~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/exit.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  linux/kernel/exit.c
  4  *
  5  *  Copyright (C) 1991, 1992  Linus Torvalds
  6  */
  7 
  8 #include <linux/mm.h>
  9 #include <linux/slab.h>
 10 #include <linux/sched/autogroup.h>
 11 #include <linux/sched/mm.h>
 12 #include <linux/sched/stat.h>
 13 #include <linux/sched/task.h>
 14 #include <linux/sched/task_stack.h>
 15 #include <linux/sched/cputime.h>
 16 #include <linux/interrupt.h>
 17 #include <linux/module.h>
 18 #include <linux/capability.h>
 19 #include <linux/completion.h>
 20 #include <linux/personality.h>
 21 #include <linux/tty.h>
 22 #include <linux/iocontext.h>
 23 #include <linux/key.h>
 24 #include <linux/cpu.h>
 25 #include <linux/acct.h>
 26 #include <linux/tsacct_kern.h>
 27 #include <linux/file.h>
 28 #include <linux/fdtable.h>
 29 #include <linux/freezer.h>
 30 #include <linux/binfmts.h>
 31 #include <linux/nsproxy.h>
 32 #include <linux/pid_namespace.h>
 33 #include <linux/ptrace.h>
 34 #include <linux/profile.h>
 35 #include <linux/mount.h>
 36 #include <linux/proc_fs.h>
 37 #include <linux/kthread.h>
 38 #include <linux/mempolicy.h>
 39 #include <linux/taskstats_kern.h>
 40 #include <linux/delayacct.h>
 41 #include <linux/cgroup.h>
 42 #include <linux/syscalls.h>
 43 #include <linux/signal.h>
 44 #include <linux/posix-timers.h>
 45 #include <linux/cn_proc.h>
 46 #include <linux/mutex.h>
 47 #include <linux/futex.h>
 48 #include <linux/pipe_fs_i.h>
 49 #include <linux/audit.h> /* for audit_free() */
 50 #include <linux/resource.h>
 51 #include <linux/task_io_accounting_ops.h>
 52 #include <linux/blkdev.h>
 53 #include <linux/task_work.h>
 54 #include <linux/fs_struct.h>
 55 #include <linux/init_task.h>
 56 #include <linux/perf_event.h>
 57 #include <trace/events/sched.h>
 58 #include <linux/hw_breakpoint.h>
 59 #include <linux/oom.h>
 60 #include <linux/writeback.h>
 61 #include <linux/shm.h>
 62 #include <linux/kcov.h>
 63 #include <linux/kmsan.h>
 64 #include <linux/random.h>
 65 #include <linux/rcuwait.h>
 66 #include <linux/compat.h>
 67 #include <linux/io_uring.h>
 68 #include <linux/kprobes.h>
 69 #include <linux/rethook.h>
 70 #include <linux/sysfs.h>
 71 #include <linux/user_events.h>
 72 #include <linux/uaccess.h>
 73 
 74 #include <uapi/linux/wait.h>
 75 
 76 #include <asm/unistd.h>
 77 #include <asm/mmu_context.h>
 78 
 79 #include "exit.h"
 80 
 81 /*
 82  * The default value should be high enough to not crash a system that randomly
 83  * crashes its kernel from time to time, but low enough to at least not permit
 84  * overflowing 32-bit refcounts or the ldsem writer count.
 85  */
 86 static unsigned int oops_limit = 10000;
 87 
 88 #ifdef CONFIG_SYSCTL
 89 static struct ctl_table kern_exit_table[] = {
 90         {
 91                 .procname       = "oops_limit",
 92                 .data           = &oops_limit,
 93                 .maxlen         = sizeof(oops_limit),
 94                 .mode           = 0644,
 95                 .proc_handler   = proc_douintvec,
 96         },
 97 };
 98 
 99 static __init int kernel_exit_sysctls_init(void)
100 {
101         register_sysctl_init("kernel", kern_exit_table);
102         return 0;
103 }
104 late_initcall(kernel_exit_sysctls_init);
105 #endif
106 
107 static atomic_t oops_count = ATOMIC_INIT(0);
108 
109 #ifdef CONFIG_SYSFS
110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
111                                char *page)
112 {
113         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
114 }
115 
116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
117 
118 static __init int kernel_exit_sysfs_init(void)
119 {
120         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
121         return 0;
122 }
123 late_initcall(kernel_exit_sysfs_init);
124 #endif
125 
126 static void __unhash_process(struct task_struct *p, bool group_dead)
127 {
128         nr_threads--;
129         detach_pid(p, PIDTYPE_PID);
130         if (group_dead) {
131                 detach_pid(p, PIDTYPE_TGID);
132                 detach_pid(p, PIDTYPE_PGID);
133                 detach_pid(p, PIDTYPE_SID);
134 
135                 list_del_rcu(&p->tasks);
136                 list_del_init(&p->sibling);
137                 __this_cpu_dec(process_counts);
138         }
139         list_del_rcu(&p->thread_node);
140 }
141 
142 /*
143  * This function expects the tasklist_lock write-locked.
144  */
145 static void __exit_signal(struct task_struct *tsk)
146 {
147         struct signal_struct *sig = tsk->signal;
148         bool group_dead = thread_group_leader(tsk);
149         struct sighand_struct *sighand;
150         struct tty_struct *tty;
151         u64 utime, stime;
152 
153         sighand = rcu_dereference_check(tsk->sighand,
154                                         lockdep_tasklist_lock_is_held());
155         spin_lock(&sighand->siglock);
156 
157 #ifdef CONFIG_POSIX_TIMERS
158         posix_cpu_timers_exit(tsk);
159         if (group_dead)
160                 posix_cpu_timers_exit_group(tsk);
161 #endif
162 
163         if (group_dead) {
164                 tty = sig->tty;
165                 sig->tty = NULL;
166         } else {
167                 /*
168                  * If there is any task waiting for the group exit
169                  * then notify it:
170                  */
171                 if (sig->notify_count > 0 && !--sig->notify_count)
172                         wake_up_process(sig->group_exec_task);
173 
174                 if (tsk == sig->curr_target)
175                         sig->curr_target = next_thread(tsk);
176         }
177 
178         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
179                               sizeof(unsigned long long));
180 
181         /*
182          * Accumulate here the counters for all threads as they die. We could
183          * skip the group leader because it is the last user of signal_struct,
184          * but we want to avoid the race with thread_group_cputime() which can
185          * see the empty ->thread_head list.
186          */
187         task_cputime(tsk, &utime, &stime);
188         write_seqlock(&sig->stats_lock);
189         sig->utime += utime;
190         sig->stime += stime;
191         sig->gtime += task_gtime(tsk);
192         sig->min_flt += tsk->min_flt;
193         sig->maj_flt += tsk->maj_flt;
194         sig->nvcsw += tsk->nvcsw;
195         sig->nivcsw += tsk->nivcsw;
196         sig->inblock += task_io_get_inblock(tsk);
197         sig->oublock += task_io_get_oublock(tsk);
198         task_io_accounting_add(&sig->ioac, &tsk->ioac);
199         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
200         sig->nr_threads--;
201         __unhash_process(tsk, group_dead);
202         write_sequnlock(&sig->stats_lock);
203 
204         /*
205          * Do this under ->siglock, we can race with another thread
206          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
207          */
208         flush_sigqueue(&tsk->pending);
209         tsk->sighand = NULL;
210         spin_unlock(&sighand->siglock);
211 
212         __cleanup_sighand(sighand);
213         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
214         if (group_dead) {
215                 flush_sigqueue(&sig->shared_pending);
216                 tty_kref_put(tty);
217         }
218 }
219 
220 static void delayed_put_task_struct(struct rcu_head *rhp)
221 {
222         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
223 
224         kprobe_flush_task(tsk);
225         rethook_flush_task(tsk);
226         perf_event_delayed_put(tsk);
227         trace_sched_process_free(tsk);
228         put_task_struct(tsk);
229 }
230 
231 void put_task_struct_rcu_user(struct task_struct *task)
232 {
233         if (refcount_dec_and_test(&task->rcu_users))
234                 call_rcu(&task->rcu, delayed_put_task_struct);
235 }
236 
237 void __weak release_thread(struct task_struct *dead_task)
238 {
239 }
240 
241 void release_task(struct task_struct *p)
242 {
243         struct task_struct *leader;
244         struct pid *thread_pid;
245         int zap_leader;
246 repeat:
247         /* don't need to get the RCU readlock here - the process is dead and
248          * can't be modifying its own credentials. But shut RCU-lockdep up */
249         rcu_read_lock();
250         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
251         rcu_read_unlock();
252 
253         cgroup_release(p);
254 
255         write_lock_irq(&tasklist_lock);
256         ptrace_release_task(p);
257         thread_pid = get_pid(p->thread_pid);
258         __exit_signal(p);
259 
260         /*
261          * If we are the last non-leader member of the thread
262          * group, and the leader is zombie, then notify the
263          * group leader's parent process. (if it wants notification.)
264          */
265         zap_leader = 0;
266         leader = p->group_leader;
267         if (leader != p && thread_group_empty(leader)
268                         && leader->exit_state == EXIT_ZOMBIE) {
269                 /*
270                  * If we were the last child thread and the leader has
271                  * exited already, and the leader's parent ignores SIGCHLD,
272                  * then we are the one who should release the leader.
273                  */
274                 zap_leader = do_notify_parent(leader, leader->exit_signal);
275                 if (zap_leader)
276                         leader->exit_state = EXIT_DEAD;
277         }
278 
279         write_unlock_irq(&tasklist_lock);
280         proc_flush_pid(thread_pid);
281         put_pid(thread_pid);
282         release_thread(p);
283         put_task_struct_rcu_user(p);
284 
285         p = leader;
286         if (unlikely(zap_leader))
287                 goto repeat;
288 }
289 
290 int rcuwait_wake_up(struct rcuwait *w)
291 {
292         int ret = 0;
293         struct task_struct *task;
294 
295         rcu_read_lock();
296 
297         /*
298          * Order condition vs @task, such that everything prior to the load
299          * of @task is visible. This is the condition as to why the user called
300          * rcuwait_wake() in the first place. Pairs with set_current_state()
301          * barrier (A) in rcuwait_wait_event().
302          *
303          *    WAIT                WAKE
304          *    [S] tsk = current   [S] cond = true
305          *        MB (A)              MB (B)
306          *    [L] cond            [L] tsk
307          */
308         smp_mb(); /* (B) */
309 
310         task = rcu_dereference(w->task);
311         if (task)
312                 ret = wake_up_process(task);
313         rcu_read_unlock();
314 
315         return ret;
316 }
317 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
318 
319 /*
320  * Determine if a process group is "orphaned", according to the POSIX
321  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
322  * by terminal-generated stop signals.  Newly orphaned process groups are
323  * to receive a SIGHUP and a SIGCONT.
324  *
325  * "I ask you, have you ever known what it is to be an orphan?"
326  */
327 static int will_become_orphaned_pgrp(struct pid *pgrp,
328                                         struct task_struct *ignored_task)
329 {
330         struct task_struct *p;
331 
332         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
333                 if ((p == ignored_task) ||
334                     (p->exit_state && thread_group_empty(p)) ||
335                     is_global_init(p->real_parent))
336                         continue;
337 
338                 if (task_pgrp(p->real_parent) != pgrp &&
339                     task_session(p->real_parent) == task_session(p))
340                         return 0;
341         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
342 
343         return 1;
344 }
345 
346 int is_current_pgrp_orphaned(void)
347 {
348         int retval;
349 
350         read_lock(&tasklist_lock);
351         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
352         read_unlock(&tasklist_lock);
353 
354         return retval;
355 }
356 
357 static bool has_stopped_jobs(struct pid *pgrp)
358 {
359         struct task_struct *p;
360 
361         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
362                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
363                         return true;
364         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
365 
366         return false;
367 }
368 
369 /*
370  * Check to see if any process groups have become orphaned as
371  * a result of our exiting, and if they have any stopped jobs,
372  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
373  */
374 static void
375 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
376 {
377         struct pid *pgrp = task_pgrp(tsk);
378         struct task_struct *ignored_task = tsk;
379 
380         if (!parent)
381                 /* exit: our father is in a different pgrp than
382                  * we are and we were the only connection outside.
383                  */
384                 parent = tsk->real_parent;
385         else
386                 /* reparent: our child is in a different pgrp than
387                  * we are, and it was the only connection outside.
388                  */
389                 ignored_task = NULL;
390 
391         if (task_pgrp(parent) != pgrp &&
392             task_session(parent) == task_session(tsk) &&
393             will_become_orphaned_pgrp(pgrp, ignored_task) &&
394             has_stopped_jobs(pgrp)) {
395                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
396                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
397         }
398 }
399 
400 static void coredump_task_exit(struct task_struct *tsk)
401 {
402         struct core_state *core_state;
403 
404         /*
405          * Serialize with any possible pending coredump.
406          * We must hold siglock around checking core_state
407          * and setting PF_POSTCOREDUMP.  The core-inducing thread
408          * will increment ->nr_threads for each thread in the
409          * group without PF_POSTCOREDUMP set.
410          */
411         spin_lock_irq(&tsk->sighand->siglock);
412         tsk->flags |= PF_POSTCOREDUMP;
413         core_state = tsk->signal->core_state;
414         spin_unlock_irq(&tsk->sighand->siglock);
415         if (core_state) {
416                 struct core_thread self;
417 
418                 self.task = current;
419                 if (self.task->flags & PF_SIGNALED)
420                         self.next = xchg(&core_state->dumper.next, &self);
421                 else
422                         self.task = NULL;
423                 /*
424                  * Implies mb(), the result of xchg() must be visible
425                  * to core_state->dumper.
426                  */
427                 if (atomic_dec_and_test(&core_state->nr_threads))
428                         complete(&core_state->startup);
429 
430                 for (;;) {
431                         set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
432                         if (!self.task) /* see coredump_finish() */
433                                 break;
434                         schedule();
435                 }
436                 __set_current_state(TASK_RUNNING);
437         }
438 }
439 
440 #ifdef CONFIG_MEMCG
441 /* drops tasklist_lock if succeeds */
442 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
443 {
444         bool ret = false;
445 
446         task_lock(tsk);
447         if (likely(tsk->mm == mm)) {
448                 /* tsk can't pass exit_mm/exec_mmap and exit */
449                 read_unlock(&tasklist_lock);
450                 WRITE_ONCE(mm->owner, tsk);
451                 lru_gen_migrate_mm(mm);
452                 ret = true;
453         }
454         task_unlock(tsk);
455         return ret;
456 }
457 
458 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
459 {
460         struct task_struct *t;
461 
462         for_each_thread(g, t) {
463                 struct mm_struct *t_mm = READ_ONCE(t->mm);
464                 if (t_mm == mm) {
465                         if (__try_to_set_owner(t, mm))
466                                 return true;
467                 } else if (t_mm)
468                         break;
469         }
470 
471         return false;
472 }
473 
474 /*
475  * A task is exiting.   If it owned this mm, find a new owner for the mm.
476  */
477 void mm_update_next_owner(struct mm_struct *mm)
478 {
479         struct task_struct *g, *p = current;
480 
481         /*
482          * If the exiting or execing task is not the owner, it's
483          * someone else's problem.
484          */
485         if (mm->owner != p)
486                 return;
487         /*
488          * The current owner is exiting/execing and there are no other
489          * candidates.  Do not leave the mm pointing to a possibly
490          * freed task structure.
491          */
492         if (atomic_read(&mm->mm_users) <= 1) {
493                 WRITE_ONCE(mm->owner, NULL);
494                 return;
495         }
496 
497         read_lock(&tasklist_lock);
498         /*
499          * Search in the children
500          */
501         list_for_each_entry(g, &p->children, sibling) {
502                 if (try_to_set_owner(g, mm))
503                         goto ret;
504         }
505         /*
506          * Search in the siblings
507          */
508         list_for_each_entry(g, &p->real_parent->children, sibling) {
509                 if (try_to_set_owner(g, mm))
510                         goto ret;
511         }
512         /*
513          * Search through everything else, we should not get here often.
514          */
515         for_each_process(g) {
516                 if (atomic_read(&mm->mm_users) <= 1)
517                         break;
518                 if (g->flags & PF_KTHREAD)
519                         continue;
520                 if (try_to_set_owner(g, mm))
521                         goto ret;
522         }
523         read_unlock(&tasklist_lock);
524         /*
525          * We found no owner yet mm_users > 1: this implies that we are
526          * most likely racing with swapoff (try_to_unuse()) or /proc or
527          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
528          */
529         WRITE_ONCE(mm->owner, NULL);
530  ret:
531         return;
532 
533 }
534 #endif /* CONFIG_MEMCG */
535 
536 /*
537  * Turn us into a lazy TLB process if we
538  * aren't already..
539  */
540 static void exit_mm(void)
541 {
542         struct mm_struct *mm = current->mm;
543 
544         exit_mm_release(current, mm);
545         if (!mm)
546                 return;
547         mmap_read_lock(mm);
548         mmgrab_lazy_tlb(mm);
549         BUG_ON(mm != current->active_mm);
550         /* more a memory barrier than a real lock */
551         task_lock(current);
552         /*
553          * When a thread stops operating on an address space, the loop
554          * in membarrier_private_expedited() may not observe that
555          * tsk->mm, and the loop in membarrier_global_expedited() may
556          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
557          * rq->membarrier_state, so those would not issue an IPI.
558          * Membarrier requires a memory barrier after accessing
559          * user-space memory, before clearing tsk->mm or the
560          * rq->membarrier_state.
561          */
562         smp_mb__after_spinlock();
563         local_irq_disable();
564         current->mm = NULL;
565         membarrier_update_current_mm(NULL);
566         enter_lazy_tlb(mm, current);
567         local_irq_enable();
568         task_unlock(current);
569         mmap_read_unlock(mm);
570         mm_update_next_owner(mm);
571         mmput(mm);
572         if (test_thread_flag(TIF_MEMDIE))
573                 exit_oom_victim();
574 }
575 
576 static struct task_struct *find_alive_thread(struct task_struct *p)
577 {
578         struct task_struct *t;
579 
580         for_each_thread(p, t) {
581                 if (!(t->flags & PF_EXITING))
582                         return t;
583         }
584         return NULL;
585 }
586 
587 static struct task_struct *find_child_reaper(struct task_struct *father,
588                                                 struct list_head *dead)
589         __releases(&tasklist_lock)
590         __acquires(&tasklist_lock)
591 {
592         struct pid_namespace *pid_ns = task_active_pid_ns(father);
593         struct task_struct *reaper = pid_ns->child_reaper;
594         struct task_struct *p, *n;
595 
596         if (likely(reaper != father))
597                 return reaper;
598 
599         reaper = find_alive_thread(father);
600         if (reaper) {
601                 pid_ns->child_reaper = reaper;
602                 return reaper;
603         }
604 
605         write_unlock_irq(&tasklist_lock);
606 
607         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
608                 list_del_init(&p->ptrace_entry);
609                 release_task(p);
610         }
611 
612         zap_pid_ns_processes(pid_ns);
613         write_lock_irq(&tasklist_lock);
614 
615         return father;
616 }
617 
618 /*
619  * When we die, we re-parent all our children, and try to:
620  * 1. give them to another thread in our thread group, if such a member exists
621  * 2. give it to the first ancestor process which prctl'd itself as a
622  *    child_subreaper for its children (like a service manager)
623  * 3. give it to the init process (PID 1) in our pid namespace
624  */
625 static struct task_struct *find_new_reaper(struct task_struct *father,
626                                            struct task_struct *child_reaper)
627 {
628         struct task_struct *thread, *reaper;
629 
630         thread = find_alive_thread(father);
631         if (thread)
632                 return thread;
633 
634         if (father->signal->has_child_subreaper) {
635                 unsigned int ns_level = task_pid(father)->level;
636                 /*
637                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
638                  * We can't check reaper != child_reaper to ensure we do not
639                  * cross the namespaces, the exiting parent could be injected
640                  * by setns() + fork().
641                  * We check pid->level, this is slightly more efficient than
642                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
643                  */
644                 for (reaper = father->real_parent;
645                      task_pid(reaper)->level == ns_level;
646                      reaper = reaper->real_parent) {
647                         if (reaper == &init_task)
648                                 break;
649                         if (!reaper->signal->is_child_subreaper)
650                                 continue;
651                         thread = find_alive_thread(reaper);
652                         if (thread)
653                                 return thread;
654                 }
655         }
656 
657         return child_reaper;
658 }
659 
660 /*
661 * Any that need to be release_task'd are put on the @dead list.
662  */
663 static void reparent_leader(struct task_struct *father, struct task_struct *p,
664                                 struct list_head *dead)
665 {
666         if (unlikely(p->exit_state == EXIT_DEAD))
667                 return;
668 
669         /* We don't want people slaying init. */
670         p->exit_signal = SIGCHLD;
671 
672         /* If it has exited notify the new parent about this child's death. */
673         if (!p->ptrace &&
674             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
675                 if (do_notify_parent(p, p->exit_signal)) {
676                         p->exit_state = EXIT_DEAD;
677                         list_add(&p->ptrace_entry, dead);
678                 }
679         }
680 
681         kill_orphaned_pgrp(p, father);
682 }
683 
684 /*
685  * This does two things:
686  *
687  * A.  Make init inherit all the child processes
688  * B.  Check to see if any process groups have become orphaned
689  *      as a result of our exiting, and if they have any stopped
690  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
691  */
692 static void forget_original_parent(struct task_struct *father,
693                                         struct list_head *dead)
694 {
695         struct task_struct *p, *t, *reaper;
696 
697         if (unlikely(!list_empty(&father->ptraced)))
698                 exit_ptrace(father, dead);
699 
700         /* Can drop and reacquire tasklist_lock */
701         reaper = find_child_reaper(father, dead);
702         if (list_empty(&father->children))
703                 return;
704 
705         reaper = find_new_reaper(father, reaper);
706         list_for_each_entry(p, &father->children, sibling) {
707                 for_each_thread(p, t) {
708                         RCU_INIT_POINTER(t->real_parent, reaper);
709                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
710                         if (likely(!t->ptrace))
711                                 t->parent = t->real_parent;
712                         if (t->pdeath_signal)
713                                 group_send_sig_info(t->pdeath_signal,
714                                                     SEND_SIG_NOINFO, t,
715                                                     PIDTYPE_TGID);
716                 }
717                 /*
718                  * If this is a threaded reparent there is no need to
719                  * notify anyone anything has happened.
720                  */
721                 if (!same_thread_group(reaper, father))
722                         reparent_leader(father, p, dead);
723         }
724         list_splice_tail_init(&father->children, &reaper->children);
725 }
726 
727 /*
728  * Send signals to all our closest relatives so that they know
729  * to properly mourn us..
730  */
731 static void exit_notify(struct task_struct *tsk, int group_dead)
732 {
733         bool autoreap;
734         struct task_struct *p, *n;
735         LIST_HEAD(dead);
736 
737         write_lock_irq(&tasklist_lock);
738         forget_original_parent(tsk, &dead);
739 
740         if (group_dead)
741                 kill_orphaned_pgrp(tsk->group_leader, NULL);
742 
743         tsk->exit_state = EXIT_ZOMBIE;
744         /*
745          * sub-thread or delay_group_leader(), wake up the
746          * PIDFD_THREAD waiters.
747          */
748         if (!thread_group_empty(tsk))
749                 do_notify_pidfd(tsk);
750 
751         if (unlikely(tsk->ptrace)) {
752                 int sig = thread_group_leader(tsk) &&
753                                 thread_group_empty(tsk) &&
754                                 !ptrace_reparented(tsk) ?
755                         tsk->exit_signal : SIGCHLD;
756                 autoreap = do_notify_parent(tsk, sig);
757         } else if (thread_group_leader(tsk)) {
758                 autoreap = thread_group_empty(tsk) &&
759                         do_notify_parent(tsk, tsk->exit_signal);
760         } else {
761                 autoreap = true;
762         }
763 
764         if (autoreap) {
765                 tsk->exit_state = EXIT_DEAD;
766                 list_add(&tsk->ptrace_entry, &dead);
767         }
768 
769         /* mt-exec, de_thread() is waiting for group leader */
770         if (unlikely(tsk->signal->notify_count < 0))
771                 wake_up_process(tsk->signal->group_exec_task);
772         write_unlock_irq(&tasklist_lock);
773 
774         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
775                 list_del_init(&p->ptrace_entry);
776                 release_task(p);
777         }
778 }
779 
780 #ifdef CONFIG_DEBUG_STACK_USAGE
781 static void check_stack_usage(void)
782 {
783         static DEFINE_SPINLOCK(low_water_lock);
784         static int lowest_to_date = THREAD_SIZE;
785         unsigned long free;
786 
787         free = stack_not_used(current);
788 
789         if (free >= lowest_to_date)
790                 return;
791 
792         spin_lock(&low_water_lock);
793         if (free < lowest_to_date) {
794                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
795                         current->comm, task_pid_nr(current), free);
796                 lowest_to_date = free;
797         }
798         spin_unlock(&low_water_lock);
799 }
800 #else
801 static inline void check_stack_usage(void) {}
802 #endif
803 
804 static void synchronize_group_exit(struct task_struct *tsk, long code)
805 {
806         struct sighand_struct *sighand = tsk->sighand;
807         struct signal_struct *signal = tsk->signal;
808 
809         spin_lock_irq(&sighand->siglock);
810         signal->quick_threads--;
811         if ((signal->quick_threads == 0) &&
812             !(signal->flags & SIGNAL_GROUP_EXIT)) {
813                 signal->flags = SIGNAL_GROUP_EXIT;
814                 signal->group_exit_code = code;
815                 signal->group_stop_count = 0;
816         }
817         spin_unlock_irq(&sighand->siglock);
818 }
819 
820 void __noreturn do_exit(long code)
821 {
822         struct task_struct *tsk = current;
823         int group_dead;
824 
825         WARN_ON(irqs_disabled());
826 
827         synchronize_group_exit(tsk, code);
828 
829         WARN_ON(tsk->plug);
830 
831         kcov_task_exit(tsk);
832         kmsan_task_exit(tsk);
833 
834         coredump_task_exit(tsk);
835         ptrace_event(PTRACE_EVENT_EXIT, code);
836         user_events_exit(tsk);
837 
838         io_uring_files_cancel();
839         exit_signals(tsk);  /* sets PF_EXITING */
840 
841         seccomp_filter_release(tsk);
842 
843         acct_update_integrals(tsk);
844         group_dead = atomic_dec_and_test(&tsk->signal->live);
845         if (group_dead) {
846                 /*
847                  * If the last thread of global init has exited, panic
848                  * immediately to get a useable coredump.
849                  */
850                 if (unlikely(is_global_init(tsk)))
851                         panic("Attempted to kill init! exitcode=0x%08x\n",
852                                 tsk->signal->group_exit_code ?: (int)code);
853 
854 #ifdef CONFIG_POSIX_TIMERS
855                 hrtimer_cancel(&tsk->signal->real_timer);
856                 exit_itimers(tsk);
857 #endif
858                 if (tsk->mm)
859                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
860         }
861         acct_collect(code, group_dead);
862         if (group_dead)
863                 tty_audit_exit();
864         audit_free(tsk);
865 
866         tsk->exit_code = code;
867         taskstats_exit(tsk, group_dead);
868 
869         exit_mm();
870 
871         if (group_dead)
872                 acct_process();
873         trace_sched_process_exit(tsk);
874 
875         exit_sem(tsk);
876         exit_shm(tsk);
877         exit_files(tsk);
878         exit_fs(tsk);
879         if (group_dead)
880                 disassociate_ctty(1);
881         exit_task_namespaces(tsk);
882         exit_task_work(tsk);
883         exit_thread(tsk);
884 
885         /*
886          * Flush inherited counters to the parent - before the parent
887          * gets woken up by child-exit notifications.
888          *
889          * because of cgroup mode, must be called before cgroup_exit()
890          */
891         perf_event_exit_task(tsk);
892 
893         sched_autogroup_exit_task(tsk);
894         cgroup_exit(tsk);
895 
896         /*
897          * FIXME: do that only when needed, using sched_exit tracepoint
898          */
899         flush_ptrace_hw_breakpoint(tsk);
900 
901         exit_tasks_rcu_start();
902         exit_notify(tsk, group_dead);
903         proc_exit_connector(tsk);
904         mpol_put_task_policy(tsk);
905 #ifdef CONFIG_FUTEX
906         if (unlikely(current->pi_state_cache))
907                 kfree(current->pi_state_cache);
908 #endif
909         /*
910          * Make sure we are holding no locks:
911          */
912         debug_check_no_locks_held();
913 
914         if (tsk->io_context)
915                 exit_io_context(tsk);
916 
917         if (tsk->splice_pipe)
918                 free_pipe_info(tsk->splice_pipe);
919 
920         if (tsk->task_frag.page)
921                 put_page(tsk->task_frag.page);
922 
923         exit_task_stack_account(tsk);
924 
925         check_stack_usage();
926         preempt_disable();
927         if (tsk->nr_dirtied)
928                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
929         exit_rcu();
930         exit_tasks_rcu_finish();
931 
932         lockdep_free_task(tsk);
933         do_task_dead();
934 }
935 
936 void __noreturn make_task_dead(int signr)
937 {
938         /*
939          * Take the task off the cpu after something catastrophic has
940          * happened.
941          *
942          * We can get here from a kernel oops, sometimes with preemption off.
943          * Start by checking for critical errors.
944          * Then fix up important state like USER_DS and preemption.
945          * Then do everything else.
946          */
947         struct task_struct *tsk = current;
948         unsigned int limit;
949 
950         if (unlikely(in_interrupt()))
951                 panic("Aiee, killing interrupt handler!");
952         if (unlikely(!tsk->pid))
953                 panic("Attempted to kill the idle task!");
954 
955         if (unlikely(irqs_disabled())) {
956                 pr_info("note: %s[%d] exited with irqs disabled\n",
957                         current->comm, task_pid_nr(current));
958                 local_irq_enable();
959         }
960         if (unlikely(in_atomic())) {
961                 pr_info("note: %s[%d] exited with preempt_count %d\n",
962                         current->comm, task_pid_nr(current),
963                         preempt_count());
964                 preempt_count_set(PREEMPT_ENABLED);
965         }
966 
967         /*
968          * Every time the system oopses, if the oops happens while a reference
969          * to an object was held, the reference leaks.
970          * If the oops doesn't also leak memory, repeated oopsing can cause
971          * reference counters to wrap around (if they're not using refcount_t).
972          * This means that repeated oopsing can make unexploitable-looking bugs
973          * exploitable through repeated oopsing.
974          * To make sure this can't happen, place an upper bound on how often the
975          * kernel may oops without panic().
976          */
977         limit = READ_ONCE(oops_limit);
978         if (atomic_inc_return(&oops_count) >= limit && limit)
979                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
980 
981         /*
982          * We're taking recursive faults here in make_task_dead. Safest is to just
983          * leave this task alone and wait for reboot.
984          */
985         if (unlikely(tsk->flags & PF_EXITING)) {
986                 pr_alert("Fixing recursive fault but reboot is needed!\n");
987                 futex_exit_recursive(tsk);
988                 tsk->exit_state = EXIT_DEAD;
989                 refcount_inc(&tsk->rcu_users);
990                 do_task_dead();
991         }
992 
993         do_exit(signr);
994 }
995 
996 SYSCALL_DEFINE1(exit, int, error_code)
997 {
998         do_exit((error_code&0xff)<<8);
999 }
1000 
1001 /*
1002  * Take down every thread in the group.  This is called by fatal signals
1003  * as well as by sys_exit_group (below).
1004  */
1005 void __noreturn
1006 do_group_exit(int exit_code)
1007 {
1008         struct signal_struct *sig = current->signal;
1009 
1010         if (sig->flags & SIGNAL_GROUP_EXIT)
1011                 exit_code = sig->group_exit_code;
1012         else if (sig->group_exec_task)
1013                 exit_code = 0;
1014         else {
1015                 struct sighand_struct *const sighand = current->sighand;
1016 
1017                 spin_lock_irq(&sighand->siglock);
1018                 if (sig->flags & SIGNAL_GROUP_EXIT)
1019                         /* Another thread got here before we took the lock.  */
1020                         exit_code = sig->group_exit_code;
1021                 else if (sig->group_exec_task)
1022                         exit_code = 0;
1023                 else {
1024                         sig->group_exit_code = exit_code;
1025                         sig->flags = SIGNAL_GROUP_EXIT;
1026                         zap_other_threads(current);
1027                 }
1028                 spin_unlock_irq(&sighand->siglock);
1029         }
1030 
1031         do_exit(exit_code);
1032         /* NOTREACHED */
1033 }
1034 
1035 /*
1036  * this kills every thread in the thread group. Note that any externally
1037  * wait4()-ing process will get the correct exit code - even if this
1038  * thread is not the thread group leader.
1039  */
1040 SYSCALL_DEFINE1(exit_group, int, error_code)
1041 {
1042         do_group_exit((error_code & 0xff) << 8);
1043         /* NOTREACHED */
1044         return 0;
1045 }
1046 
1047 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1048 {
1049         return  wo->wo_type == PIDTYPE_MAX ||
1050                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1051 }
1052 
1053 static int
1054 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1055 {
1056         if (!eligible_pid(wo, p))
1057                 return 0;
1058 
1059         /*
1060          * Wait for all children (clone and not) if __WALL is set or
1061          * if it is traced by us.
1062          */
1063         if (ptrace || (wo->wo_flags & __WALL))
1064                 return 1;
1065 
1066         /*
1067          * Otherwise, wait for clone children *only* if __WCLONE is set;
1068          * otherwise, wait for non-clone children *only*.
1069          *
1070          * Note: a "clone" child here is one that reports to its parent
1071          * using a signal other than SIGCHLD, or a non-leader thread which
1072          * we can only see if it is traced by us.
1073          */
1074         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1075                 return 0;
1076 
1077         return 1;
1078 }
1079 
1080 /*
1081  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1082  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1083  * the lock and this task is uninteresting.  If we return nonzero, we have
1084  * released the lock and the system call should return.
1085  */
1086 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1087 {
1088         int state, status;
1089         pid_t pid = task_pid_vnr(p);
1090         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1091         struct waitid_info *infop;
1092 
1093         if (!likely(wo->wo_flags & WEXITED))
1094                 return 0;
1095 
1096         if (unlikely(wo->wo_flags & WNOWAIT)) {
1097                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1098                         ? p->signal->group_exit_code : p->exit_code;
1099                 get_task_struct(p);
1100                 read_unlock(&tasklist_lock);
1101                 sched_annotate_sleep();
1102                 if (wo->wo_rusage)
1103                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1104                 put_task_struct(p);
1105                 goto out_info;
1106         }
1107         /*
1108          * Move the task's state to DEAD/TRACE, only one thread can do this.
1109          */
1110         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1111                 EXIT_TRACE : EXIT_DEAD;
1112         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1113                 return 0;
1114         /*
1115          * We own this thread, nobody else can reap it.
1116          */
1117         read_unlock(&tasklist_lock);
1118         sched_annotate_sleep();
1119 
1120         /*
1121          * Check thread_group_leader() to exclude the traced sub-threads.
1122          */
1123         if (state == EXIT_DEAD && thread_group_leader(p)) {
1124                 struct signal_struct *sig = p->signal;
1125                 struct signal_struct *psig = current->signal;
1126                 unsigned long maxrss;
1127                 u64 tgutime, tgstime;
1128 
1129                 /*
1130                  * The resource counters for the group leader are in its
1131                  * own task_struct.  Those for dead threads in the group
1132                  * are in its signal_struct, as are those for the child
1133                  * processes it has previously reaped.  All these
1134                  * accumulate in the parent's signal_struct c* fields.
1135                  *
1136                  * We don't bother to take a lock here to protect these
1137                  * p->signal fields because the whole thread group is dead
1138                  * and nobody can change them.
1139                  *
1140                  * psig->stats_lock also protects us from our sub-threads
1141                  * which can reap other children at the same time.
1142                  *
1143                  * We use thread_group_cputime_adjusted() to get times for
1144                  * the thread group, which consolidates times for all threads
1145                  * in the group including the group leader.
1146                  */
1147                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1148                 write_seqlock_irq(&psig->stats_lock);
1149                 psig->cutime += tgutime + sig->cutime;
1150                 psig->cstime += tgstime + sig->cstime;
1151                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1152                 psig->cmin_flt +=
1153                         p->min_flt + sig->min_flt + sig->cmin_flt;
1154                 psig->cmaj_flt +=
1155                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1156                 psig->cnvcsw +=
1157                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1158                 psig->cnivcsw +=
1159                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1160                 psig->cinblock +=
1161                         task_io_get_inblock(p) +
1162                         sig->inblock + sig->cinblock;
1163                 psig->coublock +=
1164                         task_io_get_oublock(p) +
1165                         sig->oublock + sig->coublock;
1166                 maxrss = max(sig->maxrss, sig->cmaxrss);
1167                 if (psig->cmaxrss < maxrss)
1168                         psig->cmaxrss = maxrss;
1169                 task_io_accounting_add(&psig->ioac, &p->ioac);
1170                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1171                 write_sequnlock_irq(&psig->stats_lock);
1172         }
1173 
1174         if (wo->wo_rusage)
1175                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1176         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1177                 ? p->signal->group_exit_code : p->exit_code;
1178         wo->wo_stat = status;
1179 
1180         if (state == EXIT_TRACE) {
1181                 write_lock_irq(&tasklist_lock);
1182                 /* We dropped tasklist, ptracer could die and untrace */
1183                 ptrace_unlink(p);
1184 
1185                 /* If parent wants a zombie, don't release it now */
1186                 state = EXIT_ZOMBIE;
1187                 if (do_notify_parent(p, p->exit_signal))
1188                         state = EXIT_DEAD;
1189                 p->exit_state = state;
1190                 write_unlock_irq(&tasklist_lock);
1191         }
1192         if (state == EXIT_DEAD)
1193                 release_task(p);
1194 
1195 out_info:
1196         infop = wo->wo_info;
1197         if (infop) {
1198                 if ((status & 0x7f) == 0) {
1199                         infop->cause = CLD_EXITED;
1200                         infop->status = status >> 8;
1201                 } else {
1202                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1203                         infop->status = status & 0x7f;
1204                 }
1205                 infop->pid = pid;
1206                 infop->uid = uid;
1207         }
1208 
1209         return pid;
1210 }
1211 
1212 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1213 {
1214         if (ptrace) {
1215                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1216                         return &p->exit_code;
1217         } else {
1218                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1219                         return &p->signal->group_exit_code;
1220         }
1221         return NULL;
1222 }
1223 
1224 /**
1225  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1226  * @wo: wait options
1227  * @ptrace: is the wait for ptrace
1228  * @p: task to wait for
1229  *
1230  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1231  *
1232  * CONTEXT:
1233  * read_lock(&tasklist_lock), which is released if return value is
1234  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1235  *
1236  * RETURNS:
1237  * 0 if wait condition didn't exist and search for other wait conditions
1238  * should continue.  Non-zero return, -errno on failure and @p's pid on
1239  * success, implies that tasklist_lock is released and wait condition
1240  * search should terminate.
1241  */
1242 static int wait_task_stopped(struct wait_opts *wo,
1243                                 int ptrace, struct task_struct *p)
1244 {
1245         struct waitid_info *infop;
1246         int exit_code, *p_code, why;
1247         uid_t uid = 0; /* unneeded, required by compiler */
1248         pid_t pid;
1249 
1250         /*
1251          * Traditionally we see ptrace'd stopped tasks regardless of options.
1252          */
1253         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1254                 return 0;
1255 
1256         if (!task_stopped_code(p, ptrace))
1257                 return 0;
1258 
1259         exit_code = 0;
1260         spin_lock_irq(&p->sighand->siglock);
1261 
1262         p_code = task_stopped_code(p, ptrace);
1263         if (unlikely(!p_code))
1264                 goto unlock_sig;
1265 
1266         exit_code = *p_code;
1267         if (!exit_code)
1268                 goto unlock_sig;
1269 
1270         if (!unlikely(wo->wo_flags & WNOWAIT))
1271                 *p_code = 0;
1272 
1273         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1274 unlock_sig:
1275         spin_unlock_irq(&p->sighand->siglock);
1276         if (!exit_code)
1277                 return 0;
1278 
1279         /*
1280          * Now we are pretty sure this task is interesting.
1281          * Make sure it doesn't get reaped out from under us while we
1282          * give up the lock and then examine it below.  We don't want to
1283          * keep holding onto the tasklist_lock while we call getrusage and
1284          * possibly take page faults for user memory.
1285          */
1286         get_task_struct(p);
1287         pid = task_pid_vnr(p);
1288         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1289         read_unlock(&tasklist_lock);
1290         sched_annotate_sleep();
1291         if (wo->wo_rusage)
1292                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1293         put_task_struct(p);
1294 
1295         if (likely(!(wo->wo_flags & WNOWAIT)))
1296                 wo->wo_stat = (exit_code << 8) | 0x7f;
1297 
1298         infop = wo->wo_info;
1299         if (infop) {
1300                 infop->cause = why;
1301                 infop->status = exit_code;
1302                 infop->pid = pid;
1303                 infop->uid = uid;
1304         }
1305         return pid;
1306 }
1307 
1308 /*
1309  * Handle do_wait work for one task in a live, non-stopped state.
1310  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1311  * the lock and this task is uninteresting.  If we return nonzero, we have
1312  * released the lock and the system call should return.
1313  */
1314 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1315 {
1316         struct waitid_info *infop;
1317         pid_t pid;
1318         uid_t uid;
1319 
1320         if (!unlikely(wo->wo_flags & WCONTINUED))
1321                 return 0;
1322 
1323         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1324                 return 0;
1325 
1326         spin_lock_irq(&p->sighand->siglock);
1327         /* Re-check with the lock held.  */
1328         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1329                 spin_unlock_irq(&p->sighand->siglock);
1330                 return 0;
1331         }
1332         if (!unlikely(wo->wo_flags & WNOWAIT))
1333                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1334         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1335         spin_unlock_irq(&p->sighand->siglock);
1336 
1337         pid = task_pid_vnr(p);
1338         get_task_struct(p);
1339         read_unlock(&tasklist_lock);
1340         sched_annotate_sleep();
1341         if (wo->wo_rusage)
1342                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1343         put_task_struct(p);
1344 
1345         infop = wo->wo_info;
1346         if (!infop) {
1347                 wo->wo_stat = 0xffff;
1348         } else {
1349                 infop->cause = CLD_CONTINUED;
1350                 infop->pid = pid;
1351                 infop->uid = uid;
1352                 infop->status = SIGCONT;
1353         }
1354         return pid;
1355 }
1356 
1357 /*
1358  * Consider @p for a wait by @parent.
1359  *
1360  * -ECHILD should be in ->notask_error before the first call.
1361  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1362  * Returns zero if the search for a child should continue;
1363  * then ->notask_error is 0 if @p is an eligible child,
1364  * or still -ECHILD.
1365  */
1366 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1367                                 struct task_struct *p)
1368 {
1369         /*
1370          * We can race with wait_task_zombie() from another thread.
1371          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1372          * can't confuse the checks below.
1373          */
1374         int exit_state = READ_ONCE(p->exit_state);
1375         int ret;
1376 
1377         if (unlikely(exit_state == EXIT_DEAD))
1378                 return 0;
1379 
1380         ret = eligible_child(wo, ptrace, p);
1381         if (!ret)
1382                 return ret;
1383 
1384         if (unlikely(exit_state == EXIT_TRACE)) {
1385                 /*
1386                  * ptrace == 0 means we are the natural parent. In this case
1387                  * we should clear notask_error, debugger will notify us.
1388                  */
1389                 if (likely(!ptrace))
1390                         wo->notask_error = 0;
1391                 return 0;
1392         }
1393 
1394         if (likely(!ptrace) && unlikely(p->ptrace)) {
1395                 /*
1396                  * If it is traced by its real parent's group, just pretend
1397                  * the caller is ptrace_do_wait() and reap this child if it
1398                  * is zombie.
1399                  *
1400                  * This also hides group stop state from real parent; otherwise
1401                  * a single stop can be reported twice as group and ptrace stop.
1402                  * If a ptracer wants to distinguish these two events for its
1403                  * own children it should create a separate process which takes
1404                  * the role of real parent.
1405                  */
1406                 if (!ptrace_reparented(p))
1407                         ptrace = 1;
1408         }
1409 
1410         /* slay zombie? */
1411         if (exit_state == EXIT_ZOMBIE) {
1412                 /* we don't reap group leaders with subthreads */
1413                 if (!delay_group_leader(p)) {
1414                         /*
1415                          * A zombie ptracee is only visible to its ptracer.
1416                          * Notification and reaping will be cascaded to the
1417                          * real parent when the ptracer detaches.
1418                          */
1419                         if (unlikely(ptrace) || likely(!p->ptrace))
1420                                 return wait_task_zombie(wo, p);
1421                 }
1422 
1423                 /*
1424                  * Allow access to stopped/continued state via zombie by
1425                  * falling through.  Clearing of notask_error is complex.
1426                  *
1427                  * When !@ptrace:
1428                  *
1429                  * If WEXITED is set, notask_error should naturally be
1430                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1431                  * so, if there are live subthreads, there are events to
1432                  * wait for.  If all subthreads are dead, it's still safe
1433                  * to clear - this function will be called again in finite
1434                  * amount time once all the subthreads are released and
1435                  * will then return without clearing.
1436                  *
1437                  * When @ptrace:
1438                  *
1439                  * Stopped state is per-task and thus can't change once the
1440                  * target task dies.  Only continued and exited can happen.
1441                  * Clear notask_error if WCONTINUED | WEXITED.
1442                  */
1443                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1444                         wo->notask_error = 0;
1445         } else {
1446                 /*
1447                  * @p is alive and it's gonna stop, continue or exit, so
1448                  * there always is something to wait for.
1449                  */
1450                 wo->notask_error = 0;
1451         }
1452 
1453         /*
1454          * Wait for stopped.  Depending on @ptrace, different stopped state
1455          * is used and the two don't interact with each other.
1456          */
1457         ret = wait_task_stopped(wo, ptrace, p);
1458         if (ret)
1459                 return ret;
1460 
1461         /*
1462          * Wait for continued.  There's only one continued state and the
1463          * ptracer can consume it which can confuse the real parent.  Don't
1464          * use WCONTINUED from ptracer.  You don't need or want it.
1465          */
1466         return wait_task_continued(wo, p);
1467 }
1468 
1469 /*
1470  * Do the work of do_wait() for one thread in the group, @tsk.
1471  *
1472  * -ECHILD should be in ->notask_error before the first call.
1473  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1474  * Returns zero if the search for a child should continue; then
1475  * ->notask_error is 0 if there were any eligible children,
1476  * or still -ECHILD.
1477  */
1478 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1479 {
1480         struct task_struct *p;
1481 
1482         list_for_each_entry(p, &tsk->children, sibling) {
1483                 int ret = wait_consider_task(wo, 0, p);
1484 
1485                 if (ret)
1486                         return ret;
1487         }
1488 
1489         return 0;
1490 }
1491 
1492 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1493 {
1494         struct task_struct *p;
1495 
1496         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1497                 int ret = wait_consider_task(wo, 1, p);
1498 
1499                 if (ret)
1500                         return ret;
1501         }
1502 
1503         return 0;
1504 }
1505 
1506 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1507 {
1508         if (!eligible_pid(wo, p))
1509                 return false;
1510 
1511         if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1512                 return false;
1513 
1514         return true;
1515 }
1516 
1517 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1518                                 int sync, void *key)
1519 {
1520         struct wait_opts *wo = container_of(wait, struct wait_opts,
1521                                                 child_wait);
1522         struct task_struct *p = key;
1523 
1524         if (pid_child_should_wake(wo, p))
1525                 return default_wake_function(wait, mode, sync, key);
1526 
1527         return 0;
1528 }
1529 
1530 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1531 {
1532         __wake_up_sync_key(&parent->signal->wait_chldexit,
1533                            TASK_INTERRUPTIBLE, p);
1534 }
1535 
1536 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1537                                  struct task_struct *target)
1538 {
1539         struct task_struct *parent =
1540                 !ptrace ? target->real_parent : target->parent;
1541 
1542         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1543                                      same_thread_group(current, parent));
1544 }
1545 
1546 /*
1547  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1548  * and tracee lists to find the target task.
1549  */
1550 static int do_wait_pid(struct wait_opts *wo)
1551 {
1552         bool ptrace;
1553         struct task_struct *target;
1554         int retval;
1555 
1556         ptrace = false;
1557         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1558         if (target && is_effectively_child(wo, ptrace, target)) {
1559                 retval = wait_consider_task(wo, ptrace, target);
1560                 if (retval)
1561                         return retval;
1562         }
1563 
1564         ptrace = true;
1565         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1566         if (target && target->ptrace &&
1567             is_effectively_child(wo, ptrace, target)) {
1568                 retval = wait_consider_task(wo, ptrace, target);
1569                 if (retval)
1570                         return retval;
1571         }
1572 
1573         return 0;
1574 }
1575 
1576 long __do_wait(struct wait_opts *wo)
1577 {
1578         long retval;
1579 
1580         /*
1581          * If there is nothing that can match our criteria, just get out.
1582          * We will clear ->notask_error to zero if we see any child that
1583          * might later match our criteria, even if we are not able to reap
1584          * it yet.
1585          */
1586         wo->notask_error = -ECHILD;
1587         if ((wo->wo_type < PIDTYPE_MAX) &&
1588            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1589                 goto notask;
1590 
1591         read_lock(&tasklist_lock);
1592 
1593         if (wo->wo_type == PIDTYPE_PID) {
1594                 retval = do_wait_pid(wo);
1595                 if (retval)
1596                         return retval;
1597         } else {
1598                 struct task_struct *tsk = current;
1599 
1600                 do {
1601                         retval = do_wait_thread(wo, tsk);
1602                         if (retval)
1603                                 return retval;
1604 
1605                         retval = ptrace_do_wait(wo, tsk);
1606                         if (retval)
1607                                 return retval;
1608 
1609                         if (wo->wo_flags & __WNOTHREAD)
1610                                 break;
1611                 } while_each_thread(current, tsk);
1612         }
1613         read_unlock(&tasklist_lock);
1614 
1615 notask:
1616         retval = wo->notask_error;
1617         if (!retval && !(wo->wo_flags & WNOHANG))
1618                 return -ERESTARTSYS;
1619 
1620         return retval;
1621 }
1622 
1623 static long do_wait(struct wait_opts *wo)
1624 {
1625         int retval;
1626 
1627         trace_sched_process_wait(wo->wo_pid);
1628 
1629         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1630         wo->child_wait.private = current;
1631         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1632 
1633         do {
1634                 set_current_state(TASK_INTERRUPTIBLE);
1635                 retval = __do_wait(wo);
1636                 if (retval != -ERESTARTSYS)
1637                         break;
1638                 if (signal_pending(current))
1639                         break;
1640                 schedule();
1641         } while (1);
1642 
1643         __set_current_state(TASK_RUNNING);
1644         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1645         return retval;
1646 }
1647 
1648 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1649                           struct waitid_info *infop, int options,
1650                           struct rusage *ru)
1651 {
1652         unsigned int f_flags = 0;
1653         struct pid *pid = NULL;
1654         enum pid_type type;
1655 
1656         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1657                         __WNOTHREAD|__WCLONE|__WALL))
1658                 return -EINVAL;
1659         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1660                 return -EINVAL;
1661 
1662         switch (which) {
1663         case P_ALL:
1664                 type = PIDTYPE_MAX;
1665                 break;
1666         case P_PID:
1667                 type = PIDTYPE_PID;
1668                 if (upid <= 0)
1669                         return -EINVAL;
1670 
1671                 pid = find_get_pid(upid);
1672                 break;
1673         case P_PGID:
1674                 type = PIDTYPE_PGID;
1675                 if (upid < 0)
1676                         return -EINVAL;
1677 
1678                 if (upid)
1679                         pid = find_get_pid(upid);
1680                 else
1681                         pid = get_task_pid(current, PIDTYPE_PGID);
1682                 break;
1683         case P_PIDFD:
1684                 type = PIDTYPE_PID;
1685                 if (upid < 0)
1686                         return -EINVAL;
1687 
1688                 pid = pidfd_get_pid(upid, &f_flags);
1689                 if (IS_ERR(pid))
1690                         return PTR_ERR(pid);
1691 
1692                 break;
1693         default:
1694                 return -EINVAL;
1695         }
1696 
1697         wo->wo_type     = type;
1698         wo->wo_pid      = pid;
1699         wo->wo_flags    = options;
1700         wo->wo_info     = infop;
1701         wo->wo_rusage   = ru;
1702         if (f_flags & O_NONBLOCK)
1703                 wo->wo_flags |= WNOHANG;
1704 
1705         return 0;
1706 }
1707 
1708 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1709                           int options, struct rusage *ru)
1710 {
1711         struct wait_opts wo;
1712         long ret;
1713 
1714         ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1715         if (ret)
1716                 return ret;
1717 
1718         ret = do_wait(&wo);
1719         if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1720                 ret = -EAGAIN;
1721 
1722         put_pid(wo.wo_pid);
1723         return ret;
1724 }
1725 
1726 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1727                 infop, int, options, struct rusage __user *, ru)
1728 {
1729         struct rusage r;
1730         struct waitid_info info = {.status = 0};
1731         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1732         int signo = 0;
1733 
1734         if (err > 0) {
1735                 signo = SIGCHLD;
1736                 err = 0;
1737                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1738                         return -EFAULT;
1739         }
1740         if (!infop)
1741                 return err;
1742 
1743         if (!user_write_access_begin(infop, sizeof(*infop)))
1744                 return -EFAULT;
1745 
1746         unsafe_put_user(signo, &infop->si_signo, Efault);
1747         unsafe_put_user(0, &infop->si_errno, Efault);
1748         unsafe_put_user(info.cause, &infop->si_code, Efault);
1749         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1750         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1751         unsafe_put_user(info.status, &infop->si_status, Efault);
1752         user_write_access_end();
1753         return err;
1754 Efault:
1755         user_write_access_end();
1756         return -EFAULT;
1757 }
1758 
1759 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1760                   struct rusage *ru)
1761 {
1762         struct wait_opts wo;
1763         struct pid *pid = NULL;
1764         enum pid_type type;
1765         long ret;
1766 
1767         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1768                         __WNOTHREAD|__WCLONE|__WALL))
1769                 return -EINVAL;
1770 
1771         /* -INT_MIN is not defined */
1772         if (upid == INT_MIN)
1773                 return -ESRCH;
1774 
1775         if (upid == -1)
1776                 type = PIDTYPE_MAX;
1777         else if (upid < 0) {
1778                 type = PIDTYPE_PGID;
1779                 pid = find_get_pid(-upid);
1780         } else if (upid == 0) {
1781                 type = PIDTYPE_PGID;
1782                 pid = get_task_pid(current, PIDTYPE_PGID);
1783         } else /* upid > 0 */ {
1784                 type = PIDTYPE_PID;
1785                 pid = find_get_pid(upid);
1786         }
1787 
1788         wo.wo_type      = type;
1789         wo.wo_pid       = pid;
1790         wo.wo_flags     = options | WEXITED;
1791         wo.wo_info      = NULL;
1792         wo.wo_stat      = 0;
1793         wo.wo_rusage    = ru;
1794         ret = do_wait(&wo);
1795         put_pid(pid);
1796         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1797                 ret = -EFAULT;
1798 
1799         return ret;
1800 }
1801 
1802 int kernel_wait(pid_t pid, int *stat)
1803 {
1804         struct wait_opts wo = {
1805                 .wo_type        = PIDTYPE_PID,
1806                 .wo_pid         = find_get_pid(pid),
1807                 .wo_flags       = WEXITED,
1808         };
1809         int ret;
1810 
1811         ret = do_wait(&wo);
1812         if (ret > 0 && wo.wo_stat)
1813                 *stat = wo.wo_stat;
1814         put_pid(wo.wo_pid);
1815         return ret;
1816 }
1817 
1818 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1819                 int, options, struct rusage __user *, ru)
1820 {
1821         struct rusage r;
1822         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1823 
1824         if (err > 0) {
1825                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1826                         return -EFAULT;
1827         }
1828         return err;
1829 }
1830 
1831 #ifdef __ARCH_WANT_SYS_WAITPID
1832 
1833 /*
1834  * sys_waitpid() remains for compatibility. waitpid() should be
1835  * implemented by calling sys_wait4() from libc.a.
1836  */
1837 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1838 {
1839         return kernel_wait4(pid, stat_addr, options, NULL);
1840 }
1841 
1842 #endif
1843 
1844 #ifdef CONFIG_COMPAT
1845 COMPAT_SYSCALL_DEFINE4(wait4,
1846         compat_pid_t, pid,
1847         compat_uint_t __user *, stat_addr,
1848         int, options,
1849         struct compat_rusage __user *, ru)
1850 {
1851         struct rusage r;
1852         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1853         if (err > 0) {
1854                 if (ru && put_compat_rusage(&r, ru))
1855                         return -EFAULT;
1856         }
1857         return err;
1858 }
1859 
1860 COMPAT_SYSCALL_DEFINE5(waitid,
1861                 int, which, compat_pid_t, pid,
1862                 struct compat_siginfo __user *, infop, int, options,
1863                 struct compat_rusage __user *, uru)
1864 {
1865         struct rusage ru;
1866         struct waitid_info info = {.status = 0};
1867         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1868         int signo = 0;
1869         if (err > 0) {
1870                 signo = SIGCHLD;
1871                 err = 0;
1872                 if (uru) {
1873                         /* kernel_waitid() overwrites everything in ru */
1874                         if (COMPAT_USE_64BIT_TIME)
1875                                 err = copy_to_user(uru, &ru, sizeof(ru));
1876                         else
1877                                 err = put_compat_rusage(&ru, uru);
1878                         if (err)
1879                                 return -EFAULT;
1880                 }
1881         }
1882 
1883         if (!infop)
1884                 return err;
1885 
1886         if (!user_write_access_begin(infop, sizeof(*infop)))
1887                 return -EFAULT;
1888 
1889         unsafe_put_user(signo, &infop->si_signo, Efault);
1890         unsafe_put_user(0, &infop->si_errno, Efault);
1891         unsafe_put_user(info.cause, &infop->si_code, Efault);
1892         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1893         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1894         unsafe_put_user(info.status, &infop->si_status, Efault);
1895         user_write_access_end();
1896         return err;
1897 Efault:
1898         user_write_access_end();
1899         return -EFAULT;
1900 }
1901 #endif
1902 
1903 /*
1904  * This needs to be __function_aligned as GCC implicitly makes any
1905  * implementation of abort() cold and drops alignment specified by
1906  * -falign-functions=N.
1907  *
1908  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1909  */
1910 __weak __function_aligned void abort(void)
1911 {
1912         BUG();
1913 
1914         /* if that doesn't kill us, halt */
1915         panic("Oops failed to kill thread");
1916 }
1917 EXPORT_SYMBOL(abort);
1918 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php