~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/kexec_file.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * kexec: kexec_file_load system call
  4  *
  5  * Copyright (C) 2014 Red Hat Inc.
  6  * Authors:
  7  *      Vivek Goyal <vgoyal@redhat.com>
  8  */
  9 
 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 11 
 12 #include <linux/capability.h>
 13 #include <linux/mm.h>
 14 #include <linux/file.h>
 15 #include <linux/slab.h>
 16 #include <linux/kexec.h>
 17 #include <linux/memblock.h>
 18 #include <linux/mutex.h>
 19 #include <linux/list.h>
 20 #include <linux/fs.h>
 21 #include <linux/ima.h>
 22 #include <crypto/hash.h>
 23 #include <crypto/sha2.h>
 24 #include <linux/elf.h>
 25 #include <linux/elfcore.h>
 26 #include <linux/kernel.h>
 27 #include <linux/kernel_read_file.h>
 28 #include <linux/syscalls.h>
 29 #include <linux/vmalloc.h>
 30 #include "kexec_internal.h"
 31 
 32 #ifdef CONFIG_KEXEC_SIG
 33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
 34 
 35 void set_kexec_sig_enforced(void)
 36 {
 37         sig_enforce = true;
 38 }
 39 #endif
 40 
 41 static int kexec_calculate_store_digests(struct kimage *image);
 42 
 43 /* Maximum size in bytes for kernel/initrd files. */
 44 #define KEXEC_FILE_SIZE_MAX     min_t(s64, 4LL << 30, SSIZE_MAX)
 45 
 46 /*
 47  * Currently this is the only default function that is exported as some
 48  * architectures need it to do additional handlings.
 49  * In the future, other default functions may be exported too if required.
 50  */
 51 int kexec_image_probe_default(struct kimage *image, void *buf,
 52                               unsigned long buf_len)
 53 {
 54         const struct kexec_file_ops * const *fops;
 55         int ret = -ENOEXEC;
 56 
 57         for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
 58                 ret = (*fops)->probe(buf, buf_len);
 59                 if (!ret) {
 60                         image->fops = *fops;
 61                         return ret;
 62                 }
 63         }
 64 
 65         return ret;
 66 }
 67 
 68 static void *kexec_image_load_default(struct kimage *image)
 69 {
 70         if (!image->fops || !image->fops->load)
 71                 return ERR_PTR(-ENOEXEC);
 72 
 73         return image->fops->load(image, image->kernel_buf,
 74                                  image->kernel_buf_len, image->initrd_buf,
 75                                  image->initrd_buf_len, image->cmdline_buf,
 76                                  image->cmdline_buf_len);
 77 }
 78 
 79 int kexec_image_post_load_cleanup_default(struct kimage *image)
 80 {
 81         if (!image->fops || !image->fops->cleanup)
 82                 return 0;
 83 
 84         return image->fops->cleanup(image->image_loader_data);
 85 }
 86 
 87 /*
 88  * Free up memory used by kernel, initrd, and command line. This is temporary
 89  * memory allocation which is not needed any more after these buffers have
 90  * been loaded into separate segments and have been copied elsewhere.
 91  */
 92 void kimage_file_post_load_cleanup(struct kimage *image)
 93 {
 94         struct purgatory_info *pi = &image->purgatory_info;
 95 
 96         vfree(image->kernel_buf);
 97         image->kernel_buf = NULL;
 98 
 99         vfree(image->initrd_buf);
100         image->initrd_buf = NULL;
101 
102         kfree(image->cmdline_buf);
103         image->cmdline_buf = NULL;
104 
105         vfree(pi->purgatory_buf);
106         pi->purgatory_buf = NULL;
107 
108         vfree(pi->sechdrs);
109         pi->sechdrs = NULL;
110 
111 #ifdef CONFIG_IMA_KEXEC
112         vfree(image->ima_buffer);
113         image->ima_buffer = NULL;
114 #endif /* CONFIG_IMA_KEXEC */
115 
116         /* See if architecture has anything to cleanup post load */
117         arch_kimage_file_post_load_cleanup(image);
118 
119         /*
120          * Above call should have called into bootloader to free up
121          * any data stored in kimage->image_loader_data. It should
122          * be ok now to free it up.
