~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/kexec_core.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * kexec.c - kexec system call core code.
  4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  5  */
  6 
  7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8 
  9 #include <linux/btf.h>
 10 #include <linux/capability.h>
 11 #include <linux/mm.h>
 12 #include <linux/file.h>
 13 #include <linux/slab.h>
 14 #include <linux/fs.h>
 15 #include <linux/kexec.h>
 16 #include <linux/mutex.h>
 17 #include <linux/list.h>
 18 #include <linux/highmem.h>
 19 #include <linux/syscalls.h>
 20 #include <linux/reboot.h>
 21 #include <linux/ioport.h>
 22 #include <linux/hardirq.h>
 23 #include <linux/elf.h>
 24 #include <linux/elfcore.h>
 25 #include <linux/utsname.h>
 26 #include <linux/numa.h>
 27 #include <linux/suspend.h>
 28 #include <linux/device.h>
 29 #include <linux/freezer.h>
 30 #include <linux/panic_notifier.h>
 31 #include <linux/pm.h>
 32 #include <linux/cpu.h>
 33 #include <linux/uaccess.h>
 34 #include <linux/io.h>
 35 #include <linux/console.h>
 36 #include <linux/vmalloc.h>
 37 #include <linux/swap.h>
 38 #include <linux/syscore_ops.h>
 39 #include <linux/compiler.h>
 40 #include <linux/hugetlb.h>
 41 #include <linux/objtool.h>
 42 #include <linux/kmsg_dump.h>
 43 
 44 #include <asm/page.h>
 45 #include <asm/sections.h>
 46 
 47 #include <crypto/hash.h>
 48 #include "kexec_internal.h"
 49 
 50 atomic_t __kexec_lock = ATOMIC_INIT(0);
 51 
 52 /* Flag to indicate we are going to kexec a new kernel */
 53 bool kexec_in_progress = false;
 54 
 55 bool kexec_file_dbg_print;
 56 
 57 /*
 58  * When kexec transitions to the new kernel there is a one-to-one
 59  * mapping between physical and virtual addresses.  On processors
 60  * where you can disable the MMU this is trivial, and easy.  For
 61  * others it is still a simple predictable page table to setup.
 62  *
 63  * In that environment kexec copies the new kernel to its final
 64  * resting place.  This means I can only support memory whose
 65  * physical address can fit in an unsigned long.  In particular
 66  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 67  * If the assembly stub has more restrictive requirements
 68  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 69  * defined more restrictively in <asm/kexec.h>.
 70  *
 71  * The code for the transition from the current kernel to the
 72  * new kernel is placed in the control_code_buffer, whose size
 73  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
 74  * page of memory is necessary, but some architectures require more.
 75  * Because this memory must be identity mapped in the transition from
 76  * virtual to physical addresses it must live in the range
 77  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 78  * modifiable.
 79  *
 80  * The assembly stub in the control code buffer is passed a linked list
 81  * of descriptor pages detailing the source pages of the new kernel,
 82  * and the destination addresses of those source pages.  As this data
 83  * structure is not used in the context of the current OS, it must
 84  * be self-contained.
 85  *
 86  * The code has been made to work with highmem pages and will use a
 87  * destination page in its final resting place (if it happens
 88  * to allocate it).  The end product of this is that most of the
 89  * physical address space, and most of RAM can be used.
 90  *
 91  * Future directions include:
 92  *  - allocating a page table with the control code buffer identity
 93  *    mapped, to simplify machine_kexec and make kexec_on_panic more
 94  *    reliable.
 95  */
 96 
 97 /*
 98  * KIMAGE_NO_DEST is an impossible destination address..., for
 99  * allocating pages whose destination address we do not care about.
100  */
101 #define KIMAGE_NO_DEST (-1UL)
102 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
103 
104 static struct page *kimage_alloc_page(struct kimage *image,
105                                        gfp_t gfp_mask,
106                                        unsigned long dest);
107 
108 int sanity_check_segment_list(struct kimage *image)
109 {
110         int i;
111         unsigned long nr_segments = image->nr_segments;
112         unsigned long total_pages = 0;
113         unsigned long nr_pages = totalram_pages();
114 
115         /*
116          * Verify we have good destination addresses.  The caller is
117          * responsible for making certain we don't attempt to load
118          * the new image into invalid or reserved areas of RAM.  This
119          * just verifies it is an address we can use.
120          *
121          * Since the kernel does everything in page size chunks ensure
122          * the destination addresses are page aligned.  Too many
123          * special cases crop of when we don't do this.  The most
124          * insidious is getting overlapping destination addresses
125          * simply because addresses are changed to page size
126          * granularity.
127          */
128         for (i = 0; i < nr_segments; i++) {
129                 unsigned long mstart, mend;
130 
131                 mstart = image->segment[i].mem;
132                 mend   = mstart + image->segment[i].memsz;
133                 if (mstart > mend)
134                         return -EADDRNOTAVAIL;
135                 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
136                         return -EADDRNOTAVAIL;
137                 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
138                         return -EADDRNOTAVAIL;
139         }
140 
141         /* Verify our destination addresses do not overlap.
142          * If we alloed overlapping destination addresses
143          * through very weird things can happen with no
144          * easy explanation as one segment stops on another.
145          */
146         for (i = 0; i < nr_segments; i++) {
147                 unsigned long mstart, mend;
148                 unsigned long j;
149 
150                 mstart = image->segment[i].mem;
151                 mend   = mstart + image->segment[i].memsz;
152                 for (j = 0; j < i; j++) {
153                         unsigned long pstart, pend;
154 
155                         pstart = image->segment[j].mem;
156                         pend   = pstart + image->segment[j].memsz;
157                         /* Do the segments overlap ? */
158                         if ((mend > pstart) && (mstart < pend))
159                                 return -EINVAL;
160                 }
161         }
162 
163         /* Ensure our buffer sizes are strictly less than
164          * our memory sizes.  This should always be the case,
165          * and it is easier to check up front than to be surprised
166          * later on.
167          */
168         for (i = 0; i < nr_segments; i++) {
169                 if (image->segment[i].bufsz > image->segment[i].memsz)
170                         return -EINVAL;
171         }
172 
173         /*
174          * Verify that no more than half of memory will be consumed. If the
175          * request from userspace is too large, a large amount of time will be
176          * wasted allocating pages, which can cause a soft lockup.
177          */
178         for (i = 0; i < nr_segments; i++) {
179                 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
180                         return -EINVAL;
181 
182                 total_pages += PAGE_COUNT(image->segment[i].memsz);
183         }
184 
185         if (total_pages > nr_pages / 2)
186                 return -EINVAL;
187 
188 #ifdef CONFIG_CRASH_DUMP
189         /*
190          * Verify we have good destination addresses.  Normally
191          * the caller is responsible for making certain we don't
192          * attempt to load the new image into invalid or reserved
193          * areas of RAM.  But crash kernels are preloaded into a
194          * reserved area of ram.  We must ensure the addresses
195          * are in the reserved area otherwise preloading the
196          * kernel could corrupt things.
197          */
198 
199         if (image->type == KEXEC_TYPE_CRASH) {
200                 for (i = 0; i < nr_segments; i++) {
201                         unsigned long mstart, mend;
202 
203                         mstart = image->segment[i].mem;
204                         mend = mstart + image->segment[i].memsz - 1;
205                         /* Ensure we are within the crash kernel limits */
206                         if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
207                             (mend > phys_to_boot_phys(crashk_res.end)))
208                                 return -EADDRNOTAVAIL;
209                 }
210         }
211 #endif
212 
213         return 0;
214 }
215 
216 struct kimage *do_kimage_alloc_init(void)
217 {
218         struct kimage *image;
219 
220         /* Allocate a controlling structure */
221         image = kzalloc(sizeof(*image), GFP_KERNEL);
222         if (!image)
223                 return NULL;
224 
225         image->head = 0;
226         image->entry = &image->head;
227         image->last_entry = &image->head;
228         image->control_page = ~0; /* By default this does not apply */
229         image->type = KEXEC_TYPE_DEFAULT;
230 
231         /* Initialize the list of control pages */
232         INIT_LIST_HEAD(&image->control_pages);
233 
234         /* Initialize the list of destination pages */
235         INIT_LIST_HEAD(&image->dest_pages);
236 
237         /* Initialize the list of unusable pages */
238         INIT_LIST_HEAD(&image->unusable_pages);
239 
240 #ifdef CONFIG_CRASH_HOTPLUG
