~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/fork.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  linux/kernel/fork.c
  4  *
  5  *  Copyright (C) 1991, 1992  Linus Torvalds
  6  */
  7 
  8 /*
  9  *  'fork.c' contains the help-routines for the 'fork' system call
 10  * (see also entry.S and others).
 11  * Fork is rather simple, once you get the hang of it, but the memory
 12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
 13  */
 14 
 15 #include <linux/anon_inodes.h>
 16 #include <linux/slab.h>
 17 #include <linux/sched/autogroup.h>
 18 #include <linux/sched/mm.h>
 19 #include <linux/sched/coredump.h>
 20 #include <linux/sched/user.h>
 21 #include <linux/sched/numa_balancing.h>
 22 #include <linux/sched/stat.h>
 23 #include <linux/sched/task.h>
 24 #include <linux/sched/task_stack.h>
 25 #include <linux/sched/cputime.h>
 26 #include <linux/seq_file.h>
 27 #include <linux/rtmutex.h>
 28 #include <linux/init.h>
 29 #include <linux/unistd.h>
 30 #include <linux/module.h>
 31 #include <linux/vmalloc.h>
 32 #include <linux/completion.h>
 33 #include <linux/personality.h>
 34 #include <linux/mempolicy.h>
 35 #include <linux/sem.h>
 36 #include <linux/file.h>
 37 #include <linux/fdtable.h>
 38 #include <linux/iocontext.h>
 39 #include <linux/key.h>
 40 #include <linux/kmsan.h>
 41 #include <linux/binfmts.h>
 42 #include <linux/mman.h>
 43 #include <linux/mmu_notifier.h>
 44 #include <linux/fs.h>
 45 #include <linux/mm.h>
 46 #include <linux/mm_inline.h>
 47 #include <linux/memblock.h>
 48 #include <linux/nsproxy.h>
 49 #include <linux/capability.h>
 50 #include <linux/cpu.h>
 51 #include <linux/cgroup.h>
 52 #include <linux/security.h>
 53 #include <linux/hugetlb.h>
 54 #include <linux/seccomp.h>
 55 #include <linux/swap.h>
 56 #include <linux/syscalls.h>
 57 #include <linux/syscall_user_dispatch.h>
 58 #include <linux/jiffies.h>
 59 #include <linux/futex.h>
 60 #include <linux/compat.h>
 61 #include <linux/kthread.h>
 62 #include <linux/task_io_accounting_ops.h>
 63 #include <linux/rcupdate.h>
 64 #include <linux/ptrace.h>
 65 #include <linux/mount.h>
 66 #include <linux/audit.h>
 67 #include <linux/memcontrol.h>
 68 #include <linux/ftrace.h>
 69 #include <linux/proc_fs.h>
 70 #include <linux/profile.h>
 71 #include <linux/rmap.h>
 72 #include <linux/ksm.h>
 73 #include <linux/acct.h>
 74 #include <linux/userfaultfd_k.h>
 75 #include <linux/tsacct_kern.h>
 76 #include <linux/cn_proc.h>
 77 #include <linux/freezer.h>
 78 #include <linux/delayacct.h>
 79 #include <linux/taskstats_kern.h>
 80 #include <linux/tty.h>
 81 #include <linux/fs_struct.h>
 82 #include <linux/magic.h>
 83 #include <linux/perf_event.h>
 84 #include <linux/posix-timers.h>
 85 #include <linux/user-return-notifier.h>
 86 #include <linux/oom.h>
 87 #include <linux/khugepaged.h>
 88 #include <linux/signalfd.h>
 89 #include <linux/uprobes.h>
 90 #include <linux/aio.h>
 91 #include <linux/compiler.h>
 92 #include <linux/sysctl.h>
 93 #include <linux/kcov.h>
 94 #include <linux/livepatch.h>
 95 #include <linux/thread_info.h>
 96 #include <linux/stackleak.h>
 97 #include <linux/kasan.h>
 98 #include <linux/scs.h>
 99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 
108 #include <asm/pgalloc.h>
109 #include <linux/uaccess.h>
110 #include <asm/mmu_context.h>
111 #include <asm/cacheflush.h>
112 #include <asm/tlbflush.h>
113 
114 #include <trace/events/sched.h>
115 
116 #define CREATE_TRACE_POINTS
117 #include <trace/events/task.h>
118 
119 #include <kunit/visibility.h>
120 
121 /*
122  * Minimum number of threads to boot the kernel
123  */
124 #define MIN_THREADS 20
125 
126 /*
127  * Maximum number of threads
128  */
129 #define MAX_THREADS FUTEX_TID_MASK
130 
131 /*
132  * Protected counters by write_lock_irq(&tasklist_lock)
133  */
134 unsigned long total_forks;      /* Handle normal Linux uptimes. */
135 int nr_threads;                 /* The idle threads do not count.. */
136 
137 static int max_threads;         /* tunable limit on nr_threads */
138 
139 #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
140 
141 static const char * const resident_page_types[] = {
142         NAMED_ARRAY_INDEX(MM_FILEPAGES),
143         NAMED_ARRAY_INDEX(MM_ANONPAGES),
144         NAMED_ARRAY_INDEX(MM_SWAPENTS),
145         NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
146 };
147 
148 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
149 
150 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
151 
152 #ifdef CONFIG_PROVE_RCU
153 int lockdep_tasklist_lock_is_held(void)
154 {
155         return lockdep_is_held(&tasklist_lock);
156 }
157 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
158 #endif /* #ifdef CONFIG_PROVE_RCU */
159 
160 int nr_processes(void)
161 {
162         int cpu;
163         int total = 0;
164 
165         for_each_possible_cpu(cpu)
166                 total += per_cpu(process_counts, cpu);
167 
168         return total;
169 }
170 
171 void __weak arch_release_task_struct(struct task_struct *tsk)
172 {
173 }
174 
175 static struct kmem_cache *task_struct_cachep;
176 
177 static inline struct task_struct *alloc_task_struct_node(int node)
178 {
179         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
180 }
181 
182 static inline void free_task_struct(struct task_struct *tsk)
183 {
184         kmem_cache_free(task_struct_cachep, tsk);
185 }
186 
187 /*
188  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
189  * kmemcache based allocator.
190  */
191 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
192 
193 #  ifdef CONFIG_VMAP_STACK
194 /*
195  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
196  * flush.  Try to minimize the number of calls by caching stacks.
197  */
198 #define NR_CACHED_STACKS 2
199 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
200 
201 struct vm_stack {
202         struct rcu_head rcu;
203         struct vm_struct *stack_vm_area;
204 };
205 
206 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
207 {
208         unsigned int i;
209 
210         for (i = 0; i < NR_CACHED_STACKS; i++) {
211                 struct vm_struct *tmp = NULL;
212 
213                 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
214                         return true;
215         }
216         return false;
217 }
218 
219 static void thread_stack_free_rcu(struct rcu_head *rh)
220 {
221         struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
222 
223         if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
224                 return;
225 
226         vfree(vm_stack);
227 }
228 
229 static void thread_stack_delayed_free(struct task_struct *tsk)
230 {
231         struct vm_stack *vm_stack = tsk->stack;
232 
233         vm_stack->stack_vm_area = tsk->stack_vm_area;
234         call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
235 }
236 
237 static int free_vm_stack_cache(unsigned int cpu)
238 {
239         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
240         int i;
241 
242         for (i = 0; i < NR_CACHED_STACKS; i++) {
243                 struct vm_struct *vm_stack = cached_vm_stacks[i];
244 
245                 if (!vm_stack)
246                         continue;
247 
248                 vfree(vm_stack->addr);
249                 cached_vm_stacks[i] = NULL;
250         }
251 
252         return 0;
253 }
254 
255 static int memcg_charge_kernel_stack(struct vm_struct *vm)
256 {
257         int i;
258         int ret;
259         int nr_charged = 0;
260 
261         BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
262 
263         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
264                 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
265                 if (ret)
266                         goto err;
267                 nr_charged++;
268         }
269         return 0;
270 err:
271         for (i = 0; i < nr_charged; i++)
272                 memcg_kmem_uncharge_page(vm->pages[i], 0);
273         return ret;
274 }
275 
276 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
277 {
278         struct vm_struct *vm;
279         void *stack;
280         int i;
281 
282         for (i = 0; i < NR_CACHED_STACKS; i++) {
283                 struct vm_struct *s;
284 
285                 s = this_cpu_xchg(cached_stacks[i], NULL);
286 
287                 if (!s)
288                         continue;
289 
290                 /* Reset stack metadata. */
291                 kasan_unpoison_range(s->addr, THREAD_SIZE);
292 
293                 stack = kasan_reset_tag(s->addr);
294 
295                 /* Clear stale pointers from reused stack. */
296                 memset(stack, 0, THREAD_SIZE);
297 
298                 if (memcg_charge_kernel_stack(s)) {
299                         vfree(s->addr);
300                         return -ENOMEM;
301                 }
302 
303                 tsk->stack_vm_area = s;
304                 tsk->stack = stack;
305                 return 0;
306         }
307 
308         /*
309          * Allocated stacks are cached and later reused by new threads,
310          * so memcg accounting is performed manually on assigning/releasing
311          * stacks to tasks. Drop __GFP_ACCOUNT.
312          */
313         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
314                                      VMALLOC_START, VMALLOC_END,
315                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
316                                      PAGE_KERNEL,
317                                      0, node, __builtin_return_address(0));
318         if (!stack)
319                 return -ENOMEM;
320 
321         vm = find_vm_area(stack);
322         if (memcg_charge_kernel_stack(vm)) {
323                 vfree(stack);
324                 return -ENOMEM;
325         }
326         /*
327          * We can't call find_vm_area() in interrupt context, and
328          * free_thread_stack() can be called in interrupt context,
329          * so cache the vm_struct.
330          */
331         tsk->stack_vm_area = vm;
332         stack = kasan_reset_tag(stack);
333         tsk->stack = stack;
334         return 0;
335 }
336 
337 static void free_thread_stack(struct task_struct *tsk)
338 {
339         if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
340                 thread_stack_delayed_free(tsk);
341 
342         tsk->stack = NULL;
343         tsk->stack_vm_area = NULL;
344 }
345 
346 #  else /* !CONFIG_VMAP_STACK */
347 
348 static void thread_stack_free_rcu(struct rcu_head *rh)
349 {
350         __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
351 }
352 
353 static void thread_stack_delayed_free(struct task_struct *tsk)
354 {
355         struct rcu_head *rh = tsk->stack;
356 
357         call_rcu(rh, thread_stack_free_rcu);
358 }
359 
360 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
361 {
362         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
363                                              THREAD_SIZE_ORDER);
364 
365         if (likely(page)) {
366                 tsk->stack = kasan_reset_tag(page_address(page));
367                 return 0;
368         }
369         return -ENOMEM;
370 }
371 
372 static void free_thread_stack(struct task_struct *tsk)
373 {
374         thread_stack_delayed_free(tsk);
375         tsk->stack = NULL;
376 }
377 
378 #  endif /* CONFIG_VMAP_STACK */
379 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
380 
381 static struct kmem_cache *thread_stack_cache;
382 
383 static void thread_stack_free_rcu(struct rcu_head *rh)
384 {
385         kmem_cache_free(thread_stack_cache, rh);
386 }
387 
388 static void thread_stack_delayed_free(struct task_struct *tsk)
389 {
390         struct rcu_head *rh = tsk->stack;
391 
392         call_rcu(rh, thread_stack_free_rcu);
393 }
394 
395 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
396 {
397         unsigned long *stack;
398         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
399         stack = kasan_reset_tag(stack);
400         tsk->stack = stack;
401         return stack ? 0 : -ENOMEM;
402 }
403 
404 static void free_thread_stack(struct task_struct *tsk)
405 {
406         thread_stack_delayed_free(tsk);
407         tsk->stack = NULL;
408 }
409 
410 void thread_stack_cache_init(void)
411 {
412         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
413                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
414                                         THREAD_SIZE, NULL);
415         BUG_ON(thread_stack_cache == NULL);
416 }
417 
418 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
419 
420 /* SLAB cache for signal_struct structures (tsk->signal) */
421 static struct kmem_cache *signal_cachep;
422 
423 /* SLAB cache for sighand_struct structures (tsk->sighand) */
424 struct kmem_cache *sighand_cachep;
425 
426 /* SLAB cache for files_struct structures (tsk->files) */
427 struct kmem_cache *files_cachep;
428 
429 /* SLAB cache for fs_struct structures (tsk->fs) */
430 struct kmem_cache *fs_cachep;
431 
432 /* SLAB cache for vm_area_struct structures */
433 static struct kmem_cache *vm_area_cachep;
434 
435 /* SLAB cache for mm_struct structures (tsk->mm) */
436 static struct kmem_cache *mm_cachep;
437 
438 #ifdef CONFIG_PER_VMA_LOCK
439 
440 /* SLAB cache for vm_area_struct.lock */
441 static struct kmem_cache *vma_lock_cachep;
442 
443 static bool vma_lock_alloc(struct vm_area_struct *vma)
444 {
445         vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
446         if (!vma->vm_lock)
447                 return false;
448 
449         init_rwsem(&vma->vm_lock->lock);
450         vma->vm_lock_seq = -1;
451 
452         return true;
453 }
454 
455 static inline void vma_lock_free(struct vm_area_struct *vma)
456 {
457         kmem_cache_free(vma_lock_cachep, vma->vm_lock);
458 }
459 
460 #else /* CONFIG_PER_VMA_LOCK */
461 
462 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
463 static inline void vma_lock_free(struct vm_area_struct *vma) {}
464 
465 #endif /* CONFIG_PER_VMA_LOCK */
466 
467 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
468 {
469         struct vm_area_struct *vma;
470 
471         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
472         if (!vma)
473                 return NULL;
474 
475         vma_init(vma, mm);
476         if (!vma_lock_alloc(vma)) {
477                 kmem_cache_free(vm_area_cachep, vma);
478                 return NULL;
479         }
480 
481         return vma;
482 }
483 
484 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
485 {
486         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
487 
488         if (!new)
489                 return NULL;
490 
491         ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
492         ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
493         /*
494          * orig->shared.rb may be modified concurrently, but the clone
495          * will be reinitialized.
