~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/events/hw_breakpoint.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0+
  2 /*
  3  * Copyright (C) 2007 Alan Stern
  4  * Copyright (C) IBM Corporation, 2009
  5  * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
  6  *
  7  * Thanks to Ingo Molnar for his many suggestions.
  8  *
  9  * Authors: Alan Stern <stern@rowland.harvard.edu>
 10  *          K.Prasad <prasad@linux.vnet.ibm.com>
 11  *          Frederic Weisbecker <fweisbec@gmail.com>
 12  */
 13 
 14 /*
 15  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
 16  * using the CPU's debug registers.
 17  * This file contains the arch-independent routines.
 18  */
 19 
 20 #include <linux/hw_breakpoint.h>
 21 
 22 #include <linux/atomic.h>
 23 #include <linux/bug.h>
 24 #include <linux/cpu.h>
 25 #include <linux/export.h>
 26 #include <linux/init.h>
 27 #include <linux/irqflags.h>
 28 #include <linux/kdebug.h>
 29 #include <linux/kernel.h>
 30 #include <linux/mutex.h>
 31 #include <linux/notifier.h>
 32 #include <linux/percpu-rwsem.h>
 33 #include <linux/percpu.h>
 34 #include <linux/rhashtable.h>
 35 #include <linux/sched.h>
 36 #include <linux/slab.h>
 37 
 38 /*
 39  * Datastructure to track the total uses of N slots across tasks or CPUs;
 40  * bp_slots_histogram::count[N] is the number of assigned N+1 breakpoint slots.
 41  */
 42 struct bp_slots_histogram {
 43 #ifdef hw_breakpoint_slots
 44         atomic_t count[hw_breakpoint_slots(0)];
 45 #else
 46         atomic_t *count;
 47 #endif
 48 };
 49 
 50 /*
 51  * Per-CPU constraints data.
 52  */
 53 struct bp_cpuinfo {
 54         /* Number of pinned CPU breakpoints in a CPU. */
 55         unsigned int                    cpu_pinned;
 56         /* Histogram of pinned task breakpoints in a CPU. */
 57         struct bp_slots_histogram       tsk_pinned;
 58 };
 59 
 60 static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]);
 61 
 62 static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type)
 63 {
 64         return per_cpu_ptr(bp_cpuinfo + type, cpu);
 65 }
 66 
 67 /* Number of pinned CPU breakpoints globally. */
 68 static struct bp_slots_histogram cpu_pinned[TYPE_MAX];
 69 /* Number of pinned CPU-independent task breakpoints. */
 70 static struct bp_slots_histogram tsk_pinned_all[TYPE_MAX];
 71 
 72 /* Keep track of the breakpoints attached to tasks */
 73 static struct rhltable task_bps_ht;
 74 static const struct rhashtable_params task_bps_ht_params = {
 75         .head_offset = offsetof(struct hw_perf_event, bp_list),
 76         .key_offset = offsetof(struct hw_perf_event, target),
 77         .key_len = sizeof_field(struct hw_perf_event, target),
 78         .automatic_shrinking = true,
 79 };
 80 
 81 static bool constraints_initialized __ro_after_init;
 82 
 83 /*
 84  * Synchronizes accesses to the per-CPU constraints; the locking rules are:
 85  *
 86  *  1. Atomic updates to bp_cpuinfo::tsk_pinned only require a held read-lock
 87  *     (due to bp_slots_histogram::count being atomic, no update are lost).
 88  *
 89  *  2. Holding a write-lock is required for computations that require a
 90  *     stable snapshot of all bp_cpuinfo::tsk_pinned.
 91  *
 92  *  3. In all other cases, non-atomic accesses require the appropriately held
 93  *     lock (read-lock for read-only accesses; write-lock for reads/writes).
 94  */
 95 DEFINE_STATIC_PERCPU_RWSEM(bp_cpuinfo_sem);
 96 
 97 /*
 98  * Return mutex to serialize accesses to per-task lists in task_bps_ht. Since
 99  * rhltable synchronizes concurrent insertions/deletions, independent tasks may
100  * insert/delete concurrently; therefore, a mutex per task is sufficient.
101  *
102  * Uses task_struct::perf_event_mutex, to avoid extending task_struct with a
103  * hw_breakpoint-only mutex, which may be infrequently used. The caveat here is
104  * that hw_breakpoint may contend with per-task perf event list management. The
105  * assumption is that perf usecases involving hw_breakpoints are very unlikely
106  * to result in unnecessary contention.
107  */
108 static inline struct mutex *get_task_bps_mutex(struct perf_event *bp)
109 {
110         struct task_struct *tsk = bp->hw.target;
111 
112         return tsk ? &tsk->perf_event_mutex : NULL;
113 }
114 
115 static struct mutex *bp_constraints_lock(struct perf_event *bp)
116 {
117         struct mutex *tsk_mtx = get_task_bps_mutex(bp);
118 
119         if (tsk_mtx) {
120                 /*
121                  * Fully analogous to the perf_try_init_event() nesting
122                  * argument in the comment near perf_event_ctx_lock_nested();
123                  * this child->perf_event_mutex cannot ever deadlock against
124                  * the parent->perf_event_mutex usage from
125                  * perf_event_task_{en,dis}able().
126                  *
127                  * Specifically, inherited events will never occur on
128                  * ->perf_event_list.
129                  */
130                 mutex_lock_nested(tsk_mtx, SINGLE_DEPTH_NESTING);
131                 percpu_down_read(&bp_cpuinfo_sem);
132         } else {
133                 percpu_down_write(&bp_cpuinfo_sem);
134         }
135 
136         return tsk_mtx;
137 }
138 
139 static void bp_constraints_unlock(struct mutex *tsk_mtx)
140 {
141         if (tsk_mtx) {
142                 percpu_up_read(&bp_cpuinfo_sem);
143                 mutex_unlock(tsk_mtx);
144         } else {
145                 percpu_up_write(&bp_cpuinfo_sem);
146         }
147 }
148 
149 static bool bp_constraints_is_locked(struct perf_event *bp)
150 {
151         struct mutex *tsk_mtx = get_task_bps_mutex(bp);
152 
153         return percpu_is_write_locked(&bp_cpuinfo_sem) ||
154                (tsk_mtx ? mutex_is_locked(tsk_mtx) :
155                           percpu_is_read_locked(&bp_cpuinfo_sem));
156 }
157 
158 static inline void assert_bp_constraints_lock_held(struct perf_event *bp)
159 {
160         struct mutex *tsk_mtx = get_task_bps_mutex(bp);
161 
162         if (tsk_mtx)
163                 lockdep_assert_held(tsk_mtx);
164         lockdep_assert_held(&bp_cpuinfo_sem);
165 }
166 
167 #ifdef hw_breakpoint_slots
168 /*
169  * Number of breakpoint slots is constant, and the same for all types.
170  */
171 static_assert(hw_breakpoint_slots(TYPE_INST) == hw_breakpoint_slots(TYPE_DATA));
172 static inline int hw_breakpoint_slots_cached(int type)  { return hw_breakpoint_slots(type); }
173 static inline int init_breakpoint_slots(void)           { return 0; }
174 #else
175 /*
176  * Dynamic number of breakpoint slots.
177  */
178 static int __nr_bp_slots[TYPE_MAX] __ro_after_init;
179 
180 static inline int hw_breakpoint_slots_cached(int type)
181 {
182         return __nr_bp_slots[type];
183 }
184 
185 static __init bool
186 bp_slots_histogram_alloc(struct bp_slots_histogram *hist, enum bp_type_idx type)
187 {
188         hist->count = kcalloc(hw_breakpoint_slots_cached(type), sizeof(*hist->count), GFP_KERNEL);
189         return hist->count;
190 }
191 
192 static __init void bp_slots_histogram_free(struct bp_slots_histogram *hist)
193 {
194         kfree(hist->count);
195 }
196 
197 static __init int init_breakpoint_slots(void)
198 {
199         int i, cpu, err_cpu;
200 
201         for (i = 0; i < TYPE_MAX; i++)
202                 __nr_bp_slots[i] = hw_breakpoint_slots(i);
203 
204         for_each_possible_cpu(cpu) {
205                 for (i = 0; i < TYPE_MAX; i++) {
206                         struct bp_cpuinfo *info = get_bp_info(cpu, i);
207 
208                         if (!bp_slots_histogram_alloc(&info->tsk_pinned, i))
209                                 goto err;
210                 }
211         }
212         for (i = 0; i < TYPE_MAX; i++) {
213                 if (!bp_slots_histogram_alloc(&cpu_pinned[i], i))
214                         goto err;
215                 if (!bp_slots_histogram_alloc(&tsk_pinned_all[i], i))
216                         goto err;
217         }
218 
219         return 0;
220 err:
