1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Kernel thread helper functions. 3 * Copyright (C) 2004 IBM Corporation, Rusty Russell. 4 * Copyright (C) 2009 Red Hat, Inc. 5 * 6 * Creation is done via kthreadd, so that we get a clean environment 7 * even if we're invoked from userspace (think modprobe, hotplug cpu, 8 * etc.). 9 */ 10 #include <uapi/linux/sched/types.h> 11 #include <linux/mm.h> 12 #include <linux/mmu_context.h> 13 #include <linux/sched.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/task.h> 16 #include <linux/kthread.h> 17 #include <linux/completion.h> 18 #include <linux/err.h> 19 #include <linux/cgroup.h> 20 #include <linux/cpuset.h> 21 #include <linux/unistd.h> 22 #include <linux/file.h> 23 #include <linux/export.h> 24 #include <linux/mutex.h> 25 #include <linux/slab.h> 26 #include <linux/freezer.h> 27 #include <linux/ptrace.h> 28 #include <linux/uaccess.h> 29 #include <linux/numa.h> 30 #include <linux/sched/isolation.h> 31 #include <trace/events/sched.h> 32 33 34 static DEFINE_SPINLOCK(kthread_create_lock); 35 static LIST_HEAD(kthread_create_list); 36 struct task_struct *kthreadd_task; 37 38 struct kthread_create_info 39 { 40 /* Information passed to kthread() from kthreadd. */ 41 char *full_name; 42 int (*threadfn)(void *data); 43 void *data; 44 int node; 45 46 /* Result passed back to kthread_create() from kthreadd. */ 47 struct task_struct *result; 48 struct completion *done; 49 50 struct list_head list; 51 }; 52 53 struct kthread { 54 unsigned long flags; 55 unsigned int cpu; 56 int result; 57 int (*threadfn)(void *); 58 void *data; 59 struct completion parked; 60 struct completion exited; 61 #ifdef CONFIG_BLK_CGROUP 62 struct cgroup_subsys_state *blkcg_css; 63 #endif 64 /* To store the full name if task comm is truncated. */ 65 char *full_name; 66 }; 67 68 enum KTHREAD_BITS { 69 KTHREAD_IS_PER_CPU = 0, 70 KTHREAD_SHOULD_STOP, 71 KTHREAD_SHOULD_PARK, 72 }; 73 74 static inline struct kthread *to_kthread(struct task_struct *k) 75 { 76 WARN_ON(!(k->flags & PF_KTHREAD)); 77 return k->worker_private; 78 } 79 80 /* 81 * Variant of to_kthread() that doesn't assume @p is a kthread. 82 * 83 * Per construction; when: 84 * 85 * (p->flags & PF_KTHREAD) && p->worker_private 86 * 87 * the task is both a kthread and struct kthread is persistent. However 88 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and 89 * begin_new_exec()). 90 */ 91 static inline struct kthread *__to_kthread(struct task_struct *p) 92 { 93 void *kthread = p->worker_private; 94 if (kthread && !(p->flags & PF_KTHREAD)) 95 kthread = NULL; 96 return kthread; 97 } 98 99 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk) 100 { 101 struct kthread *kthread = to_kthread(tsk); 102 103 if (!kthread || !kthread->full_name) { 104 __get_task_comm(buf, buf_size, tsk); 105 return; 106 } 107 108 strscpy_pad(buf, kthread->full_name, buf_size); 109 } 110 111 bool set_kthread_struct(struct task_struct *p) 112 { 113 struct kthread *kthread; 114 115 if (WARN_ON_ONCE(to_kthread(p))) 116 return false; 117 118 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL); 119 if (!kthread) 120 return false; 121 122 init_completion(&kthread->exited); 123 init_completion(&kthread->parked); 124 p->vfork_done = &kthread->exited; 125 126 p->worker_private = kthread; 127 return true; 128 } 129 130 void free_kthread_struct(struct task_struct *k) 131 { 132 struct kthread *kthread; 133 134 /* 135 * Can be NULL if kmalloc() in set_kthread_struct() failed. 136 */ 137 kthread = to_kthread(k); 138 if (!kthread) 139 return; 140 141 #ifdef CONFIG_BLK_CGROUP 142 WARN_ON_ONCE(kthread->blkcg_css); 143 #endif 144 k->worker_private = NULL; 145 kfree(kthread->full_name); 146 kfree(kthread); 147 } 148 149 /** 150 * kthread_should_stop - should this kthread return now? 151 * 152 * When someone calls kthread_stop() on your kthread, it will be woken 153 * and this will return true. You should then return, and your return 154 * value will be passed through to kthread_stop(). 155 */ 156 bool kthread_should_stop(void) 157 { 158 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); 159 } 160 EXPORT_SYMBOL(kthread_should_stop); 161 162 static bool __kthread_should_park(struct task_struct *k) 163 { 164 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags); 165 } 166 167 /** 168 * kthread_should_park - should this kthread park now? 169 * 170 * When someone calls kthread_park() on your kthread, it will be woken 171 * and this will return true. You should then do the necessary 172 * cleanup and call kthread_parkme() 173 * 174 * Similar to kthread_should_stop(), but this keeps the thread alive 175 * and in a park position. kthread_unpark() "restarts" the thread and 176 * calls the thread function again. 