496          */
497         data_race(memcpy(new, orig, sizeof(*new)));
498         if (!vma_lock_alloc(new)) {
499                 kmem_cache_free(vm_area_cachep, new);
500                 return NULL;
501         }
502         INIT_LIST_HEAD(&new->anon_vma_chain);
503         vma_numab_state_init(new);
504         dup_anon_vma_name(orig, new);
505 
506         return new;
507 }
508 
509 void __vm_area_free(struct vm_area_struct *vma)
510 {
511         vma_numab_state_free(vma);
512         free_anon_vma_name(vma);
513         vma_lock_free(vma);
514         kmem_cache_free(vm_area_cachep, vma);
515 }
516 
517 #ifdef CONFIG_PER_VMA_LOCK
518 static void vm_area_free_rcu_cb(struct rcu_head *head)
519 {
520         struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
521                                                   vm_rcu);
522 
523         /* The vma should not be locked while being destroyed. */
524         VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
525         __vm_area_free(vma);
526 }
527 #endif
528 
529 void vm_area_free(struct vm_area_struct *vma)
530 {
531 #ifdef CONFIG_PER_VMA_LOCK
532         call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
533 #else
534         __vm_area_free(vma);
535 #endif
536 }
537 
538 static void account_kernel_stack(struct task_struct *tsk, int account)
539 {
540         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
541                 struct vm_struct *vm = task_stack_vm_area(tsk);
542                 int i;
543 
544                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
545                         mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
546                                               account * (PAGE_SIZE / 1024));
547         } else {
548                 void *stack = task_stack_page(tsk);
549 
550                 /* All stack pages are in the same node. */
551                 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
552                                       account * (THREAD_SIZE / 1024));
553         }
554 }
555 
556 void exit_task_stack_account(struct task_struct *tsk)
557 {
558         account_kernel_stack(tsk, -1);
559 
560         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
561                 struct vm_struct *vm;
562                 int i;
563 
564                 vm = task_stack_vm_area(tsk);
565                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
566                         memcg_kmem_uncharge_page(vm->pages[i], 0);
567         }
568 }
569 
570 static void release_task_stack(struct task_struct *tsk)
571 {
572         if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
573                 return;  /* Better to leak the stack than to free prematurely */
574 
575         free_thread_stack(tsk);
576 }
577 
578 #ifdef CONFIG_THREAD_INFO_IN_TASK
579 void put_task_stack(struct task_struct *tsk)
580 {
581         if (refcount_dec_and_test(&tsk->stack_refcount))
582                 release_task_stack(tsk);
583 }
584 #endif
585 
586 void free_task(struct task_struct *tsk)
587 {
588 #ifdef CONFIG_SECCOMP
589         WARN_ON_ONCE(tsk->seccomp.filter);
590 #endif
591         release_user_cpus_ptr(tsk);
592         scs_release(tsk);
593 
594 #ifndef CONFIG_THREAD_INFO_IN_TASK
595         /*
596          * The task is finally done with both the stack and thread_info,
597          * so free both.
598          */
599         release_task_stack(tsk);
600 #else
601         /*
602          * If the task had a separate stack allocation, it should be gone
603          * by now.
604          */
605         WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
606 #endif
607         rt_mutex_debug_task_free(tsk);
608         ftrace_graph_exit_task(tsk);
609         arch_release_task_struct(tsk);
610         if (tsk->flags & PF_KTHREAD)
611                 free_kthread_struct(tsk);
612         bpf_task_storage_free(tsk);
613         free_task_struct(tsk);
614 }
615 EXPORT_SYMBOL(free_task);
616 
617 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
618 {
619         struct file *exe_file;
620 
621         exe_file = get_mm_exe_file(oldmm);
622         RCU_INIT_POINTER(mm->exe_file, exe_file);
623 }
624 
625 #ifdef CONFIG_MMU
626 static __latent_entropy int dup_mmap(struct mm_struct *mm,
627                                         struct mm_struct *oldmm)
628 {
629         struct vm_area_struct *mpnt, *tmp;
630         int retval;
631         unsigned long charge = 0;
632         LIST_HEAD(uf);
633         VMA_ITERATOR(vmi, mm, 0);
634 
635         uprobe_start_dup_mmap();
636         if (mmap_write_lock_killable(oldmm)) {
637                 retval = -EINTR;
638                 goto fail_uprobe_end;
639         }
640         flush_cache_dup_mm(oldmm);
641         uprobe_dup_mmap(oldmm, mm);
642         /*
643          * Not linked in yet - no deadlock potential:
644          */
645         mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
646 
647         /* No ordering required: file already has been exposed. */
648         dup_mm_exe_file(mm, oldmm);
649 
650         mm->total_vm = oldmm->total_vm;
651         mm->data_vm = oldmm->data_vm;
652         mm->exec_vm = oldmm->exec_vm;
653         mm->stack_vm = oldmm->stack_vm;
654 
655         retval = ksm_fork(mm, oldmm);
656         if (retval)
657                 goto out;
658         khugepaged_fork(mm, oldmm);
659 
660         /* Use __mt_dup() to efficiently build an identical maple tree. */
661         retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
662         if (unlikely(retval))
663                 goto out;
664 
665         mt_clear_in_rcu(vmi.mas.tree);
666         for_each_vma(vmi, mpnt) {
667                 struct file *file;
668 
669                 vma_start_write(mpnt);
670                 if (mpnt->vm_flags & VM_DONTCOPY) {
671                         retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
672                                                     mpnt->vm_end, GFP_KERNEL);
673                         if (retval)
674                                 goto loop_out;
675 
676                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
677                         continue;
678                 }
679                 charge = 0;
680                 /*
681                  * Don't duplicate many vmas if we've been oom-killed (for
682                  * example)
683                  */
684                 if (fatal_signal_pending(current)) {
685                         retval = -EINTR;
686                         goto loop_out;
687                 }
688                 if (mpnt->vm_flags & VM_ACCOUNT) {
689                         unsigned long len = vma_pages(mpnt);
690 
691                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
692                                 goto fail_nomem;
693                         charge = len;
694                 }
695                 tmp = vm_area_dup(mpnt);
696                 if (!tmp)
697                         goto fail_nomem;
698                 retval = vma_dup_policy(mpnt, tmp);
699                 if (retval)
700                         goto fail_nomem_policy;
701                 tmp->vm_mm = mm;
702                 retval = dup_userfaultfd(tmp, &uf);
703                 if (retval)
704                         goto fail_nomem_anon_vma_fork;
705                 if (tmp->vm_flags & VM_WIPEONFORK) {
706                         /*
707                          * VM_WIPEONFORK gets a clean slate in the child.
708                          * Don't prepare anon_vma until fault since we don't
709                          * copy page for current vma.
710                          */
711                         tmp->anon_vma = NULL;
712                 } else if (anon_vma_fork(tmp, mpnt))
713                         goto fail_nomem_anon_vma_fork;
714                 vm_flags_clear(tmp, VM_LOCKED_MASK);
715                 /*
716                  * Copy/update hugetlb private vma information.
717                  */
718                 if (is_vm_hugetlb_page(tmp))
719                         hugetlb_dup_vma_private(tmp);
720 
721                 /*
722                  * Link the vma into the MT. After using __mt_dup(), memory
723                  * allocation is not necessary here, so it cannot fail.
724                  */
725                 vma_iter_bulk_store(&vmi, tmp);
726 
727                 mm->map_count++;
728 
729                 if (tmp->vm_ops && tmp->vm_ops->open)
730                         tmp->vm_ops->open(tmp);
731 
732                 file = tmp->vm_file;
733                 if (file) {
734                         struct address_space *mapping = file->f_mapping;
735 
736                         get_file(file);
737                         i_mmap_lock_write(mapping);
738                         if (vma_is_shared_maywrite(tmp))
739                                 mapping_allow_writable(mapping);
740                         flush_dcache_mmap_lock(mapping);
741                         /* insert tmp into the share list, just after mpnt */
742                         vma_interval_tree_insert_after(tmp, mpnt,
743                                         &mapping->i_mmap);
744                         flush_dcache_mmap_unlock(mapping);
745                         i_mmap_unlock_write(mapping);
746                 }
747 
748                 if (!(tmp->vm_flags & VM_WIPEONFORK))
749                         retval = copy_page_range(tmp, mpnt);
750 
751                 if (retval) {
752                         mpnt = vma_next(&vmi);
753                         goto loop_out;
754                 }
755         }
756         /* a new mm has just been created */
757         retval = arch_dup_mmap(oldmm, mm);
758 loop_out:
759         vma_iter_free(&vmi);
760         if (!retval) {
761                 mt_set_in_rcu(vmi.mas.tree);
762         } else if (mpnt) {
763                 /*
764                  * The entire maple tree has already been duplicated. If the
765                  * mmap duplication fails, mark the failure point with
766                  * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
767                  * stop releasing VMAs that have not been duplicated after this
768                  * point.
769                  */
770                 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
771                 mas_store(&vmi.mas, XA_ZERO_ENTRY);
772         }
773 out:
774         mmap_write_unlock(mm);
775         flush_tlb_mm(oldmm);
776         mmap_write_unlock(oldmm);
777         dup_userfaultfd_complete(&uf);
778 fail_uprobe_end:
779         uprobe_end_dup_mmap();
780         return retval;
781 
782 fail_nomem_anon_vma_fork:
783         mpol_put(vma_policy(tmp));
784 fail_nomem_policy:
785         vm_area_free(tmp);
786 fail_nomem:
787         retval = -ENOMEM;
788         vm_unacct_memory(charge);
789         goto loop_out;
790 }
791 
792 static inline int mm_alloc_pgd(struct mm_struct *mm)
793 {
794         mm->pgd = pgd_alloc(mm);
795         if (unlikely(!mm->pgd))
796                 return -ENOMEM;
797         return 0;
798 }
799 
800 static inline void mm_free_pgd(struct mm_struct *mm)
801 {
802         pgd_free(mm, mm->pgd);
803 }
804 #else
805 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
806 {
807         mmap_write_lock(oldmm);
808         dup_mm_exe_file(mm, oldmm);
809         mmap_write_unlock(oldmm);
810         return 0;
811 }
812 #define mm_alloc_pgd(mm)        (0)
813 #define mm_free_pgd(mm)
814 #endif /* CONFIG_MMU */
815 
816 static void check_mm(struct mm_struct *mm)
817 {
818         int i;
819 
820         BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
821                          "Please make sure 'struct resident_page_types[]' is updated as well");
822 
823         for (i = 0; i < NR_MM_COUNTERS; i++) {
824                 long x = percpu_counter_sum(&mm->rss_stat[i]);
825 
826                 if (unlikely(x))
827                         pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
828                                  mm, resident_page_types[i], x);
829         }
830 
831         if (mm_pgtables_bytes(mm))
832                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
833                                 mm_pgtables_bytes(mm));
834 
835 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
836         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
837 #endif
838 }
839 
840 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
841 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
842 
843 static void do_check_lazy_tlb(void *arg)
844 {
845         struct mm_struct *mm = arg;
846 
847         WARN_ON_ONCE(current->active_mm == mm);
848 }
849 
850 static void do_shoot_lazy_tlb(void *arg)
851 {
852         struct mm_struct *mm = arg;
853 
854         if (current->active_mm == mm) {
855                 WARN_ON_ONCE(current->mm);
856                 current->active_mm = &init_mm;
857                 switch_mm(mm, &init_mm, current);
858         }
859 }
860 
861 static void cleanup_lazy_tlbs(struct mm_struct *mm)
862 {
863         if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
864                 /*
865                  * In this case, lazy tlb mms are refounted and would not reach
866                  * __mmdrop until all CPUs have switched away and mmdrop()ed.
867                  */
868                 return;
869         }
870 
871         /*
872          * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
873          * requires lazy mm users to switch to another mm when the refcount
874          * drops to zero, before the mm is freed. This requires IPIs here to
875          * switch kernel threads to init_mm.
876          *
877          * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
878          * switch with the final userspace teardown TLB flush which leaves the
879          * mm lazy on this CPU but no others, reducing the need for additional
880          * IPIs here. There are cases where a final IPI is still required here,
881          * such as the final mmdrop being performed on a different CPU than the
882          * one exiting, or kernel threads using the mm when userspace exits.
883          *
884          * IPI overheads have not found to be expensive, but they could be
885          * reduced in a number of possible ways, for example (roughly
886          * increasing order of complexity):
887          * - The last lazy reference created by exit_mm() could instead switch
888          *   to init_mm, however it's probable this will run on the same CPU
889          *   immediately afterwards, so this may not reduce IPIs much.