123          */
124         kfree(image->image_loader_data);
125         image->image_loader_data = NULL;
126 
127         kexec_file_dbg_print = false;
128 }
129 
130 #ifdef CONFIG_KEXEC_SIG
131 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
132 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
133 {
134         int ret;
135 
136         ret = verify_pefile_signature(kernel, kernel_len,
137                                       VERIFY_USE_SECONDARY_KEYRING,
138                                       VERIFYING_KEXEC_PE_SIGNATURE);
139         if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
140                 ret = verify_pefile_signature(kernel, kernel_len,
141                                               VERIFY_USE_PLATFORM_KEYRING,
142                                               VERIFYING_KEXEC_PE_SIGNATURE);
143         }
144         return ret;
145 }
146 #endif
147 
148 static int kexec_image_verify_sig(struct kimage *image, void *buf,
149                                   unsigned long buf_len)
150 {
151         if (!image->fops || !image->fops->verify_sig) {
152                 pr_debug("kernel loader does not support signature verification.\n");
153                 return -EKEYREJECTED;
154         }
155 
156         return image->fops->verify_sig(buf, buf_len);
157 }
158 
159 static int
160 kimage_validate_signature(struct kimage *image)
161 {
162         int ret;
163 
164         ret = kexec_image_verify_sig(image, image->kernel_buf,
165                                      image->kernel_buf_len);
166         if (ret) {
167 
168                 if (sig_enforce) {
169                         pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
170                         return ret;
171                 }
172 
173                 /*
174                  * If IMA is guaranteed to appraise a signature on the kexec
175                  * image, permit it even if the kernel is otherwise locked
176                  * down.
177                  */
178                 if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
179                     security_locked_down(LOCKDOWN_KEXEC))
180                         return -EPERM;
181 
182                 pr_debug("kernel signature verification failed (%d).\n", ret);
183         }
184 
185         return 0;
186 }
187 #endif
188 
189 /*
190  * In file mode list of segments is prepared by kernel. Copy relevant
191  * data from user space, do error checking, prepare segment list
192  */
193 static int
194 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
195                              const char __user *cmdline_ptr,
196                              unsigned long cmdline_len, unsigned flags)
197 {
198         ssize_t ret;
199         void *ldata;
200 
201         ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
202                                        KEXEC_FILE_SIZE_MAX, NULL,
203                                        READING_KEXEC_IMAGE);
204         if (ret < 0)
205                 return ret;
206         image->kernel_buf_len = ret;
207         kexec_dprintk("kernel: %p kernel_size: %#lx\n",
208                       image->kernel_buf, image->kernel_buf_len);
209 
210         /* Call arch image probe handlers */
211         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
212                                             image->kernel_buf_len);
213         if (ret)
214                 goto out;
215 
216 #ifdef CONFIG_KEXEC_SIG
217         ret = kimage_validate_signature(image);
218 
219         if (ret)
220                 goto out;
221 #endif
222         /* It is possible that there no initramfs is being loaded */
223         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
224                 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
225                                                KEXEC_FILE_SIZE_MAX, NULL,
226                                                READING_KEXEC_INITRAMFS);
227                 if (ret < 0)
228                         goto out;
229                 image->initrd_buf_len = ret;
230                 ret = 0;
231         }
232 
233         if (cmdline_len) {
234                 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
235                 if (IS_ERR(image->cmdline_buf)) {
236                         ret = PTR_ERR(image->cmdline_buf);
237                         image->cmdline_buf = NULL;
238                         goto out;
239                 }
240 
241                 image->cmdline_buf_len = cmdline_len;
242 
243                 /* command line should be a string with last byte null */
244                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
245                         ret = -EINVAL;
246                         goto out;
247                 }
248 
249                 ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
250                                   image->cmdline_buf_len - 1);
251         }
252 
253         /* IMA needs to pass the measurement list to the next kernel. */
254         ima_add_kexec_buffer(image);
255 
256         /* Call image load handler */
257         ldata = kexec_image_load_default(image);
258 
259         if (IS_ERR(ldata)) {
260                 ret = PTR_ERR(ldata);
261                 goto out;
262         }
263 
264         image->image_loader_data = ldata;
265 out:
266         /* In case of error, free up all allocated memory in this function */
267         if (ret)
268                 kimage_file_post_load_cleanup(image);
269         return ret;
270 }
271 
272 static int
273 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
274                        int initrd_fd, const char __user *cmdline_ptr,
275                        unsigned long cmdline_len, unsigned long flags)
276 {
277         int ret;
278         struct kimage *image;
279         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