221         for_each_possible_cpu(err_cpu) {
222                 for (i = 0; i < TYPE_MAX; i++)
223                         bp_slots_histogram_free(&get_bp_info(err_cpu, i)->tsk_pinned);
224                 if (err_cpu == cpu)
225                         break;
226         }
227         for (i = 0; i < TYPE_MAX; i++) {
228                 bp_slots_histogram_free(&cpu_pinned[i]);
229                 bp_slots_histogram_free(&tsk_pinned_all[i]);
230         }
231 
232         return -ENOMEM;
233 }
234 #endif
235 
236 static inline void
237 bp_slots_histogram_add(struct bp_slots_histogram *hist, int old, int val)
238 {
239         const int old_idx = old - 1;
240         const int new_idx = old_idx + val;
241 
242         if (old_idx >= 0)
243                 WARN_ON(atomic_dec_return_relaxed(&hist->count[old_idx]) < 0);
244         if (new_idx >= 0)
245                 WARN_ON(atomic_inc_return_relaxed(&hist->count[new_idx]) < 0);
246 }
247 
248 static int
249 bp_slots_histogram_max(struct bp_slots_histogram *hist, enum bp_type_idx type)
250 {
251         for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) {
252                 const int count = atomic_read(&hist->count[i]);
253 
254                 /* Catch unexpected writers; we want a stable snapshot. */
255                 ASSERT_EXCLUSIVE_WRITER(hist->count[i]);
256                 if (count > 0)
257                         return i + 1;
258                 WARN(count < 0, "inconsistent breakpoint slots histogram");
259         }
260 
261         return 0;
262 }
263 
264 static int
265 bp_slots_histogram_max_merge(struct bp_slots_histogram *hist1, struct bp_slots_histogram *hist2,
266                              enum bp_type_idx type)
267 {
268         for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) {
269                 const int count1 = atomic_read(&hist1->count[i]);
270                 const int count2 = atomic_read(&hist2->count[i]);
271 
272                 /* Catch unexpected writers; we want a stable snapshot. */
273                 ASSERT_EXCLUSIVE_WRITER(hist1->count[i]);
274                 ASSERT_EXCLUSIVE_WRITER(hist2->count[i]);
275                 if (count1 + count2 > 0)
276                         return i + 1;
277                 WARN(count1 < 0, "inconsistent breakpoint slots histogram");
278                 WARN(count2 < 0, "inconsistent breakpoint slots histogram");
279         }
280 
281         return 0;
282 }
283 
284 #ifndef hw_breakpoint_weight
285 static inline int hw_breakpoint_weight(struct perf_event *bp)
286 {
287         return 1;
288 }
289 #endif
290 
291 static inline enum bp_type_idx find_slot_idx(u64 bp_type)
292 {
293         if (bp_type & HW_BREAKPOINT_RW)
294                 return TYPE_DATA;
295 
296         return TYPE_INST;
297 }
298 
299 /*
300  * Return the maximum number of pinned breakpoints a task has in this CPU.
301  */
302 static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
303 {
304         struct bp_slots_histogram *tsk_pinned = &get_bp_info(cpu, type)->tsk_pinned;
305 
306         /*
307          * At this point we want to have acquired the bp_cpuinfo_sem as a
308          * writer to ensure that there are no concurrent writers in
309          * toggle_bp_task_slot() to tsk_pinned, and we get a stable snapshot.
310          */
311         lockdep_assert_held_write(&bp_cpuinfo_sem);
312         return bp_slots_histogram_max_merge(tsk_pinned, &tsk_pinned_all[type], type);
313 }
314 
315 /*
316  * Count the number of breakpoints of the same type and same task.
317  * The given event must be not on the list.
318  *
319  * If @cpu is -1, but the result of task_bp_pinned() is not CPU-independent,
320  * returns a negative value.
321  */
322 static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type)
323 {
324         struct rhlist_head *head, *pos;
325         struct perf_event *iter;
326         int count = 0;
327 
328         /*
329          * We need a stable snapshot of the per-task breakpoint list.
330          */
331         assert_bp_constraints_lock_held(bp);
332 
333         rcu_read_lock();
334         head = rhltable_lookup(&task_bps_ht, &bp->hw.target, task_bps_ht_params);
335         if (!head)
336                 goto out;
337 
338         rhl_for_each_entry_rcu(iter, pos, head, hw.bp_list) {
339                 if (find_slot_idx(iter->attr.bp_type) != type)
340                         continue;
341 
342                 if (iter->cpu >= 0) {
343                         if (cpu == -1) {
344                                 count = -1;
345                                 goto out;
346                         } else if (cpu != iter->cpu)
347                                 continue;
348                 }
349 
350                 count += hw_breakpoint_weight(iter);
351         }
352 
353 out:
354         rcu_read_unlock();
355         return count;
356 }
357 
358 static const struct cpumask *cpumask_of_bp(struct perf_event *bp)
359 {
360         if (bp->cpu >= 0)
361                 return cpumask_of(bp->cpu);
362         return cpu_possible_mask;
363 }
364 
365 /*
366  * Returns the max pinned breakpoint slots in a given
367  * CPU (cpu > -1) or across all of them (cpu = -1).
368  */
369 static int
370 max_bp_pinned_slots(struct perf_event *bp, enum bp_type_idx type)
371 {
372         const struct cpumask *cpumask = cpumask_of_bp(bp);
373         int pinned_slots = 0;
374         int cpu;
375 
376         if (bp->hw.target && bp->cpu < 0) {
377                 int max_pinned = task_bp_pinned(-1, bp, type);
378 
379                 if (max_pinned >= 0) {
380                         /*
381                          * Fast path: task_bp_pinned() is CPU-independent and
382                          * returns the same value for any CPU.
383                          */
384                         max_pinned += bp_slots_histogram_max(&cpu_pinned[type], type);
385                         return max_pinned;
386                 }
387         }
388 
389         for_each_cpu(cpu, cpumask) {
390                 struct bp_cpuinfo *info = get_bp_info(cpu, type);
391                 int nr;
392 
393                 nr = info->cpu_pinned;
394                 if (!bp->hw.target)
395                         nr += max_task_bp_pinned(cpu, type);
396                 else
397                         nr += task_bp_pinned(cpu, bp, type);
398 
399                 pinned_slots = max(nr, pinned_slots);
400         }
401 
402         return pinned_slots;
403 }
404 
405 /*
406  * Add/remove the given breakpoint in our constraint table
407  */
408 static int
409 toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type, int weight)
410 {
411         int cpu, next_tsk_pinned;
412 
413         if (!enable)
414                 weight = -weight;
415 
416         if (!bp->hw.target) {
417                 /*
418                  * Update the pinned CPU slots, in per-CPU bp_cpuinfo and in the
419                  * global histogram.
420                  */
421                 struct bp_cpuinfo *info = get_bp_info(bp->cpu, type);
422 
423                 lockdep_assert_held_write(&bp_cpuinfo_sem);
424                 bp_slots_histogram_add(&cpu_pinned[type], info->cpu_pinned, weight);
425                 info->cpu_pinned += weight;
426                 return 0;
427         }
428 
429         /*
430          * If bp->hw.target, tsk_pinned is only modified, but not used
431          * otherwise. We can permit concurrent updates as long as there are no
432          * other uses: having acquired bp_cpuinfo_sem as a reader allows
433          * concurrent updates here. Uses of tsk_pinned will require acquiring
434          * bp_cpuinfo_sem as a writer to stabilize tsk_pinned's value.
435          */
436         lockdep_assert_held_read(&bp_cpuinfo_sem);
437 
438         /*
439          * Update the pinned task slots, in per-CPU bp_cpuinfo and in the global
440          * histogram. We need to take care of 4 cases:
441          *
442          *  1. This breakpoint targets all CPUs (cpu < 0), and there may only
443          *     exist other task breakpoints targeting all CPUs. In this case we
444          *     can simply update the global slots histogram.
445          *
446          *  2. This breakpoint targets a specific CPU (cpu >= 0), but there may
447          *     only exist other task breakpoints targeting all CPUs.
448          *
449          *     a. On enable: remove the existing breakpoints from the global
450          *        slots histogram and use the per-CPU histogram.
451          *
452          *     b. On disable: re-insert the existing breakpoints into the global
453          *        slots histogram and remove from per-CPU histogram.
454          *
455          *  3. Some other existing task breakpoints target specific CPUs. Only
456          *     update the per-CPU slots histogram.
457          */
458 
459         if (!enable) {
460                 /*
461                  * Remove before updating histograms so we can determine if this
462                  * was the last task breakpoint for a specific CPU.
463                  */
464                 int ret = rhltable_remove(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params);
465 
466                 if (ret)
467                         return ret;
468         }
469         /*
470          * Note: If !enable, next_tsk_pinned will not count the to-be-removed breakpoint.
471          */
472         next_tsk_pinned = task_bp_pinned(-1, bp, type);
473 
474         if (next_tsk_pinned >= 0) {
475                 if (bp->cpu < 0) { /* Case 1: fast path */
476                         if (!enable)
477                                 next_tsk_pinned += hw_breakpoint_weight(bp);
478                         bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned, weight);
479                 } else if (enable) { /* Case 2.a: slow path */
480                         /* Add existing to per-CPU histograms. */
481                         for_each_possible_cpu(cpu) {
482                                 bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
483                                                        0, next_tsk_pinned);
484                         }
485                         /* Add this first CPU-pinned task breakpoint. */
486                         bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned,
487                                                next_tsk_pinned, weight);
488                         /* Rebalance global task pinned histogram. */
489                         bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned,
490                                                -next_tsk_pinned);
491                 } else { /* Case 2.b: slow path */
492                         /* Remove this last CPU-pinned task breakpoint. */
493                         bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned,
494                                                next_tsk_pinned + hw_breakpoint_weight(bp), weight);
495                         /* Remove all from per-CPU histograms. */
496                         for_each_possible_cpu(cpu) {
497                                 bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
498                                                        next_tsk_pinned, -next_tsk_pinned);
499                         }
500                         /* Rebalance global task pinned histogram. */
501                         bp_slots_histogram_add(&tsk_pinned_all[type], 0, next_tsk_pinned);
502                 }
503         } else { /* Case 3: slow path */
504                 const struct cpumask *cpumask = cpumask_of_bp(bp);
505 
506                 for_each_cpu(cpu, cpumask) {
507                         next_tsk_pinned = task_bp_pinned(cpu, bp, type);
508                         if (!enable)
509                                 next_tsk_pinned += hw_breakpoint_weight(bp);
510                         bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned,
511                                                next_tsk_pinned, weight);
512                 }
513         }
514 
515         /*
516          * Readers want a stable snapshot of the per-task breakpoint list.
517          */
518         assert_bp_constraints_lock_held(bp);
519 
520         if (enable)
521                 return rhltable_insert(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params);
522 
523         return 0;
524 }
525 
526 /*
527  * Constraints to check before allowing this new breakpoint counter.
528  *
529  * Note: Flexible breakpoints are currently unimplemented, but outlined in the
530  * below algorithm for completeness.  The implementation treats flexible as
531  * pinned due to no guarantee that we currently always schedule flexible events
532  * before a pinned event in a same CPU.
533  *
534  *  == Non-pinned counter == (Considered as pinned for now)
535  *
536  *   - If attached to a single cpu, check:
537  *
538  *       (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu)
539  *           + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM
540  *
541  *       -> If there are already non-pinned counters in this cpu, it means
542  *          there is already a free slot for them.
543  *          Otherwise, we check that the maximum number of per task
544  *          breakpoints (for this cpu) plus the number of per cpu breakpoint
545  *          (for this cpu) doesn't cover every registers.
546  *
547  *   - If attached to every cpus, check:
548  *
549  *       (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *))
550  *           + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM
551  *
552  *       -> This is roughly the same, except we check the number of per cpu
553  *          bp for every cpu and we keep the max one. Same for the per tasks
554  *          breakpoints.
555  *
556  *
557  * == Pinned counter ==
558  *
559  *   - If attached to a single cpu, check:
560  *
561  *       ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu)
562  *            + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM
563  *
564  *       -> Same checks as before. But now the info->flexible, if any, must keep
565  *          one register at least (or they will never be fed).
566  *
567  *   - If attached to every cpus, check:
568  *
569  *       ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *))
570  *            + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM
571  */
572 static int __reserve_bp_slot(struct perf_event *bp, u64 bp_type)
573 {
574         enum bp_type_idx type;
575         int max_pinned_slots;
576         int weight;
577 
578         /* We couldn't initialize breakpoint constraints on boot */
579         if (!constraints_initialized)
580                 return -ENOMEM;
581 
582         /* Basic checks */
583         if (bp_type == HW_BREAKPOINT_EMPTY ||
584             bp_type == HW_BREAKPOINT_INVALID)
585                 return -EINVAL;
586 
587         type = find_slot_idx(bp_type);
588         weight = hw_breakpoint_weight(bp);
589 
590         /* Check if this new breakpoint can be satisfied across all CPUs. */
591         max_pinned_slots = max_bp_pinned_slots(bp, type) + weight;
592         if (max_pinned_slots > hw_breakpoint_slots_cached(type))
593                 return -ENOSPC;
594 
595         return toggle_bp_slot(bp, true, type, weight);
596 }
597 
598 int reserve_bp_slot(struct perf_event *bp)
599 {
600         struct mutex *mtx = bp_constraints_lock(bp);
601         int ret = __reserve_bp_slot(bp, bp->attr.bp_type);
602 
603         bp_constraints_unlock(mtx);
604         return ret;
605 }
606 
607 static void __release_bp_slot(struct perf_event *bp, u64 bp_type)
608 {
609         enum bp_type_idx type;
610         int weight;
611 
612         type = find_slot_idx(bp_type);
613         weight = hw_breakpoint_weight(bp);
614         WARN_ON(toggle_bp_slot(bp, false, type, weight));
615 }
616 
617 void release_bp_slot(struct perf_event *bp)
618 {
619         struct mutex *mtx = bp_constraints_lock(bp);
620 
621         __release_bp_slot(bp, bp->attr.bp_type);
622         bp_constraints_unlock(mtx);
623 }
624 
625 static int __modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
626 {
627         int err;
628 
629         __release_bp_slot(bp, old_type);
630 
631         err = __reserve_bp_slot(bp, new_type);
632         if (err) {
633                 /*
634                  * Reserve the old_type slot back in case
635                  * there's no space for the new type.
636                  *
637                  * This must succeed, because we just released
638                  * the old_type slot in the __release_bp_slot
639                  * call above. If not, something is broken.
640                  */
641                 WARN_ON(__reserve_bp_slot(bp, old_type));
642         }
643 
644         return err;
645 }
646 
647 static int modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
648 {
649         struct mutex *mtx = bp_constraints_lock(bp);
650         int ret = __modify_bp_slot(bp, old_type, new_type);
651 
652         bp_constraints_unlock(mtx);
653         return ret;
654 }
655 
656 /*
657  * Allow the kernel debugger to reserve breakpoint slots without
658  * taking a lock using the dbg_* variant of for the reserve and
659  * release breakpoint slots.
660  */
661 int dbg_reserve_bp_slot(struct perf_event *bp)
662 {
663         int ret;
664 
665         if (bp_constraints_is_locked(bp))
666                 return -1;
667 
668         /* Locks aren't held; disable lockdep assert checking. */
669         lockdep_off();
670         ret = __reserve_bp_slot(bp, bp->attr.bp_type);
671         lockdep_on();
672 
673         return ret;
674 }
675 
676 int dbg_release_bp_slot(struct perf_event *bp)
677 {
678         if (bp_constraints_is_locked(bp))
679                 return -1;
680 
681         /* Locks aren't held; disable lockdep assert checking. */
682         lockdep_off();
683         __release_bp_slot(bp, bp->attr.bp_type);
684         lockdep_on();
685 
686         return 0;
687 }
688 
689 static int hw_breakpoint_parse(struct perf_event *bp,
690                                const struct perf_event_attr *attr,
691                                struct arch_hw_breakpoint *hw)
692 {
693         int err;
694 
695         err = hw_breakpoint_arch_parse(bp, attr, hw);
696         if (err)
697                 return err;
698 
699         if (arch_check_bp_in_kernelspace(hw)) {
700                 if (attr->exclude_kernel)
701                         return -EINVAL;
702                 /*
703                  * Don't let unprivileged users set a breakpoint in the trap
704                  * path to avoid trap recursion attacks.
705                  */
706                 if (!capable(CAP_SYS_ADMIN))
707                         return -EPERM;
708         }
709 
710         return 0;
711 }
712 
713 int register_perf_hw_breakpoint(struct perf_event *bp)
714 {
715         struct arch_hw_breakpoint hw = { };
716         int err;
717 
718         err = reserve_bp_slot(bp);
719         if (err)
720                 return err;
721 
722         err = hw_breakpoint_parse(bp, &bp->attr, &hw);
723         if (err) {
724                 release_bp_slot(bp);
725                 return err;
726         }
727 
728         bp->hw.info = hw;
729 
730         return 0;
731 }
732 
733 /**
734  * register_user_hw_breakpoint - register a hardware breakpoint for user space
735  * @attr: breakpoint attributes
736  * @triggered: callback to trigger when we hit the breakpoint
737  * @context: context data could be used in the triggered callback
738  * @tsk: pointer to 'task_struct' of the process to which the address belongs
739  */
740 struct perf_event *
741 register_user_hw_breakpoint(struct perf_event_attr *attr,
742                             perf_overflow_handler_t triggered,
743                             void *context,
744                             struct task_struct *tsk)
745 {
746         return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
747                                                 context);
748 }
749 EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
750 
751 static void hw_breakpoint_copy_attr(struct perf_event_attr *to,
752                                     struct perf_event_attr *from)
753 {
754         to->bp_addr = from->bp_addr;
755         to->bp_type = from->bp_type;
756         to->bp_len  = from->bp_len;
757         to->disabled = from->disabled;
758 }
759 
760 int
761 modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr,
762                                 bool check)
763 {
764         struct arch_hw_breakpoint hw = { };
765         int err;
766 
767         err = hw_breakpoint_parse(bp, attr, &hw);
768         if (err)
769                 return err;
770 
771         if (check) {
772                 struct perf_event_attr old_attr;
773 
774                 old_attr = bp->attr;
775                 hw_breakpoint_copy_attr(&old_attr, attr);
776                 if (memcmp(&old_attr, attr, sizeof(*attr)))
777                         return -EINVAL;
778         }
779 
780         if (bp->attr.bp_type != attr->bp_type) {
781                 err = modify_bp_slot(bp, bp->attr.bp_type, attr->bp_type);
782                 if (err)
783                         return err;
784         }
785 
786         hw_breakpoint_copy_attr(&bp->attr, attr);
787         bp->hw.info = hw;
788 
789         return 0;
790 }
791 
792 /**
793  * modify_user_hw_breakpoint - modify a user-space hardware breakpoint
794  * @bp: the breakpoint structure to modify
795  * @attr: new breakpoint attributes
796  */
797 int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
798 {
799         int err;
800 
801         /*
802          * modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
803          * will not be possible to raise IPIs that invoke __perf_event_disable.
804          * So call the function directly after making sure we are targeting the
805          * current task.
806          */
807         if (irqs_disabled() && bp->ctx && bp->ctx->task == current)
808                 perf_event_disable_local(bp);
809         else
810                 perf_event_disable(bp);
811 
812         err = modify_user_hw_breakpoint_check(bp, attr, false);
813 
814         if (!bp->attr.disabled)
815                 perf_event_enable(bp);
816 
817         return err;
818 }
819 EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
820 
821 /**
822  * unregister_hw_breakpoint - unregister a user-space hardware breakpoint
823  * @bp: the breakpoint structure to unregister
824  */
825 void unregister_hw_breakpoint(struct perf_event *bp)
826 {
827         if (!bp)
828                 return;
829         perf_event_release_kernel(bp);
830 }
831 EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
832 
833 /**
834  * register_wide_hw_breakpoint - register a wide breakpoint in the kernel
835  * @attr: breakpoint attributes
836  * @triggered: callback to trigger when we hit the breakpoint
837  * @context: context data could be used in the triggered callback
838  *
839  * @return a set of per_cpu pointers to perf events
840  */
841 struct perf_event * __percpu *
842 register_wide_hw_breakpoint(struct perf_event_attr *attr,
843                             perf_overflow_handler_t triggered,
844                             void *context)
845 {
846         struct perf_event * __percpu *cpu_events, *bp;
847         long err = 0;
848         int cpu;
849 
850         cpu_events = alloc_percpu(typeof(*cpu_events));
851         if (!cpu_events)
852                 return (void __percpu __force *)ERR_PTR(-ENOMEM);
853 
854         cpus_read_lock();
855         for_each_online_cpu(cpu) {
856                 bp = perf_event_create_kernel_counter(attr, cpu, NULL,
857                                                       triggered, context);
858                 if (IS_ERR(bp)) {
859                         err = PTR_ERR(bp);
860                         break;
861                 }
862 
863                 per_cpu(*cpu_events, cpu) = bp;
864         }
865         cpus_read_unlock();
866 
867         if (likely(!err))
868                 return cpu_events;
869 
870         unregister_wide_hw_breakpoint(cpu_events);
871         return (void __percpu __force *)ERR_PTR(err);
872 }
873 EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
874 
875 /**
876  * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
877  * @cpu_events: the per cpu set of events to unregister
878  */
879 void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
880 {
881         int cpu;
882 
883         for_each_possible_cpu(cpu)
884                 unregister_hw_breakpoint(per_cpu(*cpu_events, cpu));
885 
886         free_percpu(cpu_events);
887 }
888 EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
889 
890 /**
891  * hw_breakpoint_is_used - check if breakpoints are currently used
892  *
893  * Returns: true if breakpoints are used, false otherwise.