890          * - A batch of mms requiring IPIs could be gathered and freed at once.
891          * - CPUs store active_mm where it can be remotely checked without a
892          *   lock, to filter out false-positives in the cpumask.
893          * - After mm_users or mm_count reaches zero, switching away from the
894          *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
895          *   with some batching or delaying of the final IPIs.
896          * - A delayed freeing and RCU-like quiescing sequence based on mm
897          *   switching to avoid IPIs completely.
898          */
899         on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
900         if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
901                 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
902 }
903 
904 /*
905  * Called when the last reference to the mm
906  * is dropped: either by a lazy thread or by
907  * mmput. Free the page directory and the mm.
908  */
909 void __mmdrop(struct mm_struct *mm)
910 {
911         BUG_ON(mm == &init_mm);
912         WARN_ON_ONCE(mm == current->mm);
913 
914         /* Ensure no CPUs are using this as their lazy tlb mm */
915         cleanup_lazy_tlbs(mm);
916 
917         WARN_ON_ONCE(mm == current->active_mm);
918         mm_free_pgd(mm);
919         destroy_context(mm);
920         mmu_notifier_subscriptions_destroy(mm);
921         check_mm(mm);
922         put_user_ns(mm->user_ns);
923         mm_pasid_drop(mm);
924         mm_destroy_cid(mm);
925         percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
926 
927         free_mm(mm);
928 }
929 EXPORT_SYMBOL_GPL(__mmdrop);
930 
931 static void mmdrop_async_fn(struct work_struct *work)
932 {
933         struct mm_struct *mm;
934 
935         mm = container_of(work, struct mm_struct, async_put_work);
936         __mmdrop(mm);
937 }
938 
939 static void mmdrop_async(struct mm_struct *mm)
940 {
941         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
942                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
943                 schedule_work(&mm->async_put_work);
944         }
945 }
946 
947 static inline void free_signal_struct(struct signal_struct *sig)
948 {
949         taskstats_tgid_free(sig);
950         sched_autogroup_exit(sig);
951         /*
952          * __mmdrop is not safe to call from softirq context on x86 due to
953          * pgd_dtor so postpone it to the async context
954          */
955         if (sig->oom_mm)
956                 mmdrop_async(sig->oom_mm);
957         kmem_cache_free(signal_cachep, sig);
958 }
959 
960 static inline void put_signal_struct(struct signal_struct *sig)
961 {
962         if (refcount_dec_and_test(&sig->sigcnt))
963                 free_signal_struct(sig);
964 }
965 
966 void __put_task_struct(struct task_struct *tsk)
967 {
968         WARN_ON(!tsk->exit_state);
969         WARN_ON(refcount_read(&tsk->usage));
970         WARN_ON(tsk == current);
971 
972         io_uring_free(tsk);
973         cgroup_free(tsk);
974         task_numa_free(tsk, true);
975         security_task_free(tsk);
976         exit_creds(tsk);
977         delayacct_tsk_free(tsk);
978         put_signal_struct(tsk->signal);
979         sched_core_free(tsk);
980         free_task(tsk);
981 }
982 EXPORT_SYMBOL_GPL(__put_task_struct);
983 
984 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
985 {
986         struct task_struct *task = container_of(rhp, struct task_struct, rcu);
987 
988         __put_task_struct(task);
989 }
990 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
991 
992 void __init __weak arch_task_cache_init(void) { }
993 
994 /*
995  * set_max_threads
996  */
997 static void __init set_max_threads(unsigned int max_threads_suggested)
998 {
999         u64 threads;
1000         unsigned long nr_pages = PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
1001 
1002         /*
1003          * The number of threads shall be limited such that the thread
1004          * structures may only consume a small part of the available memory.
1005          */
1006         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1007                 threads = MAX_THREADS;
1008         else
1009                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1010                                     (u64) THREAD_SIZE * 8UL);
1011 
1012         if (threads > max_threads_suggested)
1013                 threads = max_threads_suggested;
1014 
1015         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1016 }
1017 
1018 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1019 /* Initialized by the architecture: */
1020 int arch_task_struct_size __read_mostly;
1021 #endif
1022 
1023 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1024 {
1025         /* Fetch thread_struct whitelist for the architecture. */
1026         arch_thread_struct_whitelist(offset, size);
1027 
1028         /*
1029          * Handle zero-sized whitelist or empty thread_struct, otherwise
1030          * adjust offset to position of thread_struct in task_struct.
1031          */
1032         if (unlikely(*size == 0))
1033                 *offset = 0;
1034         else
1035                 *offset += offsetof(struct task_struct, thread);
1036 }
1037 
1038 void __init fork_init(void)
1039 {
1040         int i;
1041 #ifndef ARCH_MIN_TASKALIGN
1042 #define ARCH_MIN_TASKALIGN      0
1043 #endif
1044         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1045         unsigned long useroffset, usersize;
1046 
1047         /* create a slab on which task_structs can be allocated */
1048         task_struct_whitelist(&useroffset, &usersize);
1049         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1050                         arch_task_struct_size, align,
1051                         SLAB_PANIC|SLAB_ACCOUNT,
1052                         useroffset, usersize, NULL);
1053 
1054         /* do the arch specific task caches init */
1055         arch_task_cache_init();
1056 
1057         set_max_threads(MAX_THREADS);
1058 
1059         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1060         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1061         init_task.signal->rlim[RLIMIT_SIGPENDING] =
1062                 init_task.signal->rlim[RLIMIT_NPROC];
1063 
1064         for (i = 0; i < UCOUNT_COUNTS; i++)
1065                 init_user_ns.ucount_max[i] = max_threads/2;
1066 
1067         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1068         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1069         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1070         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1071 
1072 #ifdef CONFIG_VMAP_STACK
1073         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1074                           NULL, free_vm_stack_cache);
1075 #endif
1076 
1077         scs_init();
1078 
1079         lockdep_init_task(&init_task);
1080         uprobes_init();
1081 }
1082 
1083 int __weak arch_dup_task_struct(struct task_struct *dst,
1084                                                struct task_struct *src)
1085 {
1086         *dst = *src;
1087         return 0;
1088 }
1089 
1090 void set_task_stack_end_magic(struct task_struct *tsk)
1091 {
1092         unsigned long *stackend;
1093 
1094         stackend = end_of_stack(tsk);
1095         *stackend = STACK_END_MAGIC;    /* for overflow detection */
1096 }
1097 
1098 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1099 {
1100         struct task_struct *tsk;
1101         int err;
1102 
1103         if (node == NUMA_NO_NODE)
1104                 node = tsk_fork_get_node(orig);
1105         tsk = alloc_task_struct_node(node);
1106         if (!tsk)
1107                 return NULL;
1108 
1109         err = arch_dup_task_struct(tsk, orig);
1110         if (err)
1111                 goto free_tsk;
1112 
1113         err = alloc_thread_stack_node(tsk, node);
1114         if (err)
1115                 goto free_tsk;
1116 
1117 #ifdef CONFIG_THREAD_INFO_IN_TASK
1118         refcount_set(&tsk->stack_refcount, 1);
1119 #endif
1120         account_kernel_stack(tsk, 1);
1121 
1122         err = scs_prepare(tsk, node);
1123         if (err)
1124                 goto free_stack;
1125 
1126 #ifdef CONFIG_SECCOMP
1127         /*
1128          * We must handle setting up seccomp filters once we're under
1129          * the sighand lock in case orig has changed between now and
1130          * then. Until then, filter must be NULL to avoid messing up
1131          * the usage counts on the error path calling free_task.
1132          */
1133         tsk->seccomp.filter = NULL;
1134 #endif
1135 
1136         setup_thread_stack(tsk, orig);
1137         clear_user_return_notifier(tsk);
1138         clear_tsk_need_resched(tsk);
1139         set_task_stack_end_magic(tsk);
1140         clear_syscall_work_syscall_user_dispatch(tsk);
1141 
1142 #ifdef CONFIG_STACKPROTECTOR
1143         tsk->stack_canary = get_random_canary();
1144 #endif
1145         if (orig->cpus_ptr == &orig->cpus_mask)
1146                 tsk->cpus_ptr = &tsk->cpus_mask;
1147         dup_user_cpus_ptr(tsk, orig, node);
1148 
1149         /*
1150          * One for the user space visible state that goes away when reaped.
1151          * One for the scheduler.
1152          */
1153         refcount_set(&tsk->rcu_users, 2);
1154         /* One for the rcu users */
1155         refcount_set(&tsk->usage, 1);
1156 #ifdef CONFIG_BLK_DEV_IO_TRACE
1157         tsk->btrace_seq = 0;
1158 #endif
1159         tsk->splice_pipe = NULL;
1160         tsk->task_frag.page = NULL;
1161         tsk->wake_q.next = NULL;
1162         tsk->worker_private = NULL;
1163 
1164         kcov_task_init(tsk);
1165         kmsan_task_create(tsk);
1166         kmap_local_fork(tsk);
1167 
1168 #ifdef CONFIG_FAULT_INJECTION
1169         tsk->fail_nth = 0;
1170 #endif
1171 
1172 #ifdef CONFIG_BLK_CGROUP
1173         tsk->throttle_disk = NULL;
1174         tsk->use_memdelay = 0;
1175 #endif
1176 
1177 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1178         tsk->pasid_activated = 0;
1179 #endif
1180 
1181 #ifdef CONFIG_MEMCG
1182         tsk->active_memcg = NULL;
1183 #endif
1184 
1185 #ifdef CONFIG_CPU_SUP_INTEL
1186         tsk->reported_split_lock = 0;
1187 #endif
1188 
1189 #ifdef CONFIG_SCHED_MM_CID
1190         tsk->mm_cid = -1;
1191         tsk->last_mm_cid = -1;
1192         tsk->mm_cid_active = 0;
1193         tsk->migrate_from_cpu = -1;
1194 #endif
1195         return tsk;
1196 
1197 free_stack:
1198         exit_task_stack_account(tsk);
1199         free_thread_stack(tsk);
1200 free_tsk:
1201         free_task_struct(tsk);
1202         return NULL;
1203 }
1204 
1205 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1206 
1207 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1208 
1209 static int __init coredump_filter_setup(char *s)
1210 {
1211         default_dump_filter =
1212                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1213                 MMF_DUMP_FILTER_MASK;
1214         return 1;
1215 }
1216 
1217 __setup("coredump_filter=", coredump_filter_setup);
1218 
1219 #include <linux/init_task.h>
1220 
1221 static void mm_init_aio(struct mm_struct *mm)
1222 {
1223 #ifdef CONFIG_AIO
1224         spin_lock_init(&mm->ioctx_lock);
1225         mm->ioctx_table = NULL;
1226 #endif
1227 }
1228 
1229 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1230                                            struct task_struct *p)
1231 {
1232 #ifdef CONFIG_MEMCG
1233         if (mm->owner == p)
1234                 WRITE_ONCE(mm->owner, NULL);
1235 #endif
1236 }
1237 
1238 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1239 {
1240 #ifdef CONFIG_MEMCG
1241         mm->owner = p;
1242 #endif
1243 }
1244 
1245 static void mm_init_uprobes_state(struct mm_struct *mm)
1246 {
1247 #ifdef CONFIG_UPROBES
1248         mm->uprobes_state.xol_area = NULL;
1249 #endif
1250 }
1251 
1252 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1253         struct user_namespace *user_ns)
1254 {
1255         mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1256         mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1257         atomic_set(&mm->mm_users, 1);
1258         atomic_set(&mm->mm_count, 1);
1259         seqcount_init(&mm->write_protect_seq);
1260         mmap_init_lock(mm);
1261         INIT_LIST_HEAD(&mm->mmlist);
1262 #ifdef CONFIG_PER_VMA_LOCK
1263         mm->mm_lock_seq = 0;
1264 #endif
1265         mm_pgtables_bytes_init(mm);
1266         mm->map_count = 0;
1267         mm->locked_vm = 0;
1268         atomic64_set(&mm->pinned_vm, 0);
1269         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1270         spin_lock_init(&mm->page_table_lock);
1271         spin_lock_init(&mm->arg_lock);
1272         mm_init_cpumask(mm);
1273         mm_init_aio(mm);
1274         mm_init_owner(mm, p);
1275         mm_pasid_init(mm);
1276         RCU_INIT_POINTER(mm->exe_file, NULL);
1277         mmu_notifier_subscriptions_init(mm);
1278         init_tlb_flush_pending(mm);
1279 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1280         mm->pmd_huge_pte = NULL;
1281 #endif
1282         mm_init_uprobes_state(mm);
1283         hugetlb_count_init(mm);
1284 
1285         if (current->mm) {
1286                 mm->flags = mmf_init_flags(current->mm->flags);
1287                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1288         } else {
1289                 mm->flags = default_dump_filter;
1290                 mm->def_flags = 0;
1291         }
1292 
1293         if (mm_alloc_pgd(mm))
1294                 goto fail_nopgd;
1295 
1296         if (init_new_context(p, mm))
1297                 goto fail_nocontext;
1298 
1299         if (mm_alloc_cid(mm))
1300                 goto fail_cid;
1301 
1302         if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1303                                      NR_MM_COUNTERS))
1304                 goto fail_pcpu;
1305 
1306         mm->user_ns = get_user_ns(user_ns);
1307         lru_gen_init_mm(mm);
1308         return mm;
1309 
1310 fail_pcpu:
1311         mm_destroy_cid(mm);
1312 fail_cid:
1313         destroy_context(mm);
1314 fail_nocontext:
1315         mm_free_pgd(mm);
1316 fail_nopgd:
1317         free_mm(mm);
1318         return NULL;
1319 }
1320 
1321 /*
1322  * Allocate and initialize an mm_struct.
1323  */
1324 struct mm_struct *mm_alloc(void)
1325 {
1326         struct mm_struct *mm;
1327 
1328         mm = allocate_mm();
1329         if (!mm)
1330                 return NULL;
1331 
1332         memset(mm, 0, sizeof(*mm));
1333         return mm_init(mm, current, current_user_ns());
1334 }
1335 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1336 
1337 static inline void __mmput(struct mm_struct *mm)
1338 {
1339         VM_BUG_ON(atomic_read(&mm->mm_users));
1340 
1341         uprobe_clear_state(mm);
1342         exit_aio(mm);
1343         ksm_exit(mm);
1344         khugepaged_exit(mm); /* must run before exit_mmap */
1345         exit_mmap(mm);
1346         mm_put_huge_zero_folio(mm);
1347         set_mm_exe_file(mm, NULL);
1348         if (!list_empty(&mm->mmlist)) {
1349                 spin_lock(&mmlist_lock);
1350                 list_del(&mm->mmlist);
1351                 spin_unlock(&mmlist_lock);
1352         }
1353         if (mm->binfmt)
1354                 module_put(mm->binfmt->module);
1355         lru_gen_del_mm(mm);
1356         mmdrop(mm);
1357 }
1358 
1359 /*
1360  * Decrement the use count and release all resources for an mm.
1361  */
1362 void mmput(struct mm_struct *mm)
1363 {
1364         might_sleep();
1365 
1366         if (atomic_dec_and_test(&mm->mm_users))
1367                 __mmput(mm);
1368 }
1369 EXPORT_SYMBOL_GPL(mmput);
1370 
1371 #ifdef CONFIG_MMU
1372 static void mmput_async_fn(struct work_struct *work)
1373 {
1374         struct mm_struct *mm = container_of(work, struct mm_struct,
1375                                             async_put_work);
1376 
1377         __mmput(mm);
1378 }
1379 
1380 void mmput_async(struct mm_struct *mm)
1381 {
1382         if (atomic_dec_and_test(&mm->mm_users)) {
1383                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1384                 schedule_work(&mm->async_put_work);
1385         }
1386 }
1387 EXPORT_SYMBOL_GPL(mmput_async);
1388 #endif
1389 
1390 /**
1391  * set_mm_exe_file - change a reference to the mm's executable file
1392  * @mm: The mm to change.
1393  * @new_exe_file: The new file to use.
1394  *
1395  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1396  *
1397  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1398  * invocations: in mmput() nobody alive left, in execve it happens before
1399  * the new mm is made visible to anyone.
1400  *
1401  * Can only fail if new_exe_file != NULL.
1402  */
1403 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1404 {
1405         struct file *old_exe_file;
1406 
1407         /*
1408          * It is safe to dereference the exe_file without RCU as
1409          * this function is only called if nobody else can access
1410          * this mm -- see comment above for justification.
1411          */
1412         old_exe_file = rcu_dereference_raw(mm->exe_file);
1413 
1414         if (new_exe_file)
1415                 get_file(new_exe_file);
1416         rcu_assign_pointer(mm->exe_file, new_exe_file);
1417         if (old_exe_file)
1418                 fput(old_exe_file);
1419         return 0;
1420 }
1421 
1422 /**
1423  * replace_mm_exe_file - replace a reference to the mm's executable file
1424  * @mm: The mm to change.
1425  * @new_exe_file: The new file to use.
1426  *
1427  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1428  *
1429  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1430  */
1431 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1432 {
1433         struct vm_area_struct *vma;
1434         struct file *old_exe_file;
1435         int ret = 0;
1436 
1437         /* Forbid mm->exe_file change if old file still mapped. */
1438         old_exe_file = get_mm_exe_file(mm);
1439         if (old_exe_file) {
1440                 VMA_ITERATOR(vmi, mm, 0);
1441                 mmap_read_lock(mm);
1442                 for_each_vma(vmi, vma) {
1443                         if (!vma->vm_file)
1444                                 continue;
1445                         if (path_equal(&vma->vm_file->f_path,
1446                                        &old_exe_file->f_path)) {
1447                                 ret = -EBUSY;
1448                                 break;
1449                         }
1450                 }
1451                 mmap_read_unlock(mm);
1452                 fput(old_exe_file);
1453                 if (ret)
1454                         return ret;
1455         }
1456 
1457         get_file(new_exe_file);
1458 
1459         /* set the new file */
1460         mmap_write_lock(mm);
1461         old_exe_file = rcu_dereference_raw(mm->exe_file);
1462         rcu_assign_pointer(mm->exe_file, new_exe_file);
1463         mmap_write_unlock(mm);
1464 
1465         if (old_exe_file)
1466                 fput(old_exe_file);
1467         return 0;
1468 }
1469 
1470 /**
1471  * get_mm_exe_file - acquire a reference to the mm's executable file
1472  * @mm: The mm of interest.
1473  *
1474  * Returns %NULL if mm has no associated executable file.
1475  * User must release file via fput().
1476  */
1477 struct file *get_mm_exe_file(struct mm_struct *mm)
1478 {
1479         struct file *exe_file;
1480 
1481         rcu_read_lock();
1482         exe_file = get_file_rcu(&mm->exe_file);
1483         rcu_read_unlock();
1484         return exe_file;
1485 }
1486 
1487 /**
1488  * get_task_exe_file - acquire a reference to the task's executable file
1489  * @task: The task.
1490  *
1491  * Returns %NULL if task's mm (if any) has no associated executable file or
1492  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1493  * User must release file via fput().
1494  */
1495 struct file *get_task_exe_file(struct task_struct *task)
1496 {
1497         struct file *exe_file = NULL;
1498         struct mm_struct *mm;
1499 
1500         task_lock(task);
1501         mm = task->mm;
1502         if (mm) {
1503                 if (!(task->flags & PF_KTHREAD))
1504                         exe_file = get_mm_exe_file(mm);
1505         }
1506         task_unlock(task);
1507         return exe_file;
1508 }
1509 
1510 /**
1511  * get_task_mm - acquire a reference to the task's mm
1512  * @task: The task.
1513  *
1514  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1515  * this kernel workthread has transiently adopted a user mm with use_mm,
1516  * to do its AIO) is not set and if so returns a reference to it, after
1517  * bumping up the use count.  User must release the mm via mmput()
1518  * after use.  Typically used by /proc and ptrace.
1519  */
1520 struct mm_struct *get_task_mm(struct task_struct *task)
1521 {
1522         struct mm_struct *mm;
1523 
1524         if (task->flags & PF_KTHREAD)
1525                 return NULL;
1526 
1527         task_lock(task);
1528         mm = task->mm;
1529         if (mm)
1530                 mmget(mm);
1531         task_unlock(task);
1532         return mm;
1533 }
1534 EXPORT_SYMBOL_GPL(get_task_mm);
1535 
1536 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1537 {
1538         struct mm_struct *mm;
1539         int err;
1540 
1541         err =  down_read_killable(&task->signal->exec_update_lock);
1542         if (err)
1543                 return ERR_PTR(err);
1544 
1545         mm = get_task_mm(task);
1546         if (mm && mm != current->mm &&
1547                         !ptrace_may_access(task, mode)) {
1548                 mmput(mm);
1549                 mm = ERR_PTR(-EACCES);
1550         }
1551         up_read(&task->signal->exec_update_lock);
1552 
1553         return mm;
1554 }
1555 
1556 static void complete_vfork_done(struct task_struct *tsk)
1557 {
1558         struct completion *vfork;
1559 
1560         task_lock(tsk);
1561         vfork = tsk->vfork_done;
1562         if (likely(vfork)) {
1563                 tsk->vfork_done = NULL;
1564                 complete(vfork);
1565         }
1566         task_unlock(tsk);
1567 }
1568 
1569 static int wait_for_vfork_done(struct task_struct *child,
1570                                 struct completion *vfork)
1571 {
1572         unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1573         int killed;
1574 
1575         cgroup_enter_frozen();
1576         killed = wait_for_completion_state(vfork, state);
1577         cgroup_leave_frozen(false);
1578 
1579         if (killed) {
1580                 task_lock(child);
1581                 child->vfork_done = NULL;
1582                 task_unlock(child);
1583         }
1584 
1585         put_task_struct(child);
1586         return killed;
1587 }
1588 
1589 /* Please note the differences between mmput and mm_release.
1590  * mmput is called whenever we stop holding onto a mm_struct,
1591  * error success whatever.
1592  *
1593  * mm_release is called after a mm_struct has been removed
1594  * from the current process.
1595  *
1596  * This difference is important for error handling, when we
1597  * only half set up a mm_struct for a new process and need to restore
1598  * the old one.  Because we mmput the new mm_struct before
1599  * restoring the old one. . .
1600  * Eric Biederman 10 January 1998
1601  */
1602 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1603 {
1604         uprobe_free_utask(tsk);
1605 
1606         /* Get rid of any cached register state */
1607         deactivate_mm(tsk, mm);
1608 
1609         /*
1610          * Signal userspace if we're not exiting with a core dump
1611          * because we want to leave the value intact for debugging
1612          * purposes.
1613          */
1614         if (tsk->clear_child_tid) {
1615                 if (atomic_read(&mm->mm_users) > 1) {
1616                         /*
1617                          * We don't check the error code - if userspace has
1618                          * not set up a proper pointer then tough luck.
1619                          */
1620                         put_user(0, tsk->clear_child_tid);
1621                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1622                                         1, NULL, NULL, 0, 0);
1623                 }
1624                 tsk->clear_child_tid = NULL;
1625         }
1626 
1627         /*
1628          * All done, finally we can wake up parent and return this mm to him.
1629          * Also kthread_stop() uses this completion for synchronization.
1630          */
1631         if (tsk->vfork_done)
1632                 complete_vfork_done(tsk);
1633 }
1634 
1635 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1636 {
1637         futex_exit_release(tsk);
1638         mm_release(tsk, mm);
1639 }
1640 
1641 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1642 {
1643         futex_exec_release(tsk);
1644         mm_release(tsk, mm);
1645 }
1646 
1647 /**
1648  * dup_mm() - duplicates an existing mm structure
1649  * @tsk: the task_struct with which the new mm will be associated.
1650  * @oldmm: the mm to duplicate.
1651  *
1652  * Allocates a new mm structure and duplicates the provided @oldmm structure
1653  * content into it.
1654  *
1655  * Return: the duplicated mm or NULL on failure.
1656  */
1657 static struct mm_struct *dup_mm(struct task_struct *tsk,
1658                                 struct mm_struct *oldmm)
1659 {
1660         struct mm_struct *mm;
1661         int err;
1662 
1663         mm = allocate_mm();
1664         if (!mm)
1665                 goto fail_nomem;
1666 
1667         memcpy(mm, oldmm, sizeof(*mm));
1668 
1669         if (!mm_init(mm, tsk, mm->user_ns))
1670                 goto fail_nomem;
1671 
1672         err = dup_mmap(mm, oldmm);
1673         if (err)
1674                 goto free_pt;
1675 
1676         mm->hiwater_rss = get_mm_rss(mm);
1677         mm->hiwater_vm = mm->total_vm;
1678 
1679         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1680                 goto free_pt;
1681 
1682         return mm;
1683 
1684 free_pt:
1685         /* don't put binfmt in mmput, we haven't got module yet */
1686         mm->binfmt = NULL;
1687         mm_init_owner(mm, NULL);
1688         mmput(mm);
1689 
1690 fail_nomem:
1691         return NULL;
1692 }
1693 
1694 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1695 {
1696         struct mm_struct *mm, *oldmm;
1697 
1698         tsk->min_flt = tsk->maj_flt = 0;
1699         tsk->nvcsw = tsk->nivcsw = 0;
1700 #ifdef CONFIG_DETECT_HUNG_TASK
1701         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1702         tsk->last_switch_time = 0;
1703 #endif
1704 
1705         tsk->mm = NULL;
1706         tsk->active_mm = NULL;
1707 
1708         /*
1709          * Are we cloning a kernel thread?
1710          *
1711          * We need to steal a active VM for that..
1712          */
1713         oldmm = current->mm;
1714         if (!oldmm)
1715                 return 0;
1716 
1717         if (clone_flags & CLONE_VM) {
1718                 mmget(oldmm);
1719                 mm = oldmm;
1720         } else {
1721                 mm = dup_mm(tsk, current->mm);
1722                 if (!mm)
1723                         return -ENOMEM;
1724         }
1725 
1726         tsk->mm = mm;
1727         tsk->active_mm = mm;
1728         sched_mm_cid_fork(tsk);
1729         return 0;
1730 }
1731 
1732 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1733 {
1734         struct fs_struct *fs = current->fs;
1735         if (clone_flags & CLONE_FS) {
1736                 /* tsk->fs is already what we want */
1737                 spin_lock(&fs->lock);
1738                 /* "users" and "in_exec" locked for check_unsafe_exec() */
1739                 if (fs->in_exec) {
1740                         spin_unlock(&fs->lock);
1741                         return -EAGAIN;
1742                 }
1743                 fs->users++;
1744                 spin_unlock(&fs->lock);
1745                 return 0;
1746         }
1747         tsk->fs = copy_fs_struct(fs);
1748         if (!tsk->fs)
1749                 return -ENOMEM;
1750         return 0;
1751 }
1752 
1753 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1754                       int no_files)
1755 {
1756         struct files_struct *oldf, *newf;
1757         int error = 0;
1758 
1759         /*
1760          * A background process may not have any files ...
1761          */
1762         oldf = current->files;
1763         if (!oldf)
1764                 goto out;
1765 
1766         if (no_files) {
1767                 tsk->files = NULL;
1768                 goto out;
1769         }
1770 
1771         if (clone_flags & CLONE_FILES) {
1772                 atomic_inc(&oldf->count);
1773                 goto out;
1774         }
1775 
1776         newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1777         if (!newf)
1778                 goto out;
1779 
1780         tsk->files = newf;
1781         error = 0;
1782 out:
1783         return error;
1784 }
1785 
1786 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1787 {
1788         struct sighand_struct *sig;
1789 
1790         if (clone_flags & CLONE_SIGHAND) {
1791                 refcount_inc(&current->sighand->count);
1792                 return 0;
1793         }
1794         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1795         RCU_INIT_POINTER(tsk->sighand, sig);
1796         if (!sig)
1797                 return -ENOMEM;
1798 
1799         refcount_set(&sig->count, 1);
1800         spin_lock_irq(&current->sighand->siglock);
1801         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1802         spin_unlock_irq(&current->sighand->siglock);
1803 
1804         /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1805         if (clone_flags & CLONE_CLEAR_SIGHAND)
1806                 flush_signal_handlers(tsk, 0);
1807 
1808         return 0;
1809 }
1810 
1811 void __cleanup_sighand(struct sighand_struct *sighand)
1812 {
1813         if (refcount_dec_and_test(&sighand->count)) {
1814                 signalfd_cleanup(sighand);
1815                 /*
1816                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1817                  * without an RCU grace period, see __lock_task_sighand().
1818                  */
1819                 kmem_cache_free(sighand_cachep, sighand);
1820         }
1821 }
1822 
1823 /*
1824  * Initialize POSIX timer handling for a thread group.
1825  */
1826 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1827 {
1828         struct posix_cputimers *pct = &sig->posix_cputimers;
1829         unsigned long cpu_limit;
1830 
1831         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1832         posix_cputimers_group_init(pct, cpu_limit);
1833 }
1834 
1835 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1836 {
1837         struct signal_struct *sig;
1838 
1839         if (clone_flags & CLONE_THREAD)
1840                 return 0;
1841 
1842         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1843         tsk->signal = sig;
1844         if (!sig)
1845                 return -ENOMEM;
1846 
1847         sig->nr_threads = 1;
1848         sig->quick_threads = 1;
1849         atomic_set(&sig->live, 1);
1850         refcount_set(&sig->sigcnt, 1);
1851 
1852         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1853         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1854         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1855 
1856         init_waitqueue_head(&sig->wait_chldexit);
1857         sig->curr_target = tsk;
1858         init_sigpending(&sig->shared_pending);
1859         INIT_HLIST_HEAD(&sig->multiprocess);
1860         seqlock_init(&sig->stats_lock);
1861         prev_cputime_init(&sig->prev_cputime);
1862 
1863 #ifdef CONFIG_POSIX_TIMERS
1864         INIT_LIST_HEAD(&sig->posix_timers);
1865         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1866         sig->real_timer.function = it_real_fn;
1867 #endif
1868 
1869         task_lock(current->group_leader);
1870         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1871         task_unlock(current->group_leader);
1872 
1873         posix_cpu_timers_init_group(sig);
1874 
1875         tty_audit_fork(sig);
1876         sched_autogroup_fork(sig);
1877 
1878         sig->oom_score_adj = current->signal->oom_score_adj;
1879         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1880 
1881         mutex_init(&sig->cred_guard_mutex);
1882         init_rwsem(&sig->exec_update_lock);
1883 
1884         return 0;
1885 }
1886 
1887 static void copy_seccomp(struct task_struct *p)
1888 {
1889 #ifdef CONFIG_SECCOMP
1890         /*
1891          * Must be called with sighand->lock held, which is common to
1892          * all threads in the group. Holding cred_guard_mutex is not
1893          * needed because this new task is not yet running and cannot
1894          * be racing exec.
1895          */
1896         assert_spin_locked(&current->sighand->siglock);
1897 
1898         /* Ref-count the new filter user, and assign it. */
1899         get_seccomp_filter(current);
1900         p->seccomp = current->seccomp;
1901 
1902         /*
1903          * Explicitly enable no_new_privs here in case it got set
1904          * between the task_struct being duplicated and holding the
1905          * sighand lock. The seccomp state and nnp must be in sync.
1906          */
1907         if (task_no_new_privs(current))
1908                 task_set_no_new_privs(p);
1909 
1910         /*
1911          * If the parent gained a seccomp mode after copying thread
1912          * flags and between before we held the sighand lock, we have
1913          * to manually enable the seccomp thread flag here.
1914          */
1915         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1916                 set_task_syscall_work(p, SECCOMP);
1917 #endif
1918 }
1919 
1920 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1921 {
1922         current->clear_child_tid = tidptr;
1923 
1924         return task_pid_vnr(current);
1925 }
1926 
1927 static void rt_mutex_init_task(struct task_struct *p)
1928 {
1929         raw_spin_lock_init(&p->pi_lock);
1930 #ifdef CONFIG_RT_MUTEXES
1931         p->pi_waiters = RB_ROOT_CACHED;
1932         p->pi_top_task = NULL;
1933         p->pi_blocked_on = NULL;
1934 #endif
1935 }
1936 
1937 static inline void init_task_pid_links(struct task_struct *task)
1938 {
1939         enum pid_type type;
1940 
1941         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1942                 INIT_HLIST_NODE(&task->pid_links[type]);
1943 }
1944 
1945 static inline void
1946 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1947 {
1948         if (type == PIDTYPE_PID)
1949                 task->thread_pid = pid;
1950         else
1951                 task->signal->pids[type] = pid;
1952 }
1953 
1954 static inline void rcu_copy_process(struct task_struct *p)
1955 {
1956 #ifdef CONFIG_PREEMPT_RCU
1957         p->rcu_read_lock_nesting = 0;
1958         p->rcu_read_unlock_special.s = 0;
1959         p->rcu_blocked_node = NULL;
1960         INIT_LIST_HEAD(&p->rcu_node_entry);
1961 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1962 #ifdef CONFIG_TASKS_RCU
1963         p->rcu_tasks_holdout = false;
1964         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1965         p->rcu_tasks_idle_cpu = -1;
1966         INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1967 #endif /* #ifdef CONFIG_TASKS_RCU */
1968 #ifdef CONFIG_TASKS_TRACE_RCU
1969         p->trc_reader_nesting = 0;
1970         p->trc_reader_special.s = 0;
1971         INIT_LIST_HEAD(&p->trc_holdout_list);
1972         INIT_LIST_HEAD(&p->trc_blkd_node);
1973 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1974 }
1975 
1976 /**
1977  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1978  * @pid:   the struct pid for which to create a pidfd
1979  * @flags: flags of the new @pidfd
1980  * @ret: Where to return the file for the pidfd.
1981  *
1982  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1983  * caller's file descriptor table. The pidfd is reserved but not installed yet.
1984  *
1985  * The helper doesn't perform checks on @pid which makes it useful for pidfds
1986  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
1987  * pidfd file are prepared.
1988  *
1989  * If this function returns successfully the caller is responsible to either
1990  * call fd_install() passing the returned pidfd and pidfd file as arguments in
1991  * order to install the pidfd into its file descriptor table or they must use
1992  * put_unused_fd() and fput() on the returned pidfd and pidfd file
1993  * respectively.
1994  *
1995  * This function is useful when a pidfd must already be reserved but there
1996  * might still be points of failure afterwards and the caller wants to ensure
1997  * that no pidfd is leaked into its file descriptor table.
1998  *
1999  * Return: On success, a reserved pidfd is returned from the function and a new
2000  *         pidfd file is returned in the last argument to the function. On
2001  *         error, a negative error code is returned from the function and the
2002  *         last argument remains unchanged.
2003  */
2004 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2005 {
2006         int pidfd;
2007         struct file *pidfd_file;
2008 
2009         pidfd = get_unused_fd_flags(O_CLOEXEC);
2010         if (pidfd < 0)
2011                 return pidfd;
2012 
2013         pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2014         if (IS_ERR(pidfd_file)) {
2015                 put_unused_fd(pidfd);
2016                 return PTR_ERR(pidfd_file);
2017         }
2018         /*
2019          * anon_inode_getfile() ignores everything outside of the
2020          * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2021          */
2022         pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2023         *ret = pidfd_file;
2024         return pidfd;
2025 }
2026 
2027 /**
2028  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2029  * @pid:   the struct pid for which to create a pidfd
2030  * @flags: flags of the new @pidfd
2031  * @ret: Where to return the pidfd.
2032  *
2033  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2034  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2035  *
2036  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2037  * task identified by @pid must be a thread-group leader.
2038  *
2039  * If this function returns successfully the caller is responsible to either
2040  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2041  * order to install the pidfd into its file descriptor table or they must use
2042  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2043  * respectively.
2044  *
2045  * This function is useful when a pidfd must already be reserved but there
2046  * might still be points of failure afterwards and the caller wants to ensure
2047  * that no pidfd is leaked into its file descriptor table.
2048  *
2049  * Return: On success, a reserved pidfd is returned from the function and a new
2050  *         pidfd file is returned in the last argument to the function. On
2051  *         error, a negative error code is returned from the function and the
2052  *         last argument remains unchanged.
2053  */
2054 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2055 {
2056         bool thread = flags & PIDFD_THREAD;
2057 
2058         if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2059                 return -EINVAL;
2060 
2061         return __pidfd_prepare(pid, flags, ret);
2062 }
2063 
2064 static void __delayed_free_task(struct rcu_head *rhp)
2065 {
2066         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2067 
2068         free_task(tsk);
2069 }
2070 
2071 static __always_inline void delayed_free_task(struct task_struct *tsk)
2072 {
2073         if (IS_ENABLED(CONFIG_MEMCG))
2074                 call_rcu(&tsk->rcu, __delayed_free_task);
2075         else
2076                 free_task(tsk);
2077 }
2078 
2079 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2080 {
2081         /* Skip if kernel thread */
2082         if (!tsk->mm)
2083                 return;
2084 
2085         /* Skip if spawning a thread or using vfork */
2086         if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2087                 return;
2088 
2089         /* We need to synchronize with __set_oom_adj */
2090         mutex_lock(&oom_adj_mutex);
2091         set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2092         /* Update the values in case they were changed after copy_signal */
2093         tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2094         tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2095         mutex_unlock(&oom_adj_mutex);
2096 }
2097 
2098 #ifdef CONFIG_RV
2099 static void rv_task_fork(struct task_struct *p)
2100 {
2101         int i;
2102 
2103         for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2104                 p->rv[i].da_mon.monitoring = false;
2105 }
2106 #else
2107 #define rv_task_fork(p) do {} while (0)
2108 #endif
2109 
2110 /*
2111  * This creates a new process as a copy of the old one,
2112  * but does not actually start it yet.
2113  *
2114  * It copies the registers, and all the appropriate
2115  * parts of the process environment (as per the clone
2116  * flags). The actual kick-off is left to the caller.
2117  */
2118 __latent_entropy struct task_struct *copy_process(
2119                                         struct pid *pid,
2120                                         int trace,
2121                                         int node,
2122                                         struct kernel_clone_args *args)
2123 {
2124         int pidfd = -1, retval;
2125         struct task_struct *p;
2126         struct multiprocess_signals delayed;
2127         struct file *pidfile = NULL;
2128         const u64 clone_flags = args->flags;
2129         struct nsproxy *nsp = current->nsproxy;
2130 
2131         /*
2132          * Don't allow sharing the root directory with processes in a different
2133          * namespace
2134          */
2135         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2136                 return ERR_PTR(-EINVAL);
2137 
2138         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2139                 return ERR_PTR(-EINVAL);
2140 
2141         /*
2142          * Thread groups must share signals as well, and detached threads
2143          * can only be started up within the thread group.
2144          */
2145         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2146                 return ERR_PTR(-EINVAL);
2147 
2148         /*
2149          * Shared signal handlers imply shared VM. By way of the above,
2150          * thread groups also imply shared VM. Blocking this case allows
2151          * for various simplifications in other code.
2152          */
2153         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2154                 return ERR_PTR(-EINVAL);
2155 
2156         /*
2157          * Siblings of global init remain as zombies on exit since they are
2158          * not reaped by their parent (swapper). To solve this and to avoid
2159          * multi-rooted process trees, prevent global and container-inits
2160          * from creating siblings.
2161          */
2162         if ((clone_flags & CLONE_PARENT) &&
2163                                 current->signal->flags & SIGNAL_UNKILLABLE)
2164                 return ERR_PTR(-EINVAL);
2165 
2166         /*
2167          * If the new process will be in a different pid or user namespace
2168          * do not allow it to share a thread group with the forking task.
2169          */
2170         if (clone_flags & CLONE_THREAD) {
2171                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2172                     (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2173                         return ERR_PTR(-EINVAL);
2174         }
2175 
2176         if (clone_flags & CLONE_PIDFD) {
2177                 /*
2178                  * - CLONE_DETACHED is blocked so that we can potentially
2179                  *   reuse it later for CLONE_PIDFD.
2180                  */
2181                 if (clone_flags & CLONE_DETACHED)
2182                         return ERR_PTR(-EINVAL);
2183         }
2184 
2185         /*
2186          * Force any signals received before this point to be delivered
2187          * before the fork happens.  Collect up signals sent to multiple
2188          * processes that happen during the fork and delay them so that
2189          * they appear to happen after the fork.
2190          */
2191         sigemptyset(&delayed.signal);
2192         INIT_HLIST_NODE(&delayed.node);
2193 
2194         spin_lock_irq(&current->sighand->siglock);
2195         if (!(clone_flags & CLONE_THREAD))
2196                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2197         recalc_sigpending();
2198         spin_unlock_irq(&current->sighand->siglock);
2199         retval = -ERESTARTNOINTR;
2200         if (task_sigpending(current))
2201                 goto fork_out;
2202 
2203         retval = -ENOMEM;
2204         p = dup_task_struct(current, node);
2205         if (!p)
2206                 goto fork_out;
2207         p->flags &= ~PF_KTHREAD;
2208         if (args->kthread)
2209                 p->flags |= PF_KTHREAD;
2210         if (args->user_worker) {
2211                 /*
2212                  * Mark us a user worker, and block any signal that isn't
2213                  * fatal or STOP
2214                  */
2215                 p->flags |= PF_USER_WORKER;
2216                 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2217         }
2218         if (args->io_thread)
2219                 p->flags |= PF_IO_WORKER;
2220 
2221         if (args->name)
2222                 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2223 
2224         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2225         /*
2226          * Clear TID on mm_release()?
2227          */
2228         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2229 
2230         ftrace_graph_init_task(p);
2231 
2232         rt_mutex_init_task(p);
2233 
2234         lockdep_assert_irqs_enabled();
2235 #ifdef CONFIG_PROVE_LOCKING
2236         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2237 #endif
2238         retval = copy_creds(p, clone_flags);
2239         if (retval < 0)
2240                 goto bad_fork_free;
2241 
2242         retval = -EAGAIN;
2243         if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2244                 if (p->real_cred->user != INIT_USER &&
2245                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2246                         goto bad_fork_cleanup_count;
2247         }
2248         current->flags &= ~PF_NPROC_EXCEEDED;
2249 
2250         /*
2251          * If multiple threads are within copy_process(), then this check
2252          * triggers too late. This doesn't hurt, the check is only there
2253          * to stop root fork bombs.
2254          */
2255         retval = -EAGAIN;
2256         if (data_race(nr_threads >= max_threads))
2257                 goto bad_fork_cleanup_count;
2258 
2259         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
2260         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2261         p->flags |= PF_FORKNOEXEC;
2262         INIT_LIST_HEAD(&p->children);
2263         INIT_LIST_HEAD(&p->sibling);
2264         rcu_copy_process(p);
2265         p->vfork_done = NULL;
2266         spin_lock_init(&p->alloc_lock);
2267 
2268         init_sigpending(&p->pending);
2269 
2270         p->utime = p->stime = p->gtime = 0;
2271 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2272         p->utimescaled = p->stimescaled = 0;
2273 #endif
2274         prev_cputime_init(&p->prev_cputime);
2275 
2276 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2277         seqcount_init(&p->vtime.seqcount);
2278         p->vtime.starttime = 0;
2279         p->vtime.state = VTIME_INACTIVE;
2280 #endif
2281 
2282 #ifdef CONFIG_IO_URING
2283         p->io_uring = NULL;
2284 #endif
2285 
2286         p->default_timer_slack_ns = current->timer_slack_ns;
2287 
2288 #ifdef CONFIG_PSI
2289         p->psi_flags = 0;
2290 #endif
2291 
2292         task_io_accounting_init(&p->ioac);
2293         acct_clear_integrals(p);
2294 
2295         posix_cputimers_init(&p->posix_cputimers);
2296 
2297         p->io_context = NULL;
2298         audit_set_context(p, NULL);
2299         cgroup_fork(p);
2300         if (args->kthread) {
2301                 if (!set_kthread_struct(p))
2302                         goto bad_fork_cleanup_delayacct;
2303         }
2304 #ifdef CONFIG_NUMA
2305         p->mempolicy = mpol_dup(p->mempolicy);
2306         if (IS_ERR(p->mempolicy)) {
2307                 retval = PTR_ERR(p->mempolicy);
2308                 p->mempolicy = NULL;
2309                 goto bad_fork_cleanup_delayacct;
2310         }
2311 #endif
2312 #ifdef CONFIG_CPUSETS
2313         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2314         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2315         seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2316 #endif
2317 #ifdef CONFIG_TRACE_IRQFLAGS
2318         memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2319         p->irqtrace.hardirq_disable_ip  = _THIS_IP_;
2320         p->irqtrace.softirq_enable_ip   = _THIS_IP_;
2321         p->softirqs_enabled             = 1;
2322         p->softirq_context              = 0;
2323 #endif
2324 
2325         p->pagefault_disabled = 0;
2326 
2327 #ifdef CONFIG_LOCKDEP
2328         lockdep_init_task(p);
2329 #endif
2330 
2331 #ifdef CONFIG_DEBUG_MUTEXES
2332         p->blocked_on = NULL; /* not blocked yet */
2333 #endif
2334 #ifdef CONFIG_BCACHE
2335         p->sequential_io        = 0;
2336         p->sequential_io_avg    = 0;
2337 #endif
2338 #ifdef CONFIG_BPF_SYSCALL
2339         RCU_INIT_POINTER(p->bpf_storage, NULL);
2340         p->bpf_ctx = NULL;
2341 #endif
2342 
2343         /* Perform scheduler related setup. Assign this task to a CPU. */
2344         retval = sched_fork(clone_flags, p);
2345         if (retval)
2346                 goto bad_fork_cleanup_policy;
2347 
2348         retval = perf_event_init_task(p, clone_flags);
2349         if (retval)
2350                 goto bad_fork_cleanup_policy;
2351         retval = audit_alloc(p);
2352         if (retval)
2353                 goto bad_fork_cleanup_perf;
2354         /* copy all the process information */
2355         shm_init_task(p);
2356         retval = security_task_alloc(p, clone_flags);
2357         if (retval)
2358                 goto bad_fork_cleanup_audit;
2359         retval = copy_semundo(clone_flags, p);
2360         if (retval)
2361                 goto bad_fork_cleanup_security;
2362         retval = copy_files(clone_flags, p, args->no_files);
2363         if (retval)
2364                 goto bad_fork_cleanup_semundo;
2365         retval = copy_fs(clone_flags, p);
2366         if (retval)
2367                 goto bad_fork_cleanup_files;
2368         retval = copy_sighand(clone_flags, p);
2369         if (retval)
2370                 goto bad_fork_cleanup_fs;
2371         retval = copy_signal(clone_flags, p);
2372         if (retval)
2373                 goto bad_fork_cleanup_sighand;
2374         retval = copy_mm(clone_flags, p);
2375         if (retval)
2376                 goto bad_fork_cleanup_signal;
2377         retval = copy_namespaces(clone_flags, p);
2378         if (retval)
2379                 goto bad_fork_cleanup_mm;
2380         retval = copy_io(clone_flags, p);
2381         if (retval)
2382                 goto bad_fork_cleanup_namespaces;
2383         retval = copy_thread(p, args);
2384         if (retval)
2385                 goto bad_fork_cleanup_io;
2386 
2387         stackleak_task_init(p);
2388 
2389         if (pid != &init_struct_pid) {
2390                 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2391                                 args->set_tid_size);
2392                 if (IS_ERR(pid)) {
2393                         retval = PTR_ERR(pid);
2394                         goto bad_fork_cleanup_thread;
2395                 }
2396         }
2397 
2398         /*
2399          * This has to happen after we've potentially unshared the file
2400          * descriptor table (so that the pidfd doesn't leak into the child
2401          * if the fd table isn't shared).
2402          */
2403         if (clone_flags & CLONE_PIDFD) {
2404                 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2405 
2406                 /* Note that no task has been attached to @pid yet. */
2407                 retval = __pidfd_prepare(pid, flags, &pidfile);
2408                 if (retval < 0)
2409                         goto bad_fork_free_pid;
2410                 pidfd = retval;
2411 
2412                 retval = put_user(pidfd, args->pidfd);
2413                 if (retval)
2414                         goto bad_fork_put_pidfd;
2415         }
2416 
2417 #ifdef CONFIG_BLOCK
2418         p->plug = NULL;
2419 #endif
2420         futex_init_task(p);
2421 
2422         /*
2423          * sigaltstack should be cleared when sharing the same VM
2424          */
2425         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2426                 sas_ss_reset(p);
2427 
2428         /*
2429          * Syscall tracing and stepping should be turned off in the
2430          * child regardless of CLONE_PTRACE.
2431          */
2432         user_disable_single_step(p);
2433         clear_task_syscall_work(p, SYSCALL_TRACE);
2434 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2435         clear_task_syscall_work(p, SYSCALL_EMU);
2436 #endif
2437         clear_tsk_latency_tracing(p);
2438 
2439         /* ok, now we should be set up.. */
2440         p->pid = pid_nr(pid);
2441         if (clone_flags & CLONE_THREAD) {
2442                 p->group_leader = current->group_leader;
2443                 p->tgid = current->tgid;
2444         } else {
2445                 p->group_leader = p;
2446                 p->tgid = p->pid;
2447         }
2448 
2449         p->nr_dirtied = 0;
2450         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2451         p->dirty_paused_when = 0;
2452 
2453         p->pdeath_signal = 0;
2454         p->task_works = NULL;
2455         clear_posix_cputimers_work(p);
2456 
2457 #ifdef CONFIG_KRETPROBES
2458         p->kretprobe_instances.first = NULL;
2459 #endif
2460 #ifdef CONFIG_RETHOOK
2461         p->rethooks.first = NULL;
2462 #endif
2463 
2464         /*
2465          * Ensure that the cgroup subsystem policies allow the new process to be
2466          * forked. It should be noted that the new process's css_set can be changed
2467          * between here and cgroup_post_fork() if an organisation operation is in
2468          * progress.
2469          */
2470         retval = cgroup_can_fork(p, args);
2471         if (retval)
2472                 goto bad_fork_put_pidfd;
2473 
2474         /*
2475          * Now that the cgroups are pinned, re-clone the parent cgroup and put
2476          * the new task on the correct runqueue. All this *before* the task
2477          * becomes visible.
2478          *
2479          * This isn't part of ->can_fork() because while the re-cloning is
2480          * cgroup specific, it unconditionally needs to place the task on a
2481          * runqueue.
2482          */
2483         sched_cgroup_fork(p, args);
2484 
2485         /*
2486          * From this point on we must avoid any synchronous user-space
2487          * communication until we take the tasklist-lock. In particular, we do
2488          * not want user-space to be able to predict the process start-time by
2489          * stalling fork(2) after we recorded the start_time but before it is
2490          * visible to the system.
2491          */
2492 
2493         p->start_time = ktime_get_ns();
2494         p->start_boottime = ktime_get_boottime_ns();
2495 
2496         /*
2497          * Make it visible to the rest of the system, but dont wake it up yet.
2498          * Need tasklist lock for parent etc handling!
2499          */
2500         write_lock_irq(&tasklist_lock);
2501 
2502         /* CLONE_PARENT re-uses the old parent */
2503         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2504                 p->real_parent = current->real_parent;
2505                 p->parent_exec_id = current->parent_exec_id;
2506                 if (clone_flags & CLONE_THREAD)
2507                         p->exit_signal = -1;
2508                 else
2509                         p->exit_signal = current->group_leader->exit_signal;
2510         } else {
2511                 p->real_parent = current;
2512                 p->parent_exec_id = current->self_exec_id;
2513                 p->exit_signal = args->exit_signal;
2514         }
2515 
2516         klp_copy_process(p);
2517 
2518         sched_core_fork(p);
2519 
2520         spin_lock(&current->sighand->siglock);
2521 
2522         rv_task_fork(p);
2523 
2524         rseq_fork(p, clone_flags);
2525 
2526         /* Don't start children in a dying pid namespace */
2527         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2528                 retval = -ENOMEM;
2529                 goto bad_fork_cancel_cgroup;
2530         }
2531 
2532         /* Let kill terminate clone/fork in the middle */
2533         if (fatal_signal_pending(current)) {
2534                 retval = -EINTR;
2535                 goto bad_fork_cancel_cgroup;
2536         }
2537 
2538         /* No more failure paths after this point. */
2539 
2540         /*
2541          * Copy seccomp details explicitly here, in case they were changed
2542          * before holding sighand lock.
2543          */
2544         copy_seccomp(p);
2545 
2546         init_task_pid_links(p);
2547         if (likely(p->pid)) {
2548                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2549 
2550                 init_task_pid(p, PIDTYPE_PID, pid);
2551                 if (thread_group_leader(p)) {
2552                         init_task_pid(p, PIDTYPE_TGID, pid);
2553                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2554                         init_task_pid(p, PIDTYPE_SID, task_session(current));
2555 
2556                         if (is_child_reaper(pid)) {
2557                                 ns_of_pid(pid)->child_reaper = p;
2558                                 p->signal->flags |= SIGNAL_UNKILLABLE;
2559                         }
2560                         p->signal->shared_pending.signal = delayed.signal;
2561                         p->signal->tty = tty_kref_get(current->signal->tty);
2562                         /*
2563                          * Inherit has_child_subreaper flag under the same
2564                          * tasklist_lock with adding child to the process tree
2565                          * for propagate_has_child_subreaper optimization.
2566                          */
2567                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2568                                                          p->real_parent->signal->is_child_subreaper;
2569                         list_add_tail(&p->sibling, &p->real_parent->children);
2570                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
2571                         attach_pid(p, PIDTYPE_TGID);
2572                         attach_pid(p, PIDTYPE_PGID);
2573                         attach_pid(p, PIDTYPE_SID);
2574                         __this_cpu_inc(process_counts);
2575                 } else {
2576                         current->signal->nr_threads++;
2577                         current->signal->quick_threads++;
2578                         atomic_inc(&current->signal->live);
2579                         refcount_inc(&current->signal->sigcnt);
2580                         task_join_group_stop(p);
2581                         list_add_tail_rcu(&p->thread_node,
2582                                           &p->signal->thread_head);
2583                 }
2584                 attach_pid(p, PIDTYPE_PID);
2585                 nr_threads++;
2586         }
2587         total_forks++;
2588         hlist_del_init(&delayed.node);
2589         spin_unlock(&current->sighand->siglock);
2590         syscall_tracepoint_update(p);
2591         write_unlock_irq(&tasklist_lock);
2592 
2593         if (pidfile)
2594                 fd_install(pidfd, pidfile);
2595 
2596         proc_fork_connector(p);
2597         sched_post_fork(p);
2598         cgroup_post_fork(p, args);
2599         perf_event_fork(p);
2600 
2601         trace_task_newtask(p, clone_flags);
2602         uprobe_copy_process(p, clone_flags);
2603         user_events_fork(p, clone_flags);
2604 
2605         copy_oom_score_adj(clone_flags, p);
2606 
2607         return p;
2608 
2609 bad_fork_cancel_cgroup:
2610         sched_core_free(p);
2611         spin_unlock(&current->sighand->siglock);
2612         write_unlock_irq(&tasklist_lock);
2613         cgroup_cancel_fork(p, args);
2614 bad_fork_put_pidfd:
2615         if (clone_flags & CLONE_PIDFD) {
2616                 fput(pidfile);
2617                 put_unused_fd(pidfd);
2618         }
2619 bad_fork_free_pid:
2620         if (pid != &init_struct_pid)
2621                 free_pid(pid);
2622 bad_fork_cleanup_thread:
2623         exit_thread(p);
2624 bad_fork_cleanup_io:
2625         if (p->io_context)
2626                 exit_io_context(p);
2627 bad_fork_cleanup_namespaces:
2628         exit_task_namespaces(p);
2629 bad_fork_cleanup_mm:
2630         if (p->mm) {
2631                 mm_clear_owner(p->mm, p);
2632                 mmput(p->mm);
2633         }
2634 bad_fork_cleanup_signal:
2635         if (!(clone_flags & CLONE_THREAD))
2636                 free_signal_struct(p->signal);
2637 bad_fork_cleanup_sighand:
2638         __cleanup_sighand(p->sighand);
2639 bad_fork_cleanup_fs:
2640         exit_fs(p); /* blocking */
2641 bad_fork_cleanup_files:
2642         exit_files(p); /* blocking */
2643 bad_fork_cleanup_semundo:
2644         exit_sem(p);
2645 bad_fork_cleanup_security:
2646         security_task_free(p);
2647 bad_fork_cleanup_audit:
2648         audit_free(p);
2649 bad_fork_cleanup_perf:
2650         perf_event_free_task(p);
2651 bad_fork_cleanup_policy:
2652         lockdep_free_task(p);
2653 #ifdef CONFIG_NUMA
2654         mpol_put(p->mempolicy);
2655 #endif
2656 bad_fork_cleanup_delayacct:
2657         delayacct_tsk_free(p);
2658 bad_fork_cleanup_count:
2659         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2660         exit_creds(p);
2661 bad_fork_free:
2662         WRITE_ONCE(p->__state, TASK_DEAD);
2663         exit_task_stack_account(p);
2664         put_task_stack(p);
2665         delayed_free_task(p);
2666 fork_out:
2667         spin_lock_irq(&current->sighand->siglock);
2668         hlist_del_init(&delayed.node);
2669         spin_unlock_irq(&current->sighand->siglock);
2670         return ERR_PTR(retval);
2671 }
2672 
2673 static inline void init_idle_pids(struct task_struct *idle)
2674 {
2675         enum pid_type type;
2676 
2677         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2678                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2679                 init_task_pid(idle, type, &init_struct_pid);
2680         }
2681 }
2682 
2683 static int idle_dummy(void *dummy)
2684 {
2685         /* This function is never called */
2686         return 0;
2687 }
2688 
2689 struct task_struct * __init fork_idle(int cpu)
2690 {
2691         struct task_struct *task;
2692         struct kernel_clone_args args = {
2693                 .flags          = CLONE_VM,
2694                 .fn             = &idle_dummy,
2695                 .fn_arg         = NULL,
2696                 .kthread        = 1,
2697                 .idle           = 1,
2698         };
2699 
2700         task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2701         if (!IS_ERR(task)) {
2702                 init_idle_pids(task);
2703                 init_idle(task, cpu);
2704         }
2705 
2706         return task;
2707 }
2708 
2709 /*
2710  * This is like kernel_clone(), but shaved down and tailored to just
2711  * creating io_uring workers. It returns a created task, or an error pointer.
2712  * The returned task is inactive, and the caller must fire it up through
2713  * wake_up_new_task(p). All signals are blocked in the created task.
2714  */
2715 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2716 {
2717         unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2718                                 CLONE_IO;
2719         struct kernel_clone_args args = {
2720                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2721                                     CLONE_UNTRACED) & ~CSIGNAL),
2722                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2723                 .fn             = fn,
2724                 .fn_arg         = arg,
2725                 .io_thread      = 1,
2726                 .user_worker    = 1,
2727         };
2728 
2729         return copy_process(NULL, 0, node, &args);
2730 }
2731 
2732 /*
2733  *  Ok, this is the main fork-routine.
2734  *
2735  * It copies the process, and if successful kick-starts
2736  * it and waits for it to finish using the VM if required.
2737  *
2738  * args->exit_signal is expected to be checked for sanity by the caller.
2739  */
2740 pid_t kernel_clone(struct kernel_clone_args *args)
2741 {
2742         u64 clone_flags = args->flags;
2743         struct completion vfork;
2744         struct pid *pid;
2745         struct task_struct *p;
2746         int trace = 0;
2747         pid_t nr;
2748 
2749         /*
2750          * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2751          * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2752          * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2753          * field in struct clone_args and it still doesn't make sense to have
2754          * them both point at the same memory location. Performing this check
2755          * here has the advantage that we don't need to have a separate helper
2756          * to check for legacy clone().
2757          */
2758         if ((clone_flags & CLONE_PIDFD) &&
2759             (clone_flags & CLONE_PARENT_SETTID) &&
2760             (args->pidfd == args->parent_tid))
2761                 return -EINVAL;
2762 
2763         /*
2764          * Determine whether and which event to report to ptracer.  When
2765          * called from kernel_thread or CLONE_UNTRACED is explicitly
2766          * requested, no event is reported; otherwise, report if the event
2767          * for the type of forking is enabled.
2768          */
2769         if (!(clone_flags & CLONE_UNTRACED)) {
2770                 if (clone_flags & CLONE_VFORK)
2771                         trace = PTRACE_EVENT_VFORK;
2772                 else if (args->exit_signal != SIGCHLD)
2773                         trace = PTRACE_EVENT_CLONE;
2774                 else
2775                         trace = PTRACE_EVENT_FORK;
2776 
2777                 if (likely(!ptrace_event_enabled(current, trace)))
2778                         trace = 0;
2779         }
2780 
2781         p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2782         add_latent_entropy();
2783 
2784         if (IS_ERR(p))
2785                 return PTR_ERR(p);
2786 
2787         /*
2788          * Do this prior waking up the new thread - the thread pointer
2789          * might get invalid after that point, if the thread exits quickly.
2790          */
2791         trace_sched_process_fork(current, p);
2792 
2793         pid = get_task_pid(p, PIDTYPE_PID);
2794         nr = pid_vnr(pid);
2795 
2796         if (clone_flags & CLONE_PARENT_SETTID)
2797                 put_user(nr, args->parent_tid);
2798 
2799         if (clone_flags & CLONE_VFORK) {
2800                 p->vfork_done = &vfork;
2801                 init_completion(&vfork);
2802                 get_task_struct(p);
2803         }
2804 
2805         if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2806                 /* lock the task to synchronize with memcg migration */
2807                 task_lock(p);
2808                 lru_gen_add_mm(p->mm);
2809                 task_unlock(p);
2810         }
2811 
2812         wake_up_new_task(p);
2813 
2814         /* forking complete and child started to run, tell ptracer */
2815         if (unlikely(trace))
2816                 ptrace_event_pid(trace, pid);
2817 
2818         if (clone_flags & CLONE_VFORK) {
2819                 if (!wait_for_vfork_done(p, &vfork))
2820                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2821         }
2822 
2823         put_pid(pid);
2824         return nr;
2825 }
2826 
2827 /*
2828  * Create a kernel thread.
2829  */
2830 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2831                     unsigned long flags)
2832 {
2833         struct kernel_clone_args args = {
2834                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2835                                     CLONE_UNTRACED) & ~CSIGNAL),
2836                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2837                 .fn             = fn,
2838                 .fn_arg         = arg,
2839                 .name           = name,
2840                 .kthread        = 1,
2841         };
2842 
2843         return kernel_clone(&args);
2844 }
2845 
2846 /*
2847  * Create a user mode thread.
2848  */
2849 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2850 {
2851         struct kernel_clone_args args = {
2852                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2853                                     CLONE_UNTRACED) & ~CSIGNAL),
2854                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2855                 .fn             = fn,
2856                 .fn_arg         = arg,
2857         };
2858 
2859         return kernel_clone(&args);
2860 }
2861 
2862 #ifdef __ARCH_WANT_SYS_FORK
2863 SYSCALL_DEFINE0(fork)
2864 {
2865 #ifdef CONFIG_MMU
2866         struct kernel_clone_args args = {
2867                 .exit_signal = SIGCHLD,
2868         };
2869 
2870         return kernel_clone(&args);
2871 #else
2872         /* can not support in nommu mode */
2873         return -EINVAL;
2874 #endif
2875 }
2876 #endif
2877 
2878 #ifdef __ARCH_WANT_SYS_VFORK
2879 SYSCALL_DEFINE0(vfork)
2880 {
2881         struct kernel_clone_args args = {
2882                 .flags          = CLONE_VFORK | CLONE_VM,
2883                 .exit_signal    = SIGCHLD,
2884         };
2885 
2886         return kernel_clone(&args);
2887 }
2888 #endif
2889 
2890 #ifdef __ARCH_WANT_SYS_CLONE
2891 #ifdef CONFIG_CLONE_BACKWARDS
2892 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2893                  int __user *, parent_tidptr,
2894                  unsigned long, tls,
2895                  int __user *, child_tidptr)
2896 #elif defined(CONFIG_CLONE_BACKWARDS2)
2897 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2898                  int __user *, parent_tidptr,
2899                  int __user *, child_tidptr,
2900                  unsigned long, tls)
2901 #elif defined(CONFIG_CLONE_BACKWARDS3)
2902 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2903                 int, stack_size,
2904                 int __user *, parent_tidptr,
2905                 int __user *, child_tidptr,
2906                 unsigned long, tls)
2907 #else
2908 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2909                  int __user *, parent_tidptr,
2910                  int __user *, child_tidptr,
2911                  unsigned long, tls)
2912 #endif
2913 {
2914         struct kernel_clone_args args = {
2915                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
2916                 .pidfd          = parent_tidptr,
2917                 .child_tid      = child_tidptr,
2918                 .parent_tid     = parent_tidptr,
2919                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2920                 .stack          = newsp,
2921                 .tls            = tls,
2922         };
2923 
2924         return kernel_clone(&args);
2925 }
2926 #endif
2927 
2928 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2929                                               struct clone_args __user *uargs,
2930                                               size_t usize)
2931 {
2932         int err;
2933         struct clone_args args;
2934         pid_t *kset_tid = kargs->set_tid;
2935 
2936         BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2937                      CLONE_ARGS_SIZE_VER0);
2938         BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2939                      CLONE_ARGS_SIZE_VER1);
2940         BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2941                      CLONE_ARGS_SIZE_VER2);
2942         BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2943 
2944         if (unlikely(usize > PAGE_SIZE))
2945                 return -E2BIG;
2946         if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2947                 return -EINVAL;
2948 
2949         err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2950         if (err)
2951                 return err;
2952 
2953         if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2954                 return -EINVAL;
2955 
2956         if (unlikely(!args.set_tid && args.set_tid_size > 0))
2957                 return -EINVAL;
2958 
2959         if (unlikely(args.set_tid && args.set_tid_size == 0))
2960                 return -EINVAL;
2961 
2962         /*
2963          * Verify that higher 32bits of exit_signal are unset and that
2964          * it is a valid signal
2965          */
2966         if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2967                      !valid_signal(args.exit_signal)))
2968                 return -EINVAL;
2969 
2970         if ((args.flags & CLONE_INTO_CGROUP) &&
2971             (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2972                 return -EINVAL;
2973 
2974         *kargs = (struct kernel_clone_args){
2975                 .flags          = args.flags,
2976                 .pidfd          = u64_to_user_ptr(args.pidfd),
2977                 .child_tid      = u64_to_user_ptr(args.child_tid),
2978                 .parent_tid     = u64_to_user_ptr(args.parent_tid),
2979                 .exit_signal    = args.exit_signal,
2980                 .stack          = args.stack,
2981                 .stack_size     = args.stack_size,
2982                 .tls            = args.tls,
2983                 .set_tid_size   = args.set_tid_size,
2984                 .cgroup         = args.cgroup,
2985         };
2986 
2987         if (args.set_tid &&
2988                 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2989                         (kargs->set_tid_size * sizeof(pid_t))))
2990                 return -EFAULT;
2991 
2992         kargs->set_tid = kset_tid;
2993 
2994         return 0;
2995 }
2996 
2997 /**
2998  * clone3_stack_valid - check and prepare stack
2999  * @kargs: kernel clone args
3000  *
3001  * Verify that the stack arguments userspace gave us are sane.
