&ctx->mutex); 4459 4460 if (clone_ctx) 4461 put_ctx(clone_ctx); 4462 } 4463 4464 struct perf_read_data { 4465 struct perf_event *event; 4466 bool group; 4467 int ret; 4468 }; 4469 4470 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4471 { 4472 u16 local_pkg, event_pkg; 4473 4474 if ((unsigned)event_cpu >= nr_cpu_ids) 4475 return event_cpu; 4476 4477 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4478 int local_cpu = smp_processor_id(); 4479 4480 event_pkg = topology_physical_package_id(event_cpu); 4481 local_pkg = topology_physical_package_id(local_cpu); 4482 4483 if (event_pkg == local_pkg) 4484 return local_cpu; 4485 } 4486 4487 return event_cpu; 4488 } 4489 4490 /* 4491 * Cross CPU call to read the hardware event 4492 */ 4493 static void __perf_event_read(void *info) 4494 { 4495 struct perf_read_data *data = info; 4496 struct perf_event *sub, *event = data->event; 4497 struct perf_event_context *ctx = event->ctx; 4498 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4499 struct pmu *pmu = event->pmu; 4500 4501 /* 4502 * If this is a task context, we need to check whether it is 4503 * the current task context of this cpu. If not it has been 4504 * scheduled out before the smp call arrived. In that case 4505 * event->count would have been updated to a recent sample 4506 * when the event was scheduled out. 4507 */ 4508 if (ctx->task && cpuctx->task_ctx != ctx) 4509 return; 4510 4511 raw_spin_lock(&ctx->lock); 4512 if (ctx->is_active & EVENT_TIME) { 4513 update_context_time(ctx); 4514 update_cgrp_time_from_event(event); 4515 } 4516 4517 perf_event_update_time(event); 4518 if (data->group) 4519 perf_event_update_sibling_time(event); 4520 4521 if (event->state != PERF_EVENT_STATE_ACTIVE) 4522 goto unlock; 4523 4524 if (!data->group) { 4525 pmu->read(event); 4526 data->ret = 0; 4527 goto unlock; 4528 } 4529 4530 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4531 4532 pmu->read(event); 4533 4534 for_each_sibling_event(sub, event) { 4535 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4536 /* 4537 * Use sibling's PMU rather than @event's since 4538 * sibling could be on different (eg: software) PMU. 4539 */ 4540 sub->pmu->read(sub); 4541 } 4542 } 4543 4544 data->ret = pmu->commit_txn(pmu); 4545 4546 unlock: 4547 raw_spin_unlock(&ctx->lock); 4548 } 4549 4550 static inline u64 perf_event_count(struct perf_event *event) 4551 { 4552 return local64_read(&event->count) + atomic64_read(&event->child_count); 4553 } 4554 4555 static void calc_timer_values(struct perf_event *event, 4556 u64 *now, 4557 u64 *enabled, 4558 u64 *running) 4559 { 4560 u64 ctx_time; 4561 4562 *now = perf_clock(); 4563 ctx_time = perf_event_time_now(event, *now); 4564 __perf_update_times(event, ctx_time, enabled, running); 4565 } 4566 4567 /* 4568 * NMI-safe method to read a local event, that is an event that 4569 * is: 4570 * - either for the current task, or for this CPU 4571 * - does not have inherit set, for inherited task events 4572 * will not be local and we cannot read them atomically 4573 * - must not have a pmu::count method 4574 */ 4575 int perf_event_read_local(struct perf_event *event, u64 *value, 4576 u64 *enabled, u64 *running) 4577 { 4578 unsigned long flags; 4579 int event_oncpu; 4580 int event_cpu; 4581 int ret = 0; 4582 4583 /* 4584 * Disabling interrupts avoids all counter scheduling (context 4585 * switches, timer based rotation and IPIs). 4586 */ 4587 local_irq_save(flags); 4588 4589 /* 4590 * It must not be an event with inherit set, we cannot read 4591 * all child counters from atomic context. 4592 */ 4593 if (event->attr.inherit) { 4594 ret = -EOPNOTSUPP; 4595 goto out; 4596 } 4597 4598 /* If this is a per-task event, it must be for current */ 4599 if ((event->attach_state & PERF_ATTACH_TASK) && 4600 event->hw.target != current) { 4601 ret = -EINVAL; 4602 goto out; 4603 } 4604 4605 /* 4606 * Get the event CPU numbers, and adjust them to local if the event is 4607 * a per-package event that can be read locally 4608 */ 4609 event_oncpu = __perf_event_read_cpu(event, event->oncpu); 4610 event_cpu = __perf_event_read_cpu(event, event->cpu); 4611 4612 /* If this is a per-CPU event, it must be for this CPU */ 4613 if (!(event->attach_state & PERF_ATTACH_TASK) && 4614 event_cpu != smp_processor_id()) { 4615 ret = -EINVAL; 4616 goto out; 4617 } 4618 4619 /* If this is a pinned event it must be running on this CPU */ 4620 if (event->attr.pinned && event_oncpu != smp_processor_id()) { 4621 ret = -EBUSY; 4622 goto out; 4623 } 4624 4625 /* 4626 * If the event is currently on this CPU, its either a per-task event, 4627 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4628 * oncpu == -1). 4629 */ 4630 if (event_oncpu == smp_processor_id()) 4631 event->pmu->read(event); 4632 4633 *value = local64_read(&event->count); 4634 if (enabled || running) { 4635 u64 __enabled, __running, __now; 4636 4637 calc_timer_values(event, &__now, &__enabled, &__running); 4638 if (enabled) 4639 *enabled = __enabled; 4640 if (running) 4641 *running = __running; 4642 } 4643 out: 4644 local_irq_restore(flags); 4645 4646 return ret; 4647 } 4648 4649 static int perf_event_read(struct perf_event *event, bool group) 4650 { 4651 enum perf_event_state state = READ_ONCE(event->state); 4652 int event_cpu, ret = 0; 4653 4654 /* 4655 * If event is enabled and currently active on a CPU, update the 4656 * value in the event structure: 4657 */ 4658 again: 4659 if (state == PERF_EVENT_STATE_ACTIVE) { 4660 struct perf_read_data data; 4661 4662 /* 4663 * Orders the ->state and ->oncpu loads such that if we see 4664 * ACTIVE we must also see the right ->oncpu. 4665 * 4666 * Matches the smp_wmb() from event_sched_in(). 4667 */ 4668 smp_rmb(); 4669 4670 event_cpu = READ_ONCE(event->oncpu); 4671 if ((unsigned)event_cpu >= nr_cpu_ids) 4672 return 0; 4673 4674 data = (struct perf_read_data){ 4675 .event = event, 4676 .group = group, 4677 .ret = 0, 4678 }; 4679 4680 preempt_disable(); 4681 event_cpu = __perf_event_read_cpu(event, event_cpu); 4682 4683 /* 4684 * Purposely ignore the smp_call_function_single() return 4685 * value. 4686 * 4687 * If event_cpu isn't a valid CPU it means the event got 4688 * scheduled out and that will have updated the event count. 4689 * 4690 * Therefore, either way, we'll have an up-to-date event count 4691 * after this. 4692 */ 4693 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4694 preempt_enable(); 4695 ret = data.ret; 4696 4697 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4698 struct perf_event_context *ctx = event->ctx; 4699 unsigned long flags; 4700 4701 raw_spin_lock_irqsave(&ctx->lock, flags); 4702 state = event->state; 4703 if (state != PERF_EVENT_STATE_INACTIVE) { 4704 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4705 goto again; 4706 } 4707 4708 /* 4709 * May read while context is not active (e.g., thread is 4710 * blocked), in that case we cannot update context time 4711 */ 4712 if (ctx->is_active & EVENT_TIME) { 4713 update_context_time(ctx); 4714 update_cgrp_time_from_event(event); 4715 } 4716 4717 perf_event_update_time(event); 4718 if (group) 4719 perf_event_update_sibling_time(event); 4720 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4721 } 4722 4723 return ret; 4724 } 4725 4726 /* 4727 * Initialize the perf_event context in a task_struct: 4728 */ 4729 static void __perf_event_init_context(struct perf_event_context *ctx) 4730 { 4731 raw_spin_lock_init(&ctx->lock); 4732 mutex_init(&ctx->mutex); 4733 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4734 perf_event_groups_init(&ctx->pinned_groups); 4735 perf_event_groups_init(&ctx->flexible_groups); 4736 INIT_LIST_HEAD(&ctx->event_list); 4737 refcount_set(&ctx->refcount, 1); 4738 } 4739 4740 static void 4741 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4742 { 4743 epc->pmu = pmu; 4744 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4745 INIT_LIST_HEAD(&epc->pinned_active); 4746 INIT_LIST_HEAD(&epc->flexible_active); 4747 atomic_set(&epc->refcount, 1); 4748 } 4749 4750 static struct perf_event_context * 4751 alloc_perf_context(struct task_struct *task) 4752 { 4753 struct perf_event_context *ctx; 4754 4755 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4756 if (!ctx) 4757 return NULL; 4758 4759 __perf_event_init_context(ctx); 4760 if (task) 4761 ctx->task = get_task_struct(task); 4762 4763 return ctx; 4764 } 4765 4766 static struct task_struct * 4767 find_lively_task_by_vpid(pid_t vpid) 4768 { 4769 struct task_struct *task; 4770 4771 rcu_read_lock(); 4772 if (!vpid) 4773 task = current; 4774 else 4775 task = find_task_by_vpid(vpid); 4776 if (task) 4777 get_task_struct(task); 4778 rcu_read_unlock(); 4779 4780 if (!task) 4781 return ERR_PTR(-ESRCH); 4782 4783 return task; 4784 } 4785 4786 /* 4787 * Returns a matching context with refcount and pincount. 4788 */ 4789 static struct perf_event_context * 4790 find_get_context(struct task_struct *task, struct perf_event *event) 4791 { 4792 struct perf_event_context *ctx, *clone_ctx = NULL; 4793 struct perf_cpu_context *cpuctx; 4794 unsigned long flags; 4795 int err; 4796 4797 if (!task) { 4798 /* Must be root to operate on a CPU event: */ 4799 err = perf_allow_cpu(&event->attr); 4800 if (err) 4801 return ERR_PTR(err); 4802 4803 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4804 ctx = &cpuctx->ctx; 4805 get_ctx(ctx); 4806 raw_spin_lock_irqsave(&ctx->lock, flags); 4807 ++ctx->pin_count; 4808 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4809 4810 return ctx; 4811 } 4812 4813 err = -EINVAL; 4814 retry: 4815 ctx = perf_lock_task_context(task, &flags); 4816 if (ctx) { 4817 clone_ctx = unclone_ctx(ctx); 4818 ++ctx->pin_count; 4819 4820 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4821 4822 if (clone_ctx) 4823 put_ctx(clone_ctx); 4824 } else { 4825 ctx = alloc_perf_context(task); 4826 err = -ENOMEM; 4827 if (!ctx) 4828 goto errout; 4829 4830 err = 0; 4831 mutex_lock(&task->perf_event_mutex); 4832 /* 4833 * If it has already passed perf_event_exit_task(). 4834 * we must see PF_EXITING, it takes this mutex too. 4835 */ 4836 if (task->flags & PF_EXITING) 4837 err = -ESRCH; 4838 else if (task->perf_event_ctxp) 4839 err = -EAGAIN; 4840 else { 4841 get_ctx(ctx); 4842 ++ctx->pin_count; 4843 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4844 } 4845 mutex_unlock(&task->perf_event_mutex); 4846 4847 if (unlikely(err)) { 4848 put_ctx(ctx); 4849 4850 if (err == -EAGAIN) 4851 goto retry; 4852 goto errout; 4853 } 4854 } 4855 4856 return ctx; 4857 4858 errout: 4859 return ERR_PTR(err); 4860 } 4861 4862 static struct perf_event_pmu_context * 4863 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4864 struct perf_event *event) 4865 { 4866 struct perf_event_pmu_context *new = NULL, *epc; 4867 void *task_ctx_data = NULL; 4868 4869 if (!ctx->task) { 4870 /* 4871 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4872 * relies on the fact that find_get_pmu_context() cannot fail 4873 * for CPU contexts. 4874 */ 4875 struct perf_cpu_pmu_context *cpc; 4876 4877 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4878 epc = &cpc->epc; 4879 raw_spin_lock_irq(&ctx->lock); 4880 if (!epc->ctx) { 4881 atomic_set(&epc->refcount, 1); 4882 epc->embedded = 1; 4883 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4884 epc->ctx = ctx; 4885 } else { 4886 WARN_ON_ONCE(epc->ctx != ctx); 4887 atomic_inc(&epc->refcount); 4888 } 4889 raw_spin_unlock_irq(&ctx->lock); 4890 return epc; 4891 } 4892 4893 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4894 if (!new) 4895 return ERR_PTR(-ENOMEM); 4896 4897 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4898 task_ctx_data = alloc_task_ctx_data(pmu); 4899 if (!task_ctx_data) { 4900 kfree(new); 4901 return ERR_PTR(-ENOMEM); 4902 } 4903 } 4904 4905 __perf_init_event_pmu_context(new, pmu); 4906 4907 /* 4908 * XXX 4909 * 4910 * lockdep_assert_held(&ctx->mutex); 4911 * 4912 * can't because perf_event_init_task() doesn't actually hold the 4913 * child_ctx->mutex. 4914 */ 4915 4916 raw_spin_lock_irq(&ctx->lock); 4917 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4918 if (epc->pmu == pmu) { 4919 WARN_ON_ONCE(epc->ctx != ctx); 4920 atomic_inc(&epc->refcount); 4921 goto found_epc; 4922 } 4923 } 4924 4925 epc = new; 4926 new = NULL; 4927 4928 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4929 epc->ctx = ctx; 4930 4931 found_epc: 4932 if (task_ctx_data && !epc->task_ctx_data) { 4933 epc->task_ctx_data = task_ctx_data; 4934 task_ctx_data = NULL; 4935 ctx->nr_task_data++; 4936 } 4937 raw_spin_unlock_irq(&ctx->lock); 4938 4939 free_task_ctx_data(pmu, task_ctx_data); 4940 kfree(new); 4941 4942 return epc; 4943 } 4944 4945 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4946 { 4947 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4948 } 4949 4950 static void free_epc_rcu(struct rcu_head *head) 4951 { 4952 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4953 4954 kfree(epc->task_ctx_data); 4955 kfree(epc); 4956 } 4957 4958 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4959 { 4960 struct perf_event_context *ctx = epc->ctx; 4961 unsigned long flags; 4962 4963 /* 4964 * XXX 4965 * 4966 * lockdep_assert_held(&ctx->mutex); 4967 * 4968 * can't because of the call-site in _free_event()/put_event() 4969 * which isn't always called under ctx->mutex. 4970 */ 4971 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4972 return; 4973 4974 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4975 4976 list_del_init(&epc->pmu_ctx_entry); 4977 epc->ctx = NULL; 4978 4979 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4980 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4981 4982 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4983 4984 if (epc->embedded) 4985 return; 4986 4987 call_rcu(&epc->rcu_head, free_epc_rcu); 4988 } 4989 4990 static void perf_event_free_filter(struct perf_event *event); 4991 4992 static void free_event_rcu(struct rcu_head *head) 4993 { 4994 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4995 4996 if (event->ns) 4997 put_pid_ns(event->ns); 4998 perf_event_free_filter(event); 4999 kmem_cache_free(perf_event_cache, event); 5000 } 5001 5002 static void ring_buffer_attach(struct perf_event *event, 5003 struct perf_buffer *rb); 5004 5005 static void detach_sb_event(struct perf_event *event) 5006 { 5007 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 5008 5009 raw_spin_lock(&pel->lock); 5010 list_del_rcu(&event->sb_list); 5011 raw_spin_unlock(&pel->lock); 5012 } 5013 5014 static bool is_sb_event(struct perf_event *event) 5015 { 5016 struct perf_event_attr *attr = &event->attr; 5017 5018 if (event->parent) 5019 return false; 5020 5021 if (event->attach_state & PERF_ATTACH_TASK) 5022 return false; 5023 5024 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5025 attr->comm || attr->comm_exec || 5026 attr->task || attr->ksymbol || 5027 attr->context_switch || attr->text_poke || 5028 attr->bpf_event) 5029 return true; 5030 return false; 5031 } 5032 5033 static void unaccount_pmu_sb_event(struct perf_event *event) 5034 { 5035 if (is_sb_event(event)) 5036 detach_sb_event(event); 5037 } 5038 5039 #ifdef CONFIG_NO_HZ_FULL 5040 static DEFINE_SPINLOCK(nr_freq_lock); 5041 #endif 5042 5043 static void unaccount_freq_event_nohz(void) 5044 { 5045 #ifdef CONFIG_NO_HZ_FULL 5046 spin_lock(&nr_freq_lock); 5047 if (atomic_dec_and_test(&nr_freq_events)) 5048 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5049 spin_unlock(&nr_freq_lock); 5050 #endif 5051 } 5052 5053 static void unaccount_freq_event(void) 5054 { 5055 if (tick_nohz_full_enabled()) 5056 unaccount_freq_event_nohz(); 5057 else 5058 atomic_dec(&nr_freq_events); 5059 } 5060 5061 static void unaccount_event(struct perf_event *event) 5062 { 5063 bool dec = false; 5064 5065 if (event->parent) 5066 return; 5067 5068 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5069 dec = true; 5070 if (event->attr.mmap || event->attr.mmap_data) 5071 atomic_dec(&nr_mmap_events); 5072 if (event->attr.build_id) 5073 atomic_dec(&nr_build_id_events); 5074 if (event->attr.comm) 5075 atomic_dec(&nr_comm_events); 5076 if (event->attr.namespaces) 5077 atomic_dec(&nr_namespaces_events); 5078 if (event->attr.cgroup) 5079 atomic_dec(&nr_cgroup_events); 5080 if (event->attr.task) 5081 atomic_dec(&nr_task_events); 5082 if (event->attr.freq) 5083 unaccount_freq_event(); 5084 if (event->attr.context_switch) { 5085 dec = true; 5086 atomic_dec(&nr_switch_events); 5087 } 5088 if (is_cgroup_event(event)) 5089 dec = true; 5090 if (has_branch_stack(event)) 5091 dec = true; 5092 if (event->attr.ksymbol) 5093 atomic_dec(&nr_ksymbol_events); 5094 if (event->attr.bpf_event) 5095 atomic_dec(&nr_bpf_events); 5096 if (event->attr.text_poke) 5097 atomic_dec(&nr_text_poke_events); 5098 5099 if (dec) { 5100 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5101 schedule_delayed_work(&perf_sched_work, HZ); 5102 } 5103 5104 unaccount_pmu_sb_event(event); 5105 } 5106 5107 static void perf_sched_delayed(struct work_struct *work) 5108 { 5109 mutex_lock(&perf_sched_mutex); 5110 if (atomic_dec_and_test(&perf_sched_count)) 5111 static_branch_disable(&perf_sched_events); 5112 mutex_unlock(&perf_sched_mutex); 5113 } 5114 5115 /* 5116 * The following implement mutual exclusion of events on "exclusive" pmus 5117 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5118 * at a time, so we disallow creating events that might conflict, namely: 5119 * 5120 * 1) cpu-wide events in the presence of per-task events, 5121 * 2) per-task events in the presence of cpu-wide events, 5122 * 3) two matching events on the same perf_event_context. 5123 * 5124 * The former two cases are handled in the allocation path (perf_event_alloc(), 5125 * _free_event()), the latter -- before the first perf_install_in_context(). 5126 */ 5127 static int exclusive_event_init(struct perf_event *event) 5128 { 5129 struct pmu *pmu = event->pmu; 5130 5131 if (!is_exclusive_pmu(pmu)) 5132 return 0; 5133 5134 /* 5135 * Prevent co-existence of per-task and cpu-wide events on the 5136 * same exclusive pmu. 5137 * 5138 * Negative pmu::exclusive_cnt means there are cpu-wide 5139 * events on this "exclusive" pmu, positive means there are 5140 * per-task events. 5141 * 5142 * Since this is called in perf_event_alloc() path, event::ctx 5143 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5144 * to mean "per-task event", because unlike other attach states it 5145 * never gets cleared. 5146 */ 5147 if (event->attach_state & PERF_ATTACH_TASK) { 5148 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5149 return -EBUSY; 5150 } else { 5151 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5152 return -EBUSY; 5153 } 5154 5155 return 0; 5156 } 5157 5158 static void exclusive_event_destroy(struct perf_event *event) 5159 { 5160 struct pmu *pmu = event->pmu; 5161 5162 if (!is_exclusive_pmu(pmu)) 5163 return; 5164 5165 /* see comment in exclusive_event_init() */ 5166 if (event->attach_state & PERF_ATTACH_TASK) 5167 atomic_dec(&pmu->exclusive_cnt); 5168 else 5169 atomic_inc(&pmu->exclusive_cnt); 5170 } 5171 5172 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5173 { 5174 if ((e1->pmu == e2->pmu) && 5175 (e1->cpu == e2->cpu || 5176 e1->cpu == -1 || 5177 e2->cpu == -1)) 5178 return true; 5179 return false; 5180 } 5181 5182 static bool exclusive_event_installable(struct perf_event *event, 5183 struct perf_event_context *ctx) 5184 { 5185 struct perf_event *iter_event; 5186 struct pmu *pmu = event->pmu; 5187 5188 lockdep_assert_held(&ctx->mutex); 5189 5190 if (!is_exclusive_pmu(pmu)) 5191 return true; 5192 5193 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5194 if (exclusive_event_match(iter_event, event)) 5195 return false; 5196 } 5197 5198 return true; 5199 } 5200 5201 static void perf_addr_filters_splice(struct perf_event *event, 5202 struct list_head *head); 5203 5204 static void perf_pending_task_sync(struct perf_event *event) 5205 { 5206 struct callback_head *head = &event->pending_task; 5207 5208 if (!event->pending_work) 5209 return; 5210 /* 5211 * If the task is queued to the current task's queue, we 5212 * obviously can't wait for it to complete. Simply cancel it. 5213 */ 5214 if (task_work_cancel(current, head)) { 5215 event->pending_work = 0; 5216 local_dec(&event->ctx->nr_pending); 5217 return; 5218 } 5219 5220 /* 5221 * All accesses related to the event are within the same RCU section in 5222 * perf_pending_task(). The RCU grace period before the event is freed 5223 * will make sure all those accesses are complete by then. 5224 */ 5225 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE); 5226 } 5227 5228 static void _free_event(struct perf_event *event) 5229 { 5230 irq_work_sync(&event->pending_irq); 5231 irq_work_sync(&event->pending_disable_irq); 5232 perf_pending_task_sync(event); 5233 5234 unaccount_event(event); 5235 5236 security_perf_event_free(event); 5237 5238 if (event->rb) { 5239 /* 5240 * Can happen when we close an event with re-directed output. 5241 * 5242 * Since we have a 0 refcount, perf_mmap_close() will skip 5243 * over us; possibly making our ring_buffer_put() the last. 5244 */ 5245 mutex_lock(&event->mmap_mutex); 5246 ring_buffer_attach(event, NULL); 5247 mutex_unlock(&event->mmap_mutex); 5248 } 5249 5250 if (is_cgroup_event(event)) 5251 perf_detach_cgroup(event); 5252 5253 if (!event->parent) { 5254 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5255 put_callchain_buffers(); 5256 } 5257 5258 perf_event_free_bpf_prog(event); 5259 perf_addr_filters_splice(event, NULL); 5260 kfree(event->addr_filter_ranges); 5261 5262 if (event->destroy) 5263 event->destroy(event); 5264 5265 /* 5266 * Must be after ->destroy(), due to uprobe_perf_close() using 5267 * hw.target. 5268 */ 5269 if (event->hw.target) 5270 put_task_struct(event->hw.target); 5271 5272 if (event->pmu_ctx) 5273 put_pmu_ctx(event->pmu_ctx); 5274 5275 /* 5276 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5277 * all task references must be cleaned up. 5278 */ 5279 if (event->ctx) 5280 put_ctx(event->ctx); 5281 5282 exclusive_event_destroy(event); 5283 module_put(event->pmu->module); 5284 5285 call_rcu(&event->rcu_head, free_event_rcu); 5286 } 5287 5288 /* 5289 * Used to free events which have a known refcount of 1, such as in error paths 5290 * where the event isn't exposed yet and inherited events. 5291 */ 5292 static void free_event(struct perf_event *event) 5293 { 5294 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5295 "unexpected event refcount: %ld; ptr=%p\n", 5296 atomic_long_read(&event->refcount), event)) { 5297 /* leak to avoid use-after-free */ 5298 return; 5299 } 5300 5301 _free_event(event); 5302 } 5303 5304 /* 5305 * Remove user event from the owner task. 5306 */ 5307 static void perf_remove_from_owner(struct perf_event *event) 5308 { 5309 struct task_struct *owner; 5310 5311 rcu_read_lock(); 5312 /* 5313 * Matches the smp_store_release() in perf_event_exit_task(). If we 5314 * observe !owner it means the list deletion is complete and we can 5315 * indeed free this event, otherwise we need to serialize on 5316 * owner->perf_event_mutex. 5317 */ 5318 owner = READ_ONCE(event->owner); 5319 if (owner) { 5320 /* 5321 * Since delayed_put_task_struct() also drops the last 5322 * task reference we can safely take a new reference 5323 * while holding the rcu_read_lock(). 5324 */ 5325 get_task_struct(owner); 5326 } 5327 rcu_read_unlock(); 5328 5329 if (owner) { 5330 /* 5331 * If we're here through perf_event_exit_task() we're already 5332 * holding ctx->mutex which would be an inversion wrt. the 5333 * normal lock order. 5334 * 5335 * However we can safely take this lock because its the child 5336 * ctx->mutex. 5337 */ 5338 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5339 5340 /* 5341 * We have to re-check the event->owner field, if it is cleared 5342 * we raced with perf_event_exit_task(), acquiring the mutex 5343 * ensured they're done, and we can proceed with freeing the 5344 * event. 5345 */ 5346 if (event->owner) { 5347 list_del_init(&event->owner_entry); 5348 smp_store_release(&event->owner, NULL); 5349 } 5350 mutex_unlock(&owner->perf_event_mutex); 5351 put_task_struct(owner); 5352 } 5353 } 5354 5355 static void put_event(struct perf_event *event) 5356 { 5357 if (!atomic_long_dec_and_test(&event->refcount)) 5358 return; 5359 5360 _free_event(event); 5361 } 5362 5363 /* 5364 * Kill an event dead; while event:refcount will preserve the event 5365 * object, it will not preserve its functionality. Once the last 'user' 5366 * gives up the object, we'll destroy the thing. 5367 */ 5368 int perf_event_release_kernel(struct perf_event *event) 5369 { 5370 struct perf_event_context *ctx = event->ctx; 5371 struct perf_event *child, *tmp; 5372 LIST_HEAD(free_list); 5373 5374 /* 5375 * If we got here through err_alloc: free_event(event); we will not 5376 * have attached to a context yet. 5377 */ 5378 if (!ctx) { 5379 WARN_ON_ONCE(event->attach_state & 5380 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5381 goto no_ctx; 5382 } 5383 5384 if (!is_kernel_event(event)) 5385 perf_remove_from_owner(event); 5386 5387 ctx = perf_event_ctx_lock(event); 5388 WARN_ON_ONCE(ctx->parent_ctx); 5389 5390 /* 5391 * Mark this event as STATE_DEAD, there is no external reference to it 5392 * anymore. 5393 * 5394 * Anybody acquiring event->child_mutex after the below loop _must_ 5395 * also see this, most importantly inherit_event() which will avoid 5396 * placing more children on the list. 5397 * 5398 * Thus this guarantees that we will in fact observe and kill _ALL_ 5399 * child events. 5400 */ 5401 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5402 5403 perf_event_ctx_unlock(event, ctx); 5404 5405 again: 5406 mutex_lock(&event->child_mutex); 5407 list_for_each_entry(child, &event->child_list, child_list) { 5408 void *var = NULL; 5409 5410 /* 5411 * Cannot change, child events are not migrated, see the 5412 * comment with perf_event_ctx_lock_nested(). 5413 */ 5414 ctx = READ_ONCE(child->ctx); 5415 /* 5416 * Since child_mutex nests inside ctx::mutex, we must jump 5417 * through hoops. We start by grabbing a reference on the ctx. 5418 * 5419 * Since the event cannot get freed while we hold the 5420 * child_mutex, the context must also exist and have a !0 5421 * reference count. 5422 */ 5423 get_ctx(ctx); 5424 5425 /* 5426 * Now that we have a ctx ref, we can drop child_mutex, and 5427 * acquire ctx::mutex without fear of it going away. Then we 5428 * can re-acquire child_mutex. 5429 */ 5430 mutex_unlock(&event->child_mutex); 5431 mutex_lock(&ctx->mutex); 5432 mutex_lock(&event->child_mutex); 5433 5434 /* 5435 * Now that we hold ctx::mutex and child_mutex, revalidate our 5436 * state, if child is still the first entry, it didn't get freed 5437 * and we can continue doing so. 5438 */ 5439 tmp = list_first_entry_or_null(&event->child_list, 5440 struct perf_event, child_list); 5441 if (tmp == child) { 5442 perf_remove_from_context(child, DETACH_GROUP); 5443 list_move(&child->child_list, &free_list); 5444 /* 5445 * This matches the refcount bump in inherit_event(); 5446 * this can't be the last reference. 5447 */ 5448 put_event(event); 5449 } else { 5450 var = &ctx->refcount; 5451 } 5452 5453 mutex_unlock(&event->child_mutex); 5454 mutex_unlock(&ctx->mutex); 5455 put_ctx(ctx); 5456 5457 if (var) { 5458 /* 5459 * If perf_event_free_task() has deleted all events from the 5460 * ctx while the child_mutex got released above, make sure to 5461 * notify about the preceding put_ctx(). 5462 */ 5463 smp_mb(); /* pairs with wait_var_event() */ 5464 wake_up_var(var); 5465 } 5466 goto again; 5467 } 5468 mutex_unlock(&event->child_mutex); 5469 5470 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5471 void *var = &child->ctx->refcount; 5472 5473 list_del(&child->child_list); 5474 free_event(child); 5475 5476 /* 5477 * Wake any perf_event_free_task() waiting for this event to be 5478 * freed. 5479 */ 5480 smp_mb(); /* pairs with wait_var_event() */ 5481 wake_up_var(var); 5482 } 5483 5484 no_ctx: 5485 put_event(event); /* Must be the 'last' reference */ 5486 return 0; 5487 } 5488 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5489 5490 /* 5491 * Called when the last reference to the file is gone. 5492 */ 5493 static int perf_release(struct inode *inode, struct file *file) 5494 { 5495 perf_event_release_kernel(file->private_data); 5496 return 0; 5497 } 5498 5499 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5500 { 5501 struct perf_event *child; 5502 u64 total = 0; 5503 5504 *enabled = 0; 5505 *running = 0; 5506 5507 mutex_lock(&event->child_mutex); 5508 5509 (void)perf_event_read(event, false); 5510 total += perf_event_count(event); 5511 5512 *enabled += event->total_time_enabled + 5513 atomic64_read(&event->child_total_time_enabled); 5514 *running += event->total_time_running + 5515 atomic64_read(&event->child_total_time_running); 5516 5517 list_for_each_entry(child, &event->child_list, child_list) { 5518 (void)perf_event_read(child, false); 5519 total += perf_event_count(child); 5520 *enabled += child->total_time_enabled; 5521 *running += child->total_time_running; 5522 } 5523 mutex_unlock(&event->child_mutex); 5524 5525 return total; 5526 } 5527 5528 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5529 { 5530 struct perf_event_context *ctx; 5531 u64 count; 5532 5533 ctx = perf_event_ctx_lock(event); 5534 count = __perf_event_read_value(event, enabled, running); 5535 perf_event_ctx_unlock(event, ctx); 5536 5537 return count; 5538 } 5539 EXPORT_SYMBOL_GPL(perf_event_read_value); 5540 5541 static int __perf_read_group_add(struct perf_event *leader, 5542 u64 read_format, u64 *values) 5543 { 5544 struct perf_event_context *ctx = leader->ctx; 5545 struct perf_event *sub, *parent; 5546 unsigned long flags; 5547 int n = 1; /* skip @nr */ 5548 int ret; 5549 5550 ret = perf_event_read(leader, true); 5551 if (ret) 5552 return ret; 5553 5554 raw_spin_lock_irqsave(&ctx->lock, flags); 5555 /* 5556 * Verify the grouping between the parent and child (inherited) 5557 * events is still in tact. 5558 * 5559 * Specifically: 5560 * - leader->ctx->lock pins leader->sibling_list 5561 * - parent->child_mutex pins parent->child_list 5562 * - parent->ctx->mutex pins parent->sibling_list 5563 * 5564 * Because parent->ctx != leader->ctx (and child_list nests inside 5565 * ctx->mutex), group destruction is not atomic between children, also 5566 * see perf_event_release_kernel(). Additionally, parent can grow the 5567 * group. 5568 * 5569 * Therefore it is possible to have parent and child groups in a 5570 * different configuration and summing over such a beast makes no sense 5571 * what so ever. 5572 * 5573 * Reject this. 5574 */ 5575 parent = leader->parent; 5576 if (parent && 5577 (parent->group_generation != leader->group_generation || 5578 parent->nr_siblings != leader->nr_siblings)) { 5579 ret = -ECHILD; 5580 goto unlock; 5581 } 5582 5583 /* 5584 * Since we co-schedule groups, {enabled,running} times of siblings 5585 * will be identical to those of the leader, so we only publish one 5586 * set. 5587 */ 5588 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5589 values[n++] += leader->total_time_enabled + 5590 atomic64_read(&leader->child_total_time_enabled); 5591 } 5592 5593 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5594 values[n++] += leader->total_time_running + 5595 atomic64_read(&leader->child_total_time_running); 5596 } 5597 5598 /* 5599 * Write {count,id} tuples for every sibling. 5600 */ 5601 values[n++] += perf_event_count(leader); 5602 if (read_format & PERF_FORMAT_ID) 5603 values[n++] = primary_event_id(leader); 5604 if (read_format & PERF_FORMAT_LOST) 5605 values[n++] = atomic64_read(&leader->lost_samples); 5606 5607 for_each_sibling_event(sub, leader) { 5608 values[n++] += perf_event_count(sub); 5609 if (read_format & PERF_FORMAT_ID) 5610 values[n++] = primary_event_id(sub); 5611 if (read_format & PERF_FORMAT_LOST) 5612 values[n++] = atomic64_read(&sub->lost_samples); 5613 } 5614 5615 unlock: 5616 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5617 return ret; 5618 } 5619 5620 static int perf_read_group(struct perf_event *event, 5621 u64 read_format, char __user *buf) 5622 { 5623 struct perf_event *leader = event->group_leader, *child; 5624 struct perf_event_context *ctx = leader->ctx; 5625 int ret; 5626 u64 *values; 5627 5628 lockdep_assert_held(&ctx->mutex); 5629 5630 values = kzalloc(event->read_size, GFP_KERNEL); 5631 if (!values) 5632 return -ENOMEM; 5633 5634 values[0] = 1 + leader->nr_siblings; 5635 5636 mutex_lock(&leader->child_mutex); 5637 5638 ret = __perf_read_group_add(leader, read_format, values); 5639 if (ret) 5640 goto unlock; 5641 5642 list_for_each_entry(child, &leader->child_list, child_list) { 5643 ret = __perf_read_group_add(child, read_format, values); 5644 if (ret) 5645 goto unlock; 5646 } 5647 5648 mutex_unlock(&leader->child_mutex); 5649 5650 ret = event->read_size; 5651 if (copy_to_user(buf, values, event->read_size)) 5652 ret = -EFAULT; 5653 goto out; 5654 5655 unlock: 5656 mutex_unlock(&leader->child_mutex); 5657 out: 5658 kfree(values); 5659 return ret; 5660 } 5661 5662 static int perf_read_one(struct perf_event *event, 5663 u64 read_format, char __user *buf) 5664 { 5665 u64 enabled, running; 5666 u64 values[5]; 5667 int n = 0; 5668 5669 values[n++] = __perf_event_read_value(event, &enabled, &running); 5670 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5671 values[n++] = enabled; 5672 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5673 values[n++] = running; 5674 if (read_format & PERF_FORMAT_ID) 5675 values[n++] = primary_event_id(event); 5676 if (read_format & PERF_FORMAT_LOST) 5677 values[n++] = atomic64_read(&event->lost_samples); 5678 5679 if (copy_to_user(buf, values, n * sizeof(u64))) 5680 return -EFAULT; 5681 5682 return n * sizeof(u64); 5683 } 5684 5685 static bool is_event_hup(struct perf_event *event) 5686 { 5687 bool no_children; 5688 5689 if (event->state > PERF_EVENT_STATE_EXIT) 5690 return false; 5691 5692 mutex_lock(&event->child_mutex); 5693 no_children = list_empty(&event->child_list); 5694 mutex_unlock(&event->child_mutex); 5695 return no_children; 5696 } 5697 5698 /* 5699 * Read the performance event - simple non blocking version for now 5700 */ 5701 static ssize_t 5702 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5703 { 5704 u64 read_format = event->attr.read_format; 5705 int ret; 5706 5707 /* 5708 * Return end-of-file for a read on an event that is in 5709 * error state (i.e. because it was pinned but it couldn't be 5710 * scheduled on to the CPU at some point). 5711 */ 5712 if (event->state == PERF_EVENT_STATE_ERROR) 5713 return 0; 5714 5715 if (count < event->read_size) 5716 return -ENOSPC; 5717 5718 WARN_ON_ONCE(event->ctx->parent_ctx); 5719 if (read_format & PERF_FORMAT_GROUP) 5720 ret = perf_read_group(event, read_format, buf); 5721 else 5722 ret = perf_read_one(event, read_format, buf); 5723 5724 return ret; 5725 } 5726 5727 static ssize_t 5728 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5729 { 5730 struct perf_event *event = file->private_data; 5731 struct perf_event_context *ctx; 5732 int ret; 5733 5734 ret = security_perf_event_read(event); 5735 if (ret) 5736 return ret; 5737 5738 ctx = perf_event_ctx_lock(event); 5739 ret = __perf_read(event, buf, count); 5740 perf_event_ctx_unlock(event, ctx); 5741 5742 return ret; 5743 } 5744 5745 static __poll_t perf_poll(struct file *file, poll_table *wait) 5746 { 5747 struct perf_event *event = file->private_data; 5748 struct perf_buffer *rb; 5749 __poll_t events = EPOLLHUP; 5750 5751 poll_wait(file, &event->waitq, wait); 5752 5753 if (is_event_hup(event)) 5754 return events; 5755 5756 /* 5757 * Pin the event->rb by taking event->mmap_mutex; otherwise 5758 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5759 */ 5760 mutex_lock(&event->mmap_mutex); 5761 rb = event->rb; 5762 if (rb) 5763 events = atomic_xchg(&rb->poll, 0); 5764 mutex_unlock(&event->mmap_mutex); 5765 return events; 5766 } 5767 5768 static void _perf_event_reset(struct perf_event *event) 5769 { 5770 (void)perf_event_read(event, false); 5771 local64_set(&event->count, 0); 5772 perf_event_update_userpage(event); 5773 } 5774 5775 /* Assume it's not an event with inherit set. */ 5776 u64 perf_event_pause(struct perf_event *event, bool reset) 5777 { 5778 struct perf_event_context *ctx; 5779 u64 count; 5780 5781 ctx = perf_event_ctx_lock(event); 5782 WARN_ON_ONCE(event->attr.inherit); 5783 _perf_event_disable(event); 5784 count = local64_read(&event->count); 5785 if (reset) 5786 local64_set(&event->count, 0); 5787 perf_event_ctx_unlock(event, ctx); 5788 5789 return count; 5790 } 5791 EXPORT_SYMBOL_GPL(perf_event_pause); 5792 5793 /* 5794 * Holding the top-level event's child_mutex means that any 5795 * descendant process that has inherited this event will block 5796 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5797 * task existence requirements of perf_event_enable/disable. 5798 */ 5799 static void perf_event_for_each_child(struct perf_event *event, 5800 void (*func)(struct perf_event *)) 5801 { 5802 struct perf_event *child; 5803 5804 WARN_ON_ONCE(event->ctx->parent_ctx); 5805 5806 mutex_lock(&event->child_mutex); 5807 func(event); 5808 list_for_each_entry(child, &event->child_list, child_list) 5809 func(child); 5810 mutex_unlock(&event->child_mutex); 5811 } 5812 5813 static void perf_event_for_each(struct perf_event *event, 5814 void (*func)(struct perf_event *)) 5815 { 5816 struct perf_event_context *ctx = event->ctx; 5817 struct perf_event *sibling; 5818 5819 lockdep_assert_held(&ctx->mutex); 5820 5821 event = event->group_leader; 5822 5823 perf_event_for_each_child(event, func); 5824 for_each_sibling_event(sibling, event) 5825 perf_event_for_each_child(sibling, func); 5826 } 5827 5828 static void __perf_event_period(struct perf_event *event, 5829 struct perf_cpu_context *cpuctx, 5830 struct perf_event_context *ctx, 5831 void *info) 5832 { 5833 u64 value = *((u64 *)info); 5834 bool active; 5835 5836 if (event->attr.freq) { 5837 event->attr.sample_freq = value; 5838 } else { 5839 event->attr.sample_period = value; 5840 event->hw.sample_period = value; 5841 } 5842 5843 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5844 if (active) { 5845 perf_pmu_disable(event->pmu); 5846 /* 5847 * We could be throttled; unthrottle now to avoid the tick 5848 * trying to unthrottle while we already re-started the event. 5849 */ 5850 if (event->hw.interrupts == MAX_INTERRUPTS) { 5851 event->hw.interrupts = 0; 5852 perf_log_throttle(event, 1); 5853 } 5854 event->pmu->stop(event, PERF_EF_UPDATE); 5855 } 5856 5857 local64_set(&event->hw.period_left, 0); 5858 5859 if (active) { 5860 event->pmu->start(event, PERF_EF_RELOAD); 5861 perf_pmu_enable(event->pmu); 5862 } 5863 } 5864 5865 static int perf_event_check_period(struct perf_event *event, u64 value) 5866 { 5867 return event->pmu->check_period(event, value); 5868 } 5869 5870 static int _perf_event_period(struct perf_event *event, u64 value) 5871 { 5872 if (!is_sampling_event(event)) 5873 return -EINVAL; 5874 5875 if (!value) 5876 return -EINVAL; 5877 5878 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5879 return -EINVAL; 5880 5881 if (perf_event_check_period(event, value)) 5882 return -EINVAL; 5883 5884 if (!event->attr.freq && (value & (1ULL << 63))) 5885 return -EINVAL; 5886 5887 event_function_call(event, __perf_event_period, &value); 5888 5889 return 0; 5890 } 5891 5892 int perf_event_period(struct perf_event *event, u64 value) 5893 { 5894 struct perf_event_context *ctx; 5895 int ret; 5896 5897 ctx = perf_event_ctx_lock(event); 5898 ret = _perf_event_period(event, value); 5899 perf_event_ctx_unlock(event, ctx); 5900 5901 return ret; 5902 } 5903 EXPORT_SYMBOL_GPL(perf_event_period); 5904 5905 static const struct file_operations perf_fops; 5906 5907 static inline int perf_fget_light(int fd, struct fd *p) 5908 { 5909 struct fd f = fdget(fd); 5910 if (!f.file) 5911 return -EBADF; 5912 5913 if (f.file->f_op != &perf_fops) { 5914 fdput(f); 5915 return -EBADF; 5916 } 5917 *p = f; 5918 return 0; 5919 } 5920 5921 static int perf_event_set_output(struct perf_event *event, 5922 struct perf_event *output_event); 5923 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5924 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5925 struct perf_event_attr *attr); 5926 5927 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5928 { 5929 void (*func)(struct perf_event *); 5930 u32 flags = arg; 5931 5932 switch (cmd) { 5933 case PERF_EVENT_IOC_ENABLE: 5934 func = _perf_event_enable; 5935 break; 5936 case PERF_EVENT_IOC_DISABLE: 5937 func = _perf_event_disable; 5938 break; 5939 case PERF_EVENT_IOC_RESET: 5940 func = _perf_event_reset; 5941 break; 5942 5943 case PERF_EVENT_IOC_REFRESH: 5944 return _perf_event_refresh(event, arg); 5945 5946 case PERF_EVENT_IOC_PERIOD: 5947 { 5948 u64 value; 5949 5950 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5951 return -EFAULT; 5952 5953 return _perf_event_period(event, value); 5954 } 5955 case PERF_EVENT_IOC_ID: 5956 { 5957 u64 id = primary_event_id(event); 5958 5959 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5960 return -EFAULT; 5961 return 0; 5962 } 5963 5964 case PERF_EVENT_IOC_SET_OUTPUT: 5965 { 5966 int ret; 5967 if (arg != -1) { 5968 struct perf_event *output_event; 5969 struct fd output; 5970 ret = perf_fget_light(arg, &output); 5971 if (ret) 5972 return ret; 5973 output_event = output.file->private_data; 5974 ret = perf_event_set_output(event, output_event); 5975 fdput(output); 5976 } else { 5977 ret = perf_event_set_output(event, NULL); 5978 } 5979 return ret; 5980 } 5981 5982 case PERF_EVENT_IOC_SET_FILTER: 5983 return perf_event_set_filter(event, (void __user *)arg); 5984 5985 case PERF_EVENT_IOC_SET_BPF: 5986 { 5987 struct bpf_prog *prog; 5988 int err; 5989 5990 prog = bpf_prog_get(arg); 5991 if (IS_ERR(prog)) 5992 return PTR_ERR(prog); 5993 5994 err = perf_event_set_bpf_prog(event, prog, 0); 5995 if (err) { 5996 bpf_prog_put(prog); 5997 return err; 5998 } 5999 6000 return 0; 6001 } 6002 6003 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 6004 struct perf_buffer *rb; 6005 6006 rcu_read_lock(); 6007 rb = rcu_dereference(event->rb); 6008 if (!rb || !rb->nr_pages) { 6009 rcu_read_unlock(); 6010 return -EINVAL; 6011 } 6012 rb_toggle_paused(rb, !!arg); 6013 rcu_read_unlock(); 6014 return 0; 6015 } 6016 6017 case PERF_EVENT_IOC_QUERY_BPF: 6018 return perf_event_query_prog_array(event, (void __user *)arg); 6019 6020 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6021 struct perf_event_attr new_attr; 6022 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6023 &new_attr); 6024 6025 if (err) 6026 return err; 6027 6028 return perf_event_modify_attr(event, &new_attr); 6029 } 6030 default: 6031 return -ENOTTY; 6032 } 6033 6034 if (flags & PERF_IOC_FLAG_GROUP) 6035 perf_event_for_each(event, func); 6036 else 6037 perf_event_for_each_child(event, func); 6038 6039 return 0; 6040 } 6041 6042 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6043 { 6044 struct perf_event *event = file->private_data; 6045 struct perf_event_context *ctx; 6046 long ret; 6047 6048 /* Treat ioctl like writes as it is likely a mutating operation. */ 6049 ret = security_perf_event_write(event); 6050 if (ret) 6051 return ret; 6052 6053 ctx = perf_event_ctx_lock(event); 6054 ret = _perf_ioctl(event, cmd, arg); 6055 perf_event_ctx_unlock(event, ctx); 6056 6057 return ret; 6058 } 6059 6060 #ifdef CONFIG_COMPAT 6061 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6062 unsigned long arg) 6063 { 6064 switch (_IOC_NR(cmd)) { 6065 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6066 case _IOC_NR(PERF_EVENT_IOC_ID): 6067 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6068 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6069 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6070 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6071 cmd &= ~IOCSIZE_MASK; 6072 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6073 } 6074 break; 6075 } 6076 return perf_ioctl(file, cmd, arg); 6077 } 6078 #else 6079 # define perf_compat_ioctl NULL 6080 #endif 6081 6082 int perf_event_task_enable(void) 6083 { 6084 struct perf_event_context *ctx; 6085 struct perf_event *event; 6086 6087 mutex_lock(¤t->perf_event_mutex); 6088 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6089 ctx = perf_event_ctx_lock(event); 6090 perf_event_for_each_child(event, _perf_event_enable); 6091 perf_event_ctx_unlock(event, ctx); 6092 } 6093 mutex_unlock(¤t->perf_event_mutex); 6094 6095 return 0; 6096 } 6097 6098 int perf_event_task_disable(void) 6099 { 6100 struct perf_event_context *ctx; 6101 struct perf_event *event; 6102 6103 mutex_lock(¤t->perf_event_mutex); 6104 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6105 ctx = perf_event_ctx_lock(event); 6106 perf_event_for_each_child(event, _perf_event_disable); 6107 perf_event_ctx_unlock(event, ctx); 6108 } 6109 mutex_unlock(¤t->perf_event_mutex); 6110 6111 return 0; 6112 } 6113 6114 static int perf_event_index(struct perf_event *event) 6115 { 6116 if (event->hw.state & PERF_HES_STOPPED) 6117 return 0; 6118 6119 if (event->state != PERF_EVENT_STATE_ACTIVE) 6120 return 0; 6121 6122 return event->pmu->event_idx(event); 6123 } 6124 6125 static void perf_event_init_userpage(struct perf_event *event) 6126 { 6127 struct perf_event_mmap_page *userpg; 6128 struct perf_buffer *rb; 6129 6130 rcu_read_lock(); 6131 rb = rcu_dereference(event->rb); 6132 if (!rb) 6133 goto unlock; 6134 6135 userpg = rb->user_page; 6136 6137 /* Allow new userspace to detect that bit 0 is deprecated */ 6138 userpg->cap_bit0_is_deprecated = 1; 6139 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6140 userpg->data_offset = PAGE_SIZE; 6141 userpg->data_size = perf_data_size(rb); 6142 6143 unlock: 6144 rcu_read_unlock(); 6145 } 6146 6147 void __weak arch_perf_update_userpage( 6148 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6149 { 6150 } 6151 6152 /* 6153 * Callers need to ensure there can be no nesting of this function, otherwise 6154 * the seqlock logic goes bad. We can not serialize this because the arch 6155 * code calls this from NMI context. 6156 */ 6157 void perf_event_update_userpage(struct perf_event *event) 6158 { 6159 struct perf_event_mmap_page *userpg; 6160 struct perf_buffer *rb; 6161 u64 enabled, running, now; 6162 6163 rcu_read_lock(); 6164 rb = rcu_dereference(event->rb); 6165 if (!rb) 6166 goto unlock; 6167 6168 /* 6169 * compute total_time_enabled, total_time_running 6170 * based on snapshot values taken when the event 6171 * was last scheduled in. 6172 * 6173 * we cannot simply called update_context_time() 6174 * because of locking issue as we can be called in 6175 * NMI context 6176 */ 6177 calc_timer_values(event, &now, &enabled, &running); 6178 6179 userpg = rb->user_page; 6180 /* 6181 * Disable preemption to guarantee consistent time stamps are stored to 6182 * the user page. 6183 */ 6184 preempt_disable(); 6185 ++userpg->lock; 6186 barrier(); 6187 userpg->index = perf_event_index(event); 6188 userpg->offset = perf_event_count(event); 6189 if (userpg->index) 6190 userpg->offset -= local64_read(&event->hw.prev_count); 6191 6192 userpg->time_enabled = enabled + 6193 atomic64_read(&event->child_total_time_enabled); 6194 6195 userpg->time_running = running + 6196 atomic64_read(&event->child_total_time_running); 6197 6198 arch_perf_update_userpage(event, userpg, now); 6199 6200 barrier(); 6201 ++userpg->lock; 6202 preempt_enable(); 6203 unlock: 6204 rcu_read_unlock(); 6205 } 6206 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6207 6208 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6209 { 6210 struct perf_event *event = vmf->vma->vm_file->private_data; 6211 struct perf_buffer *rb; 6212 vm_fault_t ret = VM_FAULT_SIGBUS; 6213 6214 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6215 if (vmf->pgoff == 0) 6216 ret = 0; 6217 return ret; 6218 } 6219 6220 rcu_read_lock(); 6221 rb = rcu_dereference(event->rb); 6222 if (!rb) 6223 goto unlock; 6224 6225 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6226 goto unlock; 6227 6228 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6229 if (!vmf->page) 6230 goto unlock; 6231 6232 get_page(vmf->page); 6233 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6234 vmf->page->index = vmf->pgoff; 6235 6236 ret = 0; 6237 unlock: 6238 rcu_read_unlock(); 6239 6240 return ret; 6241 } 6242 6243 static void ring_buffer_attach(struct perf_event *event, 6244 struct perf_buffer *rb) 6245 { 6246 struct perf_buffer *old_rb = NULL; 6247 unsigned long flags; 6248 6249 WARN_ON_ONCE(event->parent); 6250 6251 if (event->rb) { 6252 /* 6253 * Should be impossible, we set this when removing 6254 * event->rb_entry and wait/clear when adding event->rb_entry. 6255 */ 6256 WARN_ON_ONCE(event->rcu_pending); 6257 6258 old_rb = event->rb; 6259 spin_lock_irqsave(&old_rb->event_lock, flags); 6260 list_del_rcu(&event->rb_entry); 6261 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6262 6263 event->rcu_batches = get_state_synchronize_rcu(); 6264 event->rcu_pending = 1; 6265 } 6266 6267 if (rb) { 6268 if (event->rcu_pending) { 6269 cond_synchronize_rcu(event->rcu_batches); 6270 event->rcu_pending = 0; 6271 } 6272 6273 spin_lock_irqsave(&rb->event_lock, flags); 6274 list_add_rcu(&event->rb_entry, &rb->event_list); 6275 spin_unlock_irqrestore(&rb->event_lock, flags); 6276 } 6277 6278 /* 6279 * Avoid racing with perf_mmap_close(AUX): stop the event 6280 * before swizzling the event::rb pointer; if it's getting 6281 * unmapped, its aux_mmap_count will be 0 and it won't 6282 * restart. See the comment in __perf_pmu_output_stop(). 6283 * 6284 * Data will inevitably be lost when set_output is done in 6285 * mid-air, but then again, whoever does it like this is 6286 * not in for the data anyway. 6287 */ 6288 if (has_aux(event)) 6289 perf_event_stop(event, 0); 6290 6291 rcu_assign_pointer(event->rb, rb); 6292 6293 if (old_rb) { 6294 ring_buffer_put(old_rb); 6295 /* 6296 * Since we detached before setting the new rb, so that we 6297 * could attach the new rb, we could have missed a wakeup. 6298 * Provide it now. 6299 */ 6300 wake_up_all(&event->waitq); 6301 } 6302 } 6303 6304 static void ring_buffer_wakeup(struct perf_event *event) 6305 { 6306 struct perf_buffer *rb; 6307 6308 if (event->parent) 6309 event = event->parent; 6310 6311 rcu_read_lock(); 6312 rb = rcu_dereference(event->rb); 6313 if (rb) { 6314 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6315 wake_up_all(&event->waitq); 6316 } 6317 rcu_read_unlock(); 6318 } 6319 6320 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6321 { 6322 struct perf_buffer *rb; 6323 6324 if (event->parent) 6325 event = event->parent; 6326 6327 rcu_read_lock(); 6328 rb = rcu_dereference(event->rb); 6329 if (rb) { 6330 if (!refcount_inc_not_zero(&rb->refcount)) 6331 rb = NULL; 6332 } 6333 rcu_read_unlock(); 6334 6335 return rb; 6336 } 6337 6338 void ring_buffer_put(struct perf_buffer *rb) 6339 { 6340 if (!refcount_dec_and_test(&rb->refcount)) 6341 return; 6342 6343 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6344 6345 call_rcu(&rb->rcu_head, rb_free_rcu); 6346 } 6347 6348 static void perf_mmap_open(struct vm_area_struct *vma) 6349 { 6350 struct perf_event *event = vma->vm_file->private_data; 6351 6352 atomic_inc(&event->mmap_count); 6353 atomic_inc(&event->rb->mmap_count); 6354 6355 if (vma->vm_pgoff) 6356 atomic_inc(&event->rb->aux_mmap_count); 6357 6358 if (event->pmu->event_mapped) 6359 event->pmu->event_mapped(event, vma->vm_mm); 6360 } 6361 6362 static void perf_pmu_output_stop(struct perf_event *event); 6363 6364 /* 6365 * A buffer can be mmap()ed multiple times; either directly through the same 6366 * event, or through other events by use of perf_event_set_output(). 6367 * 6368 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6369 * the buffer here, where we still have a VM context. This means we need 6370 * to detach all events redirecting to us. 6371 */ 6372 static void perf_mmap_close(struct vm_area_struct *vma) 6373 { 6374 struct perf_event *event = vma->vm_file->private_data; 6375 struct perf_buffer *rb = ring_buffer_get(event); 6376 struct user_struct *mmap_user = rb->mmap_user; 6377 int mmap_locked = rb->mmap_locked; 6378 unsigned long size = perf_data_size(rb); 6379 bool detach_rest = false; 6380 6381 if (event->pmu->event_unmapped) 6382 event->pmu->event_unmapped(event, vma->vm_mm); 6383 6384 /* 6385 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex 6386 * to avoid complications. 6387 */ 6388 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6389 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { 6390 /* 6391 * Stop all AUX events that are writing to this buffer, 6392 * so that we can free its AUX pages and corresponding PMU 6393 * data. Note that after rb::aux_mmap_count dropped to zero, 6394 * they won't start any more (see perf_aux_output_begin()). 6395 */ 6396 perf_pmu_output_stop(event); 6397 6398 /* now it's safe to free the pages */ 6399 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6400 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6401 6402 /* this has to be the last one */ 6403 rb_free_aux(rb); 6404 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6405 6406 mutex_unlock(&rb->aux_mutex); 6407 } 6408 6409 if (atomic_dec_and_test(&rb->mmap_count)) 6410 detach_rest = true; 6411 6412 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6413 goto out_put; 6414 6415 ring_buffer_attach(event, NULL); 6416 mutex_unlock(&event->mmap_mutex); 6417 6418 /* If there's still other mmap()s of this buffer, we're done. */ 6419 if (!detach_rest) 6420 goto out_put; 6421 6422 /* 6423 * No other mmap()s, detach from all other events that might redirect 6424 * into the now unreachable buffer. Somewhat complicated by the 6425 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6426 */ 6427 again: 6428 rcu_read_lock(); 6429 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6430 if (!atomic_long_inc_not_zero(&event->refcount)) { 6431 /* 6432 * This event is en-route to free_event() which will 6433 * detach it and remove it from the list. 6434 */ 6435 continue; 6436 } 6437 rcu_read_unlock(); 6438 6439 mutex_lock(&event->mmap_mutex); 6440 /* 6441 * Check we didn't race with perf_event_set_output() which can 6442 * swizzle the rb from under us while we were waiting to 6443 * acquire mmap_mutex. 6444 * 6445 * If we find a different rb; ignore this event, a next 6446 * iteration will no longer find it on the list. We have to 6447 * still restart the iteration to make sure we're not now 6448 * iterating the wrong list. 6449 */ 6450 if (event->rb == rb) 6451 ring_buffer_attach(event, NULL); 6452 6453 mutex_unlock(&event->mmap_mutex); 6454 put_event(event); 6455 6456 /* 6457 * Restart the iteration; either we're on the wrong list or 6458 * destroyed its integrity by doing a deletion. 6459 */ 6460 goto again; 6461 } 6462 rcu_read_unlock(); 6463 6464 /* 6465 * It could be there's still a few 0-ref events on the list; they'll 6466 * get cleaned up by free_event() -- they'll also still have their 6467 * ref on the rb and will free it whenever they are done with it. 6468 * 6469 * Aside from that, this buffer is 'fully' detached and unmapped, 6470 * undo the VM accounting. 6471 */ 6472 6473 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6474 &mmap_user->locked_vm); 6475 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6476 free_uid(mmap_user); 6477 6478 out_put: 6479 ring_buffer_put(rb); /* could be last */ 6480 } 6481 6482 static const struct vm_operations_struct perf_mmap_vmops = { 6483 .open = perf_mmap_open, 6484 .close = perf_mmap_close, /* non mergeable */ 6485 .fault = perf_mmap_fault, 6486 .page_mkwrite = perf_mmap_fault, 6487 }; 6488 6489 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6490 { 6491 struct perf_event *event = file->private_data; 6492 unsigned long user_locked, user_lock_limit; 6493 struct user_struct *user = current_user(); 6494 struct mutex *aux_mutex = NULL; 6495 struct perf_buffer *rb = NULL; 6496 unsigned long locked, lock_limit; 6497 unsigned long vma_size; 6498 unsigned long nr_pages; 6499 long user_extra = 0, extra = 0; 6500 int ret = 0, flags = 0; 6501 6502 /* 6503 * Don't allow mmap() of inherited per-task counters. This would 6504 * create a performance issue due to all children writing to the 6505 * same rb. 6506 */ 6507 if (event->cpu == -1 && event->attr.inherit) 6508 return -EINVAL; 6509 6510 if (!(vma->vm_flags & VM_SHARED)) 6511 return -EINVAL; 6512 6513 ret = security_perf_event_read(event); 6514 if (ret) 6515 return ret; 6516 6517 vma_size = vma->vm_end - vma->vm_start; 6518 6519 if (vma->vm_pgoff == 0) { 6520 nr_pages = (vma_size / PAGE_SIZE) - 1; 6521 } else { 6522 /* 6523 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6524 * mapped, all subsequent mappings should have the same size 6525 * and offset. Must be above the normal perf buffer. 6526 */ 6527 u64 aux_offset, aux_size; 6528 6529 if (!event->rb) 6530 return -EINVAL; 6531 6532 nr_pages = vma_size / PAGE_SIZE; 6533 if (nr_pages > INT_MAX) 6534 return -ENOMEM; 6535 6536 mutex_lock(&event->mmap_mutex); 6537 ret = -EINVAL; 6538 6539 rb = event->rb; 6540 if (!rb) 6541 goto aux_unlock; 6542 6543 aux_mutex = &rb->aux_mutex; 6544 mutex_lock(aux_mutex); 6545 6546 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6547 aux_size = READ_ONCE(rb->user_page->aux_size); 6548 6549 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6550 goto aux_unlock; 6551 6552 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6553 goto aux_unlock; 6554 6555 /* already mapped with a different offset */ 6556 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6557 goto aux_unlock; 6558 6559 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6560 goto aux_unlock; 6561 6562 /* already mapped with a different size */ 6563 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6564 goto aux_unlock; 6565 6566 if (!is_power_of_2(nr_pages)) 6567 goto aux_unlock; 6568 6569 if (!atomic_inc_not_zero(&rb->mmap_count)) 6570 goto aux_unlock; 6571 6572 if (rb_has_aux(rb)) { 6573 atomic_inc(&rb->aux_mmap_count); 6574 ret = 0; 6575 goto unlock; 6576 } 6577 6578 atomic_set(&rb->aux_mmap_count, 1); 6579 user_extra = nr_pages; 6580 6581 goto accounting; 6582 } 6583 6584 /* 6585 * If we have rb pages ensure they're a power-of-two number, so we 6586 * can do bitmasks instead of modulo. 6587 */ 6588 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6589 return -EINVAL; 6590 6591 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6592 return -EINVAL; 6593 6594 WARN_ON_ONCE(event->ctx->parent_ctx); 6595 again: 6596 mutex_lock(&event->mmap_mutex); 6597 if (event->rb) { 6598 if (data_page_nr(event->rb) != nr_pages) { 6599 ret = -EINVAL; 6600 goto unlock; 6601 } 6602 6603 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6604 /* 6605 * Raced against perf_mmap_close(); remove the 6606 * event and try again. 6607 */ 6608 ring_buffer_attach(event, NULL); 6609 mutex_unlock(&event->mmap_mutex); 6610 goto again; 6611 } 6612 6613 goto unlock; 6614 } 6615 6616 user_extra = nr_pages + 1; 6617 6618 accounting: 6619 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6620 6621 /* 6622 * Increase the limit linearly with more CPUs: 6623 */ 6624 user_lock_limit *= num_online_cpus(); 6625 6626 user_locked = atomic_long_read(&user->locked_vm); 6627 6628 /* 6629 * sysctl_perf_event_mlock may have changed, so that 6630 * user->locked_vm > user_lock_limit 6631 */ 6632 if (user_locked > user_lock_limit) 6633 user_locked = user_lock_limit; 6634 user_locked += user_extra; 6635 6636 if (user_locked > user_lock_limit) { 6637 /* 6638 * charge locked_vm until it hits user_lock_limit; 6639 * charge the rest from pinned_vm 6640 */ 6641 extra = user_locked - user_lock_limit; 6642 user_extra -= extra; 6643 } 6644 6645 lock_limit = rlimit(RLIMIT_MEMLOCK); 6646 lock_limit >>= PAGE_SHIFT; 6647 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6648 6649 if ((locked > lock_limit) && perf_is_paranoid() && 6650 !capable(CAP_IPC_LOCK)) { 6651 ret = -EPERM; 6652 goto unlock; 6653 } 6654 6655 WARN_ON(!rb && event->rb); 6656 6657 if (vma->vm_flags & VM_WRITE) 6658 flags |= RING_BUFFER_WRITABLE; 6659 6660 if (!rb) { 6661 rb = rb_alloc(nr_pages, 6662 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6663 event->cpu, flags); 6664 6665 if (!rb) { 6666 ret = -ENOMEM; 6667 goto unlock; 6668 } 6669 6670 atomic_set(&rb->mmap_count, 1); 6671 rb->mmap_user = get_current_user(); 6672 rb->mmap_locked = extra; 6673 6674 ring_buffer_attach(event, rb); 6675 6676 perf_event_update_time(event); 6677 perf_event_init_userpage(event); 6678 perf_event_update_userpage(event); 6679 } else { 6680 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6681 event->attr.aux_watermark, flags); 6682 if (!ret) 6683 rb->aux_mmap_locked = extra; 6684 } 6685 6686 unlock: 6687 if (!ret) { 6688 atomic_long_add(user_extra, &user->locked_vm); 6689 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6690 6691 atomic_inc(&event->mmap_count); 6692 } else if (rb) { 6693 atomic_dec(&rb->mmap_count); 6694 } 6695 aux_unlock: 6696 if (aux_mutex) 6697 mutex_unlock(aux_mutex); 6698 mutex_unlock(&event->mmap_mutex); 6699 6700 /* 6701 * Since pinned accounting is per vm we cannot allow fork() to copy our 6702 * vma. 6703 */ 6704 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6705 vma->vm_ops = &perf_mmap_vmops; 6706 6707 if (event->pmu->event_mapped) 6708 event->pmu->event_mapped(event, vma->vm_mm); 6709 6710 return ret; 6711 } 6712 6713 static int perf_fasync(int fd, struct file *filp, int on) 6714 { 6715 struct inode *inode = file_inode(filp); 6716 struct perf_event *event = filp->private_data; 6717 int retval; 6718 6719 inode_lock(inode); 6720 retval = fasync_helper(fd, filp, on, &event->fasync); 6721 inode_unlock(inode); 6722 6723 if (retval < 0) 6724 return retval; 6725 6726 return 0; 6727 } 6728 6729 static const struct file_operations perf_fops = { 6730 .llseek = no_llseek, 6731 .release = perf_release, 6732 .read = perf_read, 6733 .poll = perf_poll, 6734 .unlocked_ioctl = perf_ioctl, 6735 .compat_ioctl = perf_compat_ioctl, 6736 .mmap = perf_mmap, 6737 .fasync = perf_fasync, 6738 }; 6739 6740 /* 6741 * Perf event wakeup 6742 * 6743 * If there's data, ensure we set the poll() state and publish everything 6744 * to user-space before waking everybody up. 6745 */ 6746 6747 void perf_event_wakeup(struct perf_event *event) 6748 { 6749 ring_buffer_wakeup(event); 6750 6751 if (event->pending_kill) { 6752 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6753 event->pending_kill = 0; 6754 } 6755 } 6756 6757 static void perf_sigtrap(struct perf_event *event) 6758 { 6759 /* 6760 * We'd expect this to only occur if the irq_work is delayed and either 6761 * ctx->task or current has changed in the meantime. This can be the 6762 * case on architectures that do not implement arch_irq_work_raise(). 6763 */ 6764 if (WARN_ON_ONCE(event->ctx->task != current)) 6765 return; 6766 6767 /* 6768 * Both perf_pending_task() and perf_pending_irq() can race with the 6769 * task exiting. 6770 */ 6771 if (current->flags & PF_EXITING) 6772 return; 6773 6774 send_sig_perf((void __user *)event->pending_addr, 6775 event->orig_type, event->attr.sig_data); 6776 } 6777 6778 /* 6779 * Deliver the pending work in-event-context or follow the context. 6780 */ 6781 static void __perf_pending_disable(struct perf_event *event) 6782 { 6783 int cpu = READ_ONCE(event->oncpu); 6784 6785 /* 6786 * If the event isn't running; we done. event_sched_out() will have 6787 * taken care of things. 6788 */ 6789 if (cpu < 0) 6790 return; 6791 6792 /* 6793 * Yay, we hit home and are in the context of the event. 6794 */ 6795 if (cpu == smp_processor_id()) { 6796 if (event->pending_disable) { 6797 event->pending_disable = 0; 6798 perf_event_disable_local(event); 6799 } 6800 return; 6801 } 6802 6803 /* 6804 * CPU-A CPU-B 6805 * 6806 * perf_event_disable_inatomic() 6807 * @pending_disable = CPU-A; 6808 * irq_work_queue(); 6809 * 6810 * sched-out 6811 * @pending_disable = -1; 6812 * 6813 * sched-in 6814 * perf_event_disable_inatomic() 6815 * @pending_disable = CPU-B; 6816 * irq_work_queue(); // FAILS 6817 * 6818 * irq_work_run() 6819 * perf_pending_disable() 6820 * 6821 * But the event runs on CPU-B and wants disabling there. 6822 */ 6823 irq_work_queue_on(&event->pending_disable_irq, cpu); 6824 } 6825 6826 static void perf_pending_disable(struct irq_work *entry) 6827 { 6828 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq); 6829 int rctx; 6830 6831 /* 6832 * If we 'fail' here, that's OK, it means recursion is already disabled 6833 * and we won't recurse 'further'. 6834 */ 6835 rctx = perf_swevent_get_recursion_context(); 6836 __perf_pending_disable(event); 6837 if (rctx >= 0) 6838 perf_swevent_put_recursion_context(rctx); 6839 } 6840 6841 static void perf_pending_irq(struct irq_work *entry) 6842 { 6843 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6844 int rctx; 6845 6846 /* 6847 * If we 'fail' here, that's OK, it means recursion is already disabled 6848 * and we won't recurse 'further'. 6849 */ 6850 rctx = perf_swevent_get_recursion_context(); 6851 6852 /* 6853 * The wakeup isn't bound to the context of the event -- it can happen 6854 * irrespective of where the event is. 6855 */ 6856 if (event->pending_wakeup) { 6857 event->pending_wakeup = 0; 6858 perf_event_wakeup(event); 6859 } 6860 6861 if (rctx >= 0) 6862 perf_swevent_put_recursion_context(rctx); 6863 } 6864 6865 static void perf_pending_task(struct callback_head *head) 6866 { 6867 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6868 int rctx; 6869 6870 /* 6871 * All accesses to the event must belong to the same implicit RCU read-side 6872 * critical section as the ->pending_work reset. See comment in 6873 * perf_pending_task_sync(). 6874 */ 6875 rcu_read_lock(); 6876 /* 6877 * If we 'fail' here, that's OK, it means recursion is already disabled 6878 * and we won't recurse 'further'. 6879 */ 6880 rctx = perf_swevent_get_recursion_context(); 6881 6882 if (event->pending_work) { 6883 event->pending_work = 0; 6884 perf_sigtrap(event); 6885 local_dec(&event->ctx->nr_pending); 6886 rcuwait_wake_up(&event->pending_work_wait); 6887 } 6888 rcu_read_unlock(); 6889 6890 if (rctx >= 0) 6891 perf_swevent_put_recursion_context(rctx); 6892 } 6893 6894 #ifdef CONFIG_GUEST_PERF_EVENTS 6895 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6896 6897 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6898 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6899 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6900 6901 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6902 { 6903 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6904 return; 6905 6906 rcu_assign_pointer(perf_guest_cbs, cbs); 6907 static_call_update(__perf_guest_state, cbs->state); 6908 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6909 6910 /* Implementing ->handle_intel_pt_intr is optional. */ 6911 if (cbs->handle_intel_pt_intr) 6912 static_call_update(__perf_guest_handle_intel_pt_intr, 6913 cbs->handle_intel_pt_intr); 6914 } 6915 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6916 6917 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6918 { 6919 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6920 return; 6921 6922 rcu_assign_pointer(perf_guest_cbs, NULL); 6923 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6924 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6925 static_call_update(__perf_guest_handle_intel_pt_intr, 6926 (void *)&__static_call_return0); 6927 synchronize_rcu(); 6928 } 6929 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6930 #endif 6931 6932 static void 6933 perf_output_sample_regs(struct perf_output_handle *handle, 6934 struct pt_regs *regs, u64 mask) 6935 { 6936 int bit; 6937 DECLARE_BITMAP(_mask, 64); 6938 6939 bitmap_from_u64(_mask, mask); 6940 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6941 u64 val; 6942 6943 val = perf_reg_value(regs, bit); 6944 perf_output_put(handle, val); 6945 } 6946 } 6947 6948 static void perf_sample_regs_user(struct perf_regs *regs_user, 6949 struct pt_regs *regs) 6950 { 6951 if (user_mode(regs)) { 6952 regs_user->abi = perf_reg_abi(current); 6953 regs_user->regs = regs; 6954 } else if (!(current->flags & PF_KTHREAD)) { 6955 perf_get_regs_user(regs_user, regs); 6956 } else { 6957 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6958 regs_user->regs = NULL; 6959 } 6960 } 6961 6962 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6963 struct pt_regs *regs) 6964 { 6965 regs_intr->regs = regs; 6966 regs_intr->abi = perf_reg_abi(current); 6967 } 6968 6969 6970 /* 6971 * Get remaining task size from user stack pointer. 6972 * 6973 * It'd be better to take stack vma map and limit this more 6974 * precisely, but there's no way to get it safely under interrupt, 6975 * so using TASK_SIZE as limit. 6976 */ 6977 static u64 perf_ustack_task_size(struct pt_regs *regs) 6978 { 6979 unsigned long addr = perf_user_stack_pointer(regs); 6980 6981 if (!addr || addr >= TASK_SIZE) 6982 return 0; 6983 6984 return TASK_SIZE - addr; 6985 } 6986 6987 static u16 6988 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6989 struct pt_regs *regs) 6990 { 6991 u64 task_size; 6992 6993 /* No regs, no stack pointer, no dump. */ 6994 if (!regs) 6995 return 0; 6996 6997 /* 6998 * Check if we fit in with the requested stack size into the: 6999 * - TASK_SIZE 7000 * If we don't, we limit the size to the TASK_SIZE. 7001 * 7002 * - remaining sample size 7003 * If we don't, we customize the stack size to 7004 * fit in to the remaining sample size. 7005 */ 7006 7007 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 7008 stack_size = min(stack_size, (u16) task_size); 7009 7010 /* Current header size plus static size and dynamic size. */ 7011 header_size += 2 * sizeof(u64); 7012 7013 /* Do we fit in with the current stack dump size? */ 7014 if ((u16) (header_size + stack_size) < header_size) { 7015 /* 7016 * If we overflow the maximum size for the sample, 7017 * we customize the stack dump size to fit in. 7018 */ 7019 stack_size = USHRT_MAX - header_size - sizeof(u64); 7020 stack_size = round_up(stack_size, sizeof(u64)); 7021 } 7022 7023 return stack_size; 7024 } 7025 7026 static void 7027 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 7028 struct pt_regs *regs) 7029 { 7030 /* Case of a kernel thread, nothing to dump */ 7031 if (!regs) { 7032 u64 size = 0; 7033 perf_output_put(handle, size); 7034 } else { 7035 unsigned long sp; 7036 unsigned int rem; 7037 u64 dyn_size; 7038 7039 /* 7040 * We dump: 7041 * static size 7042 * - the size requested by user or the best one we can fit 7043 * in to the sample max size 7044 * data 7045 * - user stack dump data 7046 * dynamic size 7047 * - the actual dumped size 7048 */ 7049 7050 /* Static size. */ 7051 perf_output_put(handle, dump_size); 7052 7053 /* Data. */ 7054 sp = perf_user_stack_pointer(regs); 7055 rem = __output_copy_user(handle, (void *) sp, dump_size); 7056 dyn_size = dump_size - rem; 7057 7058 perf_output_skip(handle, rem); 7059 7060 /* Dynamic size. */ 7061 perf_output_put(handle, dyn_size); 7062 } 7063 } 7064 7065 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7066 struct perf_sample_data *data, 7067 size_t size) 7068 { 7069 struct perf_event *sampler = event->aux_event; 7070 struct perf_buffer *rb; 7071 7072 data->aux_size = 0; 7073 7074 if (!sampler) 7075 goto out; 7076 7077 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7078 goto out; 7079 7080 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7081 goto out; 7082 7083 rb = ring_buffer_get(sampler); 7084 if (!rb) 7085 goto out; 7086 7087 /* 7088 * If this is an NMI hit inside sampling code, don't take 7089 * the sample. See also perf_aux_sample_output(). 7090 */ 7091 if (READ_ONCE(rb->aux_in_sampling)) { 7092 data->aux_size = 0; 7093 } else { 7094 size = min_t(size_t, size, perf_aux_size(rb)); 7095 data->aux_size = ALIGN(size, sizeof(u64)); 7096 } 7097 ring_buffer_put(rb); 7098 7099 out: 7100 return data->aux_size; 7101 } 7102 7103 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7104 struct perf_event *event, 7105 struct perf_output_handle *handle, 7106 unsigned long size) 7107 { 7108 unsigned long flags; 7109 long ret; 7110 7111 /* 7112 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7113 * paths. If we start calling them in NMI context, they may race with 7114 * the IRQ ones, that is, for example, re-starting an event that's just 7115 * been stopped, which is why we're using a separate callback that 7116 * doesn't change the event state. 7117 * 7118 * IRQs need to be disabled to prevent IPIs from racing with us. 7119 */ 7120 local_irq_save(flags); 7121 /* 7122 * Guard against NMI hits inside the critical section; 7123 * see also perf_prepare_sample_aux(). 7124 */ 7125 WRITE_ONCE(rb->aux_in_sampling, 1); 7126 barrier(); 7127 7128 ret = event->pmu->snapshot_aux(event, handle, size); 7129 7130 barrier(); 7131 WRITE_ONCE(rb->aux_in_sampling, 0); 7132 local_irq_restore(flags); 7133 7134 return ret; 7135 } 7136 7137 static void perf_aux_sample_output(struct perf_event *event, 7138 struct perf_output_handle *handle, 7139 struct perf_sample_data *data) 7140 { 7141 struct perf_event *sampler = event->aux_event; 7142 struct perf_buffer *rb; 7143 unsigned long pad; 7144 long size; 7145 7146 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7147 return; 7148 7149 rb = ring_buffer_get(sampler); 7150 if (!rb) 7151 return; 7152 7153 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7154 7155 /* 7156 * An error here means that perf_output_copy() failed (returned a 7157 * non-zero surplus that it didn't copy), which in its current 7158 * enlightened implementation is not possible. If that changes, we'd 7159 * like to know. 7160 */ 7161 if (WARN_ON_ONCE(size < 0)) 7162 goto out_put; 7163 7164 /* 7165 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7166 * perf_prepare_sample_aux(), so should not be more than that. 7167 */ 7168 pad = data->aux_size - size; 7169 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7170 pad = 8; 7171 7172 if (pad) { 7173 u64 zero = 0; 7174 perf_output_copy(handle, &zero, pad); 7175 } 7176 7177 out_put: 7178 ring_buffer_put(rb); 7179 } 7180 7181 /* 7182 * A set of common sample data types saved even for non-sample records 7183 * when event->attr.sample_id_all is set. 7184 */ 7185 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7186 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7187 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7188 7189 static void __perf_event_header__init_id(struct perf_sample_data *data, 7190 struct perf_event *event, 7191 u64 sample_type) 7192 { 7193 data->type = event->attr.sample_type; 7194 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7195 7196 if (sample_type & PERF_SAMPLE_TID) { 7197 /* namespace issues */ 7198 data->tid_entry.pid = perf_event_pid(event, current); 7199 data->tid_entry.tid = perf_event_tid(event, current); 7200 } 7201 7202 if (sample_type & PERF_SAMPLE_TIME) 7203 data->time = perf_event_clock(event); 7204 7205 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7206 data->id = primary_event_id(event); 7207 7208 if (sample_type & PERF_SAMPLE_STREAM_ID) 7209 data->stream_id = event->id; 7210 7211 if (sample_type & PERF_SAMPLE_CPU) { 7212 data->cpu_entry.cpu = raw_smp_processor_id(); 7213 data->cpu_entry.reserved = 0; 7214 } 7215 } 7216 7217 void perf_event_header__init_id(struct perf_event_header *header, 7218 struct perf_sample_data *data, 7219 struct perf_event *event) 7220 { 7221 if (event->attr.sample_id_all) { 7222 header->size += event->id_header_size; 7223 __perf_event_header__init_id(data, event, event->attr.sample_type); 7224 } 7225 } 7226 7227 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7228 struct perf_sample_data *data) 7229 { 7230 u64 sample_type = data->type; 7231 7232 if (sample_type & PERF_SAMPLE_TID) 7233 perf_output_put(handle, data->tid_entry); 7234 7235 if (sample_type & PERF_SAMPLE_TIME) 7236 perf_output_put(handle, data->time); 7237 7238 if (sample_type & PERF_SAMPLE_ID) 7239 perf_output_put(handle, data->id); 7240 7241 if (sample_type & PERF_SAMPLE_STREAM_ID) 7242 perf_output_put(handle, data->stream_id); 7243 7244 if (sample_type & PERF_SAMPLE_CPU) 7245 perf_output_put(handle, data->cpu_entry); 7246 7247 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7248 perf_output_put(handle, data->id); 7249 } 7250 7251 void perf_event__output_id_sample(struct perf_event *event, 7252 struct perf_output_handle *handle, 7253 struct perf_sample_data *sample) 7254 { 7255 if (event->attr.sample_id_all) 7256 __perf_event__output_id_sample(handle, sample); 7257 } 7258 7259 static void perf_output_read_one(struct perf_output_handle *handle, 7260 struct perf_event *event, 7261 u64 enabled, u64 running) 7262 { 7263 u64 read_format = event->attr.read_format; 7264 u64 values[5]; 7265 int n = 0; 7266 7267 values[n++] = perf_event_count(event); 7268 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7269 values[n++] = enabled + 7270 atomic64_read(&event->child_total_time_enabled); 7271 } 7272 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7273 values[n++] = running + 7274 atomic64_read(&event->child_total_time_running); 7275 } 7276 if (read_format & PERF_FORMAT_ID) 7277 values[n++] = primary_event_id(event); 7278 if (read_format & PERF_FORMAT_LOST) 7279 values[n++] = atomic64_read(&event->lost_samples); 7280 7281 __output_copy(handle, values, n * sizeof(u64)); 7282 } 7283 7284 static void perf_output_read_group(struct perf_output_handle *handle, 7285 struct perf_event *event, 7286 u64 enabled, u64 running) 7287 { 7288 struct perf_event *leader = event->group_leader, *sub; 7289 u64 read_format = event->attr.read_format; 7290 unsigned long flags; 7291 u64 values[6]; 7292 int n = 0; 7293 7294 /* 7295 * Disabling interrupts avoids all counter scheduling 7296 * (context switches, timer based rotation and IPIs). 7297 */ 7298 local_irq_save(flags); 7299 7300 values[n++] = 1 + leader->nr_siblings; 7301 7302 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7303 values[n++] = enabled; 7304 7305 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7306 values[n++] = running; 7307 7308 if ((leader != event) && 7309 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7310 leader->pmu->read(leader); 7311 7312 values[n++] = perf_event_count(leader); 7313 if (read_format & PERF_FORMAT_ID) 7314 values[n++] = primary_event_id(leader); 7315 if (read_format & PERF_FORMAT_LOST) 7316 values[n++] = atomic64_read(&leader->lost_samples); 7317 7318 __output_copy(handle, values, n * sizeof(u64)); 7319 7320 for_each_sibling_event(sub, leader) { 7321 n = 0; 7322 7323 if ((sub != event) && 7324 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7325 sub->pmu->read(sub); 7326 7327 values[n++] = perf_event_count(sub); 7328 if (read_format & PERF_FORMAT_ID) 7329 values[n++] = primary_event_id(sub); 7330 if (read_format & PERF_FORMAT_LOST) 7331 values[n++] = atomic64_read(&sub->lost_samples); 7332 7333 __output_copy(handle, values, n * sizeof(u64)); 7334 } 7335 7336 local_irq_restore(flags); 7337 } 7338 7339 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7340 PERF_FORMAT_TOTAL_TIME_RUNNING) 7341 7342 /* 7343 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7344 * 7345 * The problem is that its both hard and excessively expensive to iterate the 7346 * child list, not to mention that its impossible to IPI the children running 7347 * on another CPU, from interrupt/NMI context. 7348 */ 7349 static void perf_output_read(struct perf_output_handle *handle, 7350 struct perf_event *event) 7351 { 7352 u64 enabled = 0, running = 0, now; 7353 u64 read_format = event->attr.read_format; 7354 7355 /* 7356 * compute total_time_enabled, total_time_running 7357 * based on snapshot values taken when the event 7358 * was last scheduled in. 7359 * 7360 * we cannot simply called update_context_time() 7361 * because of locking issue as we are called in 7362 * NMI context 7363 */ 7364 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7365 calc_timer_values(event, &now, &enabled, &running); 7366 7367 if (event->attr.read_format & PERF_FORMAT_GROUP) 7368 perf_output_read_group(handle, event, enabled, running); 7369 else 7370 perf_output_read_one(handle, event, enabled, running); 7371 } 7372 7373 void perf_output_sample(struct perf_output_handle *handle, 7374 struct perf_event_header *header, 7375 struct perf_sample_data *data, 7376 struct perf_event *event) 7377 { 7378 u64 sample_type = data->type; 7379 7380 perf_output_put(handle, *header); 7381 7382 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7383 perf_output_put(handle, data->id); 7384 7385 if (sample_type & PERF_SAMPLE_IP) 7386 perf_output_put(handle, data->ip); 7387 7388 if (sample_type & PERF_SAMPLE_TID) 7389 perf_output_put(handle, data->tid_entry); 7390 7391 if (sample_type & PERF_SAMPLE_TIME) 7392 perf_output_put(handle, data->time); 7393 7394 if (sample_type & PERF_SAMPLE_ADDR) 7395 perf_output_put(handle, data->addr); 7396 7397 if (sample_type & PERF_SAMPLE_ID) 7398 perf_output_put(handle, data->id); 7399 7400 if (sample_type & PERF_SAMPLE_STREAM_ID) 7401 perf_output_put(handle, data->stream_id); 7402 7403 if (sample_type & PERF_SAMPLE_CPU) 7404 perf_output_put(handle, data->cpu_entry); 7405 7406 if (sample_type & PERF_SAMPLE_PERIOD) 7407 perf_output_put(handle, data->period); 7408 7409 if (sample_type & PERF_SAMPLE_READ) 7410 perf_output_read(handle, event); 7411 7412 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7413 int size = 1; 7414 7415 size += data->callchain->nr; 7416 size *= sizeof(u64); 7417 __output_copy(handle, data->callchain, size); 7418 } 7419 7420 if (sample_type & PERF_SAMPLE_RAW) { 7421 struct perf_raw_record *raw = data->raw; 7422 7423 if (raw) { 7424 struct perf_raw_frag *frag = &raw->frag; 7425 7426 perf_output_put(handle, raw->size); 7427 do { 7428 if (frag->copy) { 7429 __output_custom(handle, frag->copy, 7430 frag->data, frag->size); 7431 } else { 7432 __output_copy(handle, frag->data, 7433 frag->size); 7434 } 7435 if (perf_raw_frag_last(frag)) 7436 break; 7437 frag = frag->next; 7438 } while (1); 7439 if (frag->pad) 7440 __output_skip(handle, NULL, frag->pad); 7441 } else { 7442 struct { 7443 u32 size; 7444 u32 data; 7445 } raw = { 7446 .size = sizeof(u32), 7447 .data = 0, 7448 }; 7449 perf_output_put(handle, raw); 7450 } 7451 } 7452 7453 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7454 if (data->br_stack) { 7455 size_t size; 7456 7457 size = data->br_stack->nr 7458 * sizeof(struct perf_branch_entry); 7459 7460 perf_output_put(handle, data->br_stack->nr); 7461 if (branch_sample_hw_index(event)) 7462 perf_output_put(handle, data->br_stack->hw_idx); 7463 perf_output_copy(handle, data->br_stack->entries, size); 7464 /* 7465 * Add the extension space which is appended 7466 * right after the struct perf_branch_stack. 7467 */ 7468 if (data->br_stack_cntr) { 7469 size = data->br_stack->nr * sizeof(u64); 7470 perf_output_copy(handle, data->br_stack_cntr, size); 7471 } 7472 } else { 7473 /* 7474 * we always store at least the value of nr 7475 */ 7476 u64 nr = 0; 7477 perf_output_put(handle, nr); 7478 } 7479 } 7480 7481 if (sample_type & PERF_SAMPLE_REGS_USER) { 7482 u64 abi = data->regs_user.abi; 7483 7484 /* 7485 * If there are no regs to dump, notice it through 7486 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7487 */ 7488 perf_output_put(handle, abi); 7489 7490 if (abi) { 7491 u64 mask = event->attr.sample_regs_user; 7492 perf_output_sample_regs(handle, 7493 data->regs_user.regs, 7494 mask); 7495 } 7496 } 7497 7498 if (sample_type & PERF_SAMPLE_STACK_USER) { 7499 perf_output_sample_ustack(handle, 7500 data->stack_user_size, 7501 data->regs_user.regs); 7502 } 7503 7504 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7505 perf_output_put(handle, data->weight.full); 7506 7507 if (sample_type & PERF_SAMPLE_DATA_SRC) 7508 perf_output_put(handle, data->data_src.val); 7509 7510 if (sample_type & PERF_SAMPLE_TRANSACTION) 7511 perf_output_put(handle, data->txn); 7512 7513 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7514 u64 abi = data->regs_intr.abi; 7515 /* 7516 * If there are no regs to dump, notice it through 7517 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7518 */ 7519 perf_output_put(handle, abi); 7520 7521 if (abi) { 7522 u64 mask = event->attr.sample_regs_intr; 7523 7524 perf_output_sample_regs(handle, 7525 data->regs_intr.regs, 7526 mask); 7527 } 7528 } 7529 7530 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7531 perf_output_put(handle, data->phys_addr); 7532 7533 if (sample_type & PERF_SAMPLE_CGROUP) 7534 perf_output_put(handle, data->cgroup); 7535 7536 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7537 perf_output_put(handle, data->data_page_size); 7538 7539 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7540 perf_output_put(handle, data->code_page_size); 7541 7542 if (sample_type & PERF_SAMPLE_AUX) { 7543 perf_output_put(handle, data->aux_size); 7544 7545 if (data->aux_size) 7546 perf_aux_sample_output(event, handle, data); 7547 } 7548 7549 if (!event->attr.watermark) { 7550 int wakeup_events = event->attr.wakeup_events; 7551 7552 if (wakeup_events) { 7553 struct perf_buffer *rb = handle->rb; 7554 int events = local_inc_return(&rb->events); 7555 7556 if (events >= wakeup_events) { 7557 local_sub(wakeup_events, &rb->events); 7558 local_inc(&rb->wakeup); 7559 } 7560 } 7561 } 7562 } 7563 7564 static u64 perf_virt_to_phys(u64 virt) 7565 { 7566 u64 phys_addr = 0; 7567 7568 if (!virt) 7569 return 0; 7570 7571 if (virt >= TASK_SIZE) { 7572 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7573 if (virt_addr_valid((void *)(uintptr_t)virt) && 7574 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7575 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7576 } else { 7577 /* 7578 * Walking the pages tables for user address. 7579 * Interrupts are disabled, so it prevents any tear down 7580 * of the page tables. 7581 * Try IRQ-safe get_user_page_fast_only first. 7582 * If failed, leave phys_addr as 0. 7583 */ 7584 if (current->mm != NULL) { 7585 struct page *p; 7586 7587 pagefault_disable(); 7588 if (get_user_page_fast_only(virt, 0, &p)) { 7589 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7590 put_page(p); 7591 } 7592 pagefault_enable(); 7593 } 7594 } 7595 7596 return phys_addr; 7597 } 7598 7599 /* 7600 * Return the pagetable size of a given virtual address. 7601 */ 7602 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7603 { 7604 u64 size = 0; 7605 7606 #ifdef CONFIG_HAVE_GUP_FAST 7607 pgd_t *pgdp, pgd; 7608 p4d_t *p4dp, p4d; 7609 pud_t *pudp, pud; 7610 pmd_t *pmdp, pmd; 7611 pte_t *ptep, pte; 7612 7613 pgdp = pgd_offset(mm, addr); 7614 pgd = READ_ONCE(*pgdp); 7615 if (pgd_none(pgd)) 7616 return 0; 7617 7618 if (pgd_leaf(pgd)) 7619 return pgd_leaf_size(pgd); 7620 7621 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7622 p4d = READ_ONCE(*p4dp); 7623 if (!p4d_present(p4d)) 7624 return 0; 7625 7626 if (p4d_leaf(p4d)) 7627 return p4d_leaf_size(p4d); 7628 7629 pudp = pud_offset_lockless(p4dp, p4d, addr); 7630 pud = READ_ONCE(*pudp); 7631 if (!pud_present(pud)) 7632 return 0; 7633 7634 if (pud_leaf(pud)) 7635 return pud_leaf_size(pud); 7636 7637 pmdp = pmd_offset_lockless(pudp, pud, addr); 7638 again: 7639 pmd = pmdp_get_lockless(pmdp); 7640 if (!pmd_present(pmd)) 7641 return 0; 7642 7643 if (pmd_leaf(pmd)) 7644 return pmd_leaf_size(pmd); 7645 7646 ptep = pte_offset_map(&pmd, addr); 7647 if (!ptep) 7648 goto again; 7649 7650 pte = ptep_get_lockless(ptep); 7651 if (pte_present(pte)) 7652 size = __pte_leaf_size(pmd, pte); 7653 pte_unmap(ptep); 7654 #endif /* CONFIG_HAVE_GUP_FAST */ 7655 7656 return size; 7657 } 7658 7659 static u64 perf_get_page_size(unsigned long addr) 7660 { 7661 struct mm_struct *mm; 7662 unsigned long flags; 7663 u64 size; 7664 7665 if (!addr) 7666 return 0; 7667 7668 /* 7669 * Software page-table walkers must disable IRQs, 7670 * which prevents any tear down of the page tables. 7671 */ 7672 local_irq_save(flags); 7673 7674 mm = current->mm; 7675 if (!mm) { 7676 /* 7677 * For kernel threads and the like, use init_mm so that 7678 * we can find kernel memory. 7679 */ 7680 mm = &init_mm; 7681 } 7682 7683 size = perf_get_pgtable_size(mm, addr); 7684 7685 local_irq_restore(flags); 7686 7687 return size; 7688 } 7689 7690 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7691 7692 struct perf_callchain_entry * 7693 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7694 { 7695 bool kernel = !event->attr.exclude_callchain_kernel; 7696 bool user = !event->attr.exclude_callchain_user; 7697 /* Disallow cross-task user callchains. */ 7698 bool crosstask = event->ctx->task && event->ctx->task != current; 7699 const u32 max_stack = event->attr.sample_max_stack; 7700 struct perf_callchain_entry *callchain; 7701 7702 if (!kernel && !user) 7703 return &__empty_callchain; 7704 7705 callchain = get_perf_callchain(regs, 0, kernel, user, 7706 max_stack, crosstask, true); 7707 return callchain ?: &__empty_callchain; 7708 } 7709 7710 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7711 { 7712 return d * !!(flags & s); 7713 } 7714 7715 void perf_prepare_sample(struct perf_sample_data *data, 7716 struct perf_event *event, 7717 struct pt_regs *regs) 7718 { 7719 u64 sample_type = event->attr.sample_type; 7720 u64 filtered_sample_type; 7721 7722 /* 7723 * Add the sample flags that are dependent to others. And clear the 7724 * sample flags that have already been done by the PMU driver. 7725 */ 7726 filtered_sample_type = sample_type; 7727 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7728 PERF_SAMPLE_IP); 7729 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7730 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7731 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7732 PERF_SAMPLE_REGS_USER); 7733 filtered_sample_type &= ~data->sample_flags; 7734 7735 if (filtered_sample_type == 0) { 7736 /* Make sure it has the correct data->type for output */ 7737 data->type = event->attr.sample_type; 7738 return; 7739 } 7740 7741 __perf_event_header__init_id(data, event, filtered_sample_type); 7742 7743 if (filtered_sample_type & PERF_SAMPLE_IP) { 7744 data->ip = perf_instruction_pointer(regs); 7745 data->sample_flags |= PERF_SAMPLE_IP; 7746 } 7747 7748 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7749 perf_sample_save_callchain(data, event, regs); 7750 7751 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7752 data->raw = NULL; 7753 data->dyn_size += sizeof(u64); 7754 data->sample_flags |= PERF_SAMPLE_RAW; 7755 } 7756 7757 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7758 data->br_stack = NULL; 7759 data->dyn_size += sizeof(u64); 7760 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7761 } 7762 7763 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7764 perf_sample_regs_user(&data->regs_user, regs); 7765 7766 /* 7767 * It cannot use the filtered_sample_type here as REGS_USER can be set 7768 * by STACK_USER (using __cond_set() above) and we don't want to update 7769 * the dyn_size if it's not requested by users. 7770 */ 7771 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7772 /* regs dump ABI info */ 7773 int size = sizeof(u64); 7774 7775 if (data->regs_user.regs) { 7776 u64 mask = event->attr.sample_regs_user; 7777 size += hweight64(mask) * sizeof(u64); 7778 } 7779 7780 data->dyn_size += size; 7781 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7782 } 7783 7784 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7785 /* 7786 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7787 * processed as the last one or have additional check added 7788 * in case new sample type is added, because we could eat 7789 * up the rest of the sample size. 7790 */ 7791 u16 stack_size = event->attr.sample_stack_user; 7792 u16 header_size = perf_sample_data_size(data, event); 7793 u16 size = sizeof(u64); 7794 7795 stack_size = perf_sample_ustack_size(stack_size, header_size, 7796 data->regs_user.regs); 7797 7798 /* 7799 * If there is something to dump, add space for the dump 7800 * itself and for the field that tells the dynamic size, 7801 * which is how many have been actually dumped. 7802 */ 7803 if (stack_size) 7804 size += sizeof(u64) + stack_size; 7805 7806 data->stack_user_size = stack_size; 7807 data->dyn_size += size; 7808 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7809 } 7810 7811 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7812 data->weight.full = 0; 7813 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7814 } 7815 7816 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7817 data->data_src.val = PERF_MEM_NA; 7818 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7819 } 7820 7821 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7822 data->txn = 0; 7823 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7824 } 7825 7826 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7827 data->addr = 0; 7828 data->sample_flags |= PERF_SAMPLE_ADDR; 7829 } 7830 7831 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7832 /* regs dump ABI info */ 7833 int size = sizeof(u64); 7834 7835 perf_sample_regs_intr(&data->regs_intr, regs); 7836 7837 if (data->regs_intr.regs) { 7838 u64 mask = event->attr.sample_regs_intr; 7839 7840 size += hweight64(mask) * sizeof(u64); 7841 } 7842 7843 data->dyn_size += size; 7844 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7845 } 7846 7847 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7848 data->phys_addr = perf_virt_to_phys(data->addr); 7849 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7850 } 7851 7852 #ifdef CONFIG_CGROUP_PERF 7853 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7854 struct cgroup *cgrp; 7855 7856 /* protected by RCU */ 7857 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7858 data->cgroup = cgroup_id(cgrp); 7859 data->sample_flags |= PERF_SAMPLE_CGROUP; 7860 } 7861 #endif 7862 7863 /* 7864 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7865 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7866 * but the value will not dump to the userspace. 7867 */ 7868 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7869 data->data_page_size = perf_get_page_size(data->addr); 7870 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7871 } 7872 7873 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7874 data->code_page_size = perf_get_page_size(data->ip); 7875 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7876 } 7877 7878 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7879 u64 size; 7880 u16 header_size = perf_sample_data_size(data, event); 7881 7882 header_size += sizeof(u64); /* size */ 7883 7884 /* 7885 * Given the 16bit nature of header::size, an AUX sample can 7886 * easily overflow it, what with all the preceding sample bits. 7887 * Make sure this doesn't happen by using up to U16_MAX bytes 7888 * per sample in total (rounded down to 8 byte boundary). 7889 */ 7890 size = min_t(size_t, U16_MAX - header_size, 7891 event->attr.aux_sample_size); 7892 size = rounddown(size, 8); 7893 size = perf_prepare_sample_aux(event, data, size); 7894 7895 WARN_ON_ONCE(size + header_size > U16_MAX); 7896 data->dyn_size += size + sizeof(u64); /* size above */ 7897 data->sample_flags |= PERF_SAMPLE_AUX; 7898 } 7899 } 7900 7901 void perf_prepare_header(struct perf_event_header *header, 7902 struct perf_sample_data *data, 7903 struct perf_event *event, 7904 struct pt_regs *regs) 7905 { 7906 header->type = PERF_RECORD_SAMPLE; 7907 header->size = perf_sample_data_size(data, event); 7908 header->misc = perf_misc_flags(regs); 7909 7910 /* 7911 * If you're adding more sample types here, you likely need to do 7912 * something about the overflowing header::size, like repurpose the 7913 * lowest 3 bits of size, which should be always zero at the moment. 7914 * This raises a more important question, do we really need 512k sized 7915 * samples and why, so good argumentation is in order for whatever you 7916 * do here next. 7917 */ 7918 WARN_ON_ONCE(header->size & 7); 7919 } 7920 7921 static __always_inline int 7922 __perf_event_output(struct perf_event *event, 7923 struct perf_sample_data *data, 7924 struct pt_regs *regs, 7925 int (*output_begin)(struct perf_output_handle *, 7926 struct perf_sample_data *, 7927 struct perf_event *, 7928 unsigned int)) 7929 { 7930 struct perf_output_handle handle; 7931 struct perf_event_header header; 7932 int err; 7933 7934 /* protect the callchain buffers */ 7935 rcu_read_lock(); 7936 7937 perf_prepare_sample(data, event, regs); 7938 perf_prepare_header(&header, data, event, regs); 7939 7940 err = output_begin(&handle, data, event, header.size); 7941 if (err) 7942 goto exit; 7943 7944 perf_output_sample(&handle, &header, data, event); 7945 7946 perf_output_end(&handle); 7947 7948 exit: 7949 rcu_read_unlock(); 7950 return err; 7951 } 7952 7953 void 7954 perf_event_output_forward(struct perf_event *event, 7955 struct perf_sample_data *data, 7956 struct pt_regs *regs) 7957 { 7958 __perf_event_output(event, data, regs, perf_output_begin_forward); 7959 } 7960 7961 void 7962 perf_event_output_backward(struct perf_event *event, 7963 struct perf_sample_data *data, 7964 struct pt_regs *regs) 7965 { 7966 __perf_event_output(event, data, regs, perf_output_begin_backward); 7967 } 7968 7969 int 7970 perf_event_output(struct perf_event *event, 7971 struct perf_sample_data *data, 7972 struct pt_regs *regs) 7973 { 7974 return __perf_event_output(event, data, regs, perf_output_begin); 7975 } 7976 7977 /* 7978 * read event_id 7979 */ 7980 7981 struct perf_read_event { 7982 struct perf_event_header header; 7983 7984 u32 pid; 7985 u32 tid; 7986 }; 7987 7988 static void 7989 perf_event_read_event(struct perf_event *event, 7990 struct task_struct *task) 7991 { 7992 struct perf_output_handle handle; 7993 struct perf_sample_data sample; 7994 struct perf_read_event read_event = { 7995 .header = { 7996 .type = PERF_RECORD_READ, 7997 .misc = 0, 7998 .size = sizeof(read_event) + event->read_size, 7999 }, 8000 .pid = perf_event_pid(event, task), 8001 .tid = perf_event_tid(event, task), 8002 }; 8003 int ret; 8004 8005 perf_event_header__init_id(&read_event.header, &sample, event); 8006 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 8007 if (ret) 8008 return; 8009 8010 perf_output_put(&handle, read_event); 8011 perf_output_read(&handle, event); 8012 perf_event__output_id_sample(event, &handle, &sample); 8013 8014 perf_output_end(&handle); 8015 } 8016 8017 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 8018 8019 static void 8020 perf_iterate_ctx(struct perf_event_context *ctx, 8021 perf_iterate_f output, 8022 void *data, bool all) 8023 { 8024 struct perf_event *event; 8025 8026 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8027 if (!all) { 8028 if (event->state < PERF_EVENT_STATE_INACTIVE) 8029 continue; 8030 if (!event_filter_match(event)) 8031 continue; 8032 } 8033 8034 output(event, data); 8035 } 8036 } 8037 8038 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8039 { 8040 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8041 struct perf_event *event; 8042 8043 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8044 /* 8045 * Skip events that are not fully formed yet; ensure that 8046 * if we observe event->ctx, both event and ctx will be 8047 * complete enough. See perf_install_in_context(). 8048 */ 8049 if (!smp_load_acquire(&event->ctx)) 8050 continue; 8051 8052 if (event->state < PERF_EVENT_STATE_INACTIVE) 8053 continue; 8054 if (!event_filter_match(event)) 8055 continue; 8056 output(event, data); 8057 } 8058 } 8059 8060 /* 8061 * Iterate all events that need to receive side-band events. 8062 * 8063 * For new callers; ensure that account_pmu_sb_event() includes 8064 * your event, otherwise it might not get delivered. 8065 */ 8066 static void 8067 perf_iterate_sb(perf_iterate_f output, void *data, 8068 struct perf_event_context *task_ctx) 8069 { 8070 struct perf_event_context *ctx; 8071 8072 rcu_read_lock(); 8073 preempt_disable(); 8074 8075 /* 8076 * If we have task_ctx != NULL we only notify the task context itself. 8077 * The task_ctx is set only for EXIT events before releasing task 8078 * context. 8079 */ 8080 if (task_ctx) { 8081 perf_iterate_ctx(task_ctx, output, data, false); 8082 goto done; 8083 } 8084 8085 perf_iterate_sb_cpu(output, data); 8086 8087 ctx = rcu_dereference(current->perf_event_ctxp); 8088 if (ctx) 8089 perf_iterate_ctx(ctx, output, data, false); 8090 done: 8091 preempt_enable(); 8092 rcu_read_unlock(); 8093 } 8094 8095 /* 8096 * Clear all file-based filters at exec, they'll have to be 8097 * re-instated when/if these objects are mmapped again. 8098 */ 8099 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8100 { 8101 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8102 struct perf_addr_filter *filter; 8103 unsigned int restart = 0, count = 0; 8104 unsigned long flags; 8105 8106 if (!has_addr_filter(event)) 8107 return; 8108 8109 raw_spin_lock_irqsave(&ifh->lock, flags); 8110 list_for_each_entry(filter, &ifh->list, entry) { 8111 if (filter->path.dentry) { 8112 event->addr_filter_ranges[count].start = 0; 8113 event->addr_filter_ranges[count].size = 0; 8114 restart++; 8115 } 8116 8117 count++; 8118 } 8119 8120 if (restart) 8121 event->addr_filters_gen++; 8122 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8123 8124 if (restart) 8125 perf_event_stop(event, 1); 8126 } 8127 8128 void perf_event_exec(void) 8129 { 8130 struct perf_event_context *ctx; 8131 8132 ctx = perf_pin_task_context(current); 8133 if (!ctx) 8134 return; 8135 8136 perf_event_enable_on_exec(ctx); 8137 perf_event_remove_on_exec(ctx); 8138 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8139 8140 perf_unpin_context(ctx); 8141 put_ctx(ctx); 8142 } 8143 8144 struct remote_output { 8145 struct perf_buffer *rb; 8146 int err; 8147 }; 8148 8149 static void __perf_event_output_stop(struct perf_event *event, void *data) 8150 { 8151 struct perf_event *parent = event->parent; 8152 struct remote_output *ro = data; 8153 struct perf_buffer *rb = ro->rb; 8154 struct stop_event_data sd = { 8155 .event = event, 8156 }; 8157 8158 if (!has_aux(event)) 8159 return; 8160 8161 if (!parent) 8162 parent = event; 8163 8164 /* 8165 * In case of inheritance, it will be the parent that links to the 8166 * ring-buffer, but it will be the child that's actually using it. 8167 * 8168 * We are using event::rb to determine if the event should be stopped, 8169 * however this may race with ring_buffer_attach() (through set_output), 8170 * which will make us skip the event that actually needs to be stopped. 8171 * So ring_buffer_attach() has to stop an aux event before re-assigning 8172 * its rb pointer. 8173 */ 8174 if (rcu_dereference(parent->rb) == rb) 8175 ro->err = __perf_event_stop(&sd); 8176 } 8177 8178 static int __perf_pmu_output_stop(void *info) 8179 { 8180 struct perf_event *event = info; 8181 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8182 struct remote_output ro = { 8183 .rb = event->rb, 8184 }; 8185 8186 rcu_read_lock(); 8187 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8188 if (cpuctx->task_ctx) 8189 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8190 &ro, false); 8191 rcu_read_unlock(); 8192 8193 return ro.err; 8194 } 8195 8196 static void perf_pmu_output_stop(struct perf_event *event) 8197 { 8198 struct perf_event *iter; 8199 int err, cpu; 8200 8201 restart: 8202 rcu_read_lock(); 8203 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8204 /* 8205 * For per-CPU events, we need to make sure that neither they 8206 * nor their children are running; for cpu==-1 events it's 8207 * sufficient to stop the event itself if it's active, since 8208 * it can't have children. 8209 */ 8210 cpu = iter->cpu; 8211 if (cpu == -1) 8212 cpu = READ_ONCE(iter->oncpu); 8213 8214 if (cpu == -1) 8215 continue; 8216 8217 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8218 if (err == -EAGAIN) { 8219 rcu_read_unlock(); 8220 goto restart; 8221 } 8222 } 8223 rcu_read_unlock(); 8224 } 8225 8226 /* 8227 * task tracking -- fork/exit 8228 * 8229 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8230 */ 8231 8232 struct perf_task_event { 8233 struct task_struct *task; 8234 struct perf_event_context *task_ctx; 8235 8236 struct { 8237 struct perf_event_header header; 8238 8239 u32 pid; 8240 u32 ppid; 8241 u32 tid; 8242 u32 ptid; 8243 u64 time; 8244 } event_id; 8245 }; 8246 8247 static int perf_event_task_match(struct perf_event *event) 8248 { 8249 return event->attr.comm || event->attr.mmap || 8250 event->attr.mmap2 || event->attr.mmap_data || 8251 event->attr.task; 8252 } 8253 8254 static void perf_event_task_output(struct perf_event *event, 8255 void *data) 8256 { 8257 struct perf_task_event *task_event = data; 8258 struct perf_output_handle handle; 8259 struct perf_sample_data sample; 8260 struct task_struct *task = task_event->task; 8261 int ret, size = task_event->event_id.header.size; 8262 8263 if (!perf_event_task_match(event)) 8264 return; 8265 8266 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8267 8268 ret = perf_output_begin(&handle, &sample, event, 8269 task_event->event_id.header.size); 8270 if (ret) 8271 goto out; 8272 8273 task_event->event_id.pid = perf_event_pid(event, task); 8274 task_event->event_id.tid = perf_event_tid(event, task); 8275 8276 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8277 task_event->event_id.ppid = perf_event_pid(event, 8278 task->real_parent); 8279 task_event->event_id.ptid = perf_event_pid(event, 8280 task->real_parent); 8281 } else { /* PERF_RECORD_FORK */ 8282 task_event->event_id.ppid = perf_event_pid(event, current); 8283 task_event->event_id.ptid = perf_event_tid(event, current); 8284 } 8285 8286 task_event->event_id.time = perf_event_clock(event); 8287 8288 perf_output_put(&handle, task_event->event_id); 8289 8290 perf_event__output_id_sample(event, &handle, &sample); 8291 8292 perf_output_end(&handle); 8293 out: 8294 task_event->event_id.header.size = size; 8295 } 8296 8297 static void perf_event_task(struct task_struct *task, 8298 struct perf_event_context *task_ctx, 8299 int new) 8300 { 8301 struct perf_task_event task_event; 8302 8303 if (!atomic_read(&nr_comm_events) && 8304 !atomic_read(&nr_mmap_events) && 8305 !atomic_read(&nr_task_events)) 8306 return; 8307 8308 task_event = (struct perf_task_event){ 8309 .task = task, 8310 .task_ctx = task_ctx, 8311 .event_id = { 8312 .header = { 8313 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8314 .misc = 0, 8315 .size = sizeof(task_event.event_id), 8316 }, 8317 /* .pid */ 8318 /* .ppid */ 8319 /* .tid */ 8320 /* .ptid */ 8321 /* .time */ 8322 }, 8323 }; 8324 8325 perf_iterate_sb(perf_event_task_output, 8326 &task_event, 8327 task_ctx); 8328 } 8329 8330 void perf_event_fork(struct task_struct *task) 8331 { 8332 perf_event_task(task, NULL, 1); 8333 perf_event_namespaces(task); 8334 } 8335 8336 /* 8337 * comm tracking 8338 */ 8339 8340 struct perf_comm_event { 8341 struct task_struct *task; 8342 char *comm; 8343 int comm_size; 8344 8345 struct { 8346 struct perf_event_header header; 8347 8348 u32 pid; 8349 u32 tid; 8350 } event_id; 8351 }; 8352 8353 static int perf_event_comm_match(struct perf_event *event) 8354 { 8355 return event->attr.comm; 8356 } 8357 8358 static void perf_event_comm_output(struct perf_event *event, 8359 void *data) 8360 { 8361 struct perf_comm_event *comm_event = data; 8362 struct perf_output_handle handle; 8363 struct perf_sample_data sample; 8364 int size = comm_event->event_id.header.size; 8365 int ret; 8366 8367 if (!perf_event_comm_match(event)) 8368 return; 8369 8370 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8371 ret = perf_output_begin(&handle, &sample, event, 8372 comm_event->event_id.header.size); 8373 8374 if (ret) 8375 goto out; 8376 8377 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8378 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8379 8380 perf_output_put(&handle, comm_event->event_id); 8381 __output_copy(&handle, comm_event->comm, 8382 comm_event->comm_size); 8383 8384 perf_event__output_id_sample(event, &handle, &sample); 8385 8386 perf_output_end(&handle); 8387 out: 8388 comm_event->event_id.header.size = size; 8389 } 8390 8391 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8392 { 8393 char comm[TASK_COMM_LEN]; 8394 unsigned int size; 8395 8396 memset(comm, 0, sizeof(comm)); 8397 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8398 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8399 8400 comm_event->comm = comm; 8401 comm_event->comm_size = size; 8402 8403 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8404 8405 perf_iterate_sb(perf_event_comm_output, 8406 comm_event, 8407 NULL); 8408 } 8409 8410 void perf_event_comm(struct task_struct *task, bool exec) 8411 { 8412 struct perf_comm_event comm_event; 8413 8414 if (!atomic_read(&nr_comm_events)) 8415 return; 8416 8417 comm_event = (struct perf_comm_event){ 8418 .task = task, 8419 /* .comm */ 8420 /* .comm_size */ 8421 .event_id = { 8422 .header = { 8423 .type = PERF_RECORD_COMM, 8424 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8425 /* .size */ 8426 }, 8427 /* .pid */ 8428 /* .tid */ 8429 }, 8430 }; 8431 8432 perf_event_comm_event(&comm_event); 8433 } 8434 8435 /* 8436 * namespaces tracking 8437 */ 8438 8439 struct perf_namespaces_event { 8440 struct task_struct *task; 8441 8442 struct { 8443 struct perf_event_header header; 8444 8445 u32 pid; 8446 u32 tid; 8447 u64 nr_namespaces; 8448 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8449 } event_id; 8450 }; 8451 8452 static int perf_event_namespaces_match(struct perf_event *event) 8453 { 8454 return event->attr.namespaces; 8455 } 8456 8457 static void perf_event_namespaces_output(struct perf_event *event, 8458 void *data) 8459 { 8460 struct perf_namespaces_event *namespaces_event = data; 8461 struct perf_output_handle handle; 8462 struct perf_sample_data sample; 8463 u16 header_size = namespaces_event->event_id.header.size; 8464 int ret; 8465 8466 if (!perf_event_namespaces_match(event)) 8467 return; 8468 8469 perf_event_header__init_id(&namespaces_event->event_id.header, 8470 &sample, event); 8471 ret = perf_output_begin(&handle, &sample, event, 8472 namespaces_event->event_id.header.size); 8473 if (ret) 8474 goto out; 8475 8476 namespaces_event->event_id.pid = perf_event_pid(event, 8477 namespaces_event->task); 8478 namespaces_event->event_id.tid = perf_event_tid(event, 8479 namespaces_event->task); 8480 8481 perf_output_put(&handle, namespaces_event->event_id); 8482 8483 perf_event__output_id_sample(event, &handle, &sample); 8484 8485 perf_output_end(&handle); 8486 out: 8487 namespaces_event->event_id.header.size = header_size; 8488 } 8489 8490 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8491 struct task_struct *task, 8492 const struct proc_ns_operations *ns_ops) 8493 { 8494 struct path ns_path; 8495 struct inode *ns_inode; 8496 int error; 8497 8498 error = ns_get_path(&ns_path, task, ns_ops); 8499 if (!error) { 8500 ns_inode = ns_path.dentry->d_inode; 8501 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8502 ns_link_info->ino = ns_inode->i_ino; 8503 path_put(&ns_path); 8504 } 8505 } 8506 8507 void perf_event_namespaces(struct task_struct *task) 8508 { 8509 struct perf_namespaces_event namespaces_event; 8510 struct perf_ns_link_info *ns_link_info; 8511 8512 if (!atomic_read(&nr_namespaces_events)) 8513 return; 8514 8515 namespaces_event = (struct perf_namespaces_event){ 8516 .task = task, 8517 .event_id = { 8518 .header = { 8519 .type = PERF_RECORD_NAMESPACES, 8520 .misc = 0, 8521 .size = sizeof(namespaces_event.event_id), 8522 }, 8523 /* .pid */ 8524 /* .tid */ 8525 .nr_namespaces = NR_NAMESPACES, 8526 /* .link_info[NR_NAMESPACES] */ 8527 }, 8528 }; 8529 8530 ns_link_info = namespaces_event.event_id.link_info; 8531 8532 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8533 task, &mntns_operations); 8534 8535 #ifdef CONFIG_USER_NS 8536 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8537 task, &userns_operations); 8538 #endif 8539 #ifdef CONFIG_NET_NS 8540 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8541 task, &netns_operations); 8542 #endif 8543 #ifdef CONFIG_UTS_NS 8544 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8545 task, &utsns_operations); 8546 #endif 8547 #ifdef CONFIG_IPC_NS 8548 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8549 task, &ipcns_operations); 8550 #endif 8551 #ifdef CONFIG_PID_NS 8552 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8553 task, &pidns_operations); 8554 #endif 8555 #ifdef CONFIG_CGROUPS 8556 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8557 task, &cgroupns_operations); 8558 #endif 8559 8560 perf_iterate_sb(perf_event_namespaces_output, 8561 &namespaces_event, 8562 NULL); 8563 } 8564 8565 /* 8566 * cgroup tracking 8567 */ 8568 #ifdef CONFIG_CGROUP_PERF 8569 8570 struct perf_cgroup_event { 8571 char *path; 8572 int path_size; 8573 struct { 8574 struct perf_event_header header; 8575 u64 id; 8576 char path[]; 8577 } event_id; 8578 }; 8579 8580 static int perf_event_cgroup_match(struct perf_event *event) 8581 { 8582 return event->attr.cgroup; 8583 } 8584 8585 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8586 { 8587 struct perf_cgroup_event *cgroup_event = data; 8588 struct perf_output_handle handle; 8589 struct perf_sample_data sample; 8590 u16 header_size = cgroup_event->event_id.header.size; 8591 int ret; 8592 8593 if (!perf_event_cgroup_match(event)) 8594 return; 8595 8596 perf_event_header__init_id(&cgroup_event->event_id.header, 8597 &sample, event); 8598 ret = perf_output_begin(&handle, &sample, event, 8599 cgroup_event->event_id.header.size); 8600 if (ret) 8601 goto out; 8602 8603 perf_output_put(&handle, cgroup_event->event_id); 8604 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8605 8606 perf_event__output_id_sample(event, &handle, &sample); 8607 8608 perf_output_end(&handle); 8609 out: 8610 cgroup_event->event_id.header.size = header_size; 8611 } 8612 8613 static void perf_event_cgroup(struct cgroup *cgrp) 8614 { 8615 struct perf_cgroup_event cgroup_event; 8616 char path_enomem[16] = "//enomem"; 8617 char *pathname; 8618 size_t size; 8619 8620 if (!atomic_read(&nr_cgroup_events)) 8621 return; 8622 8623 cgroup_event = (struct perf_cgroup_event){ 8624 .event_id = { 8625 .header = { 8626 .type = PERF_RECORD_CGROUP, 8627 .misc = 0, 8628 .size = sizeof(cgroup_event.event_id), 8629 }, 8630 .id = cgroup_id(cgrp), 8631 }, 8632 }; 8633 8634 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8635 if (pathname == NULL) { 8636 cgroup_event.path = path_enomem; 8637 } else { 8638 /* just to be sure to have enough space for alignment */ 8639 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8640 cgroup_event.path = pathname; 8641 } 8642 8643 /* 8644 * Since our buffer works in 8 byte units we need to align our string 8645 * size to a multiple of 8. However, we must guarantee the tail end is 8646 * zero'd out to avoid leaking random bits to userspace. 8647 */ 8648 size = strlen(cgroup_event.path) + 1; 8649 while (!IS_ALIGNED(size, sizeof(u64))) 8650 cgroup_event.path[size++] = '\0'; 8651 8652 cgroup_event.event_id.header.size += size; 8653 cgroup_event.path_size = size; 8654 8655 perf_iterate_sb(perf_event_cgroup_output, 8656 &cgroup_event, 8657 NULL); 8658 8659 kfree(pathname); 8660 } 8661 8662 #endif 8663 8664 /* 8665 * mmap tracking 8666 */ 8667 8668 struct perf_mmap_event { 8669 struct vm_area_struct *vma; 8670 8671 const char *file_name; 8672 int file_size; 8673 int maj, min; 8674 u64 ino; 8675 u64 ino_generation; 8676 u32 prot, flags; 8677 u8 build_id[BUILD_ID_SIZE_MAX]; 8678 u32 build_id_size; 8679 8680 struct { 8681 struct perf_event_header header; 8682 8683 u32 pid; 8684 u32 tid; 8685 u64 start; 8686 u64 len; 8687 u64 pgoff; 8688 } event_id; 8689 }; 8690 8691 static int perf_event_mmap_match(struct perf_event *event, 8692 void *data) 8693 { 8694 struct perf_mmap_event *mmap_event = data; 8695 struct vm_area_struct *vma = mmap_event->vma; 8696 int executable = vma->vm_flags & VM_EXEC; 8697 8698 return (!executable && event->attr.mmap_data) || 8699 (executable && (event->attr.mmap || event->attr.mmap2)); 8700 } 8701 8702 static void perf_event_mmap_output(struct perf_event *event, 8703 void *data) 8704 { 8705 struct perf_mmap_event *mmap_event = data; 8706 struct perf_output_handle handle; 8707 struct perf_sample_data sample; 8708 int size = mmap_event->event_id.header.size; 8709 u32 type = mmap_event->event_id.header.type; 8710 bool use_build_id; 8711 int ret; 8712 8713 if (!perf_event_mmap_match(event, data)) 8714 return; 8715 8716 if (event->attr.mmap2) { 8717 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8718 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8719 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8720 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8721 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8722 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8723 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8724 } 8725 8726 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8727 ret = perf_output_begin(&handle, &sample, event, 8728 mmap_event->event_id.header.size); 8729 if (ret) 8730 goto out; 8731 8732 mmap_event->event_id.pid = perf_event_pid(event, current); 8733 mmap_event->event_id.tid = perf_event_tid(event, current); 8734 8735 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8736 8737 if (event->attr.mmap2 && use_build_id) 8738 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8739 8740 perf_output_put(&handle, mmap_event->event_id); 8741 8742 if (event->attr.mmap2) { 8743 if (use_build_id) { 8744 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8745 8746 __output_copy(&handle, size, 4); 8747 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8748 } else { 8749 perf_output_put(&handle, mmap_event->maj); 8750 perf_output_put(&handle, mmap_event->min); 8751 perf_output_put(&handle, mmap_event->ino); 8752 perf_output_put(&handle, mmap_event->ino_generation); 8753 } 8754 perf_output_put(&handle, mmap_event->prot); 8755 perf_output_put(&handle, mmap_event->flags); 8756 } 8757 8758 __output_copy(&handle, mmap_event->file_name, 8759 mmap_event->file_size); 8760 8761 perf_event__output_id_sample(event, &handle, &sample); 8762 8763 perf_output_end(&handle); 8764 out: 8765 mmap_event->event_id.header.size = size; 8766 mmap_event->event_id.header.type = type; 8767 } 8768 8769 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8770 { 8771 struct vm_area_struct *vma = mmap_event->vma; 8772 struct file *file = vma->vm_file; 8773 int maj = 0, min = 0; 8774 u64 ino = 0, gen = 0; 8775 u32 prot = 0, flags = 0; 8776 unsigned int size; 8777 char tmp[16]; 8778 char *buf = NULL; 8779 char *name = NULL; 8780 8781 if (vma->vm_flags & VM_READ) 8782 prot |= PROT_READ; 8783 if (vma->vm_flags & VM_WRITE) 8784 prot |= PROT_WRITE; 8785 if (vma->vm_flags & VM_EXEC) 8786 prot |= PROT_EXEC; 8787 8788 if (vma->vm_flags & VM_MAYSHARE) 8789 flags = MAP_SHARED; 8790 else 8791 flags = MAP_PRIVATE; 8792 8793 if (vma->vm_flags & VM_LOCKED) 8794 flags |= MAP_LOCKED; 8795 if (is_vm_hugetlb_page(vma)) 8796 flags |= MAP_HUGETLB; 8797 8798 if (file) { 8799 struct inode *inode; 8800 dev_t dev; 8801 8802 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8803 if (!buf) { 8804 name = "//enomem"; 8805 goto cpy_name; 8806 } 8807 /* 8808 * d_path() works from the end of the rb backwards, so we 8809 * need to add enough zero bytes after the string to handle 8810 * the 64bit alignment we do later. 8811 */ 8812 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8813 if (IS_ERR(name)) { 8814 name = "//toolong"; 8815 goto cpy_name; 8816 } 8817 inode = file_inode(vma->vm_file); 8818 dev = inode->i_sb->s_dev; 8819 ino = inode->i_ino; 8820 gen = inode->i_generation; 8821 maj = MAJOR(dev); 8822 min = MINOR(dev); 8823 8824 goto got_name; 8825 } else { 8826 if (vma->vm_ops && vma->vm_ops->name) 8827 name = (char *) vma->vm_ops->name(vma); 8828 if (!name) 8829 name = (char *)arch_vma_name(vma); 8830 if (!name) { 8831 if (vma_is_initial_heap(vma)) 8832 name = "[heap]"; 8833 else if (vma_is_initial_stack(vma)) 8834 name = "[stack]"; 8835 else 8836 name = "//anon"; 8837 } 8838 } 8839 8840 cpy_name: 8841 strscpy(tmp, name, sizeof(tmp)); 8842 name = tmp; 8843 got_name: 8844 /* 8845 * Since our buffer works in 8 byte units we need to align our string 8846 * size to a multiple of 8. However, we must guarantee the tail end is 8847 * zero'd out to avoid leaking random bits to userspace. 8848 */ 8849 size = strlen(name)+1; 8850 while (!IS_ALIGNED(size, sizeof(u64))) 8851 name[size++] = '\0'; 8852 8853 mmap_event->file_name = name; 8854 mmap_event->file_size = size; 8855 mmap_event->maj = maj; 8856 mmap_event->min = min; 8857 mmap_event->ino = ino; 8858 mmap_event->ino_generation = gen; 8859 mmap_event->prot = prot; 8860 mmap_event->flags = flags; 8861 8862 if (!(vma->vm_flags & VM_EXEC)) 8863 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8864 8865 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8866 8867 if (atomic_read(&nr_build_id_events)) 8868 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8869 8870 perf_iterate_sb(perf_event_mmap_output, 8871 mmap_event, 8872 NULL); 8873 8874 kfree(buf); 8875 } 8876 8877 /* 8878 * Check whether inode and address range match filter criteria. 8879 */ 8880 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8881 struct file *file, unsigned long offset, 8882 unsigned long size) 8883 { 8884 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8885 if (!filter->path.dentry) 8886 return false; 8887 8888 if (d_inode(filter->path.dentry) != file_inode(file)) 8889 return false; 8890 8891 if (filter->offset > offset + size) 8892 return false; 8893 8894 if (filter->offset + filter->size < offset) 8895 return false; 8896 8897 return true; 8898 } 8899 8900 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8901 struct vm_area_struct *vma, 8902 struct perf_addr_filter_range *fr) 8903 { 8904 unsigned long vma_size = vma->vm_end - vma->vm_start; 8905 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8906 struct file *file = vma->vm_file; 8907 8908 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8909 return false; 8910 8911 if (filter->offset < off) { 8912 fr->start = vma->vm_start; 8913 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8914 } else { 8915 fr->start = vma->vm_start + filter->offset - off; 8916 fr->size = min(vma->vm_end - fr->start, filter->size); 8917 } 8918 8919 return true; 8920 } 8921 8922 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8923 { 8924 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8925 struct vm_area_struct *vma = data; 8926 struct perf_addr_filter *filter; 8927 unsigned int restart = 0, count = 0; 8928 unsigned long flags; 8929 8930 if (!has_addr_filter(event)) 8931 return; 8932 8933 if (!vma->vm_file) 8934 return; 8935 8936 raw_spin_lock_irqsave(&ifh->lock, flags); 8937 list_for_each_entry(filter, &ifh->list, entry) { 8938 if (perf_addr_filter_vma_adjust(filter, vma, 8939 &event->addr_filter_ranges[count])) 8940 restart++; 8941 8942 count++; 8943 } 8944 8945 if (restart) 8946 event->addr_filters_gen++; 8947 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8948 8949 if (restart) 8950 perf_event_stop(event, 1); 8951 } 8952 8953 /* 8954 * Adjust all task's events' filters to the new vma 8955 */ 8956 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8957 { 8958 struct perf_event_context *ctx; 8959 8960 /* 8961 * Data tracing isn't supported yet and as such there is no need 8962 * to keep track of anything that isn't related to executable code: 8963 */ 8964 if (!(vma->vm_flags & VM_EXEC)) 8965 return; 8966 8967 rcu_read_lock(); 8968 ctx = rcu_dereference(current->perf_event_ctxp); 8969 if (ctx) 8970 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8971 rcu_read_unlock(); 8972 } 8973 8974 void perf_event_mmap(struct vm_area_struct *vma) 8975 { 8976 struct perf_mmap_event mmap_event; 8977 8978 if (!atomic_read(&nr_mmap_events)) 8979 return; 8980 8981 mmap_event = (struct perf_mmap_event){ 8982 .vma = vma, 8983 /* .file_name */ 8984 /* .file_size */ 8985 .event_id = { 8986 .header = { 8987 .type = PERF_RECORD_MMAP, 8988 .misc = PERF_RECORD_MISC_USER, 8989 /* .size */ 8990 }, 8991 /* .pid */ 8992 /* .tid */ 8993 .start = vma->vm_start, 8994 .len = vma->vm_end - vma->vm_start, 8995 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8996 }, 8997 /* .maj (attr_mmap2 only) */ 8998 /* .min (attr_mmap2 only) */ 8999 /* .ino (attr_mmap2 only) */ 9000 /* .ino_generation (attr_mmap2 only) */ 9001 /* .prot (attr_mmap2 only) */ 9002 /* .flags (attr_mmap2 only) */ 9003 }; 9004 9005 perf_addr_filters_adjust(vma); 9006 perf_event_mmap_event(&mmap_event); 9007 } 9008 9009 void perf_event_aux_event(struct perf_event *event, unsigned long head, 9010 unsigned long size, u64 flags) 9011 { 9012 struct perf_output_handle handle; 9013 struct perf_sample_data sample; 9014 struct perf_aux_event { 9015 struct perf_event_header header; 9016 u64 offset; 9017 u64 size; 9018 u64 flags; 9019 } rec = { 9020 .header = { 9021 .type = PERF_RECORD_AUX, 9022 .misc = 0, 9023 .size = sizeof(rec), 9024 }, 9025 .offset = head, 9026 .size = size, 9027 .flags = flags, 9028 }; 9029 int ret; 9030 9031 perf_event_header__init_id(&rec.header, &sample, event); 9032 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9033 9034 if (ret) 9035 return; 9036 9037 perf_output_put(&handle, rec); 9038 perf_event__output_id_sample(event, &handle, &sample); 9039 9040 perf_output_end(&handle); 9041 } 9042 9043 /* 9044 * Lost/dropped samples logging 9045 */ 9046 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9047 { 9048 struct perf_output_handle handle; 9049 struct perf_sample_data sample; 9050 int ret; 9051 9052 struct { 9053 struct perf_event_header header; 9054 u64 lost; 9055 } lost_samples_event = { 9056 .header = { 9057 .type = PERF_RECORD_LOST_SAMPLES, 9058 .misc = 0, 9059 .size = sizeof(lost_samples_event), 9060 }, 9061 .lost = lost, 9062 }; 9063 9064 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9065 9066 ret = perf_output_begin(&handle, &sample, event, 9067 lost_samples_event.header.size); 9068 if (ret) 9069 return; 9070 9071 perf_output_put(&handle, lost_samples_event); 9072 perf_event__output_id_sample(event, &handle, &sample); 9073 perf_output_end(&handle); 9074 } 9075 9076 /* 9077 * context_switch tracking 9078 */ 9079 9080 struct perf_switch_event { 9081 struct task_struct *task; 9082 struct task_struct *next_prev; 9083 9084 struct { 9085 struct perf_event_header header; 9086 u32 next_prev_pid; 9087 u32 next_prev_tid; 9088 } event_id; 9089 }; 9090 9091 static int perf_event_switch_match(struct perf_event *event) 9092 { 9093 return event->attr.context_switch; 9094 } 9095 9096 static void perf_event_switch_output(struct perf_event *event, void *data) 9097 { 9098 struct perf_switch_event *se = data; 9099 struct perf_output_handle handle; 9100 struct perf_sample_data sample; 9101 int ret; 9102 9103 if (!perf_event_switch_match(event)) 9104 return; 9105 9106 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9107 if (event->ctx->task) { 9108 se->event_id.header.type = PERF_RECORD_SWITCH; 9109 se->event_id.header.size = sizeof(se->event_id.header); 9110 } else { 9111 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9112 se->event_id.header.size = sizeof(se->event_id); 9113 se->event_id.next_prev_pid = 9114 perf_event_pid(event, se->next_prev); 9115 se->event_id.next_prev_tid = 9116 perf_event_tid(event, se->next_prev); 9117 } 9118 9119 perf_event_header__init_id(&se->event_id.header, &sample, event); 9120 9121 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9122 if (ret) 9123 return; 9124 9125 if (event->ctx->task) 9126 perf_output_put(&handle, se->event_id.header); 9127 else 9128 perf_output_put(&handle, se->event_id); 9129 9130 perf_event__output_id_sample(event, &handle, &sample); 9131 9132 perf_output_end(&handle); 9133 } 9134 9135 static void perf_event_switch(struct task_struct *task, 9136 struct task_struct *next_prev, bool sched_in) 9137 { 9138 struct perf_switch_event switch_event; 9139 9140 /* N.B. caller checks nr_switch_events != 0 */ 9141 9142 switch_event = (struct perf_switch_event){ 9143 .task = task, 9144 .next_prev = next_prev, 9145 .event_id = { 9146 .header = { 9147 /* .type */ 9148 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9149 /* .size */ 9150 }, 9151 /* .next_prev_pid */ 9152 /* .next_prev_tid */ 9153 }, 9154 }; 9155 9156 if (!sched_in && task->on_rq) { 9157 switch_event.event_id.header.misc |= 9158 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9159 } 9160 9161 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9162 } 9163 9164 /* 9165 * IRQ throttle logging 9166 */ 9167 9168 static void perf_log_throttle(struct perf_event *event, int enable) 9169 { 9170 struct perf_output_handle handle; 9171 struct perf_sample_data sample; 9172 int ret; 9173 9174 struct { 9175 struct perf_event_header header; 9176 u64 time; 9177 u64 id; 9178 u64 stream_id; 9179 } throttle_event = { 9180 .header = { 9181 .type = PERF_RECORD_THROTTLE, 9182 .misc = 0, 9183 .size = sizeof(throttle_event), 9184 }, 9185 .time = perf_event_clock(event), 9186 .id = primary_event_id(event), 9187 .stream_id = event->id, 9188 }; 9189 9190 if (enable) 9191 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9192 9193 perf_event_header__init_id(&throttle_event.header, &sample, event); 9194 9195 ret = perf_output_begin(&handle, &sample, event, 9196 throttle_event.header.size); 9197 if (ret) 9198 return; 9199 9200 perf_output_put(&handle, throttle_event); 9201 perf_event__output_id_sample(event, &handle, &sample); 9202 perf_output_end(&handle); 9203 } 9204 9205 /* 9206 * ksymbol register/unregister tracking 9207 */ 9208 9209 struct perf_ksymbol_event { 9210 const char *name; 9211 int name_len; 9212 struct { 9213 struct perf_event_header header; 9214 u64 addr; 9215 u32 len; 9216 u16 ksym_type; 9217 u16 flags; 9218 } event_id; 9219 }; 9220 9221 static int perf_event_ksymbol_match(struct perf_event *event) 9222 { 9223 return event->attr.ksymbol; 9224 } 9225 9226 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9227 { 9228 struct perf_ksymbol_event *ksymbol_event = data; 9229 struct perf_output_handle handle; 9230 struct perf_sample_data sample; 9231 int ret; 9232 9233 if (!perf_event_ksymbol_match(event)) 9234 return; 9235 9236 perf_event_header__init_id(&ksymbol_event->event_id.header, 9237 &sample, event); 9238 ret = perf_output_begin(&handle, &sample, event, 9239 ksymbol_event->event_id.header.size); 9240 if (ret) 9241 return; 9242 9243 perf_output_put(&handle, ksymbol_event->event_id); 9244 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9245 perf_event__output_id_sample(event, &handle, &sample); 9246 9247 perf_output_end(&handle); 9248 } 9249 9250 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9251 const char *sym) 9252 { 9253 struct perf_ksymbol_event ksymbol_event; 9254 char name[KSYM_NAME_LEN]; 9255 u16 flags = 0; 9256 int name_len; 9257 9258 