1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 #include <linux/plist.h> 4 #include <linux/sched/task.h> 5 #include <linux/sched/signal.h> 6 #include <linux/freezer.h> 7 8 #include "futex.h" 9 10 /* 11 * READ this before attempting to hack on futexes! 12 * 13 * Basic futex operation and ordering guarantees 14 * ============================================= 15 * 16 * The waiter reads the futex value in user space and calls 17 * futex_wait(). This function computes the hash bucket and acquires 18 * the hash bucket lock. After that it reads the futex user space value 19 * again and verifies that the data has not changed. If it has not changed 20 * it enqueues itself into the hash bucket, releases the hash bucket lock 21 * and schedules. 22 * 23 * The waker side modifies the user space value of the futex and calls 24 * futex_wake(). This function computes the hash bucket and acquires the 25 * hash bucket lock. Then it looks for waiters on that futex in the hash 26 * bucket and wakes them. 27 * 28 * In futex wake up scenarios where no tasks are blocked on a futex, taking 29 * the hb spinlock can be avoided and simply return. In order for this 30 * optimization to work, ordering guarantees must exist so that the waiter 31 * being added to the list is acknowledged when the list is concurrently being 32 * checked by the waker, avoiding scenarios like the following: 33 * 34 * CPU 0 CPU 1 35 * val = *futex; 36 * sys_futex(WAIT, futex, val); 37 * futex_wait(futex, val); 38 * uval = *futex; 39 * *futex = newval; 40 * sys_futex(WAKE, futex); 41 * futex_wake(futex); 42 * if (queue_empty()) 43 * return; 44 * if (uval == val) 45 * lock(hash_bucket(futex)); 46 * queue(); 47 * unlock(hash_bucket(futex)); 48 * schedule(); 49 * 50 * This would cause the waiter on CPU 0 to wait forever because it 51 * missed the transition of the user space value from val to newval 52 * and the waker did not find the waiter in the hash bucket queue. 53 * 54 * The correct serialization ensures that a waiter either observes 55 * the changed user space value before blocking or is woken by a 56 * concurrent waker: 57 * 58 * CPU 0 CPU 1 59 * val = *futex; 60 * sys_futex(WAIT, futex, val); 61 * futex_wait(futex, val); 62 * 63 * waiters++; (a) 64 * smp_mb(); (A) <-- paired with -. 65 * | 66 * lock(hash_bucket(futex)); | 67 * | 68 * uval = *futex; | 69 * | *futex = newval; 70 * | sys_futex(WAKE, futex); 71 * | futex_wake(futex); 72 * | 73 * `--------> smp_mb(); (B) 74 * if (uval == val) 75 * queue(); 76 * unlock(hash_bucket(futex)); 77 * schedule(); if (waiters) 78 * lock(hash_bucket(futex)); 79 * else wake_waiters(futex); 80 * waiters--; (b) unlock(hash_bucket(futex)); 81 * 82 * Where (A) orders the waiters increment and the futex value read through 83 * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write 84 * to futex and the waiters read (see futex_hb_waiters_pending()). 85 * 86 * This yields the following case (where X:=waiters, Y:=futex): 87 * 88 * X = Y = 0 89 * 90 * w[X]=1 w[Y]=1 91 * MB MB 92 * r[Y]=y r[X]=x 93 * 94 * Which guarantees that x==0 && y==0 is impossible; which translates back into 95 * the guarantee that we cannot both miss the futex variable change and the 96 * enqueue. 97 * 98 * Note that a new waiter is accounted for in (a) even when it is possible that 99 * the wait call can return error, in which case we backtrack from it in (b). 100 * Refer to the comment in futex_q_lock(). 101 * 102 * Similarly, in order to account for waiters being requeued on another 103 * address we always increment the waiters for the destination bucket before 104 * acquiring the lock. It then decrements them again after releasing it - 105 * the code that actually moves the futex(es) between hash buckets (requeue_futex) 106 * will do the additional required waiter count housekeeping. This is done for 107 * double_lock_hb() and double_unlock_hb(), respectively. 108 */ 109 110 bool __futex_wake_mark(struct futex_q *q) 111 { 112 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n")) 113 return false; 114 115 __futex_unqueue(q); 116 /* 117 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL 118 * is written, without taking any locks. This is possible in the event 119 * of a spurious wakeup, for example. A memory barrier is required here 120 * to prevent the following store to lock_ptr from getting ahead of the 121 * plist_del in __futex_unqueue(). 122 */ 123 smp_store_release(&q->lock_ptr, NULL); 124 125 return true; 126 } 127 128 /* 129 * The hash bucket lock must be held when this is called. 130 * Afterwards, the futex_q must not be accessed. Callers 131 * must ensure to later call wake_up_q() for the actual 132 * wakeups to occur. 133 */ 134 void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q) 135 { 136 struct task_struct *p = q->task; 137 138 get_task_struct(p); 139 140 if (!__futex_wake_mark(q)) { 141 put_task_struct(p); 142 return; 143 } 144 145 /* 146 * Queue the task for later wakeup for after we've released 147 * the hb->lock. 148 */ 149 wake_q_add_safe(wake_q, p); 150 } 151 152 /* 153 * Wake up waiters matching bitset queued on this futex (uaddr). 154 */ 155 int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) 156 { 157 struct futex_hash_bucket *hb; 158 struct futex_q *this, *next; 159 union futex_key key = FUTEX_KEY_INIT; 160 DEFINE_WAKE_Q(wake_q); 161 int ret; 162 163 if (!bitset) 164 return -EINVAL; 165 166 ret = get_futex_key(uaddr, flags, &key, FUTEX_READ); 167 if (unlikely(ret != 0)) 168 return ret; 169 170 if ((flags & FLAGS_STRICT) && !nr_wake) 171 return 0; 172 173 hb = futex_hash(&key); 174 175 /* Make sure we really have tasks to wakeup */ 176 if (!futex_hb_waiters_pending(hb)) 177 return ret; 178 179 spin_lock(&hb->lock); 180 181 plist_for_each_entry_safe(this, next, &hb->chain, list) { 182 if (futex_match (&this->key, &key)) { 183 if (this->pi_state || this->rt_waiter) { 184 ret = -EINVAL; 185 break; 186 } 187 188 /* Check if one of the bits is set in both bitsets */ 189 if (!(this->bitset & bitset)) 190 continue; 191 192 this->wake(&wake_q, this); 193 if (++ret >= nr_wake) 194 break; 195 } 196 } 197 198 spin_unlock(&hb->lock); 199 wake_up_q(&wake_q); 200 return ret; 201 } 202 203 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr) 204 { 205 unsigned int op = (encoded_op & 0x70000000) >> 28; 206 unsigned int cmp = (encoded_op & 0x0f000000) >> 24; 207 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11); 208 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11); 209 int oldval, ret; 210 211 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) { 212 if (oparg < 0 || oparg > 31) { 213 char comm[sizeof(current->comm)]; 214 /* 215 * kill this print and return -EINVAL when userspace 216 * is sane again 217 */ 218 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n", 219 get_task_comm(comm, current), oparg); 220 oparg &= 31; 221 } 222 oparg = 1 << oparg; 223 } 224 225 pagefault_disable(); 226 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr); 227 pagefault_enable(); 228 if (ret) 229 return ret; 230 231 switch (cmp) { 232 case FUTEX_OP_CMP_EQ: 233 return oldval == cmparg; 234 case FUTEX_OP_CMP_NE: 235 return oldval != cmparg; 236 case FUTEX_OP_CMP_LT: 237 return oldval < cmparg; 238 case FUTEX_OP_CMP_GE: 239 return oldval >= cmparg; 240 case FUTEX_OP_CMP_LE: 241 return oldval <= cmparg; 242 case FUTEX_OP_CMP_GT: 243 return oldval > cmparg; 244 default: 245 return -ENOSYS; 246 } 247 } 248 249 /* 250 * Wake up all waiters hashed on the physical page that is mapped 251 * to this virtual address: 252 */ 253 int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, 254 int nr_wake, int nr_wake2, int op) 255 { 256 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; 257 struct futex_hash_bucket *hb1, *hb2; 258 struct futex_q *this, *next; 259 int ret, op_ret; 260 DEFINE_WAKE_Q(wake_q); 261 262 retry: 263 ret = get_futex_key(uaddr1, flags, &key1, FUTEX_READ); 264 if (unlikely(ret != 0)) 265 return ret; 266 ret = get_futex_key(uaddr2, flags, &key2, FUTEX_WRITE); 267 if (unlikely(ret != 0)) 268 return ret; 269 270 hb1 = futex_hash(&key1); 271 hb2 = futex_hash(&key2); 272 273 retry_private: 274 double_lock_hb(hb1, hb2); 275 op_ret = futex_atomic_op_inuser(op, uaddr2); 276 if (unlikely(op_ret < 0)) { 277 double_unlock_hb(hb1, hb2); 278 279 if (!IS_ENABLED(CONFIG_MMU) || 280 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) { 281 /* 282 * we don't get EFAULT from MMU faults if we don't have 283 * an MMU, but we might get them from range checking 284 */ 285 ret = op_ret; 286 return ret; 287 } 288 289 if (op_ret == -EFAULT) { 290 ret = fault_in_user_writeable(uaddr2); 291 if (ret) 292 return ret; 293 } 294 295 cond_resched(); 296 if (!(flags & FLAGS_SHARED)) 297 goto retry_private; 298 goto retry; 299 } 300 301 plist_for_each_entry_safe(this, next, &hb1->chain, list) { 302 if (futex_match (&this->key, &key1)) { 303 if (this->pi_state || this->rt_waiter) { 304 ret = -EINVAL; 305 goto out_unlock; 306 } 307 this->wake(&wake_q, this); 308 if (++ret >= nr_wake) 309 break; 310 } 311 } 312 313 if (op_ret > 0) { 314 op_ret = 0; 315 plist_for_each_entry_safe(this, next, &hb2->chain, list) { 316 if (futex_match (&this->key, &key2)) { 317 if (this->pi_state || this->rt_waiter) { 318 ret = -EINVAL; 319 goto out_unlock; 320 } 321 this->wake(&wake_q, this); 322 if (++op_ret >= nr_wake2) 323 break; 324 } 325 } 326 ret += op_ret; 327 } 328 329 out_unlock: 330 double_unlock_hb(hb1, hb2); 331 wake_up_q(&wake_q); 332 return ret; 333 } 334 335 static long futex_wait_restart(struct restart_block *restart); 336 337 /** 338 * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal 339 * @hb: the futex hash bucket, must be locked by the caller 340 * @q: the futex_q to queue up on 341 * @timeout: the prepared hrtimer_sleeper, or null for no timeout 342 */ 343 void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q, 344 struct hrtimer_sleeper *timeout) 345 { 346 /* 347 * The task state is guaranteed to be set before another task can 348 * wake it. set_current_state() is implemented using smp_store_mb() and 349 * futex_queue() calls spin_unlock() upon completion, both serializing 350 * access to the hash list and forcing another memory barrier. 351 */ 352 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 353 futex_queue(q, hb); 354 355 /* Arm the timer */ 356 if (timeout) 357 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS); 358 359 /* 360 * If we have been removed from the hash list, then another task 361 * has tried to wake us, and we can skip the call to schedule(). 362 */ 363 if (likely(!plist_node_empty(&q->list))) { 364 /* 365 * If the timer has already expired, current will already be 366 * flagged for rescheduling. Only call schedule if there 367 * is no timeout, or if it has yet to expire. 368 */ 369 if (!timeout || timeout->task) 370 schedule(); 371 } 372 __set_current_state(TASK_RUNNING); 373 } 374 375 /** 376 * futex_unqueue_multiple - Remove various futexes from their hash bucket 377 * @v: The list of futexes to unqueue 378 * @count: Number of futexes in the list 379 * 380 * Helper to unqueue a list of futexes. This can't fail. 381 * 382 * Return: 383 * - >=0 - Index of the last futex that was awoken; 384 * - -1 - No futex was awoken 385 */ 386 int futex_unqueue_multiple(struct futex_vector *v, int count) 387 { 388 int ret = -1, i; 389 390 for (i = 0; i < count; i++) { 391 if (!futex_unqueue(&v[i].q)) 392 ret = i; 393 } 394 395 return ret; 396 } 397 398 /** 399 * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes 400 * @vs: The futex list to wait on 401 * @count: The size of the list 402 * @woken: Index of the last woken futex, if any. Used to notify the 403 * caller that it can return this index to userspace (return parameter) 404 * 405 * Prepare multiple futexes in a single step and enqueue them. This may fail if 406 * the futex list is invalid or if any futex was already awoken. On success the 407 * task is ready to interruptible sleep. 408 * 409 * Return: 410 * - 1 - One of the futexes was woken by another thread 411 * - 0 - Success 412 * - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL 413 */ 414 int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken) 415 { 416 struct futex_hash_bucket *hb; 417 bool retry = false; 418 int ret, i; 419 u32 uval; 420 421 /* 422 * Enqueuing multiple futexes is tricky, because we need to enqueue 423 * each futex on the list before dealing with the next one to avoid 424 * deadlocking on the hash bucket. But, before enqueuing, we need to 425 * make sure that current->state is TASK_INTERRUPTIBLE, so we don't 426 * lose any wake events, which cannot be done before the get_futex_key 427 * of the next key, because it calls get_user_pages, which can sleep. 428 * Thus, we fetch the list of futexes keys in two steps, by first 429 * pinning all the memory keys in the futex key, and only then we read 430 * each key and queue the corresponding futex. 431 * 432 * Private futexes doesn't need to recalculate hash in retry, so skip 433 * get_futex_key() when retrying. 434 */ 435 retry: 436 for (i = 0; i < count; i++) { 437 if (!(vs[i].w.flags & FLAGS_SHARED) && retry) 438 continue; 439 440 ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr), 441 vs[i].w.flags, 442 &vs[i].q.key, FUTEX_READ); 443 444 if (unlikely(ret)) 445 return ret; 446 } 447 448 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 449 450 for (i = 0; i < count; i++) { 451 u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr; 452 struct futex_q *q = &vs[i].q; 453 u32 val = vs[i].w.val; 454 455 hb = futex_q_lock(q); 456 ret = futex_get_value_locked(&uval, uaddr); 457 458 if (!ret && uval == val) { 459 /* 460 * The bucket lock can't be held while dealing with the 461 * next futex. Queue each futex at this moment so hb can 462 * be unlocked. 463 */ 464 futex_queue(q, hb); 465 continue; 466 } 467 468 futex_q_unlock(hb); 469 __set_current_state(TASK_RUNNING); 470 471 /* 472 * Even if something went wrong, if we find out that a futex 473 * was woken, we don't return error and return this index to 474 * userspace 475 */ 476 *woken = futex_unqueue_multiple(vs, i); 477 if (*woken >= 0) 478 return 1; 479 480 if (ret) { 481 /* 482 * If we need to handle a page fault, we need to do so 483 * without any lock and any enqueued futex (otherwise 484 * we could lose some wakeup). So we do it here, after 485 * undoing all the work done so far. In success, we 486 * retry all the work. 487 */ 488 if (get_user(uval, uaddr)) 489 return -EFAULT; 490 491 retry = true; 492 goto retry; 493 } 494 495 if (uval != val) 496 return -EWOULDBLOCK; 497 } 498 499 return 0; 500 } 501 502 /** 503 * futex_sleep_multiple - Check sleeping conditions and sleep 504 * @vs: List of futexes to wait for 505 * @count: Length of vs 506 * @to: Timeout 507 * 508 * Sleep if and only if the timeout hasn't expired and no futex on the list has 509 * been woken up. 510 */ 511 static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count, 512 struct hrtimer_sleeper *to) 513 { 514 if (to && !to->task) 515 return; 516 517 for (; count; count--, vs++) { 518 if (!READ_ONCE(vs->q.lock_ptr)) 519 return; 520 } 521 522 schedule(); 523 } 524 525 /** 526 * futex_wait_multiple - Prepare to wait on and enqueue several futexes 527 * @vs: The list of futexes to wait on 528 * @count: The number of objects 529 * @to: Timeout before giving up and returning to userspace 530 * 531 * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function 532 * sleeps on a group of futexes and returns on the first futex that is 533 * wake, or after the timeout has elapsed. 534 * 535 * Return: 536 * - >=0 - Hint to the futex that was awoken 537 * - <0 - On error 538 */ 539 int futex_wait_multiple(struct futex_vector *vs, unsigned int count, 540 struct hrtimer_sleeper *to) 541 { 542 int ret, hint = 0; 543 544 if (to) 545 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS); 546 547 while (1) { 548 ret = futex_wait_multiple_setup(vs, count, &hint); 549 if (ret) { 550 if (ret > 0) { 551 /* A futex was woken during setup */ 552 ret = hint; 553 } 554 return ret; 555 } 556 557 futex_sleep_multiple(vs, count, to); 558 559 __set_current_state(TASK_RUNNING); 560 561 ret = futex_unqueue_multiple(vs, count); 562 if (ret >= 0) 563 return ret; 564 565 if (to && !to->task) 566 return -ETIMEDOUT; 567 else if (signal_pending(current)) 568 return -ERESTARTSYS; 569 /* 570 * The final case is a spurious wakeup, for 571 * which just retry. 572 */ 573 } 574 } 575 576 /** 577 * futex_wait_setup() - Prepare to wait on a futex 578 * @uaddr: the futex userspace address 579 * @val: the expected value 580 * @flags: futex flags (FLAGS_SHARED, etc.) 581 * @q: the associated futex_q 582 * @hb: storage for hash_bucket pointer to be returned to caller 583 * 584 * Setup the futex_q and locate the hash_bucket. Get the futex value and 585 * compare it with the expected value. Handle atomic faults internally. 586 * Return with the hb lock held on success, and unlocked on failure. 587 * 588 * Return: 589 * - 0 - uaddr contains val and hb has been locked; 590 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked 591 */ 592 int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, 593 struct futex_q *q, struct futex_hash_bucket **hb) 594 { 595 u32 uval; 596 int ret; 597 598 /* 599 * Access the page AFTER the hash-bucket is locked. 600 * Order is important: 601 * 602 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); 603 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } 604 * 605 * The basic logical guarantee of a futex is that it blocks ONLY 606 * if cond(var) is known to be true at the time of blocking, for 607 * any cond. If we locked the hash-bucket after testing *uaddr, that 608 * would open a race condition where we could block indefinitely with 609 * cond(var) false, which would violate the guarantee. 610 * 611 * On the other hand, we insert q and release the hash-bucket only 612 * after testing *uaddr. This guarantees that futex_wait() will NOT 613 * absorb a wakeup if *uaddr does not match the desired values 614 * while the syscall executes. 615 */ 616 retry: 617 ret = get_futex_key(uaddr, flags, &q->key, FUTEX_READ); 618 if (unlikely(ret != 0)) 619 return ret; 620 621 retry_private: 622 *hb = futex_q_lock(q); 623 624 ret = futex_get_value_locked(&uval, uaddr); 625 626 if (ret) { 627 futex_q_unlock(*hb); 628 629 ret = get_user(uval, uaddr); 630 if (ret) 631 return ret; 632 633 if (!(flags & FLAGS_SHARED)) 634 goto retry_private; 635 636 goto retry; 637 } 638 639 if (uval != val) { 640 futex_q_unlock(*hb); 641 ret = -EWOULDBLOCK; 642 } 643 644 return ret; 645 } 646 647 int __futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, 648 struct hrtimer_sleeper *to, u32 bitset) 649 { 650 struct futex_q q = futex_q_init; 651 struct futex_hash_bucket *hb; 652 int ret; 653 654 if (!bitset) 655 return -EINVAL; 656 657 q.bitset = bitset; 658 659 retry: 660 /* 661 * Prepare to wait on uaddr. On success, it holds hb->lock and q 662 * is initialized. 663 */ 664 ret = futex_wait_setup(uaddr, val, flags, &q, &hb); 665 if (ret) 666 return ret; 667 668 /* futex_queue and wait for wakeup, timeout, or a signal. */ 669 futex_wait_queue(hb, &q, to); 670 671 /* If we were woken (and unqueued), we succeeded, whatever. */ 672 if (!futex_unqueue(&q)) 673 return 0; 674 675 if (to && !to->task) 676 return -ETIMEDOUT; 677 678 /* 679 * We expect signal_pending(current), but we might be the 680 * victim of a spurious wakeup as well. 681 */ 682 if (!signal_pending(current)) 683 goto retry; 684 685 return -ERESTARTSYS; 686 } 687 688 int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset) 689 { 690 struct hrtimer_sleeper timeout, *to; 691 struct restart_block *restart; 692 int ret; 693 694 to = futex_setup_timer(abs_time, &timeout, flags, 695 current->timer_slack_ns); 696 697 ret = __futex_wait(uaddr, flags, val, to, bitset); 698 699 /* No timeout, nothing to clean up. */ 700 if (!to) 701 return ret; 702 703 hrtimer_cancel(&to->timer); 704 destroy_hrtimer_on_stack(&to->timer); 705 706 if (ret == -ERESTARTSYS) { 707 restart = ¤t->restart_block; 708 restart->futex.uaddr = uaddr; 709 restart->futex.val = val; 710 restart->futex.time = *abs_time; 711 restart->futex.bitset = bitset; 712 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; 713 714 return set_restart_fn(restart, futex_wait_restart); 715 } 716 717 return ret; 718 } 719 720 static long futex_wait_restart(struct restart_block *restart) 721 { 722 u32 __user *uaddr = restart->futex.uaddr; 723 ktime_t t, *tp = NULL; 724 725 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { 726 t = restart->futex.time; 727 tp = &t; 728 } 729 restart->fn = do_no_restart_syscall; 730 731 return (long)futex_wait(uaddr, restart->futex.flags, 732 restart->futex.val, tp, restart->futex.bitset); 733 } 734 735
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.