1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "kcov: " fmt 3 4 #define DISABLE_BRANCH_PROFILING 5 #include <linux/atomic.h> 6 #include <linux/compiler.h> 7 #include <linux/errno.h> 8 #include <linux/export.h> 9 #include <linux/types.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/hashtable.h> 13 #include <linux/init.h> 14 #include <linux/kmsan-checks.h> 15 #include <linux/mm.h> 16 #include <linux/preempt.h> 17 #include <linux/printk.h> 18 #include <linux/sched.h> 19 #include <linux/slab.h> 20 #include <linux/spinlock.h> 21 #include <linux/vmalloc.h> 22 #include <linux/debugfs.h> 23 #include <linux/uaccess.h> 24 #include <linux/kcov.h> 25 #include <linux/refcount.h> 26 #include <linux/log2.h> 27 #include <asm/setup.h> 28 29 #define kcov_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__) 30 31 /* Number of 64-bit words written per one comparison: */ 32 #define KCOV_WORDS_PER_CMP 4 33 34 /* 35 * kcov descriptor (one per opened debugfs file). 36 * State transitions of the descriptor: 37 * - initial state after open() 38 * - then there must be a single ioctl(KCOV_INIT_TRACE) call 39 * - then, mmap() call (several calls are allowed but not useful) 40 * - then, ioctl(KCOV_ENABLE, arg), where arg is 41 * KCOV_TRACE_PC - to trace only the PCs 42 * or 43 * KCOV_TRACE_CMP - to trace only the comparison operands 44 * - then, ioctl(KCOV_DISABLE) to disable the task. 45 * Enabling/disabling ioctls can be repeated (only one task a time allowed). 46 */ 47 struct kcov { 48 /* 49 * Reference counter. We keep one for: 50 * - opened file descriptor 51 * - task with enabled coverage (we can't unwire it from another task) 52 * - each code section for remote coverage collection 53 */ 54 refcount_t refcount; 55 /* The lock protects mode, size, area and t. */ 56 spinlock_t lock; 57 enum kcov_mode mode; 58 /* Size of arena (in long's). */ 59 unsigned int size; 60 /* Coverage buffer shared with user space. */ 61 void *area; 62 /* Task for which we collect coverage, or NULL. */ 63 struct task_struct *t; 64 /* Collecting coverage from remote (background) threads. */ 65 bool remote; 66 /* Size of remote area (in long's). */ 67 unsigned int remote_size; 68 /* 69 * Sequence is incremented each time kcov is reenabled, used by 70 * kcov_remote_stop(), see the comment there. 71 */ 72 int sequence; 73 }; 74 75 struct kcov_remote_area { 76 struct list_head list; 77 unsigned int size; 78 }; 79 80 struct kcov_remote { 81 u64 handle; 82 struct kcov *kcov; 83 struct hlist_node hnode; 84 }; 85 86 static DEFINE_SPINLOCK(kcov_remote_lock); 87 static DEFINE_HASHTABLE(kcov_remote_map, 4); 88 static struct list_head kcov_remote_areas = LIST_HEAD_INIT(kcov_remote_areas); 89 90 struct kcov_percpu_data { 91 void *irq_area; 92 local_lock_t lock; 93 94 unsigned int saved_mode; 95 unsigned int saved_size; 96 void *saved_area; 97 struct kcov *saved_kcov; 98 int saved_sequence; 99 }; 100 101 static DEFINE_PER_CPU(struct kcov_percpu_data, kcov_percpu_data) = { 102 .lock = INIT_LOCAL_LOCK(lock), 103 }; 104 105 /* Must be called with kcov_remote_lock locked. */ 106 static struct kcov_remote *kcov_remote_find(u64 handle) 107 { 108 struct kcov_remote *remote; 109 110 hash_for_each_possible(kcov_remote_map, remote, hnode, handle) { 111 if (remote->handle == handle) 112 return remote; 113 } 114 return NULL; 115 } 116 117 /* Must be called with kcov_remote_lock locked. */ 118 static struct kcov_remote *kcov_remote_add(struct kcov *kcov, u64 handle) 119 { 120 struct kcov_remote *remote; 121 122 if (kcov_remote_find(handle)) 123 return ERR_PTR(-EEXIST); 124 remote = kmalloc(sizeof(*remote), GFP_ATOMIC); 125 if (!remote) 126 return ERR_PTR(-ENOMEM); 127 remote->handle = handle; 128 remote->kcov = kcov; 129 hash_add(kcov_remote_map, &remote->hnode, handle); 130 return remote; 131 } 132 133 /* Must be called with kcov_remote_lock locked. */ 134 static struct kcov_remote_area *kcov_remote_area_get(unsigned int size) 135 { 136 struct kcov_remote_area *area; 137 struct list_head *pos; 138 139 list_for_each(pos, &kcov_remote_areas) { 140 area = list_entry(pos, struct kcov_remote_area, list); 141 if (area->size == size) { 142 list_del(&area->list); 143 return area; 144 } 145 } 146 return NULL; 147 } 148 149 /* Must be called with kcov_remote_lock locked. */ 150 static void kcov_remote_area_put(struct kcov_remote_area *area, 151 unsigned int size) 152 { 153 INIT_LIST_HEAD(&area->list); 154 area->size = size; 155 list_add(&area->list, &kcov_remote_areas); 156 /* 157 * KMSAN doesn't instrument this file, so it may not know area->list 158 * is initialized. Unpoison it explicitly to avoid reports in 159 * kcov_remote_area_get(). 