177 */ 178 bool kthread_should_park(void) 179 { 180 return __kthread_should_park(current); 181 } 182 EXPORT_SYMBOL_GPL(kthread_should_park); 183 184 bool kthread_should_stop_or_park(void) 185 { 186 struct kthread *kthread = __to_kthread(current); 187 188 if (!kthread) 189 return false; 190 191 return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK)); 192 } 193 194 /** 195 * kthread_freezable_should_stop - should this freezable kthread return now? 196 * @was_frozen: optional out parameter, indicates whether %current was frozen 197 * 198 * kthread_should_stop() for freezable kthreads, which will enter 199 * refrigerator if necessary. This function is safe from kthread_stop() / 200 * freezer deadlock and freezable kthreads should use this function instead 201 * of calling try_to_freeze() directly. 202 */ 203 bool kthread_freezable_should_stop(bool *was_frozen) 204 { 205 bool frozen = false; 206 207 might_sleep(); 208 209 if (unlikely(freezing(current))) 210 frozen = __refrigerator(true); 211 212 if (was_frozen) 213 *was_frozen = frozen; 214 215 return kthread_should_stop(); 216 } 217 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); 218 219 /** 220 * kthread_func - return the function specified on kthread creation 221 * @task: kthread task in question 222 * 223 * Returns NULL if the task is not a kthread. 224 */ 225 void *kthread_func(struct task_struct *task) 226 { 227 struct kthread *kthread = __to_kthread(task); 228 if (kthread) 229 return kthread->threadfn; 230 return NULL; 231 } 232 EXPORT_SYMBOL_GPL(kthread_func); 233 234 /** 235 * kthread_data - return data value specified on kthread creation 236 * @task: kthread task in question 237 * 238 * Return the data value specified when kthread @task was created. 239 * The caller is responsible for ensuring the validity of @task when 240 * calling this function. 241 */ 242 void *kthread_data(struct task_struct *task) 243 { 244 return to_kthread(task)->data; 245 } 246 EXPORT_SYMBOL_GPL(kthread_data); 247 248 /** 249 * kthread_probe_data - speculative version of kthread_data() 250 * @task: possible kthread task in question 251 * 252 * @task could be a kthread task. Return the data value specified when it 253 * was created if accessible. If @task isn't a kthread task or its data is 254 * inaccessible for any reason, %NULL is returned. This function requires 255 * that @task itself is safe to dereference. 256 */ 257 void *kthread_probe_data(struct task_struct *task) 258 { 259 struct kthread *kthread = __to_kthread(task); 260 void *data = NULL; 261 262 if (kthread) 263 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data)); 264 return data; 265 } 266 267 static void __kthread_parkme(struct kthread *self) 268 { 269 for (;;) { 270 /* 271 * TASK_PARKED is a special state; we must serialize against 272 * possible pending wakeups to avoid store-store collisions on 273 * task->state. 274 * 275 * Such a collision might possibly result in the task state 276 * changin from TASK_PARKED and us failing the 277 * wait_task_inactive() in kthread_park(). 278 */ 279 set_special_state(TASK_PARKED); 280 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags)) 281 break; 282 283 /* 284 * Thread is going to call schedule(), do not preempt it, 285 * or the caller of kthread_park() may spend more time in 286 * wait_task_inactive(). 287 */ 288 preempt_disable(); 289 complete(&self->parked); 290 schedule_preempt_disabled(); 291 preempt_enable(); 292 } 293 __set_current_state(TASK_RUNNING); 294 } 295 296 void kthread_parkme(void) 297 { 298 __kthread_parkme(to_kthread(current)); 299 } 300 EXPORT_SYMBOL_GPL(kthread_parkme); 301 302 /** 303 * kthread_exit - Cause the current kthread return @result to kthread_stop(). 304 * @result: The integer value to return to kthread_stop(). 305 * 306 * While kthread_exit can be called directly, it exists so that 307 * functions which do some additional work in non-modular code such as 308 * module_put_and_kthread_exit can be implemented. 309 * 310 * Does not return. 311 */ 312 void __noreturn kthread_exit(long result) 313 { 314 struct kthread *kthread = to_kthread(current); 315 kthread->result = result; 316 do_exit(0); 317 } 318 EXPORT_SYMBOL(kthread_exit); 319 320 /** 321 * kthread_complete_and_exit - Exit the current kthread. 322 * @comp: Completion to complete 323 * @code: The integer value to return to kthread_stop(). 324 * 325 * If present, complete @comp and then return code to kthread_stop(). 326 * 327 * A kernel thread whose module may be removed after the completion of 328 * @comp can use this function to exit safely. 329 * 330 * Does not return. 331 */ 332 void __noreturn kthread_complete_and_exit(struct completion *comp, long code) 333 { 334 if (comp) 335 complete(comp); 336 337 kthread_exit(code); 338 } 339 EXPORