~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/futex/waitwake.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 
  3 #include <linux/plist.h>
  4 #include <linux/sched/task.h>
  5 #include <linux/sched/signal.h>
  6 #include <linux/freezer.h>
  7 
  8 #include "futex.h"
  9 
 10 /*
 11  * READ this before attempting to hack on futexes!
 12  *
 13  * Basic futex operation and ordering guarantees
 14  * =============================================
 15  *
 16  * The waiter reads the futex value in user space and calls
 17  * futex_wait(). This function computes the hash bucket and acquires
 18  * the hash bucket lock. After that it reads the futex user space value
 19  * again and verifies that the data has not changed. If it has not changed
 20  * it enqueues itself into the hash bucket, releases the hash bucket lock
 21  * and schedules.
 22  *
 23  * The waker side modifies the user space value of the futex and calls
 24  * futex_wake(). This function computes the hash bucket and acquires the
 25  * hash bucket lock. Then it looks for waiters on that futex in the hash
 26  * bucket and wakes them.
 27  *
 28  * In futex wake up scenarios where no tasks are blocked on a futex, taking
 29  * the hb spinlock can be avoided and simply return. In order for this
 30  * optimization to work, ordering guarantees must exist so that the waiter
 31  * being added to the list is acknowledged when the list is concurrently being
 32  * checked by the waker, avoiding scenarios like the following:
 33  *
 34  * CPU 0                               CPU 1
 35  * val = *futex;
 36  * sys_futex(WAIT, futex, val);
 37  *   futex_wait(futex, val);
 38  *   uval = *futex;
 39  *                                     *futex = newval;
 40  *                                     sys_futex(WAKE, futex);
 41  *                                       futex_wake(futex);
 42  *                                       if (queue_empty())
 43  *                                         return;
 44  *   if (uval == val)
 45  *      lock(hash_bucket(futex));
 46  *      queue();
 47  *     unlock(hash_bucket(futex));
 48  *     schedule();
 49  *
 50  * This would cause the waiter on CPU 0 to wait forever because it
 51  * missed the transition of the user space value from val to newval
 52  * and the waker did not find the waiter in the hash bucket queue.
 53  *
 54  * The correct serialization ensures that a waiter either observes
 55  * the changed user space value before blocking or is woken by a
 56  * concurrent waker:
 57  *
 58  * CPU 0                                 CPU 1
 59  * val = *futex;
 60  * sys_futex(WAIT, futex, val);
 61  *   futex_wait(futex, val);
 62  *
 63  *   waiters++; (a)
 64  *   smp_mb(); (A) <-- paired with -.
 65  *                                  |
 66  *   lock(hash_bucket(futex));      |
 67  *                                  |
 68  *   uval = *futex;                 |
 69  *                                  |        *futex = newval;
 70  *                                  |        sys_futex(WAKE, futex);
 71  *                                  |          futex_wake(futex);
 72  *                                  |
 73  *                                  `--------> smp_mb(); (B)
 74  *   if (uval == val)
 75  *     queue();
 76  *     unlock(hash_bucket(futex));
 77  *     schedule();                         if (waiters)
 78  *                                           lock(hash_bucket(futex));
 79  *   else                                    wake_waiters(futex);
 80  *     waiters--; (b)                        unlock(hash_bucket(futex));
 81  *
 82  * Where (A) orders the waiters increment and the futex value read through
 83  * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write
 84  * to futex and the waiters read (see futex_hb_waiters_pending()).
 85  *
 86  * This yields the following case (where X:=waiters, Y:=futex):
 87  *
 88  *      X = Y = 0
 89  *
 90  *      w[X]=1          w[Y]=1
 91  *      MB              MB
 92  *      r[Y]=y          r[X]=x
 93  *
 94  * Which guarantees that x==0 && y==0 is impossible; which translates back into
 95  * the guarantee that we cannot both miss the futex variable change and the
 96  * enqueue.
 97  *
 98  * Note that a new waiter is accounted for in (a) even when it is possible that
 99  * the wait call can return error, in which case we backtrack from it in (b).
100  * Refer to the comment in futex_q_lock().
101  *
102  * Similarly, in order to account for waiters being requeued on another
103  * address we always increment the waiters for the destination bucket before
104  * acquiring the lock. It then decrements them again  after releasing it -
105  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
106  * will do the additional required waiter count housekeeping. This is done for
107  * double_lock_hb() and double_unlock_hb(), respectively.
108  */
109 
110 bool __futex_wake_mark(struct futex_q *q)
111 {
112         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
113                 return false;
114 
115         __futex_unqueue(q);
116         /*
117          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
118          * is written, without taking any locks. This is possible in the event
119          * of a spurious wakeup, for example. A memory barrier is required here
120          * to prevent the following store to lock_ptr from getting ahead of the
121          * plist_del in __futex_unqueue().
122          */
123         smp_store_release(&q->lock_ptr, NULL);
124 
125         return true;
126 }
127 
128 /*
129  * The hash bucket lock must be held when this is called.
130  * Afterwards, the futex_q must not be accessed. Callers
131  * must ensure to later call wake_up_q() for the actual
132  * wakeups to occur.
133  */
134 void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q)
135 {
136         struct task_struct *p = q->task;
137 
138         get_task_struct(p);
139 
140         if (!__futex_wake_mark(q)) {
141                 put_task_struct(p);
142                 return;
143         }
144 
145         /*
146          * Queue the task for later wakeup for after we've released
147          * the hb->lock.
148          */
149         wake_q_add_safe(wake_q, p);
150 }
151 
152 /*
153  * Wake up waiters matching bitset queued on this futex (uaddr).
154  */
155 int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
156 {
157         struct futex_hash_bucket *hb;
158         struct futex_q *this, *next;
159         union futex_key key = FUTEX_KEY_INIT;
160         DEFINE_WAKE_Q(wake_q);
161         int ret;
162 
163         if (!bitset)
164                 return -EINVAL;
165 
166         ret = get_futex_key(uaddr, flags, &key, FUTEX_READ);
167         if (unlikely(ret != 0))
168                 return ret;
169 
170         if ((flags & FLAGS_STRICT) && !nr_wake)
171                 return 0;
172 
173         hb = futex_hash(&key);
174 
175         /* Make sure we really have tasks to wakeup */
176         if (!futex_hb_waiters_pending(hb))
177                 return ret;
178 
179         spin_lock(&hb->lock);
180 
181         plist_for_each_entry_safe(this, next, &hb->chain, list) {
182                 if (futex_match (&this->key, &key)) {
183                         if (this->pi_state || this->rt_waiter) {
184                                 ret = -EINVAL;
185                                 break;
186                         }
187 
188                         /* Check if one of the bits is set in both bitsets */
189                         if (!(this->bitset & bitset))
190                                 continue;
191 
192                         this->wake(&wake_q, this);
193                         if (++ret >= nr_wake)
194                                 break;
195                 }
196         }
197 
198         spin_unlock(&hb->lock);
199         wake_up_q(&wake_q);
200         return ret;
201 }
202 
203 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
204 {
205         unsigned int op =         (encoded_op & 0x70000000) >> 28;
206         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
207         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
208         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
209         int oldval, ret;
210 
211         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
212                 if (oparg < 0 || oparg > 31) {
213                         char comm[sizeof(current->comm)];
214                         /*
215                          * kill this print and return -EINVAL when userspace
216                          * is sane again
217                          */
218                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
219                                         get_task_comm(comm, current), oparg);
220                         oparg &= 31;
221                 }
222                 oparg = 1 << oparg;
223         }
224 
225         pagefault_disable();
226         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
227         pagefault_enable();
228         if (ret)
229                 return ret;
230 
231         switch (cmp) {
232         case FUTEX_OP_CMP_EQ:
233                 return oldval == cmparg;
234         case FUTEX_OP_CMP_NE:
235                 return oldval != cmparg;
236         case FUTEX_OP_CMP_LT:
237                 return oldval < cmparg;
238         case FUTEX_OP_CMP_GE:
239                 return oldval >= cmparg;
240         case FUTEX_OP_CMP_LE:
241                 return oldval <= cmparg;
242         case FUTEX_OP_CMP_GT:
243                 return oldval > cmparg;
244         default:
245                 return -ENOSYS;
246         }
247 }
248 
249 /*
250  * Wake up all waiters hashed on the physical page that is mapped
251  * to this virtual address:
252  */
253 int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
254                   int nr_wake, int nr_wake2, int op)
255 {
256         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
257         struct futex_hash_bucket *hb1, *hb2;
258         struct futex_q *this, *next;
259         int ret, op_ret;
260         DEFINE_WAKE_Q(wake_q);
261 
262 retry:
263         ret = get_futex_key(uaddr1, flags, &key1, FUTEX_READ);
264         if (unlikely(ret != 0))
265                 return ret;
266         ret = get_futex_key(uaddr2, flags, &key2, FUTEX_WRITE);
267         if (unlikely(ret != 0))
268                 return ret;
269 
270         hb1 = futex_hash(&key1);
271         hb2 = futex_hash(&key2);
272 
273 retry_private:
274         double_lock_hb(hb1, hb2);
275         op_ret = futex_atomic_op_inuser(op, uaddr2);
276         if (unlikely(op_ret < 0)) {
277                 double_unlock_hb(hb1, hb2);
278 
279                 if (!IS_ENABLED(CONFIG_MMU) ||
280                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
281                         /*
282                          * we don't get EFAULT from MMU faults if we don't have
283                          * an MMU, but we might get them from range checking
284                          */
285                         ret = op_ret;
286                         return ret;
287                 }
288 
289                 if (op_ret == -EFAULT) {
290                         ret = fault_in_user_writeable(uaddr2);
291                         if (ret)
292                                 return ret;
293                 }
294 
295                 cond_resched();
296                 if (!(flags & FLAGS_SHARED))
297                         goto retry_private;
298                 goto retry;
299         }
300 
301         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
302                 if (futex_match (&this->key, &key1)) {
303                         if (this->pi_state || this->rt_waiter) {
304                                 ret = -EINVAL;
305                                 goto out_unlock;
306                         }
307                         this->wake(&wake_q, this);
308                         if (++ret >= nr_wake)
309                                 break;
310                 }
311         }
312 
313         if (op_ret > 0) {
314                 op_ret = 0;
315                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
316                         if (futex_match (&this->key, &key2)) {
317                                 if (this->pi_state || this->rt_waiter) {
318                                         ret = -EINVAL;
319                                         goto out_unlock;
320                                 }
321                                 this->wake(&wake_q, this);
322                                 if (++op_ret >= nr_wake2)
323                                         break;
324                         }
325                 }
326                 ret += op_ret;
327         }
328 
329 out_unlock:
330         double_unlock_hb(hb1, hb2);
331         wake_up_q(&wake_q);
332         return ret;
333 }
334 
335 static long futex_wait_restart(struct restart_block *restart);
336 
337 /**
338  * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal
339  * @hb:         the futex hash bucket, must be locked by the caller
340  * @q:          the futex_q to queue up on
341  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
342  */
343 void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q,
344                             struct hrtimer_sleeper *timeout)
345 {
346         /*
347          * The task state is guaranteed to be set before another task can
348          * wake it. set_current_state() is implemented using smp_store_mb() and
349          * futex_queue() calls spin_unlock() upon completion, both serializing
350          * access to the hash list and forcing another memory barrier.
351          */
352         set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
353         futex_queue(q, hb);
354 
355         /* Arm the timer */
356         if (timeout)
357                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
358 
359         /*
360          * If we have been removed from the hash list, then another task
361          * has tried to wake us, and we can skip the call to schedule().
362          */
363         if (likely(!plist_node_empty(&q->list))) {
364                 /*
365                  * If the timer has already expired, current will already be
366                  * flagged for rescheduling. Only call schedule if there
367                  * is no timeout, or if it has yet to expire.
368                  */
369                 if (!timeout || timeout->task)
370                         schedule();
371         }
372         __set_current_state(TASK_RUNNING);
373 }
374 
375 /**
376  * futex_unqueue_multiple - Remove various futexes from their hash bucket
377  * @v:     The list of futexes to unqueue
378  * @count: Number of futexes in the list
379  *
380  * Helper to unqueue a list of futexes. This can't fail.
381  *
382  * Return:
383  *  - >=0 - Index of the last futex that was awoken;
384  *  - -1  - No futex was awoken
385  */
386 int futex_unqueue_multiple(struct futex_vector *v, int count)
387 {
388         int ret = -1, i;
389 
390         for (i = 0; i < count; i++) {
391                 if (!futex_unqueue(&v[i].q))
392                         ret = i;
393         }
394 
395         return ret;
396 }
397 
398 /**
399  * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes
400  * @vs:         The futex list to wait on
401  * @count:      The size of the list
402  * @woken:      Index of the last woken futex, if any. Used to notify the
403  *              caller that it can return this index to userspace (return parameter)
404  *
405  * Prepare multiple futexes in a single step and enqueue them. This may fail if
406  * the futex list is invalid or if any futex was already awoken. On success the
407  * task is ready to interruptible sleep.
408  *
409  * Return:
410  *  -  1 - One of the futexes was woken by another thread
411  *  -  0 - Success
412  *  - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL
413  */
414 int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken)
415 {
416         struct futex_hash_bucket *hb;
417         bool retry = false;
418         int ret, i;
419         u32 uval;
420 
421         /*
422          * Enqueuing multiple futexes is tricky, because we need to enqueue
423          * each futex on the list before dealing with the next one to avoid
424          * deadlocking on the hash bucket. But, before enqueuing, we need to
425          * make sure that current->state is TASK_INTERRUPTIBLE, so we don't
426          * lose any wake events, which cannot be done before the get_futex_key
427          * of the next key, because it calls get_user_pages, which can sleep.
428          * Thus, we fetch the list of futexes keys in two steps, by first
429          * pinning all the memory keys in the futex key, and only then we read
430          * each key and queue the corresponding futex.
431          *
432          * Private futexes doesn't need to recalculate hash in retry, so skip
433          * get_futex_key() when retrying.
434          */
435 retry:
436         for (i = 0; i < count; i++) {
437                 if (!(vs[i].w.flags & FLAGS_SHARED) && retry)
438                         continue;
439 
440                 ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr),
441                                     vs[i].w.flags,
442                                     &vs[i].q.key, FUTEX_READ);
443 
444                 if (unlikely(ret))
445                         return ret;
446         }
447 
448         set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
449 
450         for (i = 0; i < count; i++) {
451                 u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr;
452                 struct futex_q *q = &vs[i].q;
453                 u32 val = vs[i].w.val;
454 
455                 hb = futex_q_lock(q);
456                 ret = futex_get_value_locked(&uval, uaddr);
457 
458                 if (!ret && uval == val) {
459                         /*
460                          * The bucket lock can't be held while dealing with the
461                          * next futex. Queue each futex at this moment so hb can
462                          * be unlocked.
463                          */
464                         futex_queue(q, hb);
465                         continue;
466                 }
467 
468                 futex_q_unlock(hb);
469                 __set_current_state(TASK_RUNNING);
470 
471                 /*
472                  * Even if something went wrong, if we find out that a futex
473                  * was woken, we don't return error and return this index to
474                  * userspace
475                  */
476                 *woken = futex_unqueue_multiple(vs, i);
477                 if (*woken >= 0)
478                         return 1;
479 
480                 if (ret) {
481                         /*
482                          * If we need to handle a page fault, we need to do so
483                          * without any lock and any enqueued futex (otherwise
484                          * we could lose some wakeup). So we do it here, after
485                          * undoing all the work done so far. In success, we
486                          * retry all the work.
487                          */
488                         if (get_user(uval, uaddr))
489                                 return -EFAULT;
490 
491                         retry = true;
492                         goto retry;
493                 }
494 
495                 if (uval != val)
496                         return -EWOULDBLOCK;
497         }
498 
499         return 0;
500 }
501 
502 /**
503  * futex_sleep_multiple - Check sleeping conditions and sleep
504  * @vs:    List of futexes to wait for
505  * @count: Length of vs
506  * @to:    Timeout
507  *
508  * Sleep if and only if the timeout hasn't expired and no futex on the list has
509  * been woken up.
510  */
511 static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count,
512                                  struct hrtimer_sleeper *to)
513 {
514         if (to && !to->task)
515                 return;
516 
517         for (; count; count--, vs++) {
518                 if (!READ_ONCE(vs->q.lock_ptr))
519                         return;
520         }
521 
522         schedule();
523 }
524 
525 /**
526  * futex_wait_multiple - Prepare to wait on and enqueue several futexes
527  * @vs:         The list of futexes to wait on
528  * @count:      The number of objects
529  * @to:         Timeout before giving up and returning to userspace
530  *
531  * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function
532  * sleeps on a group of futexes and returns on the first futex that is
533  * wake, or after the timeout has elapsed.
534  *
535  * Return:
536  *  - >=0 - Hint to the futex that was awoken
537  *  - <0  - On error
538  */
539 int futex_wait_multiple(struct futex_vector *vs, unsigned int count,
540                         struct hrtimer_sleeper *to)
541 {
542         int ret, hint = 0;
543 
544         if (to)
545                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
546 
547         while (1) {
548                 ret = futex_wait_multiple_setup(vs, count, &hint);
549                 if (ret) {
550                         if (ret > 0) {
551                                 /* A futex was woken during setup */
552                                 ret = hint;
553                         }
554                         return ret;
555                 }
556 
557                 futex_sleep_multiple(vs, count, to);
558 
559                 __set_current_state(TASK_RUNNING);
560 
561                 ret = futex_unqueue_multiple(vs, count);
562                 if (ret >= 0)
563                         return ret;
564 
565                 if (to && !to->task)
566                         return -ETIMEDOUT;
567                 else if (signal_pending(current))
568                         return -ERESTARTSYS;
569                 /*
570                  * The final case is a spurious wakeup, for
571                  * which just retry.
572                  */
573         }
574 }
575 
576 /**
577  * futex_wait_setup() - Prepare to wait on a futex
578  * @uaddr:      the futex userspace address
579  * @val:        the expected value
580  * @flags:      futex flags (FLAGS_SHARED, etc.)