160 */ 161 kmsan_unpoison_memory(&area->list, sizeof(area->list)); 162 } 163 164 /* 165 * Unlike in_serving_softirq(), this function returns false when called during 166 * a hardirq or an NMI that happened in the softirq context. 167 */ 168 static inline bool in_softirq_really(void) 169 { 170 return in_serving_softirq() && !in_hardirq() && !in_nmi(); 171 } 172 173 static notrace bool check_kcov_mode(enum kcov_mode needed_mode, struct task_struct *t) 174 { 175 unsigned int mode; 176 177 /* 178 * We are interested in code coverage as a function of a syscall inputs, 179 * so we ignore code executed in interrupts, unless we are in a remote 180 * coverage collection section in a softirq. 181 */ 182 if (!in_task() && !(in_softirq_really() && t->kcov_softirq)) 183 return false; 184 mode = READ_ONCE(t->kcov_mode); 185 /* 186 * There is some code that runs in interrupts but for which 187 * in_interrupt() returns false (e.g. preempt_schedule_irq()). 188 * READ_ONCE()/barrier() effectively provides load-acquire wrt 189 * interrupts, there are paired barrier()/WRITE_ONCE() in 190 * kcov_start(). 191 */ 192 barrier(); 193 return mode == needed_mode; 194 } 195 196 static notrace unsigned long canonicalize_ip(unsigned long ip) 197 { 198 #ifdef CONFIG_RANDOMIZE_BASE 199 ip -= kaslr_offset(); 200 #endif 201 return ip; 202 } 203 204 /* 205 * Entry point from instrumented code. 206 * This is called once per basic-block/edge. 207 */ 208 void notrace __sanitizer_cov_trace_pc(void) 209 { 210 struct task_struct *t; 211 unsigned long *area; 212 unsigned long ip = canonicalize_ip(_RET_IP_); 213 unsigned long pos; 214 215 t = current; 216 if (!check_kcov_mode(KCOV_MODE_TRACE_PC, t)) 217 return; 218 219 area = t->kcov_area; 220 /* The first 64-bit word is the number of subsequent PCs. */ 221 pos = READ_ONCE(area[0]) + 1; 222 if (likely(pos < t->kcov_size)) { 223 /* Previously we write pc before updating pos. However, some 224 * early interrupt code could bypass check_kcov_mode() check 225 * and invoke __sanitizer_cov_trace_pc(). If such interrupt is 226 * raised between writing pc and updating pos, the pc could be 227 * overitten by the recursive __sanitizer_cov_trace_pc(). 228 * Update pos before writing pc to avoid such interleaving. 229 */ 230 WRITE_ONCE(area[0], pos); 231 barrier(); 232 area[pos] = ip; 233 } 234 } 235 EXPORT_SYMBOL(__sanitizer_cov_trace_pc); 236 237 #ifdef CONFIG_KCOV_ENABLE_COMPARISONS 238 static void notrace write_comp_data(u64 type, u64 arg1, u64 arg2, u64 ip) 239 { 240 struct task_struct *t; 241 u64 *area; 242 u64 count, start_index, end_pos, max_pos; 243 244 t = current; 245 if (!check_kcov_mode(KCOV_MODE_TRACE_CMP, t)) 246 return; 247 248 ip = canonicalize_ip(ip); 249 250 /* 251 * We write all comparison arguments and types as u64. 252 * The buffer was allocated for t->kcov_size unsigned longs. 253 */ 254 area = (u64 *)t->kcov_area; 255 max_pos = t->kcov_size * sizeof(unsigned long); 256 257 count = READ_ONCE(area[0]); 258 259 /* Every record is KCOV_WORDS_PER_CMP 64-bit words. */ 260 start_index = 1 + count * KCOV_WORDS_PER_CMP; 261 end_pos = (start_index + KCOV_WORDS_PER_CMP) * sizeof(u64); 262 if (likely(end_pos <= max_pos)) { 263 /* See comment in __sanitizer_cov_trace_pc(). */ 264 WRITE_ONCE(area[0], count + 1); 265 barrier(); 266 area[start_index] = type; 267 area[start_index + 1] = arg1; 268 area[start_index + 2] = arg2; 269 area[start_index + 3] = ip; 270 } 271 } 272 273 void notrace __sanitizer_cov_trace_cmp1(u8 arg1, u8 arg2) 274 { 275 write_comp_data(KCOV_CMP_SIZE(0), arg1, arg2, _RET_IP_); 276 } 277 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp1); 278 279 void notrace __sanitizer_cov_trace_cmp2(u16 arg1, u16 arg2) 280 { 281 write_comp_data(KCOV_CMP_SIZE(1), arg1, arg2, _RET_IP_); 282 } 283 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp2); 284 285 void notrace __sanitizer_cov_trace_cmp4(u32 arg1, u32 arg2) 286 { 287 write_comp_data(KCOV_CMP_SIZE(2), arg1, arg2, _RET_IP_); 288 } 289 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp4); 290 291 void notrace __sanitizer_cov_trace_cmp8(kcov_u64 arg1, kcov_u64 arg2) 292 { 293 write_comp_data(KCOV_CMP_SIZE(3), arg1, arg2, _RET_IP_); 294 } 295 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp8); 296 297 void notrace __sanitizer_cov_trace_const_cmp1(u8 arg1, u8 arg2) 298 { 299 write_comp_data(KCOV_CMP_SIZE(0) | KCOV_CMP_CONST, arg1, arg2, 300 _RET_IP_); 301 } 302 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp1); 303 304 void notrace __sanitizer_cov_trace_const_cmp2(u16 arg1, u16 arg2) 305 { 306 write_comp_data(KCOV_CMP_SIZE(1) | KCOV_CMP_CONST, arg1, arg2, 307 _RET_IP_); 308 } 309 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp2); 310 311 void notrace __sanitizer_cov_trace_const_cmp4(u32 arg1, u32 arg2) 312 { 313 write_comp_data(KCOV_CMP_SIZE(2) | KCOV_CMP_CONST, arg1, arg2, 314 _RET_IP_); 315 } 316 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp4); 317 318 void notrace __sanitizer_cov_trace_const_cmp8(kcov_u64 arg1, kcov_u64 arg2) 319 { 320 write_comp_data(KCOV_CMP_SIZE(3) | KCOV_CMP_CONST, arg1, arg2, 321 _RET_IP_); 322 } 323 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp8); 324 325 void notrace __sanitizer_cov_trace_switch(kcov_u64 val, void *arg) 326 { 327 u64 i; 328 u64 *cases = arg; 329 u64 count = cases[0]; 330 u64 size = cases[1]; 331 u64 type = KCOV_CMP_CONST; 332 333 switch (size) { 334 case 8: 335 type |= KCOV_CMP_SIZE(0); 336 break; 337 case 16: 338 type |= KCOV_CMP_SIZE(1); 339 break; 340 case 32: 341 type |= KCOV_CMP_SIZE(2); 342 break; 343 case 64: 344 type |= KCOV_CMP_SIZE(3); 345 break; 346 default: 347 return; 348 } 349 for (i = 0; i < count; i++) 350 write_comp_data(type, cases[i + 2], val, _RET_IP_); 351 } 352 EXPORT_SYMBOL(__sanitizer_cov_trace_switch); 353 #endif /* ifdef CONFIG_KCOV_ENABLE_COMPARISONS */ 354 355 static void kcov_start(struct task_struct *t, struct kcov *kcov, 356 unsigned int size, void *area, enum kcov_mode mode, 357 int sequence) 358 { 359 kcov_debug("t = %px, size = %u, area = %px\n", t, size, area); 360 t->kcov = kcov; 361 /* Cache in task struct for performance. */ 362 t->kcov_size = size; 363 t->kcov_area = area; 364 t->kcov_sequence = sequence; 365 /* See comment in check_kcov_mode(). */ 366 barrier(); 367 WRITE_ONCE(t->kcov_mode, mode); 368 } 369 370 static void kcov_stop(struct task_struct *t) 371 { 372 WRITE_ONCE(t->kcov_mode, KCOV_MODE_DISABLED); 373 barrier(); 374 t->kcov = NULL; 375 t->kcov_size = 0; 376 t->kcov_area = NULL; 377 } 378 379 static void kcov_task_reset(struct task_struct *t) 380 { 381 kcov_stop(t); 382 t->kcov_sequence = 0; 383 t->kcov_handle = 0; 384 } 385 386 void kcov_task_init(struct task_struct *t) 387 { 388 kcov_task_reset(t); 389 t->kcov_handle = current->kcov_handle; 390 } 391 392 static void kcov_reset(struct kcov *kcov) 393 { 394 kcov->t = NULL; 395 kcov->mode = KCOV_MODE_INIT; 396 kcov->remote = false; 397 kcov->remote_size = 0; 398 kcov->sequence++; 399 } 400 401 static void kcov_remote_reset(struct kcov *kcov) 402 { 403 int bkt; 404 struct kcov_remote *remote; 405 struct hlist_node *tmp; 406 unsigned long flags; 407 408 spin_lock_irqsave(&kcov_remote_lock, flags); 409 hash_for_each_safe(kcov_remote_map, bkt, tmp, remote, hnode) { 410 if (remote->kcov != kcov) 411 continue; 412 hash_del(&remote->hnode); 413 kfree(remote); 414 } 415 /* Do reset before unlock to prevent races with kcov_remote_start(). */ 416 kcov_reset(kcov); 417 spin_unlock_irqrestore(&kcov_remote_lock, flags); 418 } 419 420 static void kcov_disable(struct task_struct *t, struct kcov *kcov) 421 { 422 kcov_task_reset(t); 423 if (kcov->remote) 424 kcov_remote_reset(kcov); 425 else 426 kcov_reset(kcov); 427 } 428 429 static void kcov_get(struct kcov *kcov) 430 { 431 refcount_inc(&kcov->refcount); 432 } 433 434 static void kcov_put(struct kcov *kcov) 435 { 436 if (refcount_dec_and_test(&kcov->refcount)) { 437 kcov_remote_reset(kcov); 438 vfree(kcov->area); 439 kfree(kcov); 440 } 441 } 442 443 void kcov_task_exit(struct task_struct *t) 444 { 445 struct kcov *kcov; 446 unsigned long flags; 447 448 kcov = t->kcov; 449 if (kcov == NULL) 450 return; 451 452 spin_lock_irqsave(&kcov->lock, flags); 453 kcov_debug("t = %px, kcov->t = %px\n", t, kcov->t); 454 /* 455 * For KCOV_ENABLE devices we want to make sure that t->kcov->t == t, 456 * which comes down to: 457 * WARN_ON(!kcov->remote && kcov->t != t); 458 * 459 * For KCOV_REMOTE_ENABLE devices, the exiting task is either: 460 * 461 * 1. A remote task between kcov_remote_start() and kcov_remote_stop(). 462 * In this case we should print a warning right away, since a task 463 * shouldn't be exiting when it's in a kcov coverage collection 464 * section. Here t points to the task that is collecting remote 465 * coverage, and t->kcov->t points to the thread that created the 466 * kcov device. Which means that to detect this case we need to 467 * check that t != t->kcov->t, and this gives us the following: 468 * WARN_ON(kcov->remote && kcov->t != t); 469 * 470 * 2. The task that created kcov exiting without calling KCOV_DISABLE, 471 * and then again we make sure that t->kcov->t == t: 472 * WARN_ON(kcov->remote && kcov->t != t); 473 * 474 * By combining all three checks into one we get: 475 */ 476 if (WARN_ON(kcov->t != t)) { 477 spin_unlock_irqrestore(&kcov->lock, flags); 478 return; 479 } 480 /* Just to not leave dangling references behind. */ 481 kcov_disable(t, kcov); 482 spin_unlock_irqrestore(&kcov->lock, flags); 483 kcov_put(kcov); 484 } 485 486 static int kcov_mmap(struct file *filep, struct vm_area_struct *vma) 487 { 488 int res = 0; 489 struct kcov *kcov = vma->vm_file->private_data; 490 unsigned long size, off; 491 struct page *page; 492 unsigned long flags; 493 494 spin_lock_irqsave(&kcov->lock, flags); 495 size = kcov->size * sizeof(unsigned long); 496 if (kcov->area == NULL || vma->vm_pgoff != 0 || 497 vma->vm_end - vma->vm_start != size) { 498 res = -EINVAL; 499 goto exit; 500 } 501 spin_unlock_irqrestore(&kcov->lock, flags); 502 vm_flags_set(vma, VM_DONTEXPAND); 503 for (off = 0; off < size; off += PAGE_SIZE) { 504 page = vmalloc_to_page(kcov->area + off); 505 res = vm_insert_page(vma, vma->vm_start + off, page); 506 if (res) { 507 pr_warn_once("kcov: vm_insert_page() failed\n"); 508 return res; 509 } 510 } 511 return 0; 512 exit: 513 spin_unlock_irqrestore(&kcov->lock, flags); 514 return res; 515 } 516 517 static int kcov_open(struct inode *inode, struct file *filep) 518 { 519 struct kcov *kcov; 520 521 kcov = kzalloc(sizeof(*kcov), GFP_KERNEL); 522 if (!kcov) 523 return -ENOMEM; 524 kcov->mode = KCOV_MODE_DISABLED; 525 kcov->sequence = 1; 526 refcount_set(&kcov->refcount, 1); 527 spin_lock_init(&kcov->lock); 528 filep->private_data = kcov; 529 return nonseekable_open(inode, filep); 530 } 531 532 static int kcov_close(struct inode *inode, struct file *filep) 533 { 534 kcov_put(filep->private_data); 535 return 0; 536 } 537 538 static int kcov_get_mode(unsigned long arg) 539 { 540 if (arg == KCOV_TRACE_PC) 541 return KCOV_MODE_TRACE_PC; 542 else if (arg == KCOV_TRACE_CMP) 543 #ifdef CONFIG_KCOV_ENABLE_COMPARISONS 544 return KCOV_MODE_TRACE_CMP; 545 #else 546 return -ENOTSUPP; 547 #endif 548 else 549 return -EINVAL; 550 } 551 552 /* 553 * Fault in a lazily-faulted vmalloc area before it can be used by 554 * __santizer_cov_trace_pc(), to avoid recursion issues if any code on the 555 * vmalloc fault handling path is instrumented. 556 */ 557 static void kcov_fault_in_area(struct kcov *kcov) 558 { 559 unsigned long stride = PAGE_SIZE / sizeof(unsigned long); 560 unsigned long *area = kcov->area; 561 unsigned long offset; 562 563 for (offset = 0; offset < kcov->size; offset += stride) 564 READ_ONCE(area[offset]); 565 } 566 567 static inline bool kcov_check_handle(u64 handle, bool common_valid, 568 bool uncommon_valid, bool zero_valid) 569 { 570 if (handle & ~(KCOV_SUBSYSTEM_MASK | KCOV_INSTANCE_MASK)) 571 return false; 572 switch (handle & KCOV_SUBSYSTEM_MASK) { 573 case KCOV_SUBSYSTEM_COMMON: 574 return (handle & KCOV_INSTANCE_MASK) ? 