280 
281         image = do_kimage_alloc_init();
282         if (!image)
283                 return -ENOMEM;
284 
285         kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG);
286         image->file_mode = 1;
287 
288 #ifdef CONFIG_CRASH_DUMP
289         if (kexec_on_panic) {
290                 /* Enable special crash kernel control page alloc policy. */
291                 image->control_page = crashk_res.start;
292                 image->type = KEXEC_TYPE_CRASH;
293         }
294 #endif
295 
296         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
297                                            cmdline_ptr, cmdline_len, flags);
298         if (ret)
299                 goto out_free_image;
300 
301         ret = sanity_check_segment_list(image);
302         if (ret)
303                 goto out_free_post_load_bufs;
304 
305         ret = -ENOMEM;
306         image->control_code_page = kimage_alloc_control_pages(image,
307                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
308         if (!image->control_code_page) {
309                 pr_err("Could not allocate control_code_buffer\n");
310                 goto out_free_post_load_bufs;
311         }
312 
313         if (!kexec_on_panic) {
314                 image->swap_page = kimage_alloc_control_pages(image, 0);
315                 if (!image->swap_page) {
316                         pr_err("Could not allocate swap buffer\n");
317                         goto out_free_control_pages;
318                 }
319         }
320 
321         *rimage = image;
322         return 0;
323 out_free_control_pages:
324         kimage_free_page_list(&image->control_pages);
325 out_free_post_load_bufs:
326         kimage_file_post_load_cleanup(image);
327 out_free_image:
328         kfree(image);
329         return ret;
330 }
331 
332 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
333                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
334                 unsigned long, flags)
335 {
336         int image_type = (flags & KEXEC_FILE_ON_CRASH) ?
337                          KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
338         struct kimage **dest_image, *image;
339         int ret = 0, i;
340 
341         /* We only trust the superuser with rebooting the system. */
342         if (!kexec_load_permitted(image_type))
343                 return -EPERM;
344 
345         /* Make sure we have a legal set of flags */
346         if (flags != (flags & KEXEC_FILE_FLAGS))
347                 return -EINVAL;
348 
349         image = NULL;
350 
351         if (!kexec_trylock())
352                 return -EBUSY;
353 
354 #ifdef CONFIG_CRASH_DUMP
355         if (image_type == KEXEC_TYPE_CRASH) {
356                 dest_image = &kexec_crash_image;
357                 if (kexec_crash_image)
358                         arch_kexec_unprotect_crashkres();
359         } else
360 #endif
361                 dest_image = &kexec_image;
362 
363         if (flags & KEXEC_FILE_UNLOAD)
364                 goto exchange;
365 
366         /*
367          * In case of crash, new kernel gets loaded in reserved region. It is
368          * same memory where old crash kernel might be loaded. Free any
369          * current crash dump kernel before we corrupt it.
370          */
371         if (flags & KEXEC_FILE_ON_CRASH)
372                 kimage_free(xchg(&kexec_crash_image, NULL));
373 
374         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
375                                      cmdline_len, flags);
376         if (ret)
377                 goto out;
378 
379 #ifdef CONFIG_CRASH_HOTPLUG
380         if ((flags & KEXEC_FILE_ON_CRASH) && arch_crash_hotplug_support(image, flags))
381                 image->hotplug_support = 1;
382 #endif
383 
384         ret = machine_kexec_prepare(image);
385         if (ret)
386                 goto out;
387 
388         /*
389          * Some architecture(like S390) may touch the crash memory before
390          * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
391          */
392         ret = kimage_crash_copy_vmcoreinfo(image);
393         if (ret)
394                 goto out;
395 
396         ret = kexec_calculate_store_digests(image);
397         if (ret)
398                 goto out;
399 
400         kexec_dprintk("nr_segments = %lu\n", image->nr_segments);
401         for (i = 0; i < image->nr_segments; i++) {
402                 struct kexec_segment *ksegment;
403 
404                 ksegment = &image->segment[i];
405                 kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
406                               i, ksegment->buf, ksegment->bufsz, ksegment->mem,
407                               ksegment->memsz);
408 
409                 ret = kimage_load_segment(image, &image->segment[i]);
410                 if (ret)
411                         goto out;
412         }
413 
414         kimage_terminate(image);
415 
416         ret = machine_kexec_post_load(image);
417         if (ret)
418                 goto out;
419 
420         kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n",
421                       image->type, image->start, image->head, flags);
422         /*
423          * Free up any temporary buffers allocated which are not needed
424          * after image has been loaded
425          */
426         kimage_file_post_load_cleanup(image);
427 exchange:
428         image = xchg(dest_image, image);
429 out:
430 #ifdef CONFIG_CRASH_DUMP
431         if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
432                 arch_kexec_protect_crashkres();
433 #endif
434 
435         kexec_unlock();
436         kimage_free(image);
437         return ret;
438 }
439 
440 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
441                                     struct kexec_buf *kbuf)
442 {
443         struct kimage *image = kbuf->image;