581  * @q:          the associated futex_q
582  * @hb:         storage for hash_bucket pointer to be returned to caller
583  *
584  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
585  * compare it with the expected value.  Handle atomic faults internally.
586  * Return with the hb lock held on success, and unlocked on failure.
587  *
588  * Return:
589  *  -  0 - uaddr contains val and hb has been locked;
590  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
591  */
592 int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
593                      struct futex_q *q, struct futex_hash_bucket **hb)
594 {
595         u32 uval;
596         int ret;
597 
598         /*
599          * Access the page AFTER the hash-bucket is locked.
600          * Order is important:
601          *
602          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
603          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
604          *
605          * The basic logical guarantee of a futex is that it blocks ONLY
606          * if cond(var) is known to be true at the time of blocking, for
607          * any cond.  If we locked the hash-bucket after testing *uaddr, that
608          * would open a race condition where we could block indefinitely with
609          * cond(var) false, which would violate the guarantee.
610          *
611          * On the other hand, we insert q and release the hash-bucket only
612          * after testing *uaddr.  This guarantees that futex_wait() will NOT
613          * absorb a wakeup if *uaddr does not match the desired values
614          * while the syscall executes.
615          */
616 retry:
617         ret = get_futex_key(uaddr, flags, &q->key, FUTEX_READ);
618         if (unlikely(ret != 0))
619                 return ret;
620 
621 retry_private:
622         *hb = futex_q_lock(q);
623 
624         ret = futex_get_value_locked(&uval, uaddr);
625 
626         if (ret) {
627                 futex_q_unlock(*hb);
628 
629                 ret = get_user(uval, uaddr);
630                 if (ret)
631                         return ret;
632 
633                 if (!(flags & FLAGS_SHARED))
634                         goto retry_private;
635 
636                 goto retry;
637         }
638 
639         if (uval != val) {
640                 futex_q_unlock(*hb);
641                 ret = -EWOULDBLOCK;
642         }
643 
644         return ret;
645 }
646 
647 int __futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
648                  struct hrtimer_sleeper *to, u32 bitset)
649 {
650         struct futex_q q = futex_q_init;
651         struct futex_hash_bucket *hb;
652         int ret;
653 
654         if (!bitset)
655                 return -EINVAL;
656 
657         q.bitset = bitset;
658 
659 retry:
660         /*
661          * Prepare to wait on uaddr. On success, it holds hb->lock and q
662          * is initialized.
663          */
664         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
665         if (ret)
666                 return ret;
667 
668         /* futex_queue and wait for wakeup, timeout, or a signal. */
669         futex_wait_queue(hb, &q, to);
670 
671         /* If we were woken (and unqueued), we succeeded, whatever. */
672         if (!futex_unqueue(&q))
673                 return 0;
674 
675         if (to && !to->task)
676                 return -ETIMEDOUT;
677 
678         /*
679          * We expect signal_pending(current), but we might be the
680          * victim of a spurious wakeup as well.
681          */
682         if (!signal_pending(current))
683                 goto retry;
684 
685         return -ERESTARTSYS;
686 }
687 
688 int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset)
689 {
690         struct hrtimer_sleeper timeout, *to;
691         struct restart_block *restart;
692         int ret;
693 
694         to = futex_setup_timer(abs_time, &timeout, flags,
695                                current->timer_slack_ns);
696 
697         ret = __futex_wait(uaddr, flags, val, to, bitset);
698 
699         /* No timeout, nothing to clean up. */
700         if (!to)
701                 return ret;
702 
703         hrtimer_cancel(&to->timer);
704         destroy_hrtimer_on_stack(&to->timer);
705 
706         if (ret == -ERESTARTSYS) {
707                 restart = &current->restart_block;
708                 restart->futex.uaddr = uaddr;
709                 restart->futex.val = val;
710                 restart->futex.time = *abs_time;
711                 restart->futex.bitset = bitset;
712                 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
713 
714                 return set_restart_fn(restart, futex_wait_restart);
715         }
716 
717         return ret;
718 }
719 
720 static long futex_wait_restart(struct restart_block *restart)
721 {
722         u32 __user *uaddr = restart->futex.uaddr;
723         ktime_t t, *tp = NULL;
724 
725         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
726                 t = restart->futex.time;
727                 tp = &t;
728         }
729         restart->fn = do_no_restart_syscall;
730 
731         return (long)futex_wait(uaddr, restart->futex.flags,
732                                 restart->futex.val, tp, restart->futex.bitset);
733 }
734 
735 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php