575 common_valid : zero_valid; 576 case KCOV_SUBSYSTEM_USB: 577 return uncommon_valid; 578 default: 579 return false; 580 } 581 return false; 582 } 583 584 static int kcov_ioctl_locked(struct kcov *kcov, unsigned int cmd, 585 unsigned long arg) 586 { 587 struct task_struct *t; 588 unsigned long flags, unused; 589 int mode, i; 590 struct kcov_remote_arg *remote_arg; 591 struct kcov_remote *remote; 592 593 switch (cmd) { 594 case KCOV_ENABLE: 595 /* 596 * Enable coverage for the current task. 597 * At this point user must have been enabled trace mode, 598 * and mmapped the file. Coverage collection is disabled only 599 * at task exit or voluntary by KCOV_DISABLE. After that it can 600 * be enabled for another task. 601 */ 602 if (kcov->mode != KCOV_MODE_INIT || !kcov->area) 603 return -EINVAL; 604 t = current; 605 if (kcov->t != NULL || t->kcov != NULL) 606 return -EBUSY; 607 mode = kcov_get_mode(arg); 608 if (mode < 0) 609 return mode; 610 kcov_fault_in_area(kcov); 611 kcov->mode = mode; 612 kcov_start(t, kcov, kcov->size, kcov->area, kcov->mode, 613 kcov->sequence); 614 kcov->t = t; 615 /* Put either in kcov_task_exit() or in KCOV_DISABLE. */ 616 kcov_get(kcov); 617 return 0; 618 case KCOV_DISABLE: 619 /* Disable coverage for the current task. */ 620 unused = arg; 621 if (unused != 0 || current->kcov != kcov) 622 return -EINVAL; 623 t = current; 624 if (WARN_ON(kcov->t != t)) 625 return -EINVAL; 626 kcov_disable(t, kcov); 627 kcov_put(kcov); 628 return 0; 629 case KCOV_REMOTE_ENABLE: 630 if (kcov->mode != KCOV_MODE_INIT || !kcov->area) 631 return -EINVAL; 632 t = current; 633 if (kcov->t != NULL || t->kcov != NULL) 634 return -EBUSY; 635 remote_arg = (struct kcov_remote_arg *)arg; 636 mode = kcov_get_mode(remote_arg->trace_mode); 637 if (mode < 0) 638 return mode; 639 if ((unsigned long)remote_arg->area_size > 640 LONG_MAX / sizeof(unsigned long)) 641 return -EINVAL; 642 kcov->mode = mode; 643 t->kcov = kcov; 644 t->kcov_mode = KCOV_MODE_REMOTE; 645 kcov->t = t; 646 kcov->remote = true; 647 kcov->remote_size = remote_arg->area_size; 648 spin_lock_irqsave(&kcov_remote_lock, flags); 649 for (i = 0; i < remote_arg->num_handles; i++) { 650 if (!kcov_check_handle(remote_arg->handles[i], 651 false, true, false)) { 652 spin_unlock_irqrestore(&kcov_remote_lock, 653 flags); 654 kcov_disable(t, kcov); 655 return -EINVAL; 656 } 657 remote = kcov_remote_add(kcov, remote_arg->handles[i]); 658 if (IS_ERR(remote)) { 659 spin_unlock_irqrestore(&kcov_remote_lock, 660 flags); 661 kcov_disable(t, kcov); 662 return PTR_ERR(remote); 663 } 664 } 665 if (remote_arg->common_handle) { 666 if (!kcov_check_handle(remote_arg->common_handle, 667 true, false, false)) { 668 spin_unlock_irqrestore(&kcov_remote_lock, 669 flags); 670 kcov_disable(t, kcov); 671 return -EINVAL; 672 } 673 remote = kcov_remote_add(kcov, 674 remote_arg->common_handle); 675 if (IS_ERR(remote)) { 676 spin_unlock_irqrestore(&kcov_remote_lock, 677 flags); 678 kcov_disable(t, kcov); 679 return PTR_ERR(remote); 680 } 681 t->kcov_handle = remote_arg->common_handle; 682 } 683 spin_unlock_irqrestore(&kcov_remote_lock, flags); 684 /* Put either in kcov_task_exit() or in KCOV_DISABLE. */ 685 kcov_get(kcov); 686 return 0; 687 default: 688 return -ENOTTY; 689 } 690 } 691 692 static long kcov_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) 693 { 694 struct kcov *kcov; 695 int res; 696 struct kcov_remote_arg *remote_arg = NULL; 697 unsigned int remote_num_handles; 698 unsigned long remote_arg_size; 699 unsigned long size, flags; 700 void *area; 701 702 kcov = filep->private_data; 703 switch (cmd) { 704 case KCOV_INIT_TRACE: 705 /* 706 * Enable kcov in trace mode and setup buffer size. 707 * Must happen before anything else. 708 * 709 * First check the size argument - it must be at least 2 710 * to hold the current position and one PC. 711 */ 712 size = arg; 713 if (size < 2 || size > INT_MAX / sizeof(unsigned long)) 714 return -EINVAL; 715 area = vmalloc_user(size * sizeof(unsigned long)); 716 if (area == NULL) 717 return -ENOMEM; 718 spin_lock_irqsave(&kcov->lock, flags); 719 if (kcov->mode != KCOV_MODE_DISABLED) { 720 spin_unlock_irqrestore(&kcov->lock, flags); 721 vfree(area); 722 return -EBUSY; 723 } 724 kcov->area = area; 725 kcov->size = size; 726 kcov->mode = KCOV_MODE_INIT; 727 spin_unlock_irqrestore(&kcov->lock, flags); 728 return 0; 729 case KCOV_REMOTE_ENABLE: 730 if (get_user(remote_num_handles, (unsigned __user *)(arg + 731 offsetof(struct kcov_remote_arg, num_handles)))) 732 return -EFAULT; 733 if (remote_num_handles > KCOV_REMOTE_MAX_HANDLES) 734 return -EINVAL; 735 remote_arg_size = struct_size(remote_arg, handles, 736 remote_num_handles); 737 remote_arg = memdup_user((void __user *)arg, remote_arg_size); 738 if (IS_ERR(remote_arg)) 739 return PTR_ERR(remote_arg); 740 if (remote_arg->num_handles != remote_num_handles) { 741 kfree(remote_arg); 742 return -EINVAL; 743 } 744 arg = (unsigned long)remote_arg; 745 fallthrough; 746 default: 747 /* 748 * All other commands can be normally executed under a spin lock, so we 749 * obtain and release it here in order to simplify kcov_ioctl_locked(). 750 */ 751 spin_lock_irqsave(&kcov->lock, flags); 752 res = kcov_ioctl_locked(kcov, cmd, arg); 753 spin_unlock_irqrestore(&kcov->lock, flags); 754 kfree(remote_arg); 755 return res; 756 } 757 } 758 759 static const struct file_operations kcov_fops = { 760 .open = kcov_open, 761 .unlocked_ioctl = kcov_ioctl, 762 .compat_ioctl = kcov_ioctl, 763 .mmap = kcov_mmap, 764 .release = kcov_close, 765 }; 766 767 /* 768 * kcov_remote_start() and kcov_remote_stop() can be used to annotate a section 769 * of code in a kernel background thread or in a softirq to allow kcov to be 770 * used to collect coverage from that part of code. 771 * 772 * The handle argument of kcov_remote_start() identifies a code section that is 773 * used for coverage collection. A userspace process passes this handle to 774 * KCOV_REMOTE_ENABLE ioctl to make the used kcov device start collecting 775 * coverage for the code section identified by this handle. 776 * 777 * The usage of these annotations in the kernel code is different depending on 778 * the type of the kernel thread whose code is being annotated. 779 * 780 * For global kernel threads that are spawned in a limited number of instances 781 * (e.g. one USB hub_event() worker thread is spawned per USB HCD) and for 782 * softirqs, each instance must be assigned a unique 4-byte instance id. The 783 * instance id is then combined with a 1-byte subsystem id to get a handle via 784 * kcov_remote_handle(subsystem_id, instance_id). 785 * 786 * For local kernel threads that are spawned from system calls handler when a 787 * user interacts with some kernel interface (e.g. vhost workers), a handle is 788 * passed from a userspace process as the common_handle field of the 789 * kcov_remote_arg struct (note, that the user must generate a handle by using 790 * kcov_remote_handle() with KCOV_SUBSYSTEM_COMMON as the subsystem id and an 791 * arbitrary 4-byte non-zero number as the instance id). This common handle 792 * then gets saved into the task_struct of the process that issued the 793 * KCOV_REMOTE_ENABLE ioctl. When this process issues system calls that spawn 794 * kernel threads, the common handle must be retrieved via kcov_common_handle() 795 * and passed to the spawned threads via custom annotations. Those kernel 796 * threads must in turn be annotated with kcov_remote_start(common_handle) and 797 * kcov_remote_stop(). All of the threads that are spawned by the same process 798 * obtain the same handle, hence the name "common". 799 * 800 * See Documentation/dev-tools/kcov.rst for more details. 801 * 802 * Internally, kcov_remote_start() looks up the kcov device associated with the 803 * provided handle, allocates an area for coverage collection, and saves the 804 * pointers to kcov and area into the current task_struct to allow coverage to 805 * be collected via __sanitizer_cov_trace_pc(). 806 * In turns kcov_remote_stop() clears those pointers from task_struct to stop 807 * collecting coverage and copies all collected coverage into the kcov area. 808 */ 809 810 static inline bool kcov_mode_enabled(unsigned int mode) 811 { 812 return (mode & ~KCOV_IN_CTXSW) != KCOV_MODE_DISABLED; 813 } 814 815 static void kcov_remote_softirq_start(struct task_struct *t) 816 { 817 struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data); 818 unsigned int mode; 819 820 mode = READ_ONCE(t->kcov_mode); 821 barrier(); 822 if (kcov_mode_enabled(mode)) { 823 data->saved_mode = mode; 824 data->saved_size = t->kcov_size; 825 data->saved_area = t->kcov_area; 826 data->saved_sequence = t->kcov_sequence; 827 data->saved_kcov = t->kcov; 828 kcov_stop(t); 829 } 830 } 831 832 static void kcov_remote_softirq_stop(struct task_struct *t) 833 { 834 struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data); 835 836 if (data->saved_kcov) { 837 kcov_start(t, data->saved_kcov, data->saved_size, 838 data->saved_area, data->saved_mode, 839 data->saved_sequence); 840 data->saved_mode = 0; 841 data->saved_size = 0; 842 data->saved_area = NULL; 843 data->saved_sequence = 0; 844 data->saved_kcov = NULL; 845 } 846 } 847 848 void kcov_remote_start(u64 handle) 849 { 850 struct task_struct *t = current; 851 struct kcov_remote *remote; 852 struct kcov *kcov; 853 unsigned int mode; 854 void *area; 855 unsigned int size; 856 int sequence; 857 unsigned long flags; 858 859 if (WARN_ON(!kcov_check_handle(handle, true, true, true))) 860 return; 861 if (!in_task() && !in_softirq_really()) 862 return; 863 864 local_lock_irqsave(&kcov_percpu_data.lock, flags); 865 866 /* 867 * Check that kcov_remote_start() is not called twice in background 868 * threads nor called by user tasks (with enabled kcov). 869 */ 870 mode = READ_ONCE(t->kcov_mode); 871 if (WARN_ON(in_task() && kcov_mode_enabled(mode))) { 872 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 873 return; 874 } 875 /* 876 * Check that kcov_remote_start() is not called twice in softirqs. 877 * Note, that kcov_remote_start() can be called from a softirq that 878 * happened while collecting coverage from a background thread. 879 */ 880 if (WARN_ON(in_serving_softirq() && t->kcov_softirq)) { 881 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 882 return; 883 } 884 885 spin_lock(&kcov_remote_lock); 886 remote = kcov_remote_find(handle); 887 if (!remote) { 888 spin_unlock(&kcov_remote_lock); 889 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 890 return; 891 } 892 kcov_debug("handle = %llx, context: %s\n", handle, 893 in_task() ? "task" : "softirq"); 894 kcov = remote->kcov; 895 /* Put in kcov_remote_stop(). */ 896 kcov_get(kcov); 897 /* 898 * Read kcov fields before unlock to prevent races with 899 * KCOV_DISABLE / kcov_remote_reset(). 900 */ 901 mode = kcov->mode; 902 sequence = kcov->sequence; 903 if (in_task()) { 904 size = kcov->remote_size; 905 area = kcov_remote_area_get(size); 906 } else { 907 size = CONFIG_KCOV_IRQ_AREA_SIZE; 908 area = this_cpu_ptr(&kcov_percpu_data)->irq_area; 909 } 910 spin_unlock(&kcov_remote_lock); 911 912 /* Can only happen when in_task(). */ 913 if (!area) { 914 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 915 area = vmalloc(size * sizeof(unsigned long)); 916 if (!area) { 917 kcov_put(kcov); 918 return; 919 } 920 local_lock_irqsave(&kcov_percpu_data.lock, flags); 921 } 922 923 /* Reset coverage size. */ 924 *(u64 *)area = 0; 925 926 if (in_serving_softirq()) { 927 kcov_remote_softirq_start(t); 928 t->kcov_softirq = 1; 929 } 930 kcov_start(t, kcov, size, area, mode, sequence); 931 932 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 933 934 } 935 EXPORT_SYMBOL(kcov_remote_start); 936 937 static void kcov_move_area(enum kcov_mode mode, void *dst_area, 938 unsigned int dst_area_size, void *src_area) 939 { 940 u64 word_size = sizeof(unsigned long); 941 u64 count_size, entry_size_log; 942 u64 dst_len, src_len; 943 void *dst_entries, *src_entries; 944 u64 dst_occupied, dst_free, bytes_to_move, entries_moved; 945 946 kcov_debug("%px %u <= %px %lu\n", 947 dst_area, dst_area_size, src_area, *(unsigned long *)src_area); 948 949 switch (mode) { 950 case KCOV_MODE_TRACE_PC: 951 dst_len = READ_ONCE(*(unsigned long *)dst_area); 952 src_len = *(unsigned long *)src_area; 