894  */
895 bool hw_breakpoint_is_used(void)
896 {
897         int cpu;
898 
899         if (!constraints_initialized)
900                 return false;
901 
902         for_each_possible_cpu(cpu) {
903                 for (int type = 0; type < TYPE_MAX; ++type) {
904                         struct bp_cpuinfo *info = get_bp_info(cpu, type);
905 
906                         if (info->cpu_pinned)
907                                 return true;
908 
909                         for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) {
910                                 if (atomic_read(&info->tsk_pinned.count[slot]))
911                                         return true;
912                         }
913                 }
914         }
915 
916         for (int type = 0; type < TYPE_MAX; ++type) {
917                 for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) {
918                         /*
919                          * Warn, because if there are CPU pinned counters,
920                          * should never get here; bp_cpuinfo::cpu_pinned should
921                          * be consistent with the global cpu_pinned histogram.
922                          */
923                         if (WARN_ON(atomic_read(&cpu_pinned[type].count[slot])))
924                                 return true;
925 
926                         if (atomic_read(&tsk_pinned_all[type].count[slot]))
927                                 return true;
928                 }
929         }
930 
931         return false;
932 }
933 
934 static struct notifier_block hw_breakpoint_exceptions_nb = {
935         .notifier_call = hw_breakpoint_exceptions_notify,
936         /* we need to be notified first */
937         .priority = 0x7fffffff
938 };
939 
940 static void bp_perf_event_destroy(struct perf_event *event)
941 {
942         release_bp_slot(event);
943 }
944 
945 static int hw_breakpoint_event_init(struct perf_event *bp)
946 {
947         int err;
948 
949         if (bp->attr.type != PERF_TYPE_BREAKPOINT)
950                 return -ENOENT;
951 
952         /*
953          * no branch sampling for breakpoint events
954          */
955         if (has_branch_stack(bp))
956                 return -EOPNOTSUPP;
957 
958         err = register_perf_hw_breakpoint(bp);
959         if (err)
960                 return err;
961 
962         bp->destroy = bp_perf_event_destroy;
963 
964         return 0;
965 }
966 
967 static int hw_breakpoint_add(struct perf_event *bp, int flags)
968 {
969         if (!(flags & PERF_EF_START))
970                 bp->hw.state = PERF_HES_STOPPED;
971 
972         if (is_sampling_event(bp)) {
973                 bp->hw.last_period = bp->hw.sample_period;
974                 perf_swevent_set_period(bp);
975         }
976 
977         return arch_install_hw_breakpoint(bp);
978 }
979 
980 static void hw_breakpoint_del(struct perf_event *bp, int flags)
981 {
982         arch_uninstall_hw_breakpoint(bp);
983 }
984 
985 static void hw_breakpoint_start(struct perf_event *bp, int flags)
986 {
987         bp->hw.state = 0;
988 }
989 
990 static void hw_breakpoint_stop(struct perf_event *bp, int flags)
991 {
992         bp->hw.state = PERF_HES_STOPPED;
993 }
994 
995 static struct pmu perf_breakpoint = {
996         .task_ctx_nr    = perf_sw_context, /* could eventually get its own */
997 
998         .event_init     = hw_breakpoint_event_init,
999         .add            = hw_breakpoint_add,
1000         .del            = hw_breakpoint_del,
1001         .start          = hw_breakpoint_start,
1002         .stop           = hw_breakpoint_stop,
1003         .read           = hw_breakpoint_pmu_read,
1004 };
1005 
1006 int __init init_hw_breakpoint(void)
1007 {
1008         int ret;
1009 
1010         ret = rhltable_init(&task_bps_ht, &task_bps_ht_params);
1011         if (ret)
1012                 return ret;
1013 
1014         ret = init_breakpoint_slots();
1015         if (ret)
1016                 return ret;
1017 
1018         constraints_initialized = true;
1019 
1020         perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
1021 
1022         return register_die_notifier(&hw_breakpoint_exceptions_nb);
1023 }
1024 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php