if (!atomic_read(&nr_ksymbol_events)) 9259 return; 9260 9261 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9262 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9263 goto err; 9264 9265 strscpy(name, sym, KSYM_NAME_LEN); 9266 name_len = strlen(name) + 1; 9267 while (!IS_ALIGNED(name_len, sizeof(u64))) 9268 name[name_len++] = '\0'; 9269 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9270 9271 if (unregister) 9272 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9273 9274 ksymbol_event = (struct perf_ksymbol_event){ 9275 .name = name, 9276 .name_len = name_len, 9277 .event_id = { 9278 .header = { 9279 .type = PERF_RECORD_KSYMBOL, 9280 .size = sizeof(ksymbol_event.event_id) + 9281 name_len, 9282 }, 9283 .addr = addr, 9284 .len = len, 9285 .ksym_type = ksym_type, 9286 .flags = flags, 9287 }, 9288 }; 9289 9290 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9291 return; 9292 err: 9293 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9294 } 9295 9296 /* 9297 * bpf program load/unload tracking 9298 */ 9299 9300 struct perf_bpf_event { 9301 struct bpf_prog *prog; 9302 struct { 9303 struct perf_event_header header; 9304 u16 type; 9305 u16 flags; 9306 u32 id; 9307 u8 tag[BPF_TAG_SIZE]; 9308 } event_id; 9309 }; 9310 9311 static int perf_event_bpf_match(struct perf_event *event) 9312 { 9313 return event->attr.bpf_event; 9314 } 9315 9316 static void perf_event_bpf_output(struct perf_event *event, void *data) 9317 { 9318 struct perf_bpf_event *bpf_event = data; 9319 struct perf_output_handle handle; 9320 struct perf_sample_data sample; 9321 int ret; 9322 9323 if (!perf_event_bpf_match(event)) 9324 return; 9325 9326 perf_event_header__init_id(&bpf_event->event_id.header, 9327 &sample, event); 9328 ret = perf_output_begin(&handle, &sample, event, 9329 bpf_event->event_id.header.size); 9330 if (ret) 9331 return; 9332 9333 perf_output_put(&handle, bpf_event->event_id); 9334 perf_event__output_id_sample(event, &handle, &sample); 9335 9336 perf_output_end(&handle); 9337 } 9338 9339 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9340 enum perf_bpf_event_type type) 9341 { 9342 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9343 int i; 9344 9345 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9346 (u64)(unsigned long)prog->bpf_func, 9347 prog->jited_len, unregister, 9348 prog->aux->ksym.name); 9349 9350 for (i = 1; i < prog->aux->func_cnt; i++) { 9351 struct bpf_prog *subprog = prog->aux->func[i]; 9352 9353 perf_event_ksymbol( 9354 PERF_RECORD_KSYMBOL_TYPE_BPF, 9355 (u64)(unsigned long)subprog->bpf_func, 9356 subprog->jited_len, unregister, 9357 subprog->aux->ksym.name); 9358 } 9359 } 9360 9361 void perf_event_bpf_event(struct bpf_prog *prog, 9362 enum perf_bpf_event_type type, 9363 u16 flags) 9364 { 9365 struct perf_bpf_event bpf_event; 9366 9367 switch (type) { 9368 case PERF_BPF_EVENT_PROG_LOAD: 9369 case PERF_BPF_EVENT_PROG_UNLOAD: 9370 if (atomic_read(&nr_ksymbol_events)) 9371 perf_event_bpf_emit_ksymbols(prog, type); 9372 break; 9373 default: 9374 return; 9375 } 9376 9377 if (!atomic_read(&nr_bpf_events)) 9378 return; 9379 9380 bpf_event = (struct perf_bpf_event){ 9381 .prog = prog, 9382 .event_id = { 9383 .header = { 9384 .type = PERF_RECORD_BPF_EVENT, 9385 .size = sizeof(bpf_event.event_id), 9386 }, 9387 .type = type, 9388 .flags = flags, 9389 .id = prog->aux->id, 9390 }, 9391 }; 9392 9393 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9394 9395 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9396 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9397 } 9398 9399 struct perf_text_poke_event { 9400 const void *old_bytes; 9401 const void *new_bytes; 9402 size_t pad; 9403 u16 old_len; 9404 u16 new_len; 9405 9406 struct { 9407 struct perf_event_header header; 9408 9409 u64 addr; 9410 } event_id; 9411 }; 9412 9413 static int perf_event_text_poke_match(struct perf_event *event) 9414 { 9415 return event->attr.text_poke; 9416 } 9417 9418 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9419 { 9420 struct perf_text_poke_event *text_poke_event = data; 9421 struct perf_output_handle handle; 9422 struct perf_sample_data sample; 9423 u64 padding = 0; 9424 int ret; 9425 9426 if (!perf_event_text_poke_match(event)) 9427 return; 9428 9429 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9430 9431 ret = perf_output_begin(&handle, &sample, event, 9432 text_poke_event->event_id.header.size); 9433 if (ret) 9434 return; 9435 9436 perf_output_put(&handle, text_poke_event->event_id); 9437 perf_output_put(&handle, text_poke_event->old_len); 9438 perf_output_put(&handle, text_poke_event->new_len); 9439 9440 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9441 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9442 9443 if (text_poke_event->pad) 9444 __output_copy(&handle, &padding, text_poke_event->pad); 9445 9446 perf_event__output_id_sample(event, &handle, &sample); 9447 9448 perf_output_end(&handle); 9449 } 9450 9451 void perf_event_text_poke(const void *addr, const void *old_bytes, 9452 size_t old_len, const void *new_bytes, size_t new_len) 9453 { 9454 struct perf_text_poke_event text_poke_event; 9455 size_t tot, pad; 9456 9457 if (!atomic_read(&nr_text_poke_events)) 9458 return; 9459 9460 tot = sizeof(text_poke_event.old_len) + old_len; 9461 tot += sizeof(text_poke_event.new_len) + new_len; 9462 pad = ALIGN(tot, sizeof(u64)) - tot; 9463 9464 text_poke_event = (struct perf_text_poke_event){ 9465 .old_bytes = old_bytes, 9466 .new_bytes = new_bytes, 9467 .pad = pad, 9468 .old_len = old_len, 9469 .new_len = new_len, 9470 .event_id = { 9471 .header = { 9472 .type = PERF_RECORD_TEXT_POKE, 9473 .misc = PERF_RECORD_MISC_KERNEL, 9474 .size = sizeof(text_poke_event.event_id) + tot + pad, 9475 }, 9476 .addr = (unsigned long)addr, 9477 }, 9478 }; 9479 9480 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9481 } 9482 9483 void perf_event_itrace_started(struct perf_event *event) 9484 { 9485 event->attach_state |= PERF_ATTACH_ITRACE; 9486 } 9487 9488 static void perf_log_itrace_start(struct perf_event *event) 9489 { 9490 struct perf_output_handle handle; 9491 struct perf_sample_data sample; 9492 struct perf_aux_event { 9493 struct perf_event_header header; 9494 u32 pid; 9495 u32 tid; 9496 } rec; 9497 int ret; 9498 9499 if (event->parent) 9500 event = event->parent; 9501 9502 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9503 event->attach_state & PERF_ATTACH_ITRACE) 9504 return; 9505 9506 rec.header.type = PERF_RECORD_ITRACE_START; 9507 rec.header.misc = 0; 9508 rec.header.size = sizeof(rec); 9509 rec.pid = perf_event_pid(event, current); 9510 rec.tid = perf_event_tid(event, current); 9511 9512 perf_event_header__init_id(&rec.header, &sample, event); 9513 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9514 9515 if (ret) 9516 return; 9517 9518 perf_output_put(&handle, rec); 9519 perf_event__output_id_sample(event, &handle, &sample); 9520 9521 perf_output_end(&handle); 9522 } 9523 9524 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9525 { 9526 struct perf_output_handle handle; 9527 struct perf_sample_data sample; 9528 struct perf_aux_event { 9529 struct perf_event_header header; 9530 u64 hw_id; 9531 } rec; 9532 int ret; 9533 9534 if (event->parent) 9535 event = event->parent; 9536 9537 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9538 rec.header.misc = 0; 9539 rec.header.size = sizeof(rec); 9540 rec.hw_id = hw_id; 9541 9542 perf_event_header__init_id(&rec.header, &sample, event); 9543 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9544 9545 if (ret) 9546 return; 9547 9548 perf_output_put(&handle, rec); 9549 perf_event__output_id_sample(event, &handle, &sample); 9550 9551 perf_output_end(&handle); 9552 } 9553 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9554 9555 static int 9556 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9557 { 9558 struct hw_perf_event *hwc = &event->hw; 9559 int ret = 0; 9560 u64 seq; 9561 9562 seq = __this_cpu_read(perf_throttled_seq); 9563 if (seq != hwc->interrupts_seq) { 9564 hwc->interrupts_seq = seq; 9565 hwc->interrupts = 1; 9566 } else { 9567 hwc->interrupts++; 9568 if (unlikely(throttle && 9569 hwc->interrupts > max_samples_per_tick)) { 9570 __this_cpu_inc(perf_throttled_count); 9571 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9572 hwc->interrupts = MAX_INTERRUPTS; 9573 perf_log_throttle(event, 0); 9574 ret = 1; 9575 } 9576 } 9577 9578 if (event->attr.freq) { 9579 u64 now = perf_clock(); 9580 s64 delta = now - hwc->freq_time_stamp; 9581 9582 hwc->freq_time_stamp = now; 9583 9584 if (delta > 0 && delta < 2*TICK_NSEC) 9585 perf_adjust_period(event, delta, hwc->last_period, true); 9586 } 9587 9588 return ret; 9589 } 9590 9591 int perf_event_account_interrupt(struct perf_event *event) 9592 { 9593 return __perf_event_account_interrupt(event, 1); 9594 } 9595 9596 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9597 { 9598 /* 9599 * Due to interrupt latency (AKA "skid"), we may enter the 9600 * kernel before taking an overflow, even if the PMU is only 9601 * counting user events. 9602 */ 9603 if (event->attr.exclude_kernel && !user_mode(regs)) 9604 return false; 9605 9606 return true; 9607 } 9608 9609 #ifdef CONFIG_BPF_SYSCALL 9610 static int bpf_overflow_handler(struct perf_event *event, 9611 struct perf_sample_data *data, 9612 struct pt_regs *regs) 9613 { 9614 struct bpf_perf_event_data_kern ctx = { 9615 .data = data, 9616 .event = event, 9617 }; 9618 struct bpf_prog *prog; 9619 int ret = 0; 9620 9621 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9622 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9623 goto out; 9624 rcu_read_lock(); 9625 prog = READ_ONCE(event->prog); 9626 if (prog) { 9627 perf_prepare_sample(data, event, regs); 9628 ret = bpf_prog_run(prog, &ctx); 9629 } 9630 rcu_read_unlock(); 9631 out: 9632 __this_cpu_dec(bpf_prog_active); 9633 9634 return ret; 9635 } 9636 9637 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9638 struct bpf_prog *prog, 9639 u64 bpf_cookie) 9640 { 9641 if (event->overflow_handler_context) 9642 /* hw breakpoint or kernel counter */ 9643 return -EINVAL; 9644 9645 if (event->prog) 9646 return -EEXIST; 9647 9648 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 9649 return -EINVAL; 9650 9651 if (event->attr.precise_ip && 9652 prog->call_get_stack && 9653 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 9654 event->attr.exclude_callchain_kernel || 9655 event->attr.exclude_callchain_user)) { 9656 /* 9657 * On perf_event with precise_ip, calling bpf_get_stack() 9658 * may trigger unwinder warnings and occasional crashes. 9659 * bpf_get_[stack|stackid] works around this issue by using 9660 * callchain attached to perf_sample_data. If the 9661 * perf_event does not full (kernel and user) callchain 9662 * attached to perf_sample_data, do not allow attaching BPF 9663 * program that calls bpf_get_[stack|stackid]. 9664 */ 9665 return -EPROTO; 9666 } 9667 9668 event->prog = prog; 9669 event->bpf_cookie = bpf_cookie; 9670 return 0; 9671 } 9672 9673 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9674 { 9675 struct bpf_prog *prog = event->prog; 9676 9677 if (!prog) 9678 return; 9679 9680 event->prog = NULL; 9681 bpf_prog_put(prog); 9682 } 9683 #else 9684 static inline int bpf_overflow_handler(struct perf_event *event, 9685 struct perf_sample_data *data, 9686 struct pt_regs *regs) 9687 { 9688 return 1; 9689 } 9690 9691 static inline int perf_event_set_bpf_handler(struct perf_event *event, 9692 struct bpf_prog *prog, 9693 u64 bpf_cookie) 9694 { 9695 return -EOPNOTSUPP; 9696 } 9697 9698 static inline void perf_event_free_bpf_handler(struct perf_event *event) 9699 { 9700 } 9701 #endif 9702 9703 /* 9704 * Generic event overflow handling, sampling. 9705 */ 9706 9707 static int __perf_event_overflow(struct perf_event *event, 9708 int throttle, struct perf_sample_data *data, 9709 struct pt_regs *regs) 9710 { 9711 int events = atomic_read(&event->event_limit); 9712 int ret = 0; 9713 9714 /* 9715 * Non-sampling counters might still use the PMI to fold short 9716 * hardware counters, ignore those. 9717 */ 9718 if (unlikely(!is_sampling_event(event))) 9719 return 0; 9720 9721 ret = __perf_event_account_interrupt(event, throttle); 9722 9723 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT && 9724 !bpf_overflow_handler(event, data, regs)) 9725 return ret; 9726 9727 /* 9728 * XXX event_limit might not quite work as expected on inherited 9729 * events 9730 */ 9731 9732 event->pending_kill = POLL_IN; 9733 if (events && atomic_dec_and_test(&event->event_limit)) { 9734 ret = 1; 9735 event->pending_kill = POLL_HUP; 9736 perf_event_disable_inatomic(event); 9737 } 9738 9739 if (event->attr.sigtrap) { 9740 /* 9741 * The desired behaviour of sigtrap vs invalid samples is a bit 9742 * tricky; on the one hand, one should not loose the SIGTRAP if 9743 * it is the first event, on the other hand, we should also not 9744 * trigger the WARN or override the data address. 9745 */ 9746 bool valid_sample = sample_is_allowed(event, regs); 9747 unsigned int pending_id = 1; 9748 enum task_work_notify_mode notify_mode; 9749 9750 if (regs) 9751 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9752 9753 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME; 9754 9755 if (!event->pending_work && 9756 !task_work_add(current, &event->pending_task, notify_mode)) { 9757 event->pending_work = pending_id; 9758 local_inc(&event->ctx->nr_pending); 9759 9760 event->pending_addr = 0; 9761 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9762 event->pending_addr = data->addr; 9763 9764 } else if (event->attr.exclude_kernel && valid_sample) { 9765 /* 9766 * Should not be able to return to user space without 9767 * consuming pending_work; with exceptions: 9768 * 9769 * 1. Where !exclude_kernel, events can overflow again 9770 * in the kernel without returning to user space. 9771 * 9772 * 2. Events that can overflow again before the IRQ- 9773 * work without user space progress (e.g. hrtimer). 9774 * To approximate progress (with false negatives), 9775 * check 32-bit hash of the current IP. 9776 */ 9777 WARN_ON_ONCE(event->pending_work != pending_id); 9778 } 9779 } 9780 9781 READ_ONCE(event->overflow_handler)(event, data, regs); 9782 9783 if (*perf_event_fasync(event) && event->pending_kill) { 9784 event->pending_wakeup = 1; 9785 irq_work_queue(&event->pending_irq); 9786 } 9787 9788 return ret; 9789 } 9790 9791 int perf_event_overflow(struct perf_event *event, 9792 struct perf_sample_data *data, 9793 struct pt_regs *regs) 9794 { 9795 return __perf_event_overflow(event, 1, data, regs); 9796 } 9797 9798 /* 9799 * Generic software event infrastructure 9800 */ 9801 9802 struct swevent_htable { 9803 struct swevent_hlist *swevent_hlist; 9804 struct mutex hlist_mutex; 9805 int hlist_refcount; 9806 }; 9807 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9808 9809 /* 9810 * We directly increment event->count and keep a second value in 9811 * event->hw.period_left to count intervals. This period event 9812 * is kept in the range [-sample_period, 0] so that we can use the 9813 * sign as trigger. 9814 */ 9815 9816 u64 perf_swevent_set_period(struct perf_event *event) 9817 { 9818 struct hw_perf_event *hwc = &event->hw; 9819 u64 period = hwc->last_period; 9820 u64 nr, offset; 9821 s64 old, val; 9822 9823 hwc->last_period = hwc->sample_period; 9824 9825 old = local64_read(&hwc->period_left); 9826 do { 9827 val = old; 9828 if (val < 0) 9829 return 0; 9830 9831 nr = div64_u64(period + val, period); 9832 offset = nr * period; 9833 val -= offset; 9834 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9835 9836 return nr; 9837 } 9838 9839 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9840 struct perf_sample_data *data, 9841 struct pt_regs *regs) 9842 { 9843 struct hw_perf_event *hwc = &event->hw; 9844 int throttle = 0; 9845 9846 if (!overflow) 9847 overflow = perf_swevent_set_period(event); 9848 9849 if (hwc->interrupts == MAX_INTERRUPTS) 9850 return; 9851 9852 for (; overflow; overflow--) { 9853 if (__perf_event_overflow(event, throttle, 9854 data, regs)) { 9855 /* 9856 * We inhibit the overflow from happening when 9857 * hwc->interrupts == MAX_INTERRUPTS. 9858 */ 9859 break; 9860 } 9861 throttle = 1; 9862 } 9863 } 9864 9865 static void perf_swevent_event(struct perf_event *event, u64 nr, 9866 struct perf_sample_data *data, 9867 struct pt_regs *regs) 9868 { 9869 struct hw_perf_event *hwc = &event->hw; 9870 9871 local64_add(nr, &event->count); 9872 9873 if (!regs) 9874 return; 9875 9876 if (!is_sampling_event(event)) 9877 return; 9878 9879 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9880 data->period = nr; 9881 return perf_swevent_overflow(event, 1, data, regs); 9882 } else 9883 data->period = event->hw.last_period; 9884 9885 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9886 return perf_swevent_overflow(event, 1, data, regs); 9887 9888 if (local64_add_negative(nr, &hwc->period_left)) 9889 return; 9890 9891 perf_swevent_overflow(event, 0, data, regs); 9892 } 9893 9894 static int perf_exclude_event(struct perf_event *event, 9895 struct pt_regs *regs) 9896 { 9897 if (event->hw.state & PERF_HES_STOPPED) 9898 return 1; 9899 9900 if (regs) { 9901 if (event->attr.exclude_user && user_mode(regs)) 9902 return 1; 9903 9904 if (event->attr.exclude_kernel && !user_mode(regs)) 9905 return 1; 9906 } 9907 9908 return 0; 9909 } 9910 9911 static int perf_swevent_match(struct perf_event *event, 9912 enum perf_type_id type, 9913 u32 event_id, 9914 struct perf_sample_data *data, 9915 struct pt_regs *regs) 9916 { 9917 if (event->attr.type != type) 9918 return 0; 9919 9920 if (event->attr.config != event_id) 9921 return 0; 9922 9923 if (perf_exclude_event(event, regs)) 9924 return 0; 9925 9926 return 1; 9927 } 9928 9929 static inline u64 swevent_hash(u64 type, u32 event_id) 9930 { 9931 u64 val = event_id | (type << 32); 9932 9933 return hash_64(val, SWEVENT_HLIST_BITS); 9934 } 9935 9936 static inline struct hlist_head * 9937 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9938 { 9939 u64 hash = swevent_hash(type, event_id); 9940 9941 return &hlist->heads[hash]; 9942 } 9943 9944 /* For the read side: events when they trigger */ 9945 static inline struct hlist_head * 9946 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9947 { 9948 struct swevent_hlist *hlist; 9949 9950 hlist = rcu_dereference(swhash->swevent_hlist); 9951 if (!hlist) 9952 return NULL; 9953 9954 return __find_swevent_head(hlist, type, event_id); 9955 } 9956 9957 /* For the event head insertion and removal in the hlist */ 9958 static inline struct hlist_head * 9959 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9960 { 9961 struct swevent_hlist *hlist; 9962 u32 event_id = event->attr.config; 9963 u64 type = event->attr.type; 9964 9965 /* 9966 * Event scheduling is always serialized against hlist allocation 9967 * and release. Which makes the protected version suitable here. 9968 * The context lock guarantees that. 9969 */ 9970 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9971 lockdep_is_held(&event->ctx->lock)); 9972 if (!hlist) 9973 return NULL; 9974 9975 return __find_swevent_head(hlist, type, event_id); 9976 } 9977 9978 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9979 u64 nr, 9980 struct perf_sample_data *data, 9981 struct pt_regs *regs) 9982 { 9983 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9984 struct perf_event *event; 9985 struct hlist_head *head; 9986 9987 rcu_read_lock(); 9988 head = find_swevent_head_rcu(swhash, type, event_id); 9989 if (!head) 9990 goto end; 9991 9992 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9993 if (perf_swevent_match(event, type, event_id, data, regs)) 9994 perf_swevent_event(event, nr, data, regs); 9995 } 9996 end: 9997 rcu_read_unlock(); 9998 } 9999 10000 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 10001 10002 int perf_swevent_get_recursion_context(void) 10003 { 10004 return get_recursion_context(current->perf_recursion); 10005 } 10006 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 10007 10008 void perf_swevent_put_recursion_context(int rctx) 10009 { 10010 put_recursion_context(current->perf_recursion, rctx); 10011 } 10012 10013 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10014 { 10015 struct perf_sample_data data; 10016 10017 if (WARN_ON_ONCE(!regs)) 10018 return; 10019 10020 perf_sample_data_init(&data, addr, 0); 10021 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 10022 } 10023 10024 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 10025 { 10026 int rctx; 10027 10028 preempt_disable_notrace(); 10029 rctx = perf_swevent_get_recursion_context(); 10030 if (unlikely(rctx < 0)) 10031 goto fail; 10032 10033 ___perf_sw_event(event_id, nr, regs, addr); 10034 10035 perf_swevent_put_recursion_context(rctx); 10036 fail: 10037 preempt_enable_notrace(); 10038 } 10039 10040 static void perf_swevent_read(struct perf_event *event) 10041 { 10042 } 10043 10044 static int perf_swevent_add(struct perf_event *event, int flags) 10045 { 10046 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 10047 struct hw_perf_event *hwc = &event->hw; 10048 struct hlist_head *head; 10049 10050 if (is_sampling_event(event)) { 10051 hwc->last_period = hwc->sample_period; 10052 perf_swevent_set_period(event); 10053 } 10054 10055 hwc->state = !(flags & PERF_EF_START); 10056 10057 head = find_swevent_head(swhash, event); 10058 if (WARN_ON_ONCE(!head)) 10059 return -EINVAL; 10060 10061 hlist_add_head_rcu(&event->hlist_entry, head); 10062 perf_event_update_userpage(event); 10063 10064 return 0; 10065 } 10066 10067 static void perf_swevent_del(struct perf_event *event, int flags) 10068 { 10069 hlist_del_rcu(&event->hlist_entry); 10070 } 10071 10072 static void perf_swevent_start(struct perf_event *event, int flags) 10073 { 10074 event->hw.state = 0; 10075 } 10076 10077 static void perf_swevent_stop(struct perf_event *event, int flags) 10078 { 10079 event->hw.state = PERF_HES_STOPPED; 10080 } 10081 10082 /* Deref the hlist from the update side */ 10083 static inline struct swevent_hlist * 10084 swevent_hlist_deref(struct swevent_htable *swhash) 10085 { 10086 return rcu_dereference_protected(swhash->swevent_hlist, 10087 lockdep_is_held(&swhash->hlist_mutex)); 10088 } 10089 10090 static void swevent_hlist_release(struct swevent_htable *swhash) 10091 { 10092 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 10093 10094 if (!hlist) 10095 return; 10096 10097 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 10098 kfree_rcu(hlist, rcu_head); 10099 } 10100 10101 static void swevent_hlist_put_cpu(int cpu) 10102 { 10103 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10104 10105 mutex_lock(&swhash->hlist_mutex); 10106 10107 if (!--swhash->hlist_refcount) 10108 swevent_hlist_release(swhash); 10109 10110 mutex_unlock(&swhash->hlist_mutex); 10111 } 10112 10113 static void swevent_hlist_put(void) 10114 { 10115 int cpu; 10116 10117 for_each_possible_cpu(cpu) 10118 swevent_hlist_put_cpu(cpu); 10119 } 10120 10121 static int swevent_hlist_get_cpu(int cpu) 10122 { 10123 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10124 int err = 0; 10125 10126 mutex_lock(&swhash->hlist_mutex); 10127 if (!swevent_hlist_deref(swhash) && 10128 cpumask_test_cpu(cpu, perf_online_mask)) { 10129 struct swevent_hlist *hlist; 10130 10131 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10132 if (!hlist) { 10133 err = -ENOMEM; 10134 goto exit; 10135 } 10136 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10137 } 10138 swhash->hlist_refcount++; 10139 exit: 10140 mutex_unlock(&swhash->hlist_mutex); 10141 10142 return err; 10143 } 10144 10145 static int swevent_hlist_get(void) 10146 { 10147 int err, cpu, failed_cpu; 10148 10149 mutex_lock(&pmus_lock); 10150 for_each_possible_cpu(cpu) { 10151 err = swevent_hlist_get_cpu(cpu); 10152 if (err) { 10153 failed_cpu = cpu; 10154 goto fail; 10155 } 10156 } 10157 mutex_unlock(&pmus_lock); 10158 return 0; 10159 fail: 10160 for_each_possible_cpu(cpu) { 10161 if (cpu == failed_cpu) 10162 break; 10163 swevent_hlist_put_cpu(cpu); 10164 } 10165 mutex_unlock(&pmus_lock); 10166 return err; 10167 } 10168 10169 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10170 10171 static void sw_perf_event_destroy(struct perf_event *event) 10172 { 10173 u64 event_id = event->attr.config; 10174 10175 WARN_ON(event->parent); 10176 10177 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10178 swevent_hlist_put(); 10179 } 10180 10181 static struct pmu perf_cpu_clock; /* fwd declaration */ 10182 static struct pmu perf_task_clock; 10183 10184 static int perf_swevent_init(struct perf_event *event) 10185 { 10186 u64 event_id = event->attr.config; 10187 10188 if (event->attr.type != PERF_TYPE_SOFTWARE) 10189 return -ENOENT; 10190 10191 /* 10192 * no branch sampling for software events 10193 */ 10194 if (has_branch_stack(event)) 10195 return -EOPNOTSUPP; 10196 10197 switch (event_id) { 10198 case PERF_COUNT_SW_CPU_CLOCK: 10199 event->attr.type = perf_cpu_clock.type; 10200 return -ENOENT; 10201 case PERF_COUNT_SW_TASK_CLOCK: 10202 event->attr.type = perf_task_clock.type; 10203 return -ENOENT; 10204 10205 default: 10206 break; 10207 } 10208 10209 if (event_id >= PERF_COUNT_SW_MAX) 10210 return -ENOENT; 10211 10212 if (!event->parent) { 10213 int err; 10214 10215 err = swevent_hlist_get(); 10216 if (err) 10217 return err; 10218 10219 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10220 event->destroy = sw_perf_event_destroy; 10221 } 10222 10223 return 0; 10224 } 10225 10226 static struct pmu perf_swevent = { 10227 .task_ctx_nr = perf_sw_context, 10228 10229 .capabilities = PERF_PMU_CAP_NO_NMI, 10230 10231 .event_init = perf_swevent_init, 10232 .add = perf_swevent_add, 10233 .del = perf_swevent_del, 10234 .start = perf_swevent_start, 10235 .stop = perf_swevent_stop, 10236 .read = perf_swevent_read, 10237 }; 10238 10239 #ifdef CONFIG_EVENT_TRACING 10240 10241 static void tp_perf_event_destroy(struct perf_event *event) 10242 { 10243 perf_trace_destroy(event); 10244 } 10245 10246 static int perf_tp_event_init(struct perf_event *event) 10247 { 10248 int err; 10249 10250 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10251 return -ENOENT; 10252 10253 /* 10254 * no branch sampling for tracepoint events 10255 */ 10256 if (has_branch_stack(event)) 10257 return -EOPNOTSUPP; 10258 10259 err = perf_trace_init(event); 10260 if (err) 10261 return err; 10262 10263 event->destroy = tp_perf_event_destroy; 10264 10265 return 0; 10266 } 10267 10268 static struct pmu perf_tracepoint = { 10269 .task_ctx_nr = perf_sw_context, 10270 10271 .event_init = perf_tp_event_init, 10272 .add = perf_trace_add, 10273 .del = perf_trace_del, 10274 .start = perf_swevent_start, 10275 .stop = perf_swevent_stop, 10276 .read = perf_swevent_read, 10277 }; 10278 10279 static int perf_tp_filter_match(struct perf_event *event, 10280 struct perf_sample_data *data) 10281 { 10282 void *record = data->raw->frag.data; 10283 10284 /* only top level events have filters set */ 10285 if (event->parent) 10286 event = event->parent; 10287 10288 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10289 return 1; 10290 return 0; 10291 } 10292 10293 static int perf_tp_event_match(struct perf_event *event, 10294 struct perf_sample_data *data, 10295 struct pt_regs *regs) 10296 { 10297 if (event->hw.state & PERF_HES_STOPPED) 10298 return 0; 10299 /* 10300 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10301 */ 10302 if (event->attr.exclude_kernel && !user_mode(regs)) 10303 return 0; 10304 10305 if (!perf_tp_filter_match(event, data)) 10306 return 0; 10307 10308 return 1; 10309 } 10310 10311 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10312 struct trace_event_call *call, u64 count, 10313 struct pt_regs *regs, struct hlist_head *head, 10314 struct task_struct *task) 10315 { 10316 if (bpf_prog_array_valid(call)) { 10317 *(struct pt_regs **)raw_data = regs; 10318 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10319 perf_swevent_put_recursion_context(rctx); 10320 return; 10321 } 10322 } 10323 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10324 rctx, task); 10325 } 10326 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10327 10328 static void __perf_tp_event_target_task(u64 count, void *record, 10329 struct pt_regs *regs, 10330 struct perf_sample_data *data, 10331 struct perf_event *event) 10332 { 10333 struct trace_entry *entry = record; 10334 10335 if (event->attr.config != entry->type) 10336 return; 10337 /* Cannot deliver synchronous signal to other task. */ 10338 if (event->attr.sigtrap) 10339 return; 10340 if (perf_tp_event_match(event, data, regs)) 10341 perf_swevent_event(event, count, data, regs); 10342 } 10343 10344 static void perf_tp_event_target_task(u64 count, void *record, 10345 struct pt_regs *regs, 10346 struct perf_sample_data *data, 10347 struct perf_event_context *ctx) 10348 { 10349 unsigned int cpu = smp_processor_id(); 10350 struct pmu *pmu = &perf_tracepoint; 10351 struct perf_event *event, *sibling; 10352 10353 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10354 __perf_tp_event_target_task(count, record, regs, data, event); 10355 for_each_sibling_event(sibling, event) 10356 __perf_tp_event_target_task(count, record, regs, data, sibling); 10357 } 10358 10359 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10360 __perf_tp_event_target_task(count, record, regs, data, event); 10361 for_each_sibling_event(sibling, event) 10362 __perf_tp_event_target_task(count, record, regs, data, sibling); 10363 } 10364 } 10365 10366 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10367 struct pt_regs *regs, struct hlist_head *head, int rctx, 10368 struct task_struct *task) 10369 { 10370 struct perf_sample_data data; 10371 struct perf_event *event; 10372 10373 struct perf_raw_record raw = { 10374 .frag = { 10375 .size = entry_size, 10376 .data = record, 10377 }, 10378 }; 10379 10380 perf_sample_data_init(&data, 0, 0); 10381 perf_sample_save_raw_data(&data, &raw); 10382 10383 perf_trace_buf_update(record, event_type); 10384 10385 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10386 if (perf_tp_event_match(event, &data, regs)) { 10387 perf_swevent_event(event, count, &data, regs); 10388 10389 /* 10390 * Here use the same on-stack perf_sample_data, 10391 * some members in data are event-specific and 10392 * need to be re-computed for different sweveents. 10393 * Re-initialize data->sample_flags safely to avoid 10394 * the problem that next event skips preparing data 10395 * because data->sample_flags is set. 10396 */ 10397 perf_sample_data_init(&data, 0, 0); 10398 perf_sample_save_raw_data(&data, &raw); 10399 } 10400 } 10401 10402 /* 10403 * If we got specified a target task, also iterate its context and 10404 * deliver this event there too. 10405 */ 10406 if (task && task != current) { 10407 struct perf_event_context *ctx; 10408 10409 rcu_read_lock(); 10410 ctx = rcu_dereference(task->perf_event_ctxp); 10411 if (!ctx) 10412 goto unlock; 10413 10414 raw_spin_lock(&ctx->lock); 10415 perf_tp_event_target_task(count, record, regs, &data, ctx); 10416 raw_spin_unlock(&ctx->lock); 10417 unlock: 10418 rcu_read_unlock(); 10419 } 10420 10421 perf_swevent_put_recursion_context(rctx); 10422 } 10423 EXPORT_SYMBOL_GPL(perf_tp_event); 10424 10425 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10426 /* 10427 * Flags in config, used by dynamic PMU kprobe and uprobe 10428 * The flags should match following PMU_FORMAT_ATTR(). 10429 * 10430 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10431 * if not set, create kprobe/uprobe 10432 * 10433 * The following values specify a reference counter (or semaphore in the 10434 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10435 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10436 * 10437 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10438 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10439 */ 10440 enum perf_probe_config { 10441 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10442 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10443 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10444 }; 10445 10446 PMU_FORMAT_ATTR(retprobe, "config:0"); 10447 #endif 10448 10449 #ifdef CONFIG_KPROBE_EVENTS 10450 static struct attribute *kprobe_attrs[] = { 10451 &format_attr_retprobe.attr, 10452 NULL, 10453 }; 10454 10455 static struct attribute_group kprobe_format_group = { 10456 .name = "format", 10457 .attrs = kprobe_attrs, 10458 }; 10459 10460 static const struct attribute_group *kprobe_attr_groups[] = { 10461 &kprobe_format_group, 10462 NULL, 10463 }; 10464 10465 static int perf_kprobe_event_init(struct perf_event *event); 10466 static struct pmu perf_kprobe = { 10467 .task_ctx_nr = perf_sw_context, 10468 .event_init = perf_kprobe_event_init, 10469 .add = perf_trace_add, 10470 .del = perf_trace_del, 10471 .start = perf_swevent_start, 10472 .stop = perf_swevent_stop, 10473 .read = perf_swevent_read, 10474 .attr_groups = kprobe_attr_groups, 10475 }; 10476 10477 static int perf_kprobe_event_init(struct perf_event *event) 10478 { 10479 int err; 10480 bool is_retprobe; 10481 10482 if (event->attr.type != perf_kprobe.type) 10483 return -ENOENT; 10484 10485 if (!perfmon_capable()) 10486 return -EACCES; 10487 10488 /* 10489 * no branch sampling for probe events 10490 */ 10491 if (has_branch_stack(event)) 10492 return -EOPNOTSUPP; 10493 10494 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10495 err = perf_kprobe_init(event, is_retprobe); 10496 if (err) 10497 return err; 10498 10499 event->destroy = perf_kprobe_destroy; 10500 10501 return 0; 10502 } 10503 #endif /* CONFIG_KPROBE_EVENTS */ 10504 10505 #ifdef CONFIG_UPROBE_EVENTS 10506 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10507 10508 static struct attribute *uprobe_attrs[] = { 10509 &format_attr_retprobe.attr, 10510 &format_attr_ref_ctr_offset.attr, 10511 NULL, 10512 }; 10513 10514 static struct attribute_group uprobe_format_group = { 10515 .name = "format", 10516 .attrs = uprobe_attrs, 10517 }; 10518 10519 static const struct attribute_group *uprobe_attr_groups[] = { 10520 &uprobe_format_group, 10521 NULL, 10522 }; 10523 10524 static int perf_uprobe_event_init(struct perf_event *event); 10525 static struct pmu perf_uprobe = { 10526 .task_ctx_nr = perf_sw_context, 10527 .event_init = perf_uprobe_event_init, 10528 .add = perf_trace_add, 10529 .del = perf_trace_del, 10530 .start = perf_swevent_start, 10531 .stop = perf_swevent_stop, 10532 .read = perf_swevent_read, 10533 .attr_groups = uprobe_attr_groups, 10534 }; 10535 10536 static int perf_uprobe_event_init(struct perf_event *event) 10537 { 10538 int err; 10539 unsigned long ref_ctr_offset; 10540 bool is_retprobe; 10541 10542 if (event->attr.type != perf_uprobe.type) 10543 return -ENOENT; 10544 10545 if (!perfmon_capable()) 10546 return -EACCES; 10547 10548 /* 10549 * no branch sampling for probe events 10550 */ 10551 if (has_branch_stack(event)) 10552 return -EOPNOTSUPP; 10553 10554 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10555 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10556 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10557 if (err) 10558 return err; 10559 10560 event->destroy = perf_uprobe_destroy; 10561 10562 return 0; 10563 } 10564 #endif /* CONFIG_UPROBE_EVENTS */ 10565 10566 static inline void perf_tp_register(void) 10567 { 10568 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10569 #ifdef CONFIG_KPROBE_EVENTS 10570 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10571 #endif 10572 #ifdef CONFIG_UPROBE_EVENTS 10573 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10574 #endif 10575 } 10576 10577 static void perf_event_free_filter(struct perf_event *event) 10578 { 10579 ftrace_profile_free_filter(event); 10580 } 10581 10582 /* 10583 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10584 * with perf_event_open() 10585 */ 10586 static inline bool perf_event_is_tracing(struct perf_event *event) 10587 { 10588 if (event->pmu == &perf_tracepoint) 10589 return true; 10590 #ifdef CONFIG_KPROBE_EVENTS 10591 if (event->pmu == &perf_kprobe) 10592 return true; 10593 #endif 10594 #ifdef CONFIG_UPROBE_EVENTS 10595 if (event->pmu == &perf_uprobe) 10596 return true; 10597 #endif 10598 return false; 10599 } 10600 10601 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10602 u64 bpf_cookie) 10603 { 10604 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10605 10606 if (!perf_event_is_tracing(event)) 10607 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10608 10609 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10610 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10611 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10612 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10613 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10614 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10615 return -EINVAL; 10616 10617 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10618 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10619 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10620 return -EINVAL; 10621 10622 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) 10623 /* only uprobe programs are allowed to be sleepable */ 10624 return -EINVAL; 10625 10626 /* Kprobe override only works for kprobes, not uprobes. */ 10627 if (prog->kprobe_override && !is_kprobe) 10628 return -EINVAL; 10629 10630 if (is_tracepoint || is_syscall_tp) { 10631 int off = trace_event_get_offsets(event->tp_event); 10632 10633 if (prog->aux->max_ctx_offset > off) 10634 return -EACCES; 10635 } 10636 10637 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10638 } 10639 10640 void perf_event_free_bpf_prog(struct perf_event *event) 10641 { 10642 if (!perf_event_is_tracing(event)) { 10643 perf_event_free_bpf_handler(event); 10644 return; 10645 } 10646 perf_event_detach_bpf_prog(event); 10647 } 10648 10649 #else 10650 10651 static inline void perf_tp_register(void) 10652 { 10653 } 10654 10655 static void perf_event_free_filter(struct perf_event *event) 10656 { 10657 } 10658 10659 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10660 u64 bpf_cookie) 10661 { 10662 return -ENOENT; 10663 } 10664 10665 void perf_event_free_bpf_prog(struct perf_event *event) 10666 { 10667 } 10668 #endif /* CONFIG_EVENT_TRACING */ 10669 10670 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10671 void perf_bp_event(struct perf_event *bp, void *data) 10672 { 10673 struct perf_sample_data sample; 10674 struct pt_regs *regs = data; 10675 10676 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10677 10678 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10679 perf_swevent_event(bp, 1, &sample, regs); 10680 } 10681 #endif 10682 10683 /* 10684 * Allocate a new address filter 10685 */ 10686 static struct perf_addr_filter * 10687 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10688 { 10689 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10690 struct perf_addr_filter *filter; 10691 10692 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10693 if (!filter) 10694 return NULL; 10695 10696 INIT_LIST_HEAD(&filter->entry); 10697 list_add_tail(&filter->entry, filters); 10698 10699 return filter; 10700 } 10701 10702 static void free_filters_list(struct list_head *filters) 10703 { 10704 struct perf_addr_filter *filter, *iter; 10705 10706 list_for_each_entry_safe(filter, iter, filters, entry) { 10707 path_put(&filter->path); 10708 list_del(&filter->entry); 10709 kfree(filter); 10710 } 10711 } 10712 10713 /* 10714 * Free existing address filters and optionally install new ones 10715 */ 10716 static void perf_addr_filters_splice(struct perf_event *event, 10717 struct list_head *head) 10718 { 10719 unsigned long flags; 10720 LIST_HEAD(list); 10721 10722 if (!has_addr_filter(event)) 10723 return; 10724 10725 /* don't bother with children, they don't have their own filters */ 10726 if (event->parent) 10727 return; 10728 10729 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10730 10731 list_splice_init(&event->addr_filters.list, &list); 10732 if (head) 10733 list_splice(head, &event->addr_filters.list); 10734 10735 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10736 10737 free_filters_list(&list); 10738 } 10739 10740 /* 10741 * Scan through mm's vmas and see if one of them matches the 10742 * @filter; if so, adjust filter's address range. 10743 * Called with mm::mmap_lock down for reading. 10744 */ 10745 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10746 struct mm_struct *mm, 10747 struct perf_addr_filter_range *fr) 10748 { 10749 struct vm_area_struct *vma; 10750 VMA_ITERATOR(vmi, mm, 0); 10751 10752 for_each_vma(vmi, vma) { 10753 if (!vma->vm_file) 10754 continue; 10755 10756 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10757 return; 10758 } 10759 } 10760 10761 /* 10762 * Update event's address range filters based on the 10763 * task's existing mappings, if any. 10764 */ 10765 static void perf_event_addr_filters_apply(struct perf_event *event) 10766 { 10767 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10768 struct task_struct *task = READ_ONCE(event->ctx->task); 10769 struct perf_addr_filter *filter; 10770 struct mm_struct *mm = NULL; 10771 unsigned int count = 0; 10772 unsigned long flags; 10773 10774 /* 10775 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10776 * will stop on the parent's child_mutex that our caller is also holding 10777 */ 10778 if (task == TASK_TOMBSTONE) 10779 return; 10780 10781 if (ifh->nr_file_filters) { 10782 mm = get_task_mm(task); 10783 if (!mm) 10784 goto restart; 10785 10786 mmap_read_lock(mm); 10787 } 10788 10789 raw_spin_lock_irqsave(&ifh->lock, flags); 10790 list_for_each_entry(filter, &ifh->list, entry) { 10791 if (filter->path.dentry) { 10792 /* 10793 * Adjust base offset if the filter is associated to a 10794 * binary that needs to be mapped: 10795 */ 10796 event->addr_filter_ranges[count].start = 0; 10797 event->addr_filter_ranges[count].size = 0; 10798 10799 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10800 } else { 10801 event->addr_filter_ranges[count].start = filter->offset; 10802 event->addr_filter_ranges[count].size = filter->size; 10803 } 10804 10805 count++; 10806 } 10807 10808 event->addr_filters_gen++; 10809 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10810 10811 if (ifh->nr_file_filters) { 10812 mmap_read_unlock(mm); 10813 10814 mmput(mm); 10815 } 10816 10817 restart: 10818 perf_event_stop(event, 1); 10819 } 10820 10821 /* 10822 * Address range filtering: limiting the data to certain 10823 * instruction address ranges. Filters are ioctl()ed to us from 10824 * userspace as ascii strings. 10825 * 10826 * Filter string format: 10827 * 10828 * ACTION RANGE_SPEC 10829 * where ACTION is one of the 10830 * * "filter": limit the trace to this region 10831 * * "start": start tracing from this address 10832 * * "stop": stop tracing at this address/region; 10833 * RANGE_SPEC is 10834 * * for kernel addresses: <start address>[/<size>] 10835 * * for object files: <start address>[/<size>]@</path/to/object/file> 10836 * 10837 * if <size> is not specified or is zero, the range is treated as a single 10838 * address; not valid for ACTION=="filter". 10839 */ 10840 enum { 10841 IF_ACT_NONE = -1, 10842 IF_ACT_FILTER, 10843 IF_ACT_START, 10844 IF_ACT_STOP, 10845 IF_SRC_FILE, 10846 IF_SRC_KERNEL, 10847 IF_SRC_FILEADDR, 10848 IF_SRC_KERNELADDR, 10849 }; 10850 10851 enum { 10852 IF_STATE_ACTION = 0, 10853 IF_STATE_SOURCE, 10854 IF_STATE_END, 10855 }; 10856 10857 static const match_table_t if_tokens = { 10858 { IF_ACT_FILTER, "filter" }, 10859 { IF_ACT_START, "start" }, 10860 { IF_ACT_STOP, "stop" }, 10861 { IF_SRC_FILE, "%u/%u@%s" }, 10862 { IF_SRC_KERNEL, "%u/%u" }, 10863 { IF_SRC_FILEADDR, "%u@%s" }, 10864 { IF_SRC_KERNELADDR, "%u" }, 10865 { IF_ACT_NONE, NULL }, 10866 }; 10867 10868 /* 10869 * Address filter string parser 10870 */ 10871 static int 10872 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10873 struct list_head *filters) 10874 { 10875 struct perf_addr_filter *filter = NULL; 10876 char *start, *orig, *filename = NULL; 10877 substring_t args[MAX_OPT_ARGS]; 10878 int state = IF_STATE_ACTION, token; 10879 unsigned int kernel = 0; 10880 int ret = -EINVAL; 10881 10882 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10883 if (!fstr) 10884 return -ENOMEM; 10885 10886 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10887 static const enum perf_addr_filter_action_t actions[] = { 10888 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10889 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10890 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10891 }; 10892 ret = -EINVAL; 10893 10894 if (!*start) 10895 continue; 10896 10897 /* filter definition begins */ 10898 if (state == IF_STATE_ACTION) { 10899 filter = perf_addr_filter_new(event, filters); 10900 if (!filter) 10901 goto fail; 10902 } 10903 10904 token = match_token(start, if_tokens, args); 10905 switch (token) { 10906 case IF_ACT_FILTER: 10907 case IF_ACT_START: 10908 case IF_ACT_STOP: 10909 if (state != IF_STATE_ACTION) 10910 goto fail; 10911 10912 filter->action = actions[token]; 10913 state = IF_STATE_SOURCE; 10914 break; 10915 10916 case IF_SRC_KERNELADDR: 10917 case IF_SRC_KERNEL: 10918 kernel = 1; 10919 fallthrough; 10920 10921 case IF_SRC_FILEADDR: 10922 case IF_SRC_FILE: 10923 if (state != IF_STATE_SOURCE) 10924 goto fail; 10925 10926 *args[0].to = 0; 10927 ret = kstrtoul(args[0].from, 0, &filter->offset); 10928 if (ret) 10929 goto fail; 10930 10931 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10932 *args[1].to = 0; 10933 ret = kstrtoul(args[1].from, 0, &filter->size); 10934 if (ret) 10935 goto fail; 10936 } 10937 10938 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10939 int fpos = token == IF_SRC_FILE ? 2 : 1; 10940 10941 kfree(filename); 10942 filename = match_strdup(&args[fpos]); 10943 if (!filename) { 10944 ret = -ENOMEM; 10945 goto fail; 10946 } 10947 } 10948 10949 state = IF_STATE_END; 10950 break; 10951 10952 default: 10953 goto fail; 10954 } 10955 10956 /* 10957 * Filter definition is fully parsed, validate and install it. 10958 * Make sure that it doesn't contradict itself or the event's 10959 * attribute. 10960 */ 10961 if (state == IF_STATE_END) { 10962 ret = -EINVAL; 10963 10964 /* 10965 * ACTION "filter" must have a non-zero length region 10966 * specified. 10967 */ 10968 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10969 !filter->size) 10970 goto fail; 10971 10972 if (!kernel) { 10973 if (!filename) 10974 goto fail; 10975 10976 /* 10977 * For now, we only support file-based filters 10978 * in per-task events; doing so for CPU-wide 10979 * events requires additional context switching 10980 * trickery, since same object code will be 10981 * mapped at different virtual addresses in 10982 * different processes. 10983 */ 10984 ret = -EOPNOTSUPP; 10985 if (!event->ctx->task) 10986 goto fail; 10987 10988 /* look up the path and grab its inode */ 10989 ret = kern_path(filename, LOOKUP_FOLLOW, 10990 &filter->path); 10991 if (ret) 10992 goto fail; 10993 10994 ret = -EINVAL; 10995 if (!filter->path.dentry || 10996 !S_ISREG(d_inode(filter->path.dentry) 10997 ->i_mode)) 10998 goto fail; 10999 11000 event->addr_filters.nr_file_filters++; 11001 } 11002 11003 /* ready to consume more filters */ 11004 kfree(filename); 11005 filename = NULL; 11006 state = IF_STATE_ACTION; 11007 filter = NULL; 11008 kernel = 0; 11009 } 11010 } 11011 11012 if (state != IF_STATE_ACTION) 11013 goto fail; 11014 11015 kfree(filename); 11016 kfree(orig); 11017 11018 return 0; 11019 11020 fail: 11021 kfree(filename); 11022 free_filters_list(filters); 11023 kfree(orig); 11024 11025 return ret; 11026 } 11027 11028 static int 11029 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 11030 { 11031 LIST_HEAD(filters); 11032 int ret; 11033 11034 /* 11035 * Since this is called in perf_ioctl() path, we're already holding 11036 * ctx::mutex. 11037 */ 11038 lockdep_assert_held(&event->ctx->mutex); 11039 11040 if (WARN_ON_ONCE(event->parent)) 11041 return -EINVAL; 11042 11043 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11044 if (ret) 11045 goto fail_clear_files; 11046 11047 ret = event->pmu->addr_filters_validate(&filters); 11048 if (ret) 11049 goto fail_free_filters; 11050 11051 /* remove existing filters, if any */ 11052 perf_addr_filters_splice(event, &filters); 11053 11054 /* install new filters */ 11055 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11056 11057 return ret; 11058 11059 fail_free_filters: 11060 free_filters_list(&filters); 11061 11062 fail_clear_files: 11063 event->addr_filters.nr_file_filters = 0; 11064 11065 return ret; 11066 } 11067 11068 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11069 { 11070 int ret = -EINVAL; 11071 char *filter_str; 11072 11073 filter_str = strndup_user(arg, PAGE_SIZE); 11074 if (IS_ERR(filter_str)) 11075 return PTR_ERR(filter_str); 11076 11077 #ifdef CONFIG_EVENT_TRACING 11078 if (perf_event_is_tracing(event)) { 11079 struct perf_event_context *ctx = event->ctx; 11080 11081 /* 11082 * Beware, here be dragons!! 11083 * 11084 * the tracepoint muck will deadlock against ctx->mutex, but 11085 * the tracepoint stuff does not actually need it. So 11086 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11087 * already have a reference on ctx. 11088 * 11089 * This can result in event getting moved to a different ctx, 11090 * but that does not affect the tracepoint state. 11091 */ 11092 mutex_unlock(&ctx->mutex); 11093 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11094 mutex_lock(&ctx->mutex); 11095 } else 11096 #endif 11097 if (has_addr_filter(event)) 11098 ret = perf_event_set_addr_filter(event, filter_str); 11099 11100 kfree(filter_str); 11101 return ret; 11102 } 11103 11104 /* 11105 * hrtimer based swevent callback 11106 */ 11107 11108 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11109 { 11110 enum hrtimer_restart ret = HRTIMER_RESTART; 11111 struct perf_sample_data data; 11112 struct pt_regs *regs; 11113 struct perf_event *event; 11114 u64 period; 11115 11116 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11117 11118 if (event->state != PERF_EVENT_STATE_ACTIVE) 11119 return HRTIMER_NORESTART; 11120 11121 event->pmu->read(event); 11122 11123 perf_sample_data_init(&data, 0, event->hw.last_period); 11124 regs = get_irq_regs(); 11125 11126 if (regs && !perf_exclude_event(event, regs)) { 11127 if (!(event->attr.exclude_idle && is_idle_task(current))) 11128 if (__perf_event_overflow(event, 1, &data, regs)) 11129 ret = HRTIMER_NORESTART; 11130 } 11131 11132 period = max_t(u64, 10000, event->hw.sample_period); 11133 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11134 11135 return ret; 11136 } 11137 11138 static void perf_swevent_start_hrtimer(struct perf_event *event) 11139 { 11140 struct hw_perf_event *hwc = &event->hw; 11141 s64 period; 11142 11143 if (!is_sampling_event(event)) 11144 return; 11145 11146 period = local64_read(&hwc->period_left); 11147 if (period) { 11148 if (period < 0) 11149 period = 10000; 11150 11151 local64_set(&hwc->period_left, 0); 11152 } else { 11153 period = max_t(u64, 10000, hwc->sample_period); 11154 } 11155 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11156 HRTIMER_MODE_REL_PINNED_HARD); 11157 } 11158 11159 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11160 { 11161 struct hw_perf_event *hwc = &event->hw; 11162 11163 if (is_sampling_event(event)) { 11164 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11165 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11166 11167 hrtimer_cancel(&hwc->hrtimer); 11168 } 11169 } 11170 11171 static void perf_swevent_init_hrtimer(struct perf_event *event) 11172 { 11173 struct hw_perf_event *hwc = &event->hw; 11174 11175 if (!is_sampling_event(event)) 11176 return; 11177 11178 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11179 hwc->hrtimer.function = perf_swevent_hrtimer; 11180 11181 /* 11182 * Since hrtimers have a fixed rate, we can do a static freq->period 11183 * mapping and avoid the whole period adjust feedback stuff. 11184 */ 11185 if (event->attr.freq) { 11186 long freq = event->attr.sample_freq; 11187 11188 event->attr.sample_period = NSEC_PER_SEC / freq; 11189 hwc->sample_period = event->attr.sample_period; 11190 local64_set(&hwc->period_left, hwc->sample_period); 11191 hwc->last_period = hwc->sample_period; 11192 event->attr.freq = 0; 11193 } 11194 } 11195 11196 /* 11197 * Software event: cpu wall time clock 11198 */ 11199 11200 static void cpu_clock_event_update(struct perf_event *event) 11201 { 11202 s64 prev; 11203 u64 now; 11204 11205 now = local_clock(); 11206 prev = local64_xchg(&event->hw.prev_count, now); 11207 local64_add(now - prev, &event->count); 11208 } 11209 11210 static void cpu_clock_event_start(struct perf_event *event, int flags) 11211 { 11212 local64_set(&event->hw.prev_count, local_clock()); 11213 perf_swevent_start_hrtimer(event); 11214 } 11215 11216 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11217 { 11218 perf_swevent_cancel_hrtimer(event); 11219 cpu_clock_event_update(event); 11220 } 11221 11222 static int cpu_clock_event_add(struct perf_event *event, int flags) 11223 { 11224 if (flags & PERF_EF_START) 11225 cpu_clock_event_start(event, flags); 11226 perf_event_update_userpage(event); 11227 11228 return 0; 11229 } 11230 11231 static void cpu_clock_event_del(struct perf_event *event, int flags) 11232 { 11233 cpu_clock_event_stop(event, flags); 11234 } 11235 11236 static void cpu_clock_event_read(struct perf_event *event) 11237 { 11238 cpu_clock_event_update(event); 11239 } 11240 11241 static int cpu_clock_event_init(struct perf_event *event) 11242 { 11243 if (event->attr.type != perf_cpu_clock.type) 11244 return -ENOENT; 11245 11246 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11247 return -ENOENT; 11248 11249 /* 11250 * no branch sampling for software events 11251 */ 11252 if (has_branch_stack(event)) 11253 return -EOPNOTSUPP; 11254 11255 perf_swevent_init_hrtimer(event); 11256 11257 return 0; 11258 } 11259 11260 static struct pmu perf_cpu_clock = { 11261 .task_ctx_nr = perf_sw_context, 11262 11263 .capabilities = PERF_PMU_CAP_NO_NMI, 11264 .dev = PMU_NULL_DEV, 11265 11266 .event_init = cpu_clock_event_init, 11267 .add = cpu_clock_event_add, 11268 .del = cpu_clock_event_del, 11269 .start = cpu_clock_event_start, 11270 .stop = cpu_clock_event_stop, 11271 .read = cpu_clock_event_read, 11272 }; 11273 11274 /* 11275 * Software event: task time clock 11276 */ 11277 11278 static void task_clock_event_update(struct perf_event *event, u64 now) 11279 { 11280 u64 prev; 11281 s64 delta; 11282 11283 prev = local64_xchg(&event->hw.prev_count, now); 11284 delta = now - prev; 11285 local64_add(delta, &event->count); 11286 } 11287 11288 static void task_clock_event_start(struct perf_event *event, int flags) 11289 { 11290 local64_set(&event->hw.prev_count, event->ctx->time); 11291 perf_swevent_start_hrtimer(event); 11292 } 11293 11294 static void task_clock_event_stop(struct perf_event *event, int flags) 11295 { 11296 perf_swevent_cancel_hrtimer(event); 11297 task_clock_event_update(event, event->ctx->time); 11298 } 11299 11300 static int task_clock_event_add(struct perf_event *event, int flags) 11301 { 11302 if (flags & PERF_EF_START) 11303 task_clock_event_start(event, flags); 11304 perf_event_update_userpage(event); 11305 11306 return 0; 11307 } 11308 11309 static void task_clock_event_del(struct perf_event *event, int flags) 11310 { 11311 task_clock_event_stop(event, PERF_EF_UPDATE); 11312 } 11313 11314 static void task_clock_event_read(struct perf_event *event) 11315 { 11316 u64 now = perf_clock(); 11317 u64 delta = now - event->ctx->timestamp; 11318 u64 time = event->ctx->time + delta; 11319 11320 task_clock_event_update(event, time); 11321 } 11322 11323 static int task_clock_event_init(struct perf_event *event) 11324 { 11325 if (event->attr.type != perf_task_clock.type) 11326 return -ENOENT; 11327 11328 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11329 return -ENOENT; 11330 11331 /* 11332 * no branch sampling for software events 11333 */ 11334 if (has_branch_stack(event)) 11335 return -EOPNOTSUPP; 11336 11337 perf_swevent_init_hrtimer(event); 11338 11339 return 0; 11340 } 11341 11342 static struct pmu perf_task_clock = { 11343 .task_ctx_nr = perf_sw_context, 11344 11345 .capabilities = PERF_PMU_CAP_NO_NMI, 11346 .dev = PMU_NULL_DEV, 11347 11348 .event_init = task_clock_event_init, 11349 .add = task_clock_event_add, 11350 .del = task_clock_event_del, 11351 .start = task_clock_event_start, 11352 .stop = task_clock_event_stop, 11353 .read = task_clock_event_read, 11354 }; 11355 11356 static void perf_pmu_nop_void(struct pmu *pmu) 11357 { 11358 } 11359 11360 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11361 { 11362 } 11363 11364 static int perf_pmu_nop_int(struct pmu *pmu) 11365 { 11366 return 0; 11367 } 11368 11369 static int perf_event_nop_int(struct perf_event *event, u64 value) 11370 { 11371 return 0; 11372 } 11373 11374 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11375 11376 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11377 { 11378 __this_cpu_write(nop_txn_flags, flags); 11379 11380 if (flags & ~PERF_PMU_TXN_ADD) 11381 return; 11382 11383 perf_pmu_disable(pmu); 11384 } 11385 11386 static int perf_pmu_commit_txn(struct pmu *pmu) 11387 { 11388 unsigned int flags = __this_cpu_read(nop_txn_flags); 11389 11390 __this_cpu_write(nop_txn_flags, 0); 11391 11392 if (flags & ~PERF_PMU_TXN_ADD) 11393 return 0; 11394 11395 perf_pmu_enable(pmu); 11396 return 0; 11397 } 11398 11399 static void perf_pmu_cancel_txn(struct pmu *pmu) 11400 { 11401 unsigned int flags = __this_cpu_read(nop_txn_flags); 11402 11403 __this_cpu_write(nop_txn_flags, 0); 11404 11405 if (flags & ~PERF_PMU_TXN_ADD) 11406 return; 11407 11408 perf_pmu_enable(pmu); 11409 } 11410 11411 static int perf_event_idx_default(struct perf_event *event) 11412 { 11413 return 0; 11414 } 11415 11416 static void free_pmu_context(struct pmu *pmu) 11417 { 11418 free_percpu(pmu->cpu_pmu_context); 11419 } 11420 11421 /* 11422 * Let userspace know that this PMU supports address range filtering: 11423 */ 11424 static ssize_t nr_addr_filters_show(struct device *dev, 11425 struct device_attribute *attr, 11426 char *page) 11427 { 11428 struct pmu *pmu = dev_get_drvdata(dev); 11429 11430 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11431 } 11432 DEVICE_ATTR_RO(nr_addr_filters); 11433 11434 static struct idr pmu_idr; 11435 11436 static ssize_t 11437 type_show(struct device *dev, struct device_attribute *attr, char *page) 11438 { 11439 struct pmu *pmu = dev_get_drvdata(dev); 11440 11441 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11442 } 11443 static DEVICE_ATTR_RO(type); 11444 11445 static ssize_t 11446 perf_event_mux_interval_ms_show(struct device *dev, 11447 struct device_attribute *attr, 11448 char *page) 11449 { 11450 struct pmu *pmu = dev_get_drvdata(dev); 11451 11452 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11453 } 11454 11455 static DEFINE_MUTEX(mux_interval_mutex); 11456 11457 static ssize_t 11458 perf_event_mux_interval_ms_store(struct device *dev, 11459 struct device_attribute *attr, 11460 const char *buf, size_t count) 11461 { 11462 struct pmu *pmu = dev_get_drvdata(dev); 11463 int timer, cpu, ret; 11464 11465 ret = kstrtoint(buf, 0, &timer); 11466 if (ret) 11467 return ret; 11468 11469 if (timer < 1) 11470 return -EINVAL; 11471 11472 /* same value, noting to do */ 11473 if (timer == pmu->hrtimer_interval_ms) 11474 return count; 11475 11476 mutex_lock(&mux_interval_mutex); 11477 pmu->hrtimer_interval_ms = timer; 11478 11479 /* update all cpuctx for this PMU */ 11480 cpus_read_lock(); 11481 for_each_online_cpu(cpu) { 11482 struct perf_cpu_pmu_context *cpc; 11483 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11484 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11485 11486 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11487 } 11488 cpus_read_unlock(); 11489 mutex_unlock(&mux_interval_mutex); 11490 11491 return count; 11492 } 11493 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11494 11495 static struct attribute *pmu_dev_attrs[] = { 11496 &dev_attr_type.attr, 11497 &dev_attr_perf_event_mux_interval_ms.attr, 11498 &dev_attr_nr_addr_filters.attr, 11499 NULL, 11500 }; 11501 11502 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11503 { 11504 struct device *dev = kobj_to_dev(kobj); 11505 struct pmu *pmu = dev_get_drvdata(dev); 11506 11507 if (n == 2 && !pmu->nr_addr_filters) 11508 return 0; 11509 11510 return a->mode; 11511 } 11512 11513 static struct attribute_group pmu_dev_attr_group = { 11514 .is_visible = pmu_dev_is_visible, 11515 .attrs = pmu_dev_attrs, 11516 }; 11517 11518 static const struct attribute_group *pmu_dev_groups[] = { 11519 &pmu_dev_attr_group, 11520 NULL, 11521 }; 11522 11523 static int pmu_bus_running; 11524 static struct bus_type pmu_bus = { 11525 .name = "event_source", 11526 .dev_groups = pmu_dev_groups, 11527 }; 11528 11529 static void pmu_dev_release(struct device *dev) 11530 { 11531 kfree(dev); 11532 } 11533 11534 static int pmu_dev_alloc(struct pmu *pmu) 11535 { 11536 int ret = -ENOMEM; 11537 11538 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11539 if (!pmu->dev) 11540 goto out; 11541 11542 pmu->dev->groups = pmu->attr_groups; 11543 device_initialize(pmu->dev); 11544 11545 dev_set_drvdata(pmu->dev, pmu); 11546 pmu->dev->bus = &pmu_bus; 11547 pmu->dev->parent = pmu->parent; 11548 pmu->dev->release = pmu_dev_release; 11549 11550 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11551 if (ret) 11552 goto free_dev; 11553 11554 ret = device_add(pmu->dev); 11555 if (ret) 11556 goto free_dev; 11557 11558 if (pmu->attr_update) { 11559 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11560 if (ret) 11561 goto del_dev; 11562 } 11563 11564 out: 11565 return ret; 11566 11567 del_dev: 11568 device_del(pmu->dev); 11569 11570 free_dev: 11571 put_device(pmu->dev); 11572 goto out; 11573 } 11574 11575 static struct lock_class_key cpuctx_mutex; 11576 static struct lock_class_key cpuctx_lock; 11577 11578 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11579 { 11580 int cpu, ret, max = PERF_TYPE_MAX; 11581 11582 mutex_lock(&pmus_lock); 11583 ret = -ENOMEM; 11584 pmu->pmu_disable_count = alloc_percpu(int); 11585 if (!pmu->pmu_disable_count) 11586 goto unlock; 11587 11588 pmu->type = -1; 11589 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11590 ret = -EINVAL; 11591 goto free_pdc; 11592 } 11593 11594 pmu->name = name; 11595 11596 if (type >= 0) 11597 max = type; 11598 11599 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11600 if (ret < 0) 11601 goto free_pdc; 11602 11603 WARN_ON(type >= 0 && ret != type); 11604 11605 type = ret; 11606 pmu->type = type; 11607 11608 if (pmu_bus_running && !pmu->dev) { 11609 ret = pmu_dev_alloc(pmu); 11610 if (ret) 11611 goto free_idr; 11612 } 11613 11614 ret = -ENOMEM; 11615 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11616 if (!pmu->cpu_pmu_context) 11617 goto free_dev; 11618 11619 for_each_possible_cpu(cpu) { 11620 struct perf_cpu_pmu_context *cpc; 11621 11622 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11623 __perf_init_event_pmu_context(&cpc->epc, pmu); 11624 __perf_mux_hrtimer_init(cpc, cpu); 11625 } 11626 11627 if (!pmu->start_txn) { 11628 if (pmu->pmu_enable) { 11629 /* 11630 * If we have pmu_enable/pmu_disable calls, install 11631 * transaction stubs that use that to try and batch 11632 * hardware accesses. 11633 */ 11634 pmu->start_txn = perf_pmu_start_txn; 11635 pmu->commit_txn = perf_pmu_commit_txn; 11636 pmu->cancel_txn = perf_pmu_cancel_txn; 11637 } else { 11638 pmu->start_txn = perf_pmu_nop_txn; 11639 pmu->commit_txn = perf_pmu_nop_int; 11640 pmu->cancel_txn = perf_pmu_nop_void; 11641 } 11642 } 11643 11644 if (!pmu->pmu_enable) { 11645 pmu->pmu_enable = perf_pmu_nop_void; 11646 pmu->pmu_disable = perf_pmu_nop_void; 11647 } 11648 11649 if (!pmu->check_period) 11650 pmu->check_period = perf_event_nop_int; 11651 11652 if (!pmu->event_idx) 11653 pmu->event_idx = perf_event_idx_default; 11654 11655 list_add_rcu(&pmu->entry, &pmus); 11656 atomic_set(&pmu->exclusive_cnt, 0); 11657 ret = 0; 11658 unlock: 11659 mutex_unlock(&pmus_lock); 11660 11661 return ret; 11662 11663 free_dev: 11664 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11665 device_del(pmu->dev); 11666 put_device(pmu->dev); 11667 } 11668 11669 free_idr: 11670 idr_remove(&pmu_idr, pmu->type); 11671 11672 free_pdc: 11673 free_percpu(pmu->pmu_disable_count); 11674 goto unlock; 11675 } 11676 EXPORT_SYMBOL_GPL(perf_pmu_register); 11677 11678 void perf_pmu_unregister(struct pmu *pmu) 11679 { 11680 mutex_lock(&pmus_lock); 11681 list_del_rcu(&pmu->entry); 11682 11683 /* 11684 * We dereference the pmu list under both SRCU and regular RCU, so 11685 * synchronize against both of those. 11686 */ 11687 synchronize_srcu(&pmus_srcu); 11688 synchronize_rcu(); 11689 11690 free_percpu(pmu->pmu_disable_count); 11691 idr_remove(&pmu_idr, pmu->type); 11692 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11693 if (pmu->nr_addr_filters) 11694 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11695 device_del(pmu->dev); 11696 put_device(pmu->dev); 11697 } 11698 free_pmu_context(pmu); 11699 mutex_unlock(&pmus_lock); 11700 } 11701 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11702 11703 static inline bool has_extended_regs(struct perf_event *event) 11704 { 11705 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11706 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11707 } 11708 11709 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11710 { 11711 struct perf_event_context *ctx = NULL; 11712 int ret; 11713 11714 if (!try_module_get(pmu->module)) 11715 return -ENODEV; 11716 11717 /* 11718 * A number of pmu->event_init() methods iterate the sibling_list to, 11719 * for example, validate if the group fits on the PMU. Therefore, 11720 * if this is a sibling event, acquire the ctx->mutex to protect 11721 * the sibling_list. 11722 */ 11723 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11724 /* 11725 * This ctx->mutex can nest when we're called through 11726 * inheritance. See the perf_event_ctx_lock_nested() comment. 11727 */ 11728 ctx = perf_event_ctx_lock_nested(event->group_leader, 11729 SINGLE_DEPTH_NESTING); 11730 BUG_ON(!ctx); 11731 } 11732 11733 event->pmu = pmu; 11734 ret = pmu->event_init(event); 11735 11736 if (ctx) 11737 perf_event_ctx_unlock(event->group_leader, ctx); 11738 11739 if (!ret) { 11740 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11741 has_extended_regs(event)) 11742 ret = -EOPNOTSUPP; 11743 11744 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11745 event_has_any_exclude_flag(event)) 11746 ret = -EINVAL; 11747 11748 if (ret && event->destroy) 11749 event->destroy(event); 11750 } 11751 11752 if (ret) 11753 module_put(pmu->module); 11754 11755 return ret; 11756 } 11757 11758 static struct pmu *perf_init_event(struct perf_event *event) 11759 { 11760 bool extended_type = false; 11761 int idx, type, ret; 11762 struct pmu *pmu; 11763 11764 idx = srcu_read_lock(&pmus_srcu); 11765 11766 /* 11767 * Save original type before calling pmu->event_init() since certain 11768 * pmus overwrites event->attr.type to forward event to another pmu. 11769 */ 11770 event->orig_type = event->attr.type; 11771 11772 /* Try parent's PMU first: */ 11773 if (event->parent && event->parent->pmu) { 11774 pmu = event->parent->pmu; 11775 ret = perf_try_init_event(pmu, event); 11776 if (!ret) 11777 goto unlock; 11778 } 11779 11780 /* 11781 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11782 * are often aliases for PERF_TYPE_RAW. 11783 */ 11784 type = event->attr.type; 11785 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11786 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11787 if (!type) { 11788 type = PERF_TYPE_RAW; 11789 } else { 11790 extended_type = true; 11791 event->attr.config &= PERF_HW_EVENT_MASK; 11792 } 11793 } 11794 11795 again: 11796 rcu_read_lock(); 11797 pmu = idr_find(&pmu_idr, type); 11798 rcu_read_unlock(); 11799 if (pmu) { 11800 if (event->attr.type != type && type != PERF_TYPE_RAW && 11801 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11802 goto fail; 11803 11804 ret = perf_try_init_event(pmu, event); 11805 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11806 type = event->attr.type; 11807 goto again; 11808 } 11809 11810 if (ret) 11811 pmu = ERR_PTR(ret); 11812 11813 goto unlock; 11814 } 11815 11816 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11817 ret = perf_try_init_event(pmu, event); 11818 if (!ret) 11819 goto unlock; 11820 11821 if (ret != -ENOENT) { 11822 pmu = ERR_PTR(ret); 11823 goto unlock; 11824 } 11825 } 11826 fail: 11827 pmu = ERR_PTR(-ENOENT); 11828 unlock: 11829 srcu_read_unlock(&pmus_srcu, idx); 11830 11831 return pmu; 11832 } 11833 11834 static void attach_sb_event(struct perf_event *event) 11835 { 11836 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11837 11838 raw_spin_lock(&pel->lock); 11839 list_add_rcu(&event->sb_list, &pel->list); 11840 raw_spin_unlock(&pel->lock); 11841 } 11842 11843 /* 11844 * We keep a list of all !task (and therefore per-cpu) events 11845 * that need to receive side-band records. 11846 * 11847 * This avoids having to scan all the various PMU per-cpu contexts 11848 * looking for them. 11849 */ 11850 static void account_pmu_sb_event(struct perf_event *event) 11851 { 11852 if (is_sb_event(event)) 11853 attach_sb_event(event); 11854 } 11855 11856 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11857 static void account_freq_event_nohz(void) 11858 { 11859 #ifdef CONFIG_NO_HZ_FULL 11860 /* Lock so we don't race with concurrent unaccount */ 11861 spin_lock(&nr_freq_lock); 11862 if (atomic_inc_return(&nr_freq_events) == 1) 11863 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11864 spin_unlock(&nr_freq_lock); 11865 #endif 11866 } 11867 11868 static void account_freq_event(void) 11869 { 11870 if (tick_nohz_full_enabled()) 11871 account_freq_event_nohz(); 11872 else 11873 atomic_inc(&nr_freq_events); 11874 } 11875 11876 11877 static void account_event(struct perf_event *event) 11878 { 11879 bool inc = false; 11880 11881 if (event->parent) 11882 return; 11883 11884 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11885 inc = true; 11886 if (event->attr.mmap || event->attr.mmap_data) 11887 atomic_inc(&nr_mmap_events); 11888 if (event->attr.build_id) 11889 atomic_inc(&nr_build_id_events); 11890 if (event->attr.comm) 11891 atomic_inc(&nr_comm_events); 11892 if (event->attr.namespaces) 11893 atomic_inc(&nr_namespaces_events); 11894 if (event->attr.cgroup) 11895 atomic_inc(&nr_cgroup_events); 11896 if (event->attr.task) 11897 atomic_inc(&nr_task_events); 11898 if (event->attr.freq) 11899 account_freq_event(); 11900 if (event->attr.context_switch) { 11901 atomic_inc(&nr_switch_events); 11902 inc = true; 11903 } 11904 if (has_branch_stack(event)) 11905 inc = true; 11906 if (is_cgroup_event(event)) 11907 inc = true; 11908 if (event->attr.ksymbol) 11909 atomic_inc(&nr_ksymbol_events); 11910 if (event->attr.bpf_event) 11911 atomic_inc(&nr_bpf_events); 11912 if (event->attr.text_poke) 11913 atomic_inc(&nr_text_poke_events); 11914 11915 if (inc) { 11916 /* 11917 * We need the mutex here because static_branch_enable() 11918 * must complete *before* the perf_sched_count increment 11919 * becomes visible. 11920 */ 11921 if (atomic_inc_not_zero(&perf_sched_count)) 11922 goto enabled; 11923 11924 mutex_lock(&perf_sched_mutex); 11925 if (!atomic_read(&perf_sched_count)) { 11926 static_branch_enable(&perf_sched_events); 11927 /* 11928 * Guarantee that all CPUs observe they key change and 11929 * call the perf scheduling hooks before proceeding to 11930 * install events that need them. 11931 */ 11932 synchronize_rcu(); 11933 } 11934 /* 11935 * Now that we have waited for the sync_sched(), allow further 11936 * increments to by-pass the mutex. 11937 */ 11938 atomic_inc(&perf_sched_count); 11939 mutex_unlock(&perf_sched_mutex); 11940 } 11941 enabled: 11942 11943 account_pmu_sb_event(event); 11944 } 11945 11946 /* 11947 * Allocate and initialize an event structure 11948 */ 11949 static struct perf_event * 11950 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11951 struct task_struct *task, 11952 struct perf_event *group_leader, 11953 struct perf_event *parent_event, 11954 perf_overflow_handler_t overflow_handler, 11955 void *context, int cgroup_fd) 11956 { 11957 struct pmu *pmu; 11958 struct perf_event *event; 11959 struct hw_perf_event *hwc; 11960 long err = -EINVAL; 11961 int node; 11962 11963 if ((unsigned)cpu >= nr_cpu_ids) { 11964 if (!task || cpu != -1) 11965 return ERR_PTR(-EINVAL); 11966 } 11967 if (attr->sigtrap && !task) { 11968 /* Requires a task: avoid signalling random tasks. */ 11969 return ERR_PTR(-EINVAL); 11970 } 11971 11972 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11973 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11974 node); 11975 if (!event) 11976 return ERR_PTR(-ENOMEM); 11977 11978 /* 11979 * Single events are their own group leaders, with an 11980 * empty sibling list: 11981 */ 11982 if (!group_leader) 11983 group_leader = event; 11984 11985 mutex_init(&event->child_mutex); 11986 INIT_LIST_HEAD(&event->child_list); 11987 11988 INIT_LIST_HEAD(&event->event_entry); 11989 INIT_LIST_HEAD(&event->sibling_list); 11990 INIT_LIST_HEAD(&event->active_list); 11991 init_event_group(event); 11992 INIT_LIST_HEAD(&event->rb_entry); 11993 INIT_LIST_HEAD(&event->active_entry); 11994 INIT_LIST_HEAD(&event->addr_filters.list); 11995 INIT_HLIST_NODE(&event->hlist_entry); 11996 11997 11998 init_waitqueue_head(&event->waitq); 11999 init_irq_work(&event->pending_irq, perf_pending_irq); 12000 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable); 12001 init_task_work(&event->pending_task, perf_pending_task); 12002 rcuwait_init(&event->pending_work_wait); 12003 12004 mutex_init(&event->mmap_mutex); 12005 raw_spin_lock_init(&event->addr_filters.lock); 12006 12007 atomic_long_set(&event->refcount, 1); 12008 event->cpu = cpu; 12009 event->attr = *attr; 12010 event->group_leader = group_leader; 12011 event->pmu = NULL; 12012 event->oncpu = -1; 12013 12014 event->parent = parent_event; 12015 12016 event->ns = get_pid_ns(task_active_pid_ns(current)); 12017 event->id = atomic64_inc_return(&perf_event_id); 12018 12019 event->state = PERF_EVENT_STATE_INACTIVE; 12020 12021 if (parent_event) 12022 event->event_caps = parent_event->event_caps; 12023 12024 if (task) { 12025 event->attach_state = PERF_ATTACH_TASK; 12026 /* 12027 * XXX pmu::event_init needs to know what task to account to 12028 * and we cannot use the ctx information because we need the 12029 * pmu before we get a ctx. 12030 */ 12031 event->hw.target = get_task_struct(task); 12032 } 12033 12034 event->clock = &local_clock; 12035 if (parent_event) 12036 event->clock = parent_event->clock; 12037 12038 if (!overflow_handler && parent_event) { 12039 overflow_handler = parent_event->overflow_handler; 12040 context = parent_event->overflow_handler_context; 12041 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 12042 if (parent_event->prog) { 12043 struct bpf_prog *prog = parent_event->prog; 12044 12045 bpf_prog_inc(prog); 12046 event->prog = prog; 12047 } 12048 #endif 12049 } 12050 12051 if (overflow_handler) { 12052 event->overflow_handler = overflow_handler; 12053 event->overflow_handler_context = context; 12054 } else if (is_write_backward(event)){ 12055 event->overflow_handler = perf_event_output_backward; 12056 event->overflow_handler_context = NULL; 12057 } else { 12058 event->overflow_handler = perf_event_output_forward; 12059 event->overflow_handler_context = NULL; 12060 } 12061 12062 perf_event__state_init(event); 12063 12064 pmu = NULL; 12065 12066 hwc = &event->hw; 12067 hwc->sample_period = attr->sample_period; 12068 if (attr->freq && attr->sample_freq) 12069 hwc->sample_period = 1; 12070 hwc->last_period = hwc->sample_period; 12071 12072 local64_set(&hwc->period_left, hwc->sample_period); 12073 12074 /* 12075 * We currently do not support PERF_SAMPLE_READ on inherited events. 12076 * See perf_output_read(). 12077 */ 12078 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 12079 goto err_ns; 12080 12081 if (!has_branch_stack(event)) 12082 event->attr.branch_sample_type = 0; 12083 12084 pmu = perf_init_event(event); 12085 if (IS_ERR(pmu)) { 12086 err = PTR_ERR(pmu); 12087 goto err_ns; 12088 } 12089 12090 /* 12091 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12092 * events (they don't make sense as the cgroup will be different 12093 * on other CPUs in the uncore mask). 12094 */ 12095 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12096 err = -EINVAL; 12097 goto err_pmu; 12098 } 12099 12100 if (event->attr.aux_output && 12101 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 12102 err = -EOPNOTSUPP; 12103 goto err_pmu; 12104 } 12105 12106 if (cgroup_fd != -1) { 12107 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12108 if (err) 12109 goto err_pmu; 12110 } 12111 12112 err = exclusive_event_init(event); 12113 if (err) 12114 goto err_pmu; 12115 12116 if (has_addr_filter(event)) { 12117 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12118 sizeof(struct perf_addr_filter_range), 12119 GFP_KERNEL); 12120 if (!event->addr_filter_ranges) { 12121 err = -ENOMEM; 12122 goto err_per_task; 12123 } 12124 12125 /* 12126 * Clone the parent's vma offsets: they are valid until exec() 12127 * even if the mm is not shared with the parent. 12128 */ 12129 if (event->parent) { 12130 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12131 12132 raw_spin_lock_irq(&ifh->lock); 12133 memcpy(event->addr_filter_ranges, 12134 event->parent->addr_filter_ranges, 12135 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12136 raw_spin_unlock_irq(&ifh->lock); 12137 } 12138 12139 /* force hw sync on the address filters */ 12140 event->addr_filters_gen = 1; 12141 } 12142 12143 if (!event->parent) { 12144 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12145 err = get_callchain_buffers(attr->sample_max_stack); 12146 if (err) 12147 goto err_addr_filters; 12148 } 12149 } 12150 12151 err = security_perf_event_alloc(event); 12152 if (err) 12153 goto err_callchain_buffer; 12154 12155 /* symmetric to unaccount_event() in _free_event() */ 12156 account_event(event); 12157 12158 return event; 12159 12160 err_callchain_buffer: 12161 if (!event->parent) { 12162 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12163 put_callchain_buffers(); 12164 } 12165 err_addr_filters: 12166 kfree(event->addr_filter_ranges); 12167 12168 err_per_task: 12169 exclusive_event_destroy(event); 12170 12171 err_pmu: 12172 if (is_cgroup_event(event)) 12173 perf_detach_cgroup(event); 12174 if (event->destroy) 12175 event->destroy(event); 12176 module_put(pmu->module); 12177 err_ns: 12178 if (event->hw.target) 12179 put_task_struct(event->hw.target); 12180 call_rcu(&event->rcu_head, free_event_rcu); 12181 12182 return ERR_PTR(err); 12183 } 12184 12185 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12186 struct perf_event_attr *attr) 12187 { 12188 u32 size; 12189 int ret; 12190 12191 /* Zero the full structure, so that a short copy will be nice. */ 12192 memset(attr, 0, sizeof(*attr)); 12193 12194 ret = get_user(size, &uattr->size); 12195 if (ret) 12196 return ret; 12197 12198 /* ABI compatibility quirk: */ 12199 if (!size) 12200 size = PERF_ATTR_SIZE_VER0; 12201 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12202 goto err_size; 12203 12204 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12205 if (ret) { 12206 if (ret == -E2BIG) 12207 goto err_size; 12208 return ret; 12209 } 12210 12211 attr->size = size; 12212 12213 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12214 return -EINVAL; 12215 12216 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12217 return -EINVAL; 12218 12219 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12220 return -EINVAL; 12221 12222 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12223 u64 mask = attr->branch_sample_type; 12224 12225 /* only using defined bits */ 12226 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12227 return -EINVAL; 12228 12229 /* at least one branch bit must be set */ 12230 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12231 return -EINVAL; 12232 12233 /* propagate priv level, when not set for branch */ 12234 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12235 12236 /* exclude_kernel checked on syscall entry */ 12237 if (!attr->exclude_kernel) 12238 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12239 12240 if (!attr->exclude_user) 12241 mask |= PERF_SAMPLE_BRANCH_USER; 12242 12243 if (!attr->exclude_hv) 12244 mask |= PERF_SAMPLE_BRANCH_HV; 12245 /* 12246 * adjust user setting (for HW filter setup) 12247 */ 12248 attr->branch_sample_type = mask; 12249 } 12250 /* privileged levels capture (kernel, hv): check permissions */ 12251 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12252 ret = perf_allow_kernel(attr); 12253 if (ret) 12254 return ret; 12255 } 12256 } 12257 12258 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12259 ret = perf_reg_validate(attr->sample_regs_user); 12260 if (ret) 12261 return ret; 12262 } 12263 12264 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12265 if (!arch_perf_have_user_stack_dump()) 12266 return -ENOSYS; 12267 12268 /* 12269 * We have __u32 type for the size, but so far 12270 * we can only use __u16 as maximum due to the 12271 * __u16 sample size limit. 12272 */ 12273 if (attr->sample_stack_user >= USHRT_MAX) 12274 return -EINVAL; 12275 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12276 return -EINVAL; 12277 } 12278 12279 if (!attr->sample_max_stack) 12280 attr->sample_max_stack = sysctl_perf_event_max_stack; 12281 12282 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12283 ret = perf_reg_validate(attr->sample_regs_intr); 12284 12285 #ifndef CONFIG_CGROUP_PERF 12286 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12287 return -EINVAL; 12288 #endif 12289 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12290 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12291 return -EINVAL; 12292 12293 if (!attr->inherit && attr->inherit_thread) 12294 return -EINVAL; 12295 12296 if (attr->remove_on_exec && attr->enable_on_exec) 12297 return -EINVAL; 12298 12299 if (attr->sigtrap && !attr->remove_on_exec) 12300 return -EINVAL; 12301 12302 out: 12303 return ret; 12304 12305 err_size: 12306 put_user(sizeof(*attr), &uattr->size); 12307 ret = -E2BIG; 12308 goto out; 12309 } 12310 12311 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12312 { 12313 if (b < a) 12314 swap(a, b); 12315 12316 mutex_lock(a); 12317 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12318 } 12319 12320 static int 12321 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12322 { 12323 struct perf_buffer *rb = NULL; 12324 int ret = -EINVAL; 12325 12326 if (!output_event) { 12327 mutex_lock(&event->mmap_mutex); 12328 goto set; 12329 } 12330 12331 /* don't allow circular references */ 12332 if (event == output_event) 12333 goto out; 12334 12335 /* 12336 * Don't allow cross-cpu buffers 12337 */ 12338 if (output_event->cpu != event->cpu) 12339 goto out; 12340 12341 /* 12342 * If its not a per-cpu rb, it must be the same task. 12343 */ 12344 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12345 goto out; 12346 12347 /* 12348 * Mixing clocks in the same buffer is trouble you don't need. 12349 */ 12350 if (output_event->clock != event->clock) 12351 goto out; 12352 12353 /* 12354 * Either writing ring buffer from beginning or from end. 12355 * Mixing is not allowed. 12356 */ 12357 if (is_write_backward(output_event) != is_write_backward(event)) 12358 goto out; 12359 12360 /* 12361 * If both events generate aux data, they must be on the same PMU 12362 */ 12363 if (has_aux(event) && has_aux(output_event) && 12364 event->pmu != output_event->pmu) 12365 goto out; 12366 12367 /* 12368 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12369 * output_event is already on rb->event_list, and the list iteration 12370 * restarts after every removal, it is guaranteed this new event is 12371 * observed *OR* if output_event is already removed, it's guaranteed we 12372 * observe !rb->mmap_count. 12373 */ 12374 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12375 set: 12376 /* Can't redirect output if we've got an active mmap() */ 12377 if (atomic_read(&event->mmap_count)) 12378 goto unlock; 12379 12380 if (output_event) { 12381 /* get the rb we want to redirect to */ 12382 rb = ring_buffer_get(output_event); 12383 if (!rb) 12384 goto unlock; 12385 12386 /* did we race against perf_mmap_close() */ 12387 if (!atomic_read(&rb->mmap_count)) { 12388 ring_buffer_put(rb); 12389 goto unlock; 12390 } 12391 } 12392 12393 ring_buffer_attach(event, rb); 12394 12395 ret = 0; 12396 unlock: 12397 mutex_unlock(&event->mmap_mutex); 12398 if (output_event) 12399 mutex_unlock(&output_event->mmap_mutex); 12400 12401 out: 12402 return ret; 12403 } 12404 12405 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12406 { 12407 bool nmi_safe = false; 12408 12409 switch (clk_id) { 12410 case CLOCK_MONOTONIC: 12411 event->clock = &ktime_get_mono_fast_ns; 12412 nmi_safe = true; 12413 break; 12414 12415 case CLOCK_MONOTONIC_RAW: 12416 event->clock = &ktime_get_raw_fast_ns; 12417 nmi_safe = true; 12418 break; 12419 12420 case CLOCK_REALTIME: 12421 event->clock = &ktime_get_real_ns; 12422 break; 12423 12424 case CLOCK_BOOTTIME: 12425 event->clock = &ktime_get_boottime_ns; 12426 break; 12427 12428 case CLOCK_TAI: 12429 event->clock = &ktime_get_clocktai_ns; 12430 break; 12431 12432 default: 12433 return -EINVAL; 12434 } 12435 12436 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12437 return -EINVAL; 12438 12439 return 0; 12440 } 12441 12442 static bool 12443 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12444 { 12445 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12446 bool is_capable = perfmon_capable(); 12447 12448 if (attr->sigtrap) { 12449 /* 12450 * perf_event_attr::sigtrap sends signals to the other task. 12451 * Require the current task to also have CAP_KILL. 12452 */ 12453 rcu_read_lock(); 12454 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12455 rcu_read_unlock(); 12456 12457 /* 12458 * If the required capabilities aren't available, checks for 12459 * ptrace permissions: upgrade to ATTACH, since sending signals 12460 * can effectively change the target task. 12461 */ 12462 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12463 } 12464 12465 /* 12466 * Preserve ptrace permission check for backwards compatibility. The 12467 * ptrace check also includes checks that the current task and other 12468 * task have matching uids, and is therefore not done here explicitly. 12469 */ 12470 return is_capable || ptrace_may_access(task, ptrace_mode); 12471 } 12472 12473 /** 12474 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12475 * 12476 * @attr_uptr: event_id type attributes for monitoring/sampling 12477 * @pid: target pid 12478 * @cpu: target cpu 12479 * @group_fd: group leader event fd 12480 * @flags: perf event open flags 12481 */ 12482 SYSCALL_DEFINE5(perf_event_open, 12483 struct perf_event_attr __user *, attr_uptr, 12484 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12485 { 12486 struct perf_event *group_leader = NULL, *output_event = NULL; 12487 struct perf_event_pmu_context *pmu_ctx; 12488 struct perf_event *event, *sibling; 12489 struct perf_event_attr attr; 12490 struct perf_event_context *ctx; 12491 struct file *event_file = NULL; 12492 struct fd group = {NULL, 0}; 12493 struct task_struct *task = NULL; 12494 struct pmu *pmu; 12495 int event_fd; 12496 int move_group = 0; 12497 int err; 12498 int f_flags = O_RDWR; 12499 int cgroup_fd = -1; 12500 12501 /* for future expandability... */ 12502 if (flags & ~PERF_FLAG_ALL) 12503 return -EINVAL; 12504 12505 err = perf_copy_attr(attr_uptr, &attr); 12506 if (err) 12507 return err; 12508 12509 /* Do we allow access to perf_event_open(2) ? */ 12510 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12511 if (err) 12512 return err; 12513 12514 if (!attr.exclude_kernel) { 12515 err = perf_allow_kernel(&attr); 12516 if (err) 12517 return err; 12518 } 12519 12520 if (attr.namespaces) { 12521 if (!perfmon_capable()) 12522 return -EACCES; 12523 } 12524 12525 if (attr.freq) { 12526 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12527 return -EINVAL; 12528 } else { 12529 if (attr.sample_period & (1ULL << 63)) 12530 return -EINVAL; 12531 } 12532 12533 /* Only privileged users can get physical addresses */ 12534 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12535 err = perf_allow_kernel(&attr); 12536 if (err) 12537 return err; 12538 } 12539 12540 /* REGS_INTR can leak data, lockdown must prevent this */ 12541 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12542 err = security_locked_down(LOCKDOWN_PERF); 12543 if (err) 12544 return err; 12545 } 12546 12547 /* 12548 * In cgroup mode, the pid argument is used to pass the fd 12549 * opened to the cgroup directory in cgroupfs. The cpu argument 12550 * designates the cpu on which to monitor threads from that 12551 * cgroup. 12552 */ 12553 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12554 return -EINVAL; 12555 12556 if (flags & PERF_FLAG_FD_CLOEXEC) 12557 f_flags |= O_CLOEXEC; 12558 12559 event_fd = get_unused_fd_flags(f_flags); 12560 if (event_fd < 0) 12561 return event_fd; 12562 12563 if (group_fd != -1) { 12564 err = perf_fget_light(group_fd, &group); 12565 if (err) 12566 goto err_fd; 12567 group_leader = group.file->private_data; 12568 if (flags & PERF_FLAG_FD_OUTPUT) 12569 output_event = group_leader; 12570 if (flags & PERF_FLAG_FD_NO_GROUP) 12571 group_leader = NULL; 12572 } 12573 12574 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12575 task = find_lively_task_by_vpid(pid); 12576 if (IS_ERR(task)) { 12577 err = PTR_ERR(task); 12578 goto err_group_fd; 12579 } 12580 } 12581 12582 if (task && group_leader && 12583 group_leader->attr.inherit != attr.inherit) { 12584 err = -EINVAL; 12585 goto err_task; 12586 } 12587 12588 if (flags & PERF_FLAG_PID_CGROUP) 12589 cgroup_fd = pid; 12590 12591 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12592 NULL, NULL, cgroup_fd); 12593 if (IS_ERR(event)) { 12594 err = PTR_ERR(event); 12595 goto err_task; 12596 } 12597 12598 if (is_sampling_event(event)) { 12599 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12600 err = -EOPNOTSUPP; 12601 goto err_alloc; 12602 } 12603 } 12604 12605 /* 12606 * Special case software events and allow them to be part of 12607 * any hardware group. 12608 */ 12609 pmu = event->pmu; 12610 12611 if (attr.use_clockid) { 12612 err = perf_event_set_clock(event, attr.clockid); 12613 if (err) 12614 goto err_alloc; 12615 } 12616 12617 if (pmu->task_ctx_nr == perf_sw_context) 12618 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12619 12620 if (task) { 12621 err = down_read_interruptible(&task->signal->exec_update_lock); 12622 if (err) 12623 goto err_alloc; 12624 12625 /* 12626 * We must hold exec_update_lock across this and any potential 12627 * perf_install_in_context() call for this new event to 12628 * serialize against exec() altering our credentials (and the 12629 * perf_event_exit_task() that could imply). 12630 */ 12631 err = -EACCES; 12632 if (!perf_check_permission(&attr, task)) 12633 goto err_cred; 12634 } 12635 12636 /* 12637 * Get the target context (task or percpu): 12638 */ 12639 ctx = find_get_context(task, event); 12640 if (IS_ERR(ctx)) { 12641 err = PTR_ERR(ctx); 12642 goto err_cred; 12643 } 12644 12645 mutex_lock(&ctx->mutex); 12646 12647 if (ctx->task == TASK_TOMBSTONE) { 12648 err = -ESRCH; 12649 goto err_locked; 12650 } 12651 12652 if (!task) { 12653 /* 12654 * Check if the @cpu we're creating an event for is online. 12655 * 12656 * We use the perf_cpu_context::ctx::mutex to serialize against 12657 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12658 */ 12659 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12660 12661 if (!cpuctx->online) { 12662 err = -ENODEV; 12663 goto err_locked; 12664 } 12665 } 12666 12667 if (group_leader) { 12668 err = -EINVAL; 12669 12670 /* 12671 * Do not allow a recursive hierarchy (this new sibling 12672 * becoming part of another group-sibling): 12673 */ 12674 if (group_leader->group_leader != group_leader) 12675 goto err_locked; 12676 12677 /* All events in a group should have the same clock */ 12678 if (group_leader->clock != event->clock) 12679 goto err_locked; 12680 12681 /* 12682 * Make sure we're both events for the same CPU; 12683 * grouping events for different CPUs is broken; since 12684 * you can never concurrently schedule them anyhow. 12685 */ 12686 if (group_leader->cpu != event->cpu) 12687 goto err_locked; 12688 12689 /* 12690 * Make sure we're both on the same context; either task or cpu. 12691 */ 12692 if (group_leader->ctx != ctx) 12693 goto err_locked; 12694 12695 /* 12696 * Only a group leader can be exclusive or pinned 12697 */ 12698 if (attr.exclusive || attr.pinned) 12699 goto err_locked; 12700 12701 if (is_software_event(event) && 12702 !in_software_context(group_leader)) { 12703 /* 12704 * If the event is a sw event, but the group_leader 12705 * is on hw context. 12706 * 12707 * Allow the addition of software events to hw 12708 * groups, this is safe because software events 12709 * never fail to schedule. 12710 * 12711 * Note the comment that goes with struct 12712 * perf_event_pmu_context. 12713 */ 12714 pmu = group_leader->pmu_ctx->pmu; 12715 } else if (!is_software_event(event)) { 12716 if (is_software_event(group_leader) && 12717 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12718 /* 12719 * In case the group is a pure software group, and we 12720 * try to add a hardware event, move the whole group to 12721 * the hardware context. 12722 */ 12723 move_group = 1; 12724 } 12725 12726 /* Don't allow group of multiple hw events from different pmus */ 12727 if (!in_software_context(group_leader) && 12728 group_leader->pmu_ctx->pmu != pmu) 12729 goto err_locked; 12730 } 12731 } 12732 12733 /* 12734 * Now that we're certain of the pmu; find the pmu_ctx. 12735 */ 12736 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12737 if (IS_ERR(pmu_ctx)) { 12738 err = PTR_ERR(pmu_ctx); 12739 goto err_locked; 12740 } 12741 event->pmu_ctx = pmu_ctx; 12742 12743 if (output_event) { 12744 err = perf_event_set_output(event, output_event); 12745 if (err) 12746 goto err_context; 12747 } 12748 12749 if (!perf_event_validate_size(event)) { 12750 err = -E2BIG; 12751 goto err_context; 12752 } 12753 12754 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12755 err = -EINVAL; 12756 goto err_context; 12757 } 12758 12759 /* 12760 * Must be under the same ctx::mutex as perf_install_in_context(), 12761 * because we need to serialize with concurrent event creation. 12762 */ 12763 if (!exclusive_event_installable(event, ctx)) { 12764 err = -EBUSY; 12765 goto err_context; 12766 } 12767 12768 WARN_ON_ONCE(ctx->parent_ctx); 12769 12770 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12771 if (IS_ERR(event_file)) { 12772 err = PTR_ERR(event_file); 12773 event_file = NULL; 12774 goto err_context; 12775 } 12776 12777 /* 12778 * This is the point on no return; we cannot fail hereafter. This is 12779 * where we start modifying current state. 12780 */ 12781 12782 if (move_group) { 12783 perf_remove_from_context(group_leader, 0); 12784 put_pmu_ctx(group_leader->pmu_ctx); 12785 12786 for_each_sibling_event(sibling, group_leader) { 12787 perf_remove_from_context(sibling, 0); 12788 put_pmu_ctx(sibling->pmu_ctx); 12789 } 12790 12791 /* 12792 * Install the group siblings before the group leader. 12793 * 12794 * Because a group leader will try and install the entire group 12795 * (through the sibling list, which is still in-tact), we can 12796 * end up with siblings installed in the wrong context. 12797 * 12798 * By installing siblings first we NO-OP because they're not 12799 * reachable through the group lists. 12800 */ 12801 for_each_sibling_event(sibling, group_leader) { 12802 sibling->pmu_ctx = pmu_ctx; 12803 get_pmu_ctx(pmu_ctx); 12804 perf_event__state_init(sibling); 12805 perf_install_in_context(ctx, sibling, sibling->cpu); 12806 } 12807 12808 /* 12809 * Removing from the context ends up with disabled 12810 * event. What we want here is event in the initial 12811 * startup state, ready to be add into new context. 12812 */ 12813 group_leader->pmu_ctx = pmu_ctx; 12814 get_pmu_ctx(pmu_ctx); 12815 perf_event__state_init(group_leader); 12816 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12817 } 12818 12819 /* 12820 * Precalculate sample_data sizes; do while holding ctx::mutex such 12821 * that we're serialized against further additions and before 12822 * perf_install_in_context() which is the point the event is active and 12823 * can use these values. 12824 */ 12825 perf_event__header_size(event); 12826 perf_event__id_header_size(event); 12827 12828 event->owner = current; 12829 12830 perf_install_in_context(ctx, event, event->cpu); 12831 perf_unpin_context(ctx); 12832 12833 mutex_unlock(&ctx->mutex); 12834 12835 if (task) { 12836 up_read(&task->signal->exec_update_lock); 12837 put_task_struct(task); 12838 } 12839 12840 mutex_lock(¤t->perf_event_mutex); 12841 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12842 mutex_unlock(¤t->perf_event_mutex); 12843 12844 /* 12845 * Drop the reference on the group_event after placing the 12846 * new event on the sibling_list. This ensures destruction 12847 * of the group leader will find the pointer to itself in 12848 * perf_group_detach(). 