953 count_size = sizeof(unsigned long); 954 entry_size_log = __ilog2_u64(sizeof(unsigned long)); 955 break; 956 case KCOV_MODE_TRACE_CMP: 957 dst_len = READ_ONCE(*(u64 *)dst_area); 958 src_len = *(u64 *)src_area; 959 count_size = sizeof(u64); 960 BUILD_BUG_ON(!is_power_of_2(KCOV_WORDS_PER_CMP)); 961 entry_size_log = __ilog2_u64(sizeof(u64) * KCOV_WORDS_PER_CMP); 962 break; 963 default: 964 WARN_ON(1); 965 return; 966 } 967 968 /* As arm can't divide u64 integers use log of entry size. */ 969 if (dst_len > ((dst_area_size * word_size - count_size) >> 970 entry_size_log)) 971 return; 972 dst_occupied = count_size + (dst_len << entry_size_log); 973 dst_free = dst_area_size * word_size - dst_occupied; 974 bytes_to_move = min(dst_free, src_len << entry_size_log); 975 dst_entries = dst_area + dst_occupied; 976 src_entries = src_area + count_size; 977 memcpy(dst_entries, src_entries, bytes_to_move); 978 entries_moved = bytes_to_move >> entry_size_log; 979 980 switch (mode) { 981 case KCOV_MODE_TRACE_PC: 982 WRITE_ONCE(*(unsigned long *)dst_area, dst_len + entries_moved); 983 break; 984 case KCOV_MODE_TRACE_CMP: 985 WRITE_ONCE(*(u64 *)dst_area, dst_len + entries_moved); 986 break; 987 default: 988 break; 989 } 990 } 991 992 /* See the comment before kcov_remote_start() for usage details. */ 993 void kcov_remote_stop(void) 994 { 995 struct task_struct *t = current; 996 struct kcov *kcov; 997 unsigned int mode; 998 void *area; 999 unsigned int size; 1000 int sequence; 1001 unsigned long flags; 1002 1003 if (!in_task() && !in_softirq_really()) 1004 return; 1005 1006 local_lock_irqsave(&kcov_percpu_data.lock, flags); 1007 1008 mode = READ_ONCE(t->kcov_mode); 1009 barrier(); 1010 if (!kcov_mode_enabled(mode)) { 1011 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 1012 return; 1013 } 1014 /* 1015 * When in softirq, check if the corresponding kcov_remote_start() 1016 * actually found the remote handle and started collecting coverage. 1017 */ 1018 if (in_serving_softirq() && !t->kcov_softirq) { 1019 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 1020 return; 1021 } 1022 /* Make sure that kcov_softirq is only set when in softirq. */ 1023 if (WARN_ON(!in_serving_softirq() && t->kcov_softirq)) { 1024 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 1025 return; 1026 } 1027 1028 kcov = t->kcov; 1029 area = t->kcov_area; 1030 size = t->kcov_size; 1031 sequence = t->kcov_sequence; 1032 1033 kcov_stop(t); 1034 if (in_serving_softirq()) { 1035 t->kcov_softirq = 0; 1036 kcov_remote_softirq_stop(t); 1037 } 1038 1039 spin_lock(&kcov->lock); 1040 /* 1041 * KCOV_DISABLE could have been called between kcov_remote_start() 1042 * and kcov_remote_stop(), hence the sequence check. 1043 */ 1044 if (sequence == kcov->sequence && kcov->remote) 1045 kcov_move_area(kcov->mode, kcov->area, kcov->size, area); 1046 spin_unlock(&kcov->lock); 1047 1048 if (in_task()) { 1049 spin_lock(&kcov_remote_lock); 1050 kcov_remote_area_put(area, size); 1051 spin_unlock(&kcov_remote_lock); 1052 } 1053 1054 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 1055 1056 /* Get in kcov_remote_start(). */ 1057 kcov_put(kcov); 1058 } 1059 EXPORT_SYMBOL(kcov_remote_stop); 1060 1061 /* See the comment before kcov_remote_start() for usage details. */ 1062 u64 kcov_common_handle(void) 1063 { 1064 if (!in_task()) 1065 return 0; 1066 return current->kcov_handle; 1067 } 1068 EXPORT_SYMBOL(kcov_common_handle); 1069 1070 static int __init kcov_init(void) 1071 { 1072 int cpu; 1073 1074 for_each_possible_cpu(cpu) { 1075 void *area = vmalloc_node(CONFIG_KCOV_IRQ_AREA_SIZE * 1076 sizeof(unsigned long), cpu_to_node(cpu)); 1077 if (!area) 1078 return -ENOMEM; 1079 per_cpu_ptr(&kcov_percpu_data, cpu)->irq_area = area; 1080 } 1081 1082 /* 1083 * The kcov debugfs file won't ever get removed and thus, 1084 * there is no need to protect it against removal races. The 1085 * use of debugfs_create_file_unsafe() is actually safe here. 1086 */ 1087 debugfs_create_file_unsafe("kcov", 0600, NULL, NULL, &kcov_fops); 1088 1089 return 0; 1090 } 1091 1092 device_initcall(kcov_init); 1093
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.