444         unsigned long temp_start, temp_end;
445 
446         temp_end = min(end, kbuf->buf_max);
447         temp_start = temp_end - kbuf->memsz + 1;
448 
449         do {
450                 /* align down start */
451                 temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align);
452 
453                 if (temp_start < start || temp_start < kbuf->buf_min)
454                         return 0;
455 
456                 temp_end = temp_start + kbuf->memsz - 1;
457 
458                 /*
459                  * Make sure this does not conflict with any of existing
460                  * segments
461                  */
462                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
463                         temp_start = temp_start - PAGE_SIZE;
464                         continue;
465                 }
466 
467                 /* We found a suitable memory range */
468                 break;
469         } while (1);
470 
471         /* If we are here, we found a suitable memory range */
472         kbuf->mem = temp_start;
473 
474         /* Success, stop navigating through remaining System RAM ranges */
475         return 1;
476 }
477 
478 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
479                                      struct kexec_buf *kbuf)
480 {
481         struct kimage *image = kbuf->image;
482         unsigned long temp_start, temp_end;
483 
484         temp_start = max(start, kbuf->buf_min);
485 
486         do {
487                 temp_start = ALIGN(temp_start, kbuf->buf_align);
488                 temp_end = temp_start + kbuf->memsz - 1;
489 
490                 if (temp_end > end || temp_end > kbuf->buf_max)
491                         return 0;
492                 /*
493                  * Make sure this does not conflict with any of existing
494                  * segments
495                  */
496                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
497                         temp_start = temp_start + PAGE_SIZE;
498                         continue;
499                 }
500 
501                 /* We found a suitable memory range */
502                 break;
503         } while (1);
504 
505         /* If we are here, we found a suitable memory range */
506         kbuf->mem = temp_start;
507 
508         /* Success, stop navigating through remaining System RAM ranges */
509         return 1;
510 }
511 
512 static int locate_mem_hole_callback(struct resource *res, void *arg)
513 {
514         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
515         u64 start = res->start, end = res->end;
516         unsigned long sz = end - start + 1;
517 
518         /* Returning 0 will take to next memory range */
519 
520         /* Don't use memory that will be detected and handled by a driver. */
521         if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
522                 return 0;
523 
524         if (sz < kbuf->memsz)
525                 return 0;
526 
527         if (end < kbuf->buf_min || start > kbuf->buf_max)
528                 return 0;
529 
530         /*
531          * Allocate memory top down with-in ram range. Otherwise bottom up
532          * allocation.
533          */
534         if (kbuf->top_down)
535                 return locate_mem_hole_top_down(start, end, kbuf);
536         return locate_mem_hole_bottom_up(start, end, kbuf);
537 }
538 
539 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
540 static int kexec_walk_memblock(struct kexec_buf *kbuf,
541                                int (*func)(struct resource *, void *))
542 {
543         int ret = 0;
544         u64 i;
545         phys_addr_t mstart, mend;
546         struct resource res = { };
547 
548 #ifdef CONFIG_CRASH_DUMP
549         if (kbuf->image->type == KEXEC_TYPE_CRASH)
550                 return func(&crashk_res, kbuf);
551 #endif
552 
553         /*
554          * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
555          * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
556          * locate_mem_hole_callback().
557          */
558         if (kbuf->top_down) {
559                 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
560                                                 &mstart, &mend, NULL) {
561                         /*
562                          * In memblock, end points to the first byte after the
563                          * range while in kexec, end points to the last byte
564                          * in the range.
565                          */
566                         res.start = mstart;
567                         res.end = mend - 1;
568                         ret = func(&res, kbuf);
569                         if (ret)
570                                 break;
571                 }
572         } else {
573                 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
574                                         &mstart, &mend, NULL) {
575                         /*
576                          * In memblock, end points to the first byte after the
577                          * range while in kexec, end points to the last byte
578                          * in the range.
579                          */
580                         res.start = mstart;
581                         res.end = mend - 1;
582                         ret = func(&res, kbuf);
583                         if (ret)
584                                 break;
585                 }
586         }
587 
588         return ret;
589 }
590 #else
591 static int kexec_walk_memblock(struct kexec_buf *kbuf,
592                                int (*func)(struct resource *, void *))
593 {
594         return 0;
595 }
596 #endif
597 
598 /**
599  * kexec_walk_resources - call func(data) on free memory regions
600  * @kbuf:       Context info for the search. Also passed to @func.
601  * @func:       Function to call for each memory region.
602  *
603  * Return: The memory walk will stop when func returns a non-zero value
604  * and that value will be returned. If all free regions are visited without
605  * func returning non-zero, then zero will be returned.
606  */
607 static int kexec_walk_resources(struct kexec_buf *kbuf,
608                                 int (*func)(struct resource *, void *))
609 {
610 #ifdef CONFIG_CRASH_DUMP
611         if (kbuf->image->type == KEXEC_TYPE_CRASH)
612                 return walk_iomem_res_desc(crashk_res.desc,
613                                            IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
614                                            crashk_res.start, crashk_res.end,
615                                            kbuf, func);
616 #endif
617         if (kbuf->top_down)
618                 return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func);
619         else
620                 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
621 }
622 
623 /**
624  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
625  * @kbuf:       Parameters for the memory search.
626  *
627  * On success, kbuf->mem will have the start address of the memory region found.
628  *
629  * Return: 0 on success, negative errno on error.
630  */
631 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
632 {
633         int ret;
634 
635         /* Arch knows where to place */
636         if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
637                 return 0;
638 
639         if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
640                 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
641         else
642                 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
643 
644         return ret == 1 ? 0 : -EADDRNOTAVAIL;
645 }
646 
647 /**
648  * kexec_add_buffer - place a buffer in a kexec segment
649  * @kbuf:       Buffer contents and memory parameters.
650  *
651  * This function assumes that kexec_lock is held.
652  * On successful return, @kbuf->mem will have the physical address of
653  * the buffer in memory.
654  *
655  * Return: 0 on success, negative errno on error.
656  */
657 int kexec_add_buffer(struct kexec_buf *kbuf)
658 {
659         struct kexec_segment *ksegment;
660         int ret;
661 
662         /* Currently adding segment this way is allowed only in file mode */
663         if (!kbuf->image->file_mode)
664                 return -EINVAL;
665 
666         if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
667                 return -EINVAL;
668 
669         /*
670          * Make sure we are not trying to add buffer after allocating
671          * control pages. All segments need to be placed first before
672          * any control pages are allocated. As control page allocation
673          * logic goes through list of segments to make sure there are
674          * no destination overlaps.
675          */
676         if (!list_empty(&kbuf->image->control_pages)) {
677                 WARN_ON(1);
678                 return -EINVAL;
679         }
680 
681         /* Ensure minimum alignment needed for segments. */
682         kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
683         kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
684 
685         /* Walk the RAM ranges and allocate a suitable range for the buffer */
686         ret = arch_kexec_locate_mem_hole(kbuf);
687         if (ret)
688                 return ret;
689 
690         /* Found a suitable memory range */
691         ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
692         ksegment->kbuf = kbuf->buffer;
693         ksegment->bufsz = kbuf->bufsz;
694         ksegment->mem = kbuf->mem;
695         ksegment->memsz = kbuf->memsz;
696         kbuf->image->nr_segments++;
697         return 0;
698 }
699 
700 /* Calculate and store the digest of segments */
701 static int kexec_calculate_store_digests(struct kimage *image)
702 {
703         struct crypto_shash *tfm;
704         struct shash_desc *desc;
705         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
706         size_t desc_size, nullsz;
707         char *digest;
708         void *zero_buf;
709         struct kexec_sha_region *sha_regions;
710         struct purgatory_info *pi = &image->purgatory_info;
711 
712         if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY))
713                 return 0;
714 
715         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
716         zero_buf_sz = PAGE_SIZE;
717 
718         tfm = crypto_alloc_shash("sha256", 0, 0);
719         if (IS_ERR(tfm)) {
720                 ret = PTR_ERR(tfm);
721                 goto out;
722         }
723 
724         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
725         desc = kzalloc(desc_size, GFP_KERNEL);
726         if (!desc) {
727                 ret = -ENOMEM;
728                 goto out_free_tfm;
729         }
730 
731         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
732         sha_regions = vzalloc(sha_region_sz);
733         if (!sha_regions) {
734                 ret = -ENOMEM;
735                 goto out_free_desc;
736         }
737 
738         desc->tfm   = tfm;
739 
740         ret = crypto_shash_init(desc);
741         if (ret < 0)
742                 goto out_free_sha_regions;
743 
744         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
745         if (!digest) {
746                 ret = -ENOMEM;
747                 goto out_free_sha_regions;
748         }
749 
750         for (j = i = 0; i < image->nr_segments; i++) {
751                 struct kexec_segment *ksegment;
752 
753 #ifdef CONFIG_CRASH_HOTPLUG
754                 /* Exclude elfcorehdr segment to allow future changes via hotplug */
755                 if (i == image->elfcorehdr_index)
756                         continue;
757 #endif
758 
759                 ksegment = &image->segment[i];
760                 /*
761                  * Skip purgatory as it will be modified once we put digest
762                  * info in purgatory.
763                  */
764                 if (ksegment->kbuf == pi->purgatory_buf)
765                         continue;
766 
767                 ret = crypto_shash_update(desc, ksegment->kbuf,
768                                           ksegment->bufsz);
769                 if (ret)
770                         break;
771 
772                 /*
773                  * Assume rest of the buffer is filled with zero and
774                  * update digest accordingly.
775                  */
776                 nullsz = ksegment->memsz - ksegment->bufsz;
777                 while (nullsz) {
778                         unsigned long bytes = nullsz;
779 
780                         if (bytes > zero_buf_sz)
781                                 bytes = zero_buf_sz;
782                         ret = crypto_shash_update(desc, zero_buf, bytes);
783                         if (ret)
784                                 break;
785                         nullsz -= bytes;
786                 }
787 
788                 if (ret)
789                         break;
790 
791                 sha_regions[j].start = ksegment->mem;
792                 sha_regions[j].len = ksegment->memsz;
793                 j++;
794         }
795 
796         if (!ret) {
797                 ret = crypto_shash_final(desc, digest);
798                 if (ret)
799                         goto out_free_digest;
800                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
801                                                      sha_regions, sha_region_sz, 0);
802                 if (ret)
803                         goto out_free_digest;
804 
805                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
806                                                      digest, SHA256_DIGEST_SIZE, 0);
807                 if (ret)
808                         goto out_free_digest;
809         }
810 
811 out_free_digest:
812         kfree(digest);
813 out_free_sha_regions:
814         vfree(sha_regions);
815 out_free_desc:
816         kfree(desc);
817 out_free_tfm:
818         kfree(tfm);
819 out:
820         return ret;
821 }
822 
823 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
824 /*
825  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
826  * @pi:         Purgatory to be loaded.
827  * @kbuf:       Buffer to setup.
828  *
829  * Allocates the memory needed for the buffer. Caller is responsible to free
830  * the memory after use.
831  *
832  * Return: 0 on success, negative errno on error.
833  */
834 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
835                                       struct kexec_buf *kbuf)
836 {
837         const Elf_Shdr *sechdrs;
838         unsigned long bss_align;
839         unsigned long bss_sz;
840         unsigned long align;
841         int i, ret;
842 
843         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
844         kbuf->buf_align = bss_align = 1;
845         kbuf->bufsz = bss_sz = 0;
846 
847         for (i = 0; i < pi->ehdr->e_shnum; i++) {
848                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
849                         continue;
850 
851                 align = sechdrs[i].sh_addralign;
852                 if (sechdrs[i].sh_type != SHT_NOBITS) {
853                         if (kbuf->buf_align < align)
854                                 kbuf->buf_align = align;
855                         kbuf->bufsz = ALIGN(kbuf->bufsz, align);
856                         kbuf->bufsz += sechdrs[i].sh_size;
857                 } else {
858                         if (bss_align < align)
859                                 bss_align = align;
860                         bss_sz = ALIGN(bss_sz, align);
861                         bss_sz += sechdrs[i].sh_size;
862                 }
863         }
864         kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
865         kbuf->memsz = kbuf->bufsz + bss_sz;
866         if (kbuf->buf_align < bss_align)
867                 kbuf->buf_align = bss_align;
868 
869         kbuf->buffer = vzalloc(kbuf->bufsz);
870         if (!kbuf->buffer)
871                 return -ENOMEM;
872         pi->purgatory_buf = kbuf->buffer;
873 
874         ret = kexec_add_buffer(kbuf);
875         if (ret)
876                 goto out;
877 
878         return 0;
879 out:
880         vfree(pi->purgatory_buf);
881         pi->purgatory_buf = NULL;
882         return ret;
883 }
884 
885 /*
886  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
887  * @pi:         Purgatory to be loaded.
888  * @kbuf:       Buffer prepared to store purgatory.
889  *
890  * Allocates the memory needed for the buffer. Caller is responsible to free
891  * the memory after use.
892  *
893  * Return: 0 on success, negative errno on error.
894  */
895 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
896                                          struct kexec_buf *kbuf)
897 {
898         unsigned long bss_addr;
899         unsigned long offset;
900         size_t sechdrs_size;
901         Elf_Shdr *sechdrs;
902         int i;
903 
904         /*
905          * The section headers in kexec_purgatory are read-only. In order to
906          * have them modifiable make a temporary copy.
907          */
908         sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum);
909         sechdrs = vzalloc(sechdrs_size);
910         if (!sechdrs)
911                 return -ENOMEM;
912         memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size);
913         pi->sechdrs = sechdrs;
914 
915         offset = 0;
916         bss_addr = kbuf->mem + kbuf->bufsz;
917         kbuf->image->start = pi->ehdr->e_entry;
918 
919         for (i = 0; i < pi->ehdr->e_shnum; i++) {
920                 unsigned long align;
921                 void *src, *dst;
922 
923                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
924                         continue;
925 
926                 align = sechdrs[i].sh_addralign;
927                 if (sechdrs[i].sh_type == SHT_NOBITS) {
928                         bss_addr = ALIGN(bss_addr, align);
929                         sechdrs[i].sh_addr = bss_addr;
930                         bss_addr += sechdrs[i].sh_size;
931                         continue;
932                 }
933 
934                 offset = ALIGN(offset, align);
935 
936                 /*
937                  * Check if the segment contains the entry point, if so,
938                  * calculate the value of image->start based on it.
939                  * If the compiler has produced more than one .text section
940                  * (Eg: .text.hot), they are generally after the main .text
941                  * section, and they shall not be used to calculate
942                  * image->start. So do not re-calculate image->start if it
943                  * is not set to the initial value, and warn the user so they
944                  * have a chance to fix their purgatory's linker script.
945                  */
946                 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
947                     pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
948                     pi->ehdr->e_entry < (sechdrs[i].sh_addr
949                                          + sechdrs[i].sh_size) &&
950                     !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
951                         kbuf->image->start -= sechdrs[i].sh_addr;
952                         kbuf->image->start += kbuf->mem + offset;
953                 }
954 
955                 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
956                 dst = pi->purgatory_buf + offset;
957                 memcpy(dst, src, sechdrs[i].sh_size);
958 
959                 sechdrs[i].sh_addr = kbuf->mem + offset;
960                 sechdrs[i].sh_offset = offset;
961                 offset += sechdrs[i].sh_size;
962         }
963 
964         return 0;
965 }
966 
967 static int kexec_apply_relocations(struct kimage *image)
968 {
969         int i, ret;
970         struct purgatory_info *pi = &image->purgatory_info;
971         const Elf_Shdr *sechdrs;
972 
973         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
974 
975         for (i = 0; i < pi->ehdr->e_shnum; i++) {
976                 const Elf_Shdr *relsec;
977                 const Elf_Shdr *symtab;
978                 Elf_Shdr *section;
979 
980                 relsec = sechdrs + i;
981 
982                 if (relsec->sh_type != SHT_RELA &&
983                     relsec->sh_type != SHT_REL)
984                         continue;
985 
986                 /*
987                  * For section of type SHT_RELA/SHT_REL,
988                  * ->sh_link contains section header index of associated
989                  * symbol table. And ->sh_info contains section header
990                  * index of section to which relocations apply.
991                  */
992                 if (relsec->sh_info >= pi->ehdr->e_shnum ||
993                     relsec->sh_link >= pi->ehdr->e_shnum)
994                         return -ENOEXEC;
995 
996                 section = pi->sechdrs + relsec->sh_info;
997                 symtab = sechdrs + relsec->sh_link;
998 
999                 if (!(section->sh_flags & SHF_ALLOC))
1000                         continue;
1001 
1002                 /*
1003                  * symtab->sh_link contain section header index of associated
1004                  * string table.
1005                  */
1006                 if (symtab->sh_link >= pi->ehdr->e_shnum)
1007                         /* Invalid section number? */
1008                         continue;
1009 
1010                 /*
1011                  * Respective architecture needs to provide support for applying
1012                  * relocations of type SHT_RELA/SHT_REL.
1013                  */
1014                 if (relsec->sh_type == SHT_RELA)
1015                         ret = arch_kexec_apply_relocations_add(pi, section,
1016                                                                relsec, symtab);
1017                 else if (relsec->sh_type == SHT_REL)
1018                         ret = arch_kexec_apply_relocations(pi, section,
1019                                                            relsec, symtab);
1020                 if (ret)
1021                         return ret;
1022         }
1023 
1024         return 0;
1025 }
1026 
1027 /*
1028  * kexec_load_purgatory - Load and relocate the purgatory object.
1029  * @image:      Image to add the purgatory to.
1030  * @kbuf:       Memory parameters to use.
1031  *
1032  * Allocates the memory needed for image->purgatory_info.sechdrs and
1033  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1034  * to free the memory after use.
1035  *
1036  * Return: 0 on success, negative errno on error.
1037  */
1038 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1039 {
1040         struct purgatory_info *pi = &image->purgatory_info;
1041         int ret;
1042 
1043         if (kexec_purgatory_size <= 0)
1044                 return -EINVAL;
1045 
1046         pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1047 
1048         ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1049         if (ret)
1050                 return ret;
1051 
1052         ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1053         if (ret)
1054                 goto out_free_kbuf;
1055 
1056         ret = kexec_apply_relocations(image);
1057         if (ret)
1058                 goto out;
1059 
1060         return 0;
1061 out:
1062         vfree(pi->sechdrs);
1063         pi->sechdrs = NULL;
1064 out_free_kbuf:
1065         vfree(pi->purgatory_buf);
1066         pi->purgatory_buf = NULL;
1067         return ret;
1068 }
1069 
1070 /*
1071  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1072  * @pi:         Purgatory to search in.
1073  * @name:       Name of the symbol.
1074  *
1075  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1076  */
1077 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1078                                                   const char *name)
1079 {
1080         const Elf_Shdr *sechdrs;
1081         const Elf_Ehdr *ehdr;
1082         const Elf_Sym *syms;
1083         const char *strtab;
1084         int i, k;
1085 
1086         if (!pi->ehdr)
1087                 return NULL;
1088 
1089         ehdr = pi->ehdr;
1090         sechdrs = (void *)ehdr + ehdr->e_shoff;
1091 
1092         for (i = 0; i < ehdr->e_shnum; i++) {
1093                 if (sechdrs[i].sh_type != SHT_SYMTAB)
1094                         continue;
1095 
1096                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1097                         /* Invalid strtab section number */
1098                         continue;
1099                 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1100                 syms = (void *)ehdr + sechdrs[i].sh_offset;
1101 
1102                 /* Go through symbols for a match */
1103                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1104                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1105                                 continue;
1106 
1107                         if (strcmp(strtab + syms[k].st_name, name) != 0)
1108                                 continue;
1109 
1110                         if (syms[k].st_shndx == SHN_UNDEF ||
1111                             syms[k].st_shndx >= ehdr->e_shnum) {
1112                                 pr_debug("Symbol: %s has bad section index %d.\n",
1113                                                 name, syms[k].st_shndx);
1114                                 return NULL;
1115                         }
1116 
1117                         /* Found the symbol we are looking for */
1118                         return &syms[k];
1119                 }
1120         }
1121 
1122         return NULL;
1123 }
1124 
1125 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1126 {
1127         struct purgatory_info *pi = &image->purgatory_info;
1128         const Elf_Sym *sym;
1129         Elf_Shdr *sechdr;
1130 
1131         sym = kexec_purgatory_find_symbol(pi, name);
1132         if (!sym)
1133                 return ERR_PTR(-EINVAL);
1134 
1135         sechdr = &pi->sechdrs[sym->st_shndx];
1136 
1137         /*
1138          * Returns the address where symbol will finally be loaded after
1139          * kexec_load_segment()
1140          */
1141         return (void *)(sechdr->sh_addr + sym->st_value);
1142 }
1143 
1144 /*
1145  * Get or set value of a symbol. If "get_value" is true, symbol value is
1146  * returned in buf otherwise symbol value is set based on value in buf.
1147  */
1148 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1149                                    void *buf, unsigned int size, bool get_value)
1150 {
1151         struct purgatory_info *pi = &image->purgatory_info;
1152         const Elf_Sym *sym;
1153         Elf_Shdr *sec;
1154         char *sym_buf;
1155 
1156         sym = kexec_purgatory_find_symbol(pi, name);
1157         if (!sym)
1158                 return -EINVAL;
1159 
1160         if (sym->st_size != size) {
1161                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1162                        name, (unsigned long)sym->st_size, size);
1163                 return -EINVAL;
1164         }
1165 
1166         sec = pi->sechdrs + sym->st_shndx;
1167 
1168         if (sec->sh_type == SHT_NOBITS) {
1169                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1170                        get_value ? "get" : "set");
1171                 return -EINVAL;
1172         }
1173 
1174         sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1175 
1176         if (get_value)
1177                 memcpy((void *)buf, sym_buf, size);
1178         else
1179                 memcpy((void *)sym_buf, buf, size);
1180 
1181         return 0;
1182 }
1183 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */
1184 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php