241         image->hp_action = KEXEC_CRASH_HP_NONE;
242         image->elfcorehdr_index = -1;
243         image->elfcorehdr_updated = false;
244 #endif
245 
246         return image;
247 }
248 
249 int kimage_is_destination_range(struct kimage *image,
250                                         unsigned long start,
251                                         unsigned long end)
252 {
253         unsigned long i;
254 
255         for (i = 0; i < image->nr_segments; i++) {
256                 unsigned long mstart, mend;
257 
258                 mstart = image->segment[i].mem;
259                 mend = mstart + image->segment[i].memsz - 1;
260                 if ((end >= mstart) && (start <= mend))
261                         return 1;
262         }
263 
264         return 0;
265 }
266 
267 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
268 {
269         struct page *pages;
270 
271         if (fatal_signal_pending(current))
272                 return NULL;
273         pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
274         if (pages) {
275                 unsigned int count, i;
276 
277                 pages->mapping = NULL;
278                 set_page_private(pages, order);
279                 count = 1 << order;
280                 for (i = 0; i < count; i++)
281                         SetPageReserved(pages + i);
282 
283                 arch_kexec_post_alloc_pages(page_address(pages), count,
284                                             gfp_mask);
285 
286                 if (gfp_mask & __GFP_ZERO)
287                         for (i = 0; i < count; i++)
288                                 clear_highpage(pages + i);
289         }
290 
291         return pages;
292 }
293 
294 static void kimage_free_pages(struct page *page)
295 {
296         unsigned int order, count, i;
297 
298         order = page_private(page);
299         count = 1 << order;
300 
301         arch_kexec_pre_free_pages(page_address(page), count);
302 
303         for (i = 0; i < count; i++)
304                 ClearPageReserved(page + i);
305         __free_pages(page, order);
306 }
307 
308 void kimage_free_page_list(struct list_head *list)
309 {
310         struct page *page, *next;
311 
312         list_for_each_entry_safe(page, next, list, lru) {
313                 list_del(&page->lru);
314                 kimage_free_pages(page);
315         }
316 }
317 
318 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
319                                                         unsigned int order)
320 {
321         /* Control pages are special, they are the intermediaries
322          * that are needed while we copy the rest of the pages
323          * to their final resting place.  As such they must
324          * not conflict with either the destination addresses
325          * or memory the kernel is already using.
326          *
327          * The only case where we really need more than one of
328          * these are for architectures where we cannot disable
329          * the MMU and must instead generate an identity mapped
330          * page table for all of the memory.
331          *
332          * At worst this runs in O(N) of the image size.
333          */
334         struct list_head extra_pages;
335         struct page *pages;
336         unsigned int count;
337 
338         count = 1 << order;
339         INIT_LIST_HEAD(&extra_pages);
340 
341         /* Loop while I can allocate a page and the page allocated
342          * is a destination page.
343          */
344         do {
345                 unsigned long pfn, epfn, addr, eaddr;
346 
347                 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
348                 if (!pages)
349                         break;
350                 pfn   = page_to_boot_pfn(pages);
351                 epfn  = pfn + count;
352                 addr  = pfn << PAGE_SHIFT;
353                 eaddr = (epfn << PAGE_SHIFT) - 1;
354                 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
355                               kimage_is_destination_range(image, addr, eaddr)) {
356                         list_add(&pages->lru, &extra_pages);
357                         pages = NULL;
358                 }
359         } while (!pages);
360 
361         if (pages) {
362                 /* Remember the allocated page... */
363                 list_add(&pages->lru, &image->control_pages);
364 
365                 /* Because the page is already in it's destination
366                  * location we will never allocate another page at
367                  * that address.  Therefore kimage_alloc_pages
368                  * will not return it (again) and we don't need
369                  * to give it an entry in image->segment[].
370                  */
371         }
372         /* Deal with the destination pages I have inadvertently allocated.
373          *
374          * Ideally I would convert multi-page allocations into single
375          * page allocations, and add everything to image->dest_pages.
376          *
377          * For now it is simpler to just free the pages.
378          */
379         kimage_free_page_list(&extra_pages);
380 
381         return pages;
382 }
383 
384 #ifdef CONFIG_CRASH_DUMP
385 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
386                                                       unsigned int order)
387 {
388         /* Control pages are special, they are the intermediaries
389          * that are needed while we copy the rest of the pages
390          * to their final resting place.  As such they must
391          * not conflict with either the destination addresses
392          * or memory the kernel is already using.
393          *
394          * Control pages are also the only pags we must allocate
395          * when loading a crash kernel.  All of the other pages
396          * are specified by the segments and we just memcpy
397          * into them directly.
398          *
399          * The only case where we really need more than one of
400          * these are for architectures where we cannot disable
401          * the MMU and must instead generate an identity mapped
402          * page table for all of the memory.
403          *
404          * Given the low demand this implements a very simple
405          * allocator that finds the first hole of the appropriate
406          * size in the reserved memory region, and allocates all
407          * of the memory up to and including the hole.
408          */
409         unsigned long hole_start, hole_end, size;
410         struct page *pages;
411 
412         pages = NULL;
413         size = (1 << order) << PAGE_SHIFT;
414         hole_start = ALIGN(image->control_page, size);
415         hole_end   = hole_start + size - 1;
416         while (hole_end <= crashk_res.end) {
417                 unsigned long i;
418 
419                 cond_resched();
420 
421                 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
422                         break;
423                 /* See if I overlap any of the segments */
424                 for (i = 0; i < image->nr_segments; i++) {
425                         unsigned long mstart, mend;
426 
427                         mstart = image->segment[i].mem;
428                         mend   = mstart + image->segment[i].memsz - 1;
429                         if ((hole_end >= mstart) && (hole_start <= mend)) {
430                                 /* Advance the hole to the end of the segment */
431                                 hole_start = ALIGN(mend, size);
432                                 hole_end   = hole_start + size - 1;
433                                 break;
434                         }
435                 }
436                 /* If I don't overlap any segments I have found my hole! */
437                 if (i == image->nr_segments) {
438                         pages = pfn_to_page(hole_start >> PAGE_SHIFT);
439                         image->control_page = hole_end + 1;
440                         break;
441                 }
442         }
443 
444         /* Ensure that these pages are decrypted if SME is enabled. */
445         if (pages)
446                 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
447 
448         return pages;
449 }
450 #endif
451 
452 
453 struct page *kimage_alloc_control_pages(struct kimage *image,
454                                          unsigned int order)
455 {
456         struct page *pages = NULL;
457 
458         switch (image->type) {
459         case KEXEC_TYPE_DEFAULT:
460                 pages = kimage_alloc_normal_control_pages(image, order);
461                 break;
462 #ifdef CONFIG_CRASH_DUMP
463         case KEXEC_TYPE_CRASH:
464                 pages = kimage_alloc_crash_control_pages(image, order);
465                 break;
466 #endif
467         }
468 
469         return pages;
470 }
471 
472 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
473 {
474         if (*image->entry != 0)
475                 image->entry++;
476 
477         if (image->entry == image->last_entry) {
478                 kimage_entry_t *ind_page;
479                 struct page *page;
480 
481                 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
482                 if (!page)
483                         return -ENOMEM;
484 
485                 ind_page = page_address(page);
486                 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
487                 image->entry = ind_page;
488                 image->last_entry = ind_page +
489                                       ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
490         }
491         *image->entry = entry;
492         image->entry++;
493         *image->entry = 0;
494 
495         return 0;
496 }
497 
498 static int kimage_set_destination(struct kimage *image,
499                                    unsigned long destination)
500 {
501         destination &= PAGE_MASK;
502 
503         return kimage_add_entry(image, destination | IND_DESTINATION);
504 }
505 
506 
507 static int kimage_add_page(struct kimage *image, unsigned long page)
508 {
509         page &= PAGE_MASK;
510 
511         return kimage_add_entry(image, page | IND_SOURCE);
512 }
513 
514 
515 static void kimage_free_extra_pages(struct kimage *image)
516 {
517         /* Walk through and free any extra destination pages I may have */
518         kimage_free_page_list(&image->dest_pages);
519 
520         /* Walk through and free any unusable pages I have cached */
521         kimage_free_page_list(&image->unusable_pages);
522 
523 }
524 
525 void kimage_terminate(struct kimage *image)
526 {
527         if (*image->entry != 0)
528                 image->entry++;
529 
530         *image->entry = IND_DONE;
531 }
532 
533 #define for_each_kimage_entry(image, ptr, entry) \
534         for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
535                 ptr = (entry & IND_INDIRECTION) ? \
536                         boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
537 
538 static void kimage_free_entry(kimage_entry_t entry)
539 {
540         struct page *page;
541 
542         page = boot_pfn_to_page(entry >> PAGE_SHIFT);
543         kimage_free_pages(page);
544 }
545 
546 void kimage_free(struct kimage *image)
547 {
548         kimage_entry_t *ptr, entry;
549         kimage_entry_t ind = 0;
550 
551         if (!image)
552                 return;
553 
554 #ifdef CONFIG_CRASH_DUMP
555         if (image->vmcoreinfo_data_copy) {
556                 crash_update_vmcoreinfo_safecopy(NULL);
557                 vunmap(image->vmcoreinfo_data_copy);
558         }
559 #endif
560 
561         kimage_free_extra_pages(image);
562         for_each_kimage_entry(image, ptr, entry) {
563                 if (entry & IND_INDIRECTION) {
564                         /* Free the previous indirection page */
565                         if (ind & IND_INDIRECTION)
566                                 kimage_free_entry(ind);
567                         /* Save this indirection page until we are
568                          * done with it.
569                          */
570                         ind = entry;
571                 } else if (entry & IND_SOURCE)
572                         kimage_free_entry(entry);
573         }
574         /* Free the final indirection page */
575         if (ind & IND_INDIRECTION)
576                 kimage_free_entry(ind);
577 
578         /* Handle any machine specific cleanup */
579         machine_kexec_cleanup(image);
580 
581         /* Free the kexec control pages... */
582         kimage_free_page_list(&image->control_pages);
583 
584         /*
585          * Free up any temporary buffers allocated. This might hit if
586          * error occurred much later after buffer allocation.
587          */
588         if (image->file_mode)
589                 kimage_file_post_load_cleanup(image);
590 
591         kfree(image);
592 }
593 
594 static kimage_entry_t *kimage_dst_used(struct kimage *image,
595                                         unsigned long page)
596 {
597         kimage_entry_t *ptr, entry;
598         unsigned long destination = 0;
599 
600         for_each_kimage_entry(image, ptr, entry) {
601                 if (entry & IND_DESTINATION)
602                         destination = entry & PAGE_MASK;
603                 else if (entry & IND_SOURCE) {
604                         if (page == destination)
605                                 return ptr;
606                         destination += PAGE_SIZE;
607                 }
608         }
609 
610         return NULL;
611 }
612 
613 static struct page *kimage_alloc_page(struct kimage *image,
614                                         gfp_t gfp_mask,
615                                         unsigned long destination)
616 {
617         /*
618          * Here we implement safeguards to ensure that a source page
619          * is not copied to its destination page before the data on
620          * the destination page is no longer useful.
621          *
622          * To do this we maintain the invariant that a source page is
623          * either its own destination page, or it is not a
624          * destination page at all.
625          *
626          * That is slightly stronger than required, but the proof
627          * that no problems will not occur is trivial, and the
628          * implementation is simply to verify.
629          *
630          * When allocating all pages normally this algorithm will run
631          * in O(N) time, but in the worst case it will run in O(N^2)
632          * time.   If the runtime is a problem the data structures can
633          * be fixed.
634          */
635         struct page *page;
636         unsigned long addr;
637 
638         /*
639          * Walk through the list of destination pages, and see if I
640          * have a match.
641          */
642         list_for_each_entry(page, &image->dest_pages, lru) {
643                 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
644                 if (addr == destination) {
645                         list_del(&page->lru);
646                         return page;
647                 }
648         }
649         page = NULL;
650         while (1) {
651                 kimage_entry_t *old;
652 
653                 /* Allocate a page, if we run out of memory give up */
654                 page = kimage_alloc_pages(gfp_mask, 0);
655                 if (!page)
656                         return NULL;
657                 /* If the page cannot be used file it away */
658                 if (page_to_boot_pfn(page) >
659                                 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
660                         list_add(&page->lru, &image->unusable_pages);
661                         continue;
662                 }
663                 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
664 
665                 /* If it is the destination page we want use it */
666                 if (addr == destination)
667                         break;
668 
669                 /* If the page is not a destination page use it */
670                 if (!kimage_is_destination_range(image, addr,
671                                                   addr + PAGE_SIZE - 1))
672                         break;
673 
674                 /*
675                  * I know that the page is someones destination page.
676                  * See if there is already a source page for this
677                  * destination page.  And if so swap the source pages.
678                  */
679                 old = kimage_dst_used(image, addr);
680                 if (old) {
681                         /* If so move it */
682                         unsigned long old_addr;
683                         struct page *old_page;
684 
685                         old_addr = *old & PAGE_MASK;
686                         old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
687                         copy_highpage(page, old_page);
688                         *old = addr | (*old & ~PAGE_MASK);
689 
690                         /* The old page I have found cannot be a
691                          * destination page, so return it if it's
692                          * gfp_flags honor the ones passed in.
693                          */
694                         if (!(gfp_mask & __GFP_HIGHMEM) &&
695                             PageHighMem(old_page)) {
696                                 kimage_free_pages(old_page);
697                                 continue;
698                         }
699                         page = old_page;
700                         break;
701                 }
702                 /* Place the page on the destination list, to be used later */
703                 list_add(&page->lru, &image->dest_pages);
704         }
705 
706         return page;
707 }
708 
709 static int kimage_load_normal_segment(struct kimage *image,
710                                          struct kexec_segment *segment)
711 {
712         unsigned long maddr;
713         size_t ubytes, mbytes;
714         int result;
715         unsigned char __user *buf = NULL;
716         unsigned char *kbuf = NULL;
717 
718         if (image->file_mode)
719                 kbuf = segment->kbuf;
720         else
721                 buf = segment->buf;
722         ubytes = segment->bufsz;
723         mbytes = segment->memsz;
724         maddr = segment->mem;
725 
726         result = kimage_set_destination(image, maddr);
727         if (result < 0)
728                 goto out;
729 
730         while (mbytes) {
731                 struct page *page;
732                 char *ptr;
733                 size_t uchunk, mchunk;
734 
735                 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
736                 if (!page) {
737                         result  = -ENOMEM;
738                         goto out;
739                 }
740                 result = kimage_add_page(image, page_to_boot_pfn(page)
741                                                                 << PAGE_SHIFT);
742                 if (result < 0)
743                         goto out;
744 
745                 ptr = kmap_local_page(page);
746                 /* Start with a clear page */
747                 clear_page(ptr);
748                 ptr += maddr & ~PAGE_MASK;
749                 mchunk = min_t(size_t, mbytes,
750                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
751                 uchunk = min(ubytes, mchunk);
752 
753                 if (uchunk) {
754                         /* For file based kexec, source pages are in kernel memory */
755                         if (image->file_mode)
756                                 memcpy(ptr, kbuf, uchunk);
757                         else
758                                 result = copy_from_user(ptr, buf, uchunk);
759                         ubytes -= uchunk;
760                         if (image->file_mode)
761                                 kbuf += uchunk;
762                         else
763                                 buf += uchunk;
764                 }
765                 kunmap_local(ptr);
766                 if (result) {
767                         result = -EFAULT;
768                         goto out;
769                 }
770                 maddr  += mchunk;
771                 mbytes -= mchunk;
772 
773                 cond_resched();
774         }
775 out:
776         return result;
777 }
778 
779 #ifdef CONFIG_CRASH_DUMP
780 static int kimage_load_crash_segment(struct kimage *image,
781                                         struct kexec_segment *segment)
782 {
783         /* For crash dumps kernels we simply copy the data from
784          * user space to it's destination.
785          * We do things a page at a time for the sake of kmap.
786          */
787         unsigned long maddr;
788         size_t ubytes, mbytes;
789         int result;
790         unsigned char __user *buf = NULL;
791         unsigned char *kbuf = NULL;
792 
793         result = 0;
794         if (image->file_mode)
795                 kbuf = segment->kbuf;
796         else
797                 buf = segment->buf;
798         ubytes = segment->bufsz;
799         mbytes = segment->memsz;
800         maddr = segment->mem;
801         while (mbytes) {
802                 struct page *page;
803                 char *ptr;
804                 size_t uchunk, mchunk;
805 
806                 page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
807                 if (!page) {
808                         result  = -ENOMEM;
809                         goto out;
810                 }
811                 arch_kexec_post_alloc_pages(page_address(page), 1, 0);
812                 ptr = kmap_local_page(page);
813                 ptr += maddr & ~PAGE_MASK;
814                 mchunk = min_t(size_t, mbytes,
815                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
816                 uchunk = min(ubytes, mchunk);
817                 if (mchunk > uchunk) {
818                         /* Zero the trailing part of the page */
819                         memset(ptr + uchunk, 0, mchunk - uchunk);
820                 }
821 
822                 if (uchunk) {
823                         /* For file based kexec, source pages are in kernel memory */
824                         if (image->file_mode)
825                                 memcpy(ptr, kbuf, uchunk);
826                         else
827                                 result = copy_from_user(ptr, buf, uchunk);
828                         ubytes -= uchunk;
829                         if (image->file_mode)
830                                 kbuf += uchunk;
831                         else
832                                 buf += uchunk;
833                 }
834                 kexec_flush_icache_page(page);
835                 kunmap_local(ptr);
836                 arch_kexec_pre_free_pages(page_address(page), 1);
837                 if (result) {
838                         result = -EFAULT;
839                         goto out;
840                 }
841                 maddr  += mchunk;
842                 mbytes -= mchunk;
843 
844                 cond_resched();
845         }
846 out:
847         return result;
848 }
849 #endif
850 
851 int kimage_load_segment(struct kimage *image,
852                                 struct kexec_segment *segment)
853 {
854         int result = -ENOMEM;
855 
856         switch (image->type) {
857         case KEXEC_TYPE_DEFAULT:
858                 result = kimage_load_normal_segment(image, segment);
859                 break;
860 #ifdef CONFIG_CRASH_DUMP
861         case KEXEC_TYPE_CRASH:
862                 result = kimage_load_crash_segment(image, segment);
863                 break;
864 #endif
865         }
866 
867         return result;
868 }
869 
870 struct kexec_load_limit {
871         /* Mutex protects the limit count. */
872         struct mutex mutex;
873         int limit;
874 };
875 
876 static struct kexec_load_limit load_limit_reboot = {
877         .mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex),
878         .limit = -1,
879 };
880 
881 static struct kexec_load_limit load_limit_panic = {
882         .mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex),
883         .limit = -1,
884 };
885 
886 struct kimage *kexec_image;
887 struct kimage *kexec_crash_image;
888 static int kexec_load_disabled;
889 
890 #ifdef CONFIG_SYSCTL
891 static int kexec_limit_handler(const struct ctl_table *table, int write,
892                                void *buffer, size_t *lenp, loff_t *ppos)
893 {
894         struct kexec_load_limit *limit = table->data;
895         int val;
896         struct ctl_table tmp = {
897                 .data = &val,
898                 .maxlen = sizeof(val),
899                 .mode = table->mode,
900         };
901         int ret;
902 
903         if (write) {
904                 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
905                 if (ret)
906                         return ret;
907 
908                 if (val < 0)
909                         return -EINVAL;
910 
911                 mutex_lock(&limit->mutex);
912                 if (limit->limit != -1 && val >= limit->limit)
913                         ret = -EINVAL;
914                 else
915                         limit->limit = val;
916                 mutex_unlock(&limit->mutex);
917 
918                 return ret;
919         }
920 
921         mutex_lock(&limit->mutex);
922         val = limit->limit;
923         mutex_unlock(&limit->mutex);
924 
925         return proc_dointvec(&tmp, write, buffer, lenp, ppos);
926 }
927 
928 static struct ctl_table kexec_core_sysctls[] = {
929         {
930                 .procname       = "kexec_load_disabled",
931                 .data           = &kexec_load_disabled,
932                 .maxlen         = sizeof(int),
933                 .mode           = 0644,
934                 /* only handle a transition from default "" to "1" */
935                 .proc_handler   = proc_dointvec_minmax,
936                 .extra1         = SYSCTL_ONE,
937                 .extra2         = SYSCTL_ONE,
938         },
939         {
940                 .procname       = "kexec_load_limit_panic",
941                 .data           = &load_limit_panic,
942                 .mode           = 0644,
943                 .proc_handler   = kexec_limit_handler,
944         },
945         {
946                 .procname       = "kexec_load_limit_reboot",
947                 .data           = &load_limit_reboot,
948                 .mode           = 0644,
949                 .proc_handler   = kexec_limit_handler,
950         },
951 };
952 
953 static int __init kexec_core_sysctl_init(void)
954 {
955         register_sysctl_init("kernel", kexec_core_sysctls);
956         return 0;
957 }
958 late_initcall(kexec_core_sysctl_init);
959 #endif
960 
961 bool kexec_load_permitted(int kexec_image_type)
962 {
963         struct kexec_load_limit *limit;
964 
965         /*
966          * Only the superuser can use the kexec syscall and if it has not
967          * been disabled.
968          */
969         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
970                 return false;
971 
972         /* Check limit counter and decrease it.*/
973         limit = (kexec_image_type == KEXEC_TYPE_CRASH) ?
974                 &load_limit_panic : &load_limit_reboot;
975         mutex_lock(&limit->mutex);
976         if (!limit->limit) {
977                 mutex_unlock(&limit->mutex);
978                 return false;
979         }
980         if (limit->limit != -1)
981                 limit->limit--;
982         mutex_unlock(&limit->mutex);
983 
984         return true;
985 }
986 
987 /*
988  * Move into place and start executing a preloaded standalone
989  * executable.  If nothing was preloaded return an error.
990  */
991 int kernel_kexec(void)
992 {
993         int error = 0;
994 
995         if (!kexec_trylock())
996                 return -EBUSY;
997         if (!kexec_image) {
998                 error = -EINVAL;
999                 goto Unlock;
1000         }
1001 
1002 #ifdef CONFIG_KEXEC_JUMP
1003         if (kexec_image->preserve_context) {
1004                 pm_prepare_console();
1005                 error = freeze_processes();
1006                 if (error) {
1007                         error = -EBUSY;
1008                         goto Restore_console;
1009                 }
1010                 suspend_console();
1011                 error = dpm_suspend_start(PMSG_FREEZE);
1012                 if (error)
1013                         goto Resume_console;
1014                 /* At this point, dpm_suspend_start() has been called,
1015                  * but *not* dpm_suspend_end(). We *must* call
1016                  * dpm_suspend_end() now.  Otherwise, drivers for
1017                  * some devices (e.g. interrupt controllers) become
1018                  * desynchronized with the actual state of the
1019                  * hardware at resume time, and evil weirdness ensues.
1020                  */
1021                 error = dpm_suspend_end(PMSG_FREEZE);
1022                 if (error)
1023                         goto Resume_devices;
1024                 error = suspend_disable_secondary_cpus();
1025                 if (error)
1026                         goto Enable_cpus;
1027                 local_irq_disable();
1028                 error = syscore_suspend();
1029                 if (error)
1030                         goto Enable_irqs;
1031         } else
1032 #endif
1033         {
1034                 kexec_in_progress = true;
1035                 kernel_restart_prepare("kexec reboot");
1036                 migrate_to_reboot_cpu();
1037                 syscore_shutdown();
1038 
1039                 /*
1040                  * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1041                  * no further code needs to use CPU hotplug (which is true in
1042                  * the reboot case). However, the kexec path depends on using
1043                  * CPU hotplug again; so re-enable it here.
1044                  */
1045                 cpu_hotplug_enable();
1046                 pr_notice("Starting new kernel\n");
1047                 machine_shutdown();
1048         }
1049 
1050         kmsg_dump(KMSG_DUMP_SHUTDOWN);
1051         machine_kexec(kexec_image);
1052 
1053 #ifdef CONFIG_KEXEC_JUMP
1054         if (kexec_image->preserve_context) {
1055                 syscore_resume();
1056  Enable_irqs:
1057                 local_irq_enable();
1058  Enable_cpus:
1059                 suspend_enable_secondary_cpus();
1060                 dpm_resume_start(PMSG_RESTORE);
1061  Resume_devices:
1062                 dpm_resume_end(PMSG_RESTORE);
1063  Resume_console:
1064                 resume_console();
1065                 thaw_processes();
1066  Restore_console:
1067                 pm_restore_console();
1068         }
1069 #endif
1070 
1071  Unlock:
1072         kexec_unlock();
1073         return error;
1074 }
1075 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php