12849 */ 12850 fdput(group); 12851 fd_install(event_fd, event_file); 12852 return event_fd; 12853 12854 err_context: 12855 put_pmu_ctx(event->pmu_ctx); 12856 event->pmu_ctx = NULL; /* _free_event() */ 12857 err_locked: 12858 mutex_unlock(&ctx->mutex); 12859 perf_unpin_context(ctx); 12860 put_ctx(ctx); 12861 err_cred: 12862 if (task) 12863 up_read(&task->signal->exec_update_lock); 12864 err_alloc: 12865 free_event(event); 12866 err_task: 12867 if (task) 12868 put_task_struct(task); 12869 err_group_fd: 12870 fdput(group); 12871 err_fd: 12872 put_unused_fd(event_fd); 12873 return err; 12874 } 12875 12876 /** 12877 * perf_event_create_kernel_counter 12878 * 12879 * @attr: attributes of the counter to create 12880 * @cpu: cpu in which the counter is bound 12881 * @task: task to profile (NULL for percpu) 12882 * @overflow_handler: callback to trigger when we hit the event 12883 * @context: context data could be used in overflow_handler callback 12884 */ 12885 struct perf_event * 12886 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12887 struct task_struct *task, 12888 perf_overflow_handler_t overflow_handler, 12889 void *context) 12890 { 12891 struct perf_event_pmu_context *pmu_ctx; 12892 struct perf_event_context *ctx; 12893 struct perf_event *event; 12894 struct pmu *pmu; 12895 int err; 12896 12897 /* 12898 * Grouping is not supported for kernel events, neither is 'AUX', 12899 * make sure the caller's intentions are adjusted. 12900 */ 12901 if (attr->aux_output) 12902 return ERR_PTR(-EINVAL); 12903 12904 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12905 overflow_handler, context, -1); 12906 if (IS_ERR(event)) { 12907 err = PTR_ERR(event); 12908 goto err; 12909 } 12910 12911 /* Mark owner so we could distinguish it from user events. */ 12912 event->owner = TASK_TOMBSTONE; 12913 pmu = event->pmu; 12914 12915 if (pmu->task_ctx_nr == perf_sw_context) 12916 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12917 12918 /* 12919 * Get the target context (task or percpu): 12920 */ 12921 ctx = find_get_context(task, event); 12922 if (IS_ERR(ctx)) { 12923 err = PTR_ERR(ctx); 12924 goto err_alloc; 12925 } 12926 12927 WARN_ON_ONCE(ctx->parent_ctx); 12928 mutex_lock(&ctx->mutex); 12929 if (ctx->task == TASK_TOMBSTONE) { 12930 err = -ESRCH; 12931 goto err_unlock; 12932 } 12933 12934 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12935 if (IS_ERR(pmu_ctx)) { 12936 err = PTR_ERR(pmu_ctx); 12937 goto err_unlock; 12938 } 12939 event->pmu_ctx = pmu_ctx; 12940 12941 if (!task) { 12942 /* 12943 * Check if the @cpu we're creating an event for is online. 12944 * 12945 * We use the perf_cpu_context::ctx::mutex to serialize against 12946 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12947 */ 12948 struct perf_cpu_context *cpuctx = 12949 container_of(ctx, struct perf_cpu_context, ctx); 12950 if (!cpuctx->online) { 12951 err = -ENODEV; 12952 goto err_pmu_ctx; 12953 } 12954 } 12955 12956 if (!exclusive_event_installable(event, ctx)) { 12957 err = -EBUSY; 12958 goto err_pmu_ctx; 12959 } 12960 12961 perf_install_in_context(ctx, event, event->cpu); 12962 perf_unpin_context(ctx); 12963 mutex_unlock(&ctx->mutex); 12964 12965 return event; 12966 12967 err_pmu_ctx: 12968 put_pmu_ctx(pmu_ctx); 12969 event->pmu_ctx = NULL; /* _free_event() */ 12970 err_unlock: 12971 mutex_unlock(&ctx->mutex); 12972 perf_unpin_context(ctx); 12973 put_ctx(ctx); 12974 err_alloc: 12975 free_event(event); 12976 err: 12977 return ERR_PTR(err); 12978 } 12979 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12980 12981 static void __perf_pmu_remove(struct perf_event_context *ctx, 12982 int cpu, struct pmu *pmu, 12983 struct perf_event_groups *groups, 12984 struct list_head *events) 12985 { 12986 struct perf_event *event, *sibling; 12987 12988 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12989 perf_remove_from_context(event, 0); 12990 put_pmu_ctx(event->pmu_ctx); 12991 list_add(&event->migrate_entry, events); 12992 12993 for_each_sibling_event(sibling, event) { 12994 perf_remove_from_context(sibling, 0); 12995 put_pmu_ctx(sibling->pmu_ctx); 12996 list_add(&sibling->migrate_entry, events); 12997 } 12998 } 12999 } 13000 13001 static void __perf_pmu_install_event(struct pmu *pmu, 13002 struct perf_event_context *ctx, 13003 int cpu, struct perf_event *event) 13004 { 13005 struct perf_event_pmu_context *epc; 13006 struct perf_event_context *old_ctx = event->ctx; 13007 13008 get_ctx(ctx); /* normally find_get_context() */ 13009 13010 event->cpu = cpu; 13011 epc = find_get_pmu_context(pmu, ctx, event); 13012 event->pmu_ctx = epc; 13013 13014 if (event->state >= PERF_EVENT_STATE_OFF) 13015 event->state = PERF_EVENT_STATE_INACTIVE; 13016 perf_install_in_context(ctx, event, cpu); 13017 13018 /* 13019 * Now that event->ctx is updated and visible, put the old ctx. 13020 */ 13021 put_ctx(old_ctx); 13022 } 13023 13024 static void __perf_pmu_install(struct perf_event_context *ctx, 13025 int cpu, struct pmu *pmu, struct list_head *events) 13026 { 13027 struct perf_event *event, *tmp; 13028 13029 /* 13030 * Re-instate events in 2 passes. 13031 * 13032 * Skip over group leaders and only install siblings on this first 13033 * pass, siblings will not get enabled without a leader, however a 13034 * leader will enable its siblings, even if those are still on the old 13035 * context. 13036 */ 13037 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13038 if (event->group_leader == event) 13039 continue; 13040 13041 list_del(&event->migrate_entry); 13042 __perf_pmu_install_event(pmu, ctx, cpu, event); 13043 } 13044 13045 /* 13046 * Once all the siblings are setup properly, install the group leaders 13047 * to make it go. 13048 */ 13049 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13050 list_del(&event->migrate_entry); 13051 __perf_pmu_install_event(pmu, ctx, cpu, event); 13052 } 13053 } 13054 13055 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13056 { 13057 struct perf_event_context *src_ctx, *dst_ctx; 13058 LIST_HEAD(events); 13059 13060 /* 13061 * Since per-cpu context is persistent, no need to grab an extra 13062 * reference. 13063 */ 13064 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13065 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13066 13067 /* 13068 * See perf_event_ctx_lock() for comments on the details 13069 * of swizzling perf_event::ctx. 13070 */ 13071 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13072 13073 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13074 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13075 13076 if (!list_empty(&events)) { 13077 /* 13078 * Wait for the events to quiesce before re-instating them. 13079 */ 13080 synchronize_rcu(); 13081 13082 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13083 } 13084 13085 mutex_unlock(&dst_ctx->mutex); 13086 mutex_unlock(&src_ctx->mutex); 13087 } 13088 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13089 13090 static void sync_child_event(struct perf_event *child_event) 13091 { 13092 struct perf_event *parent_event = child_event->parent; 13093 u64 child_val; 13094 13095 if (child_event->attr.inherit_stat) { 13096 struct task_struct *task = child_event->ctx->task; 13097 13098 if (task && task != TASK_TOMBSTONE) 13099 perf_event_read_event(child_event, task); 13100 } 13101 13102 child_val = perf_event_count(child_event); 13103 13104 /* 13105 * Add back the child's count to the parent's count: 13106 */ 13107 atomic64_add(child_val, &parent_event->child_count); 13108 atomic64_add(child_event->total_time_enabled, 13109 &parent_event->child_total_time_enabled); 13110 atomic64_add(child_event->total_time_running, 13111 &parent_event->child_total_time_running); 13112 } 13113 13114 static void 13115 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13116 { 13117 struct perf_event *parent_event = event->parent; 13118 unsigned long detach_flags = 0; 13119 13120 if (parent_event) { 13121 /* 13122 * Do not destroy the 'original' grouping; because of the 13123 * context switch optimization the original events could've 13124 * ended up in a random child task. 13125 * 13126 * If we were to destroy the original group, all group related 13127 * operations would cease to function properly after this 13128 * random child dies. 13129 * 13130 * Do destroy all inherited groups, we don't care about those 13131 * and being thorough is better. 13132 */ 13133 detach_flags = DETACH_GROUP | DETACH_CHILD; 13134 mutex_lock(&parent_event->child_mutex); 13135 } 13136 13137 perf_remove_from_context(event, detach_flags); 13138 13139 raw_spin_lock_irq(&ctx->lock); 13140 if (event->state > PERF_EVENT_STATE_EXIT) 13141 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13142 raw_spin_unlock_irq(&ctx->lock); 13143 13144 /* 13145 * Child events can be freed. 13146 */ 13147 if (parent_event) { 13148 mutex_unlock(&parent_event->child_mutex); 13149 /* 13150 * Kick perf_poll() for is_event_hup(); 13151 */ 13152 perf_event_wakeup(parent_event); 13153 free_event(event); 13154 put_event(parent_event); 13155 return; 13156 } 13157 13158 /* 13159 * Parent events are governed by their filedesc, retain them. 13160 */ 13161 perf_event_wakeup(event); 13162 } 13163 13164 static void perf_event_exit_task_context(struct task_struct *child) 13165 { 13166 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13167 struct perf_event *child_event, *next; 13168 13169 WARN_ON_ONCE(child != current); 13170 13171 child_ctx = perf_pin_task_context(child); 13172 if (!child_ctx) 13173 return; 13174 13175 /* 13176 * In order to reduce the amount of tricky in ctx tear-down, we hold 13177 * ctx::mutex over the entire thing. This serializes against almost 13178 * everything that wants to access the ctx. 13179 * 13180 * The exception is sys_perf_event_open() / 13181 * perf_event_create_kernel_count() which does find_get_context() 13182 * without ctx::mutex (it cannot because of the move_group double mutex 13183 * lock thing). See the comments in perf_install_in_context(). 13184 */ 13185 mutex_lock(&child_ctx->mutex); 13186 13187 /* 13188 * In a single ctx::lock section, de-schedule the events and detach the 13189 * context from the task such that we cannot ever get it scheduled back 13190 * in. 13191 */ 13192 raw_spin_lock_irq(&child_ctx->lock); 13193 task_ctx_sched_out(child_ctx, EVENT_ALL); 13194 13195 /* 13196 * Now that the context is inactive, destroy the task <-> ctx relation 13197 * and mark the context dead. 13198 */ 13199 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13200 put_ctx(child_ctx); /* cannot be last */ 13201 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13202 put_task_struct(current); /* cannot be last */ 13203 13204 clone_ctx = unclone_ctx(child_ctx); 13205 raw_spin_unlock_irq(&child_ctx->lock); 13206 13207 if (clone_ctx) 13208 put_ctx(clone_ctx); 13209 13210 /* 13211 * Report the task dead after unscheduling the events so that we 13212 * won't get any samples after PERF_RECORD_EXIT. We can however still 13213 * get a few PERF_RECORD_READ events. 13214 */ 13215 perf_event_task(child, child_ctx, 0); 13216 13217 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13218 perf_event_exit_event(child_event, child_ctx); 13219 13220 mutex_unlock(&child_ctx->mutex); 13221 13222 put_ctx(child_ctx); 13223 } 13224 13225 /* 13226 * When a child task exits, feed back event values to parent events. 13227 * 13228 * Can be called with exec_update_lock held when called from 13229 * setup_new_exec(). 13230 */ 13231 void perf_event_exit_task(struct task_struct *child) 13232 { 13233 struct perf_event *event, *tmp; 13234 13235 mutex_lock(&child->perf_event_mutex); 13236 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13237 owner_entry) { 13238 list_del_init(&event->owner_entry); 13239 13240 /* 13241 * Ensure the list deletion is visible before we clear 13242 * the owner, closes a race against perf_release() where 13243 * we need to serialize on the owner->perf_event_mutex. 13244 */ 13245 smp_store_release(&event->owner, NULL); 13246 } 13247 mutex_unlock(&child->perf_event_mutex); 13248 13249 perf_event_exit_task_context(child); 13250 13251 /* 13252 * The perf_event_exit_task_context calls perf_event_task 13253 * with child's task_ctx, which generates EXIT events for 13254 * child contexts and sets child->perf_event_ctxp[] to NULL. 13255 * At this point we need to send EXIT events to cpu contexts. 13256 */ 13257 perf_event_task(child, NULL, 0); 13258 } 13259 13260 static void perf_free_event(struct perf_event *event, 13261 struct perf_event_context *ctx) 13262 { 13263 struct perf_event *parent = event->parent; 13264 13265 if (WARN_ON_ONCE(!parent)) 13266 return; 13267 13268 mutex_lock(&parent->child_mutex); 13269 list_del_init(&event->child_list); 13270 mutex_unlock(&parent->child_mutex); 13271 13272 put_event(parent); 13273 13274 raw_spin_lock_irq(&ctx->lock); 13275 perf_group_detach(event); 13276 list_del_event(event, ctx); 13277 raw_spin_unlock_irq(&ctx->lock); 13278 free_event(event); 13279 } 13280 13281 /* 13282 * Free a context as created by inheritance by perf_event_init_task() below, 13283 * used by fork() in case of fail. 13284 * 13285 * Even though the task has never lived, the context and events have been 13286 * exposed through the child_list, so we must take care tearing it all down. 13287 */ 13288 void perf_event_free_task(struct task_struct *task) 13289 { 13290 struct perf_event_context *ctx; 13291 struct perf_event *event, *tmp; 13292 13293 ctx = rcu_access_pointer(task->perf_event_ctxp); 13294 if (!ctx) 13295 return; 13296 13297 mutex_lock(&ctx->mutex); 13298 raw_spin_lock_irq(&ctx->lock); 13299 /* 13300 * Destroy the task <-> ctx relation and mark the context dead. 13301 * 13302 * This is important because even though the task hasn't been 13303 * exposed yet the context has been (through child_list). 13304 */ 13305 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13306 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13307 put_task_struct(task); /* cannot be last */ 13308 raw_spin_unlock_irq(&ctx->lock); 13309 13310 13311 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13312 perf_free_event(event, ctx); 13313 13314 mutex_unlock(&ctx->mutex); 13315 13316 /* 13317 * perf_event_release_kernel() could've stolen some of our 13318 * child events and still have them on its free_list. In that 13319 * case we must wait for these events to have been freed (in 13320 * particular all their references to this task must've been 13321 * dropped). 13322 * 13323 * Without this copy_process() will unconditionally free this 13324 * task (irrespective of its reference count) and 13325 * _free_event()'s put_task_struct(event->hw.target) will be a 13326 * use-after-free. 13327 * 13328 * Wait for all events to drop their context reference. 13329 */ 13330 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13331 put_ctx(ctx); /* must be last */ 13332 } 13333 13334 void perf_event_delayed_put(struct task_struct *task) 13335 { 13336 WARN_ON_ONCE(task->perf_event_ctxp); 13337 } 13338 13339 struct file *perf_event_get(unsigned int fd) 13340 { 13341 struct file *file = fget(fd); 13342 if (!file) 13343 return ERR_PTR(-EBADF); 13344 13345 if (file->f_op != &perf_fops) { 13346 fput(file); 13347 return ERR_PTR(-EBADF); 13348 } 13349 13350 return file; 13351 } 13352 13353 const struct perf_event *perf_get_event(struct file *file) 13354 { 13355 if (file->f_op != &perf_fops) 13356 return ERR_PTR(-EINVAL); 13357 13358 return file->private_data; 13359 } 13360 13361 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13362 { 13363 if (!event) 13364 return ERR_PTR(-EINVAL); 13365 13366 return &event->attr; 13367 } 13368 13369 int perf_allow_kernel(struct perf_event_attr *attr) 13370 { 13371 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 13372 return -EACCES; 13373 13374 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 13375 } 13376 EXPORT_SYMBOL_GPL(perf_allow_kernel); 13377 13378 /* 13379 * Inherit an event from parent task to child task. 13380 * 13381 * Returns: 13382 * - valid pointer on success 13383 * - NULL for orphaned events 13384 * - IS_ERR() on error 13385 */ 13386 static struct perf_event * 13387 inherit_event(struct perf_event *parent_event, 13388 struct task_struct *parent, 13389 struct perf_event_context *parent_ctx, 13390 struct task_struct *child, 13391 struct perf_event *group_leader, 13392 struct perf_event_context *child_ctx) 13393 { 13394 enum perf_event_state parent_state = parent_event->state; 13395 struct perf_event_pmu_context *pmu_ctx; 13396 struct perf_event *child_event; 13397 unsigned long flags; 13398 13399 /* 13400 * Instead of creating recursive hierarchies of events, 13401 * we link inherited events back to the original parent, 13402 * which has a filp for sure, which we use as the reference 13403 * count: 13404 */ 13405 if (parent_event->parent) 13406 parent_event = parent_event->parent; 13407 13408 child_event = perf_event_alloc(&parent_event->attr, 13409 parent_event->cpu, 13410 child, 13411 group_leader, parent_event, 13412 NULL, NULL, -1); 13413 if (IS_ERR(child_event)) 13414 return child_event; 13415 13416 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13417 if (IS_ERR(pmu_ctx)) { 13418 free_event(child_event); 13419 return ERR_CAST(pmu_ctx); 13420 } 13421 child_event->pmu_ctx = pmu_ctx; 13422 13423 /* 13424 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13425 * must be under the same lock in order to serialize against 13426 * perf_event_release_kernel(), such that either we must observe 13427 * is_orphaned_event() or they will observe us on the child_list. 13428 */ 13429 mutex_lock(&parent_event->child_mutex); 13430 if (is_orphaned_event(parent_event) || 13431 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13432 mutex_unlock(&parent_event->child_mutex); 13433 /* task_ctx_data is freed with child_ctx */ 13434 free_event(child_event); 13435 return NULL; 13436 } 13437 13438 get_ctx(child_ctx); 13439 13440 /* 13441 * Make the child state follow the state of the parent event, 13442 * not its attr.disabled bit. We hold the parent's mutex, 13443 * so we won't race with perf_event_{en, dis}able_family. 13444 */ 13445 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13446 child_event->state = PERF_EVENT_STATE_INACTIVE; 13447 else 13448 child_event->state = PERF_EVENT_STATE_OFF; 13449 13450 if (parent_event->attr.freq) { 13451 u64 sample_period = parent_event->hw.sample_period; 13452 struct hw_perf_event *hwc = &child_event->hw; 13453 13454 hwc->sample_period = sample_period; 13455 hwc->last_period = sample_period; 13456 13457 local64_set(&hwc->period_left, sample_period); 13458 } 13459 13460 child_event->ctx = child_ctx; 13461 child_event->overflow_handler = parent_event->overflow_handler; 13462 child_event->overflow_handler_context 13463 = parent_event->overflow_handler_context; 13464 13465 /* 13466 * Precalculate sample_data sizes 13467 */ 13468 perf_event__header_size(child_event); 13469 perf_event__id_header_size(child_event); 13470 13471 /* 13472 * Link it up in the child's context: 13473 */ 13474 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13475 add_event_to_ctx(child_event, child_ctx); 13476 child_event->attach_state |= PERF_ATTACH_CHILD; 13477 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13478 13479 /* 13480 * Link this into the parent event's child list 13481 */ 13482 list_add_tail(&child_event->child_list, &parent_event->child_list); 13483 mutex_unlock(&parent_event->child_mutex); 13484 13485 return child_event; 13486 } 13487 13488 /* 13489 * Inherits an event group. 13490 * 13491 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13492 * This matches with perf_event_release_kernel() removing all child events. 13493 * 13494 * Returns: 13495 * - 0 on success 13496 * - <0 on error 13497 */ 13498 static int inherit_group(struct perf_event *parent_event, 13499 struct task_struct *parent, 13500 struct perf_event_context *parent_ctx, 13501 struct task_struct *child, 13502 struct perf_event_context *child_ctx) 13503 { 13504 struct perf_event *leader; 13505 struct perf_event *sub; 13506 struct perf_event *child_ctr; 13507 13508 leader = inherit_event(parent_event, parent, parent_ctx, 13509 child, NULL, child_ctx); 13510 if (IS_ERR(leader)) 13511 return PTR_ERR(leader); 13512 /* 13513 * @leader can be NULL here because of is_orphaned_event(). In this 13514 * case inherit_event() will create individual events, similar to what 13515 * perf_group_detach() would do anyway. 13516 */ 13517 for_each_sibling_event(sub, parent_event) { 13518 child_ctr = inherit_event(sub, parent, parent_ctx, 13519 child, leader, child_ctx); 13520 if (IS_ERR(child_ctr)) 13521 return PTR_ERR(child_ctr); 13522 13523 if (sub->aux_event == parent_event && child_ctr && 13524 !perf_get_aux_event(child_ctr, leader)) 13525 return -EINVAL; 13526 } 13527 if (leader) 13528 leader->group_generation = parent_event->group_generation; 13529 return 0; 13530 } 13531 13532 /* 13533 * Creates the child task context and tries to inherit the event-group. 13534 * 13535 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13536 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13537 * consistent with perf_event_release_kernel() removing all child events. 13538 * 13539 * Returns: 13540 * - 0 on success 13541 * - <0 on error 13542 */ 13543 static int 13544 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13545 struct perf_event_context *parent_ctx, 13546 struct task_struct *child, 13547 u64 clone_flags, int *inherited_all) 13548 { 13549 struct perf_event_context *child_ctx; 13550 int ret; 13551 13552 if (!event->attr.inherit || 13553 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13554 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13555 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13556 *inherited_all = 0; 13557 return 0; 13558 } 13559 13560 child_ctx = child->perf_event_ctxp; 13561 if (!child_ctx) { 13562 /* 13563 * This is executed from the parent task context, so 13564 * inherit events that have been marked for cloning. 13565 * First allocate and initialize a context for the 13566 * child. 13567 */ 13568 child_ctx = alloc_perf_context(child); 13569 if (!child_ctx) 13570 return -ENOMEM; 13571 13572 child->perf_event_ctxp = child_ctx; 13573 } 13574 13575 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13576 if (ret) 13577 *inherited_all = 0; 13578 13579 return ret; 13580 } 13581 13582 /* 13583 * Initialize the perf_event context in task_struct 13584 */ 13585 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13586 { 13587 struct perf_event_context *child_ctx, *parent_ctx; 13588 struct perf_event_context *cloned_ctx; 13589 struct perf_event *event; 13590 struct task_struct *parent = current; 13591 int inherited_all = 1; 13592 unsigned long flags; 13593 int ret = 0; 13594 13595 if (likely(!parent->perf_event_ctxp)) 13596 return 0; 13597 13598 /* 13599 * If the parent's context is a clone, pin it so it won't get 13600 * swapped under us. 13601 */ 13602 parent_ctx = perf_pin_task_context(parent); 13603 if (!parent_ctx) 13604 return 0; 13605 13606 /* 13607 * No need to check if parent_ctx != NULL here; since we saw 13608 * it non-NULL earlier, the only reason for it to become NULL 13609 * is if we exit, and since we're currently in the middle of 13610 * a fork we can't be exiting at the same time. 13611 */ 13612 13613 /* 13614 * Lock the parent list. No need to lock the child - not PID 13615 * hashed yet and not running, so nobody can access it. 13616 */ 13617 mutex_lock(&parent_ctx->mutex); 13618 13619 /* 13620 * We dont have to disable NMIs - we are only looking at 13621 * the list, not manipulating it: 13622 */ 13623 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13624 ret = inherit_task_group(event, parent, parent_ctx, 13625 child, clone_flags, &inherited_all); 13626 if (ret) 13627 goto out_unlock; 13628 } 13629 13630 /* 13631 * We can't hold ctx->lock when iterating the ->flexible_group list due 13632 * to allocations, but we need to prevent rotation because 13633 * rotate_ctx() will change the list from interrupt context. 13634 */ 13635 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13636 parent_ctx->rotate_disable = 1; 13637 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13638 13639 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13640 ret = inherit_task_group(event, parent, parent_ctx, 13641 child, clone_flags, &inherited_all); 13642 if (ret) 13643 goto out_unlock; 13644 } 13645 13646 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13647 parent_ctx->rotate_disable = 0; 13648 13649 child_ctx = child->perf_event_ctxp; 13650 13651 if (child_ctx && inherited_all) { 13652 /* 13653 * Mark the child context as a clone of the parent 13654 * context, or of whatever the parent is a clone of. 13655 * 13656 * Note that if the parent is a clone, the holding of 13657 * parent_ctx->lock avoids it from being uncloned. 13658 */ 13659 cloned_ctx = parent_ctx->parent_ctx; 13660 if (cloned_ctx) { 13661 child_ctx->parent_ctx = cloned_ctx; 13662 child_ctx->parent_gen = parent_ctx->parent_gen; 13663 } else { 13664 child_ctx->parent_ctx = parent_ctx; 13665 child_ctx->parent_gen = parent_ctx->generation; 13666 } 13667 get_ctx(child_ctx->parent_ctx); 13668 } 13669 13670 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13671 out_unlock: 13672 mutex_unlock(&parent_ctx->mutex); 13673 13674 perf_unpin_context(parent_ctx); 13675 put_ctx(parent_ctx); 13676 13677 return ret; 13678 } 13679 13680 /* 13681 * Initialize the perf_event context in task_struct 13682 */ 13683 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13684 { 13685 int ret; 13686 13687 memset(child->perf_recursion, 0, sizeof(child->perf_recursion)); 13688 child->perf_event_ctxp = NULL; 13689 mutex_init(&child->perf_event_mutex); 13690 INIT_LIST_HEAD(&child->perf_event_list); 13691 13692 ret = perf_event_init_context(child, clone_flags); 13693 if (ret) { 13694 perf_event_free_task(child); 13695 return ret; 13696 } 13697 13698 return 0; 13699 } 13700 13701 static void __init perf_event_init_all_cpus(void) 13702 { 13703 struct swevent_htable *swhash; 13704 struct perf_cpu_context *cpuctx; 13705 int cpu; 13706 13707 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13708 13709 for_each_possible_cpu(cpu) { 13710 swhash = &per_cpu(swevent_htable, cpu); 13711 mutex_init(&swhash->hlist_mutex); 13712 13713 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13714 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13715 13716 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13717 13718 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13719 __perf_event_init_context(&cpuctx->ctx); 13720 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13721 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13722 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13723 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13724 cpuctx->heap = cpuctx->heap_default; 13725 } 13726 } 13727 13728 static void perf_swevent_init_cpu(unsigned int cpu) 13729 { 13730 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13731 13732 mutex_lock(&swhash->hlist_mutex); 13733 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13734 struct swevent_hlist *hlist; 13735 13736 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13737 WARN_ON(!hlist); 13738 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13739 } 13740 mutex_unlock(&swhash->hlist_mutex); 13741 } 13742 13743 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13744 static void __perf_event_exit_context(void *__info) 13745 { 13746 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13747 struct perf_event_context *ctx = __info; 13748 struct perf_event *event; 13749 13750 raw_spin_lock(&ctx->lock); 13751 ctx_sched_out(ctx, EVENT_TIME); 13752 list_for_each_entry(event, &ctx->event_list, event_entry) 13753 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13754 raw_spin_unlock(&ctx->lock); 13755 } 13756 13757 static void perf_event_exit_cpu_context(int cpu) 13758 { 13759 struct perf_cpu_context *cpuctx; 13760 struct perf_event_context *ctx; 13761 13762 // XXX simplify cpuctx->online 13763 mutex_lock(&pmus_lock); 13764 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13765 ctx = &cpuctx->ctx; 13766 13767 mutex_lock(&ctx->mutex); 13768 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13769 cpuctx->online = 0; 13770 mutex_unlock(&ctx->mutex); 13771 cpumask_clear_cpu(cpu, perf_online_mask); 13772 mutex_unlock(&pmus_lock); 13773 } 13774 #else 13775 13776 static void perf_event_exit_cpu_context(int cpu) { } 13777 13778 #endif 13779 13780 int perf_event_init_cpu(unsigned int cpu) 13781 { 13782 struct perf_cpu_context *cpuctx; 13783 struct perf_event_context *ctx; 13784 13785 perf_swevent_init_cpu(cpu); 13786 13787 mutex_lock(&pmus_lock); 13788 cpumask_set_cpu(cpu, perf_online_mask); 13789 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13790 ctx = &cpuctx->ctx; 13791 13792 mutex_lock(&ctx->mutex); 13793 cpuctx->online = 1; 13794 mutex_unlock(&ctx->mutex); 13795 mutex_unlock(&pmus_lock); 13796 13797 return 0; 13798 } 13799 13800 int perf_event_exit_cpu(unsigned int cpu) 13801 { 13802 perf_event_exit_cpu_context(cpu); 13803 return 0; 13804 } 13805 13806 static int 13807 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13808 { 13809 int cpu; 13810 13811 for_each_online_cpu(cpu) 13812 perf_event_exit_cpu(cpu); 13813 13814 return NOTIFY_OK; 13815 } 13816 13817 /* 13818 * Run the perf reboot notifier at the very last possible moment so that 13819 * the generic watchdog code runs as long as possible. 13820 */ 13821 static struct notifier_block perf_reboot_notifier = { 13822 .notifier_call = perf_reboot, 13823 .priority = INT_MIN, 13824 }; 13825 13826 void __init perf_event_init(void) 13827 { 13828 int ret; 13829 13830 idr_init(&pmu_idr); 13831 13832 perf_event_init_all_cpus(); 13833 init_srcu_struct(&pmus_srcu); 13834 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13835 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 13836 perf_pmu_register(&perf_task_clock, "task_clock", -1); 13837 perf_tp_register(); 13838 perf_event_init_cpu(smp_processor_id()); 13839 register_reboot_notifier(&perf_reboot_notifier); 13840 13841 ret = init_hw_breakpoint(); 13842 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13843 13844 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13845 13846 /* 13847 * Build time assertion that we keep the data_head at the intended 13848 * location. IOW, validation we got the __reserved[] size right. 13849 */ 13850 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13851 != 1024); 13852 } 13853 13854 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13855 char *page) 13856 { 13857 struct perf_pmu_events_attr *pmu_attr = 13858 container_of(attr, struct perf_pmu_events_attr, attr); 13859 13860 if (pmu_attr->event_str) 13861 return sprintf(page, "%s\n", pmu_attr->event_str); 13862 13863 return 0; 13864 } 13865 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13866 13867 static int __init perf_event_sysfs_init(void) 13868 { 13869 struct pmu *pmu; 13870 int ret; 13871 13872 mutex_lock(&pmus_lock); 13873 13874 ret = bus_register(&pmu_bus); 13875 if (ret) 13876 goto unlock; 13877 13878 list_for_each_entry(pmu, &pmus, entry) { 13879 if (pmu->dev) 13880 continue; 13881 13882 ret = pmu_dev_alloc(pmu); 13883 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13884 } 13885 pmu_bus_running = 1; 13886 ret = 0; 13887 13888 unlock: 13889 mutex_unlock(&pmus_lock); 13890 13891 return ret; 13892 } 13893 device_initcall(perf_event_sysfs_init); 13894 13895 #ifdef CONFIG_CGROUP_PERF 13896 static struct cgroup_subsys_state * 13897 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13898 { 13899 struct perf_cgroup *jc; 13900 13901 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13902 if (!jc) 13903 return ERR_PTR(-ENOMEM); 13904 13905 jc->info = alloc_percpu(struct perf_cgroup_info); 13906 if (!jc->info) { 13907 kfree(jc); 13908 return ERR_PTR(-ENOMEM); 13909 } 13910 13911 return &jc->css; 13912 } 13913 13914 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13915 { 13916 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13917 13918 free_percpu(jc->info); 13919 kfree(jc); 13920 } 13921 13922 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13923 { 13924 perf_event_cgroup(css->cgroup); 13925 return 0; 13926 } 13927 13928 static int __perf_cgroup_move(void *info) 13929 { 13930 struct task_struct *task = info; 13931 13932 preempt_disable(); 13933 perf_cgroup_switch(task); 13934 preempt_enable(); 13935 13936 return 0; 13937 } 13938 13939 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13940 { 13941 struct task_struct *task; 13942 struct cgroup_subsys_state *css; 13943 13944 cgroup_taskset_for_each(task, css, tset) 13945 task_function_call(task, __perf_cgroup_move, task); 13946 } 13947 13948 struct cgroup_subsys perf_event_cgrp_subsys = { 13949 .css_alloc = perf_cgroup_css_alloc, 13950 .css_free = perf_cgroup_css_free, 13951 .css_online = perf_cgroup_css_online, 13952 .attach = perf_cgroup_attach, 13953 /* 13954 * Implicitly enable on dfl hierarchy so that perf events can 13955 * always be filtered by cgroup2 path as long as perf_event 13956 * controller is not mounted on a legacy hierarchy. 13957 */ 13958 .implicit_on_dfl = true, 13959 .threaded = true, 13960 }; 13961 #endif /* CONFIG_CGROUP_PERF */ 13962 13963 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13964
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.