3002  * In addition, set the stack direction for userspace since it's easy for us to
3003  * determine.
3004  */
3005 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3006 {
3007         if (kargs->stack == 0) {
3008                 if (kargs->stack_size > 0)
3009                         return false;
3010         } else {
3011                 if (kargs->stack_size == 0)
3012                         return false;
3013 
3014                 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3015                         return false;
3016 
3017 #if !defined(CONFIG_STACK_GROWSUP)
3018                 kargs->stack += kargs->stack_size;
3019 #endif
3020         }
3021 
3022         return true;
3023 }
3024 
3025 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3026 {
3027         /* Verify that no unknown flags are passed along. */
3028         if (kargs->flags &
3029             ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3030                 return false;
3031 
3032         /*
3033          * - make the CLONE_DETACHED bit reusable for clone3
3034          * - make the CSIGNAL bits reusable for clone3
3035          */
3036         if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3037                 return false;
3038 
3039         if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3040             (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3041                 return false;
3042 
3043         if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3044             kargs->exit_signal)
3045                 return false;
3046 
3047         if (!clone3_stack_valid(kargs))
3048                 return false;
3049 
3050         return true;
3051 }
3052 
3053 /**
3054  * sys_clone3 - create a new process with specific properties
3055  * @uargs: argument structure
3056  * @size:  size of @uargs
3057  *
3058  * clone3() is the extensible successor to clone()/clone2().
3059  * It takes a struct as argument that is versioned by its size.
3060  *
3061  * Return: On success, a positive PID for the child process.
3062  *         On error, a negative errno number.
3063  */
3064 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3065 {
3066         int err;
3067 
3068         struct kernel_clone_args kargs;
3069         pid_t set_tid[MAX_PID_NS_LEVEL];
3070 
3071 #ifdef __ARCH_BROKEN_SYS_CLONE3
3072 #warning clone3() entry point is missing, please fix
3073         return -ENOSYS;
3074 #endif
3075 
3076         kargs.set_tid = set_tid;
3077 
3078         err = copy_clone_args_from_user(&kargs, uargs, size);
3079         if (err)
3080                 return err;
3081 
3082         if (!clone3_args_valid(&kargs))
3083                 return -EINVAL;
3084 
3085         return kernel_clone(&kargs);
3086 }
3087 
3088 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3089 {
3090         struct task_struct *leader, *parent, *child;
3091         int res;
3092 
3093         read_lock(&tasklist_lock);
3094         leader = top = top->group_leader;
3095 down:
3096         for_each_thread(leader, parent) {
3097                 list_for_each_entry(child, &parent->children, sibling) {
3098                         res = visitor(child, data);
3099                         if (res) {
3100                                 if (res < 0)
3101                                         goto out;
3102                                 leader = child;
3103                                 goto down;
3104                         }
3105 up:
3106                         ;
3107                 }
3108         }
3109 
3110         if (leader != top) {
3111                 child = leader;
3112                 parent = child->real_parent;
3113                 leader = parent->group_leader;
3114                 goto up;
3115         }
3116 out:
3117         read_unlock(&tasklist_lock);
3118 }
3119 
3120 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3121 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3122 #endif
3123 
3124 static void sighand_ctor(void *data)
3125 {
3126         struct sighand_struct *sighand = data;
3127 
3128         spin_lock_init(&sighand->siglock);
3129         init_waitqueue_head(&sighand->signalfd_wqh);
3130 }
3131 
3132 void __init mm_cache_init(void)
3133 {
3134         unsigned int mm_size;
3135 
3136         /*
3137          * The mm_cpumask is located at the end of mm_struct, and is
3138          * dynamically sized based on the maximum CPU number this system
3139          * can have, taking hotplug into account (nr_cpu_ids).
3140          */
3141         mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3142 
3143         mm_cachep = kmem_cache_create_usercopy("mm_struct",
3144                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3145                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3146                         offsetof(struct mm_struct, saved_auxv),
3147                         sizeof_field(struct mm_struct, saved_auxv),
3148                         NULL);
3149 }
3150 
3151 void __init proc_caches_init(void)
3152 {
3153         sighand_cachep = kmem_cache_create("sighand_cache",
3154                         sizeof(struct sighand_struct), 0,
3155                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3156                         SLAB_ACCOUNT, sighand_ctor);
3157         signal_cachep = kmem_cache_create("signal_cache",
3158                         sizeof(struct signal_struct), 0,
3159                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3160                         NULL);
3161         files_cachep = kmem_cache_create("files_cache",
3162                         sizeof(struct files_struct), 0,
3163                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3164                         NULL);
3165         fs_cachep = kmem_cache_create("fs_cache",
3166                         sizeof(struct fs_struct), 0,
3167                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3168                         NULL);
3169 
3170         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3171 #ifdef CONFIG_PER_VMA_LOCK
3172         vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3173 #endif
3174         mmap_init();
3175         nsproxy_cache_init();
3176 }
3177 
3178 /*
3179  * Check constraints on flags passed to the unshare system call.
3180  */
3181 static int check_unshare_flags(unsigned long unshare_flags)
3182 {
3183         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3184                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3185                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3186                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3187                                 CLONE_NEWTIME))
3188                 return -EINVAL;
3189         /*
3190          * Not implemented, but pretend it works if there is nothing
3191          * to unshare.  Note that unsharing the address space or the
3192          * signal handlers also need to unshare the signal queues (aka
3193          * CLONE_THREAD).
3194          */
3195         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3196                 if (!thread_group_empty(current))
3197                         return -EINVAL;
3198         }
3199         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3200                 if (refcount_read(&current->sighand->count) > 1)
3201                         return -EINVAL;
3202         }
3203         if (unshare_flags & CLONE_VM) {
3204                 if (!current_is_single_threaded())
3205                         return -EINVAL;
3206         }
3207 
3208         return 0;
3209 }
3210 
3211 /*
3212  * Unshare the filesystem structure if it is being shared
3213  */
3214 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3215 {
3216         struct fs_struct *fs = current->fs;
3217 
3218         if (!(unshare_flags & CLONE_FS) || !fs)
3219                 return 0;
3220 
3221         /* don't need lock here; in the worst case we'll do useless copy */
3222         if (fs->users == 1)
3223                 return 0;
3224 
3225         *new_fsp = copy_fs_struct(fs);
3226         if (!*new_fsp)
3227                 return -ENOMEM;
3228 
3229         return 0;
3230 }
3231 
3232 /*
3233  * Unshare file descriptor table if it is being shared
3234  */
3235 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3236                struct files_struct **new_fdp)
3237 {
3238         struct files_struct *fd = current->files;
3239         int error = 0;
3240 
3241         if ((unshare_flags & CLONE_FILES) &&
3242             (fd && atomic_read(&fd->count) > 1)) {
3243                 *new_fdp = dup_fd(fd, max_fds, &error);
3244                 if (!*new_fdp)
3245                         return error;
3246         }
3247 
3248         return 0;
3249 }
3250 
3251 /*
3252  * unshare allows a process to 'unshare' part of the process
3253  * context which was originally shared using clone.  copy_*
3254  * functions used by kernel_clone() cannot be used here directly
3255  * because they modify an inactive task_struct that is being
3256  * constructed. Here we are modifying the current, active,
3257  * task_struct.
3258  */
3259 int ksys_unshare(unsigned long unshare_flags)
3260 {
3261         struct fs_struct *fs, *new_fs = NULL;
3262         struct files_struct *new_fd = NULL;
3263         struct cred *new_cred = NULL;
3264         struct nsproxy *new_nsproxy = NULL;
3265         int do_sysvsem = 0;
3266         int err;
3267 
3268         /*
3269          * If unsharing a user namespace must also unshare the thread group
3270          * and unshare the filesystem root and working directories.
3271          */
3272         if (unshare_flags & CLONE_NEWUSER)
3273                 unshare_flags |= CLONE_THREAD | CLONE_FS;
3274         /*
3275          * If unsharing vm, must also unshare signal handlers.
3276          */
3277         if (unshare_flags & CLONE_VM)
3278                 unshare_flags |= CLONE_SIGHAND;
3279         /*
3280          * If unsharing a signal handlers, must also unshare the signal queues.
3281          */
3282         if (unshare_flags & CLONE_SIGHAND)
3283                 unshare_flags |= CLONE_THREAD;
3284         /*
3285          * If unsharing namespace, must also unshare filesystem information.
3286          */
3287         if (unshare_flags & CLONE_NEWNS)
3288                 unshare_flags |= CLONE_FS;
3289 
3290         err = check_unshare_flags(unshare_flags);
3291         if (err)
3292                 goto bad_unshare_out;
3293         /*
3294          * CLONE_NEWIPC must also detach from the undolist: after switching
3295          * to a new ipc namespace, the semaphore arrays from the old
3296          * namespace are unreachable.
3297          */
3298         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3299                 do_sysvsem = 1;
3300         err = unshare_fs(unshare_flags, &new_fs);
3301         if (err)
3302                 goto bad_unshare_out;
3303         err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3304         if (err)
3305                 goto bad_unshare_cleanup_fs;
3306         err = unshare_userns(unshare_flags, &new_cred);
3307         if (err)
3308                 goto bad_unshare_cleanup_fd;
3309         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3310                                          new_cred, new_fs);
3311         if (err)
3312                 goto bad_unshare_cleanup_cred;
3313 
3314         if (new_cred) {
3315                 err = set_cred_ucounts(new_cred);
3316                 if (err)
3317                         goto bad_unshare_cleanup_cred;
3318         }
3319 
3320         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3321                 if (do_sysvsem) {
3322                         /*
3323                          * CLONE_SYSVSEM is equivalent to sys_exit().
3324                          */
3325                         exit_sem(current);
3326                 }
3327                 if (unshare_flags & CLONE_NEWIPC) {
3328                         /* Orphan segments in old ns (see sem above). */
3329                         exit_shm(current);
3330                         shm_init_task(current);
3331                 }
3332 
3333                 if (new_nsproxy)
3334                         switch_task_namespaces(current, new_nsproxy);
3335 
3336                 task_lock(current);
3337 
3338                 if (new_fs) {
3339                         fs = current->fs;
3340                         spin_lock(&fs->lock);
3341                         current->fs = new_fs;
3342                         if (--fs->users)
3343                                 new_fs = NULL;
3344                         else
3345                                 new_fs = fs;
3346                         spin_unlock(&fs->lock);
3347                 }
3348 
3349                 if (new_fd)
3350                         swap(current->files, new_fd);
3351 
3352                 task_unlock(current);
3353 
3354                 if (new_cred) {
3355                         /* Install the new user namespace */
3356                         commit_creds(new_cred);
3357                         new_cred = NULL;
3358                 }
3359         }
3360 
3361         perf_event_namespaces(current);
3362 
3363 bad_unshare_cleanup_cred:
3364         if (new_cred)
3365                 put_cred(new_cred);
3366 bad_unshare_cleanup_fd:
3367         if (new_fd)
3368                 put_files_struct(new_fd);
3369 
3370 bad_unshare_cleanup_fs:
3371         if (new_fs)
3372                 free_fs_struct(new_fs);
3373 
3374 bad_unshare_out:
3375         return err;
3376 }
3377 
3378 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3379 {
3380         return ksys_unshare(unshare_flags);
3381 }
3382 
3383 /*
3384  *      Helper to unshare the files of the current task.
3385  *      We don't want to expose copy_files internals to
3386  *      the exec layer of the kernel.
3387  */
3388 
3389 int unshare_files(void)
3390 {
3391         struct task_struct *task = current;
3392         struct files_struct *old, *copy = NULL;
3393         int error;
3394 
3395         error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3396         if (error || !copy)
3397                 return error;
3398 
3399         old = task->files;
3400         task_lock(task);
3401         task->files = copy;
3402         task_unlock(task);
3403         put_files_struct(old);
3404         return 0;
3405 }
3406 
3407 int sysctl_max_threads(const struct ctl_table *table, int write,
3408                        void *buffer, size_t *lenp, loff_t *ppos)
3409 {
3410         struct ctl_table t;
3411         int ret;
3412         int threads = max_threads;
3413         int min = 1;
3414         int max = MAX_THREADS;
3415 
3416         t = *table;
3417         t.data = &threads;
3418         t.extra1 = &min;
3419         t.extra2 = &max;
3420 
3421         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3422         if (ret || !write)
3423                 return ret;
3424 
3425         max_threads = threads;
3426 
3427         return 0;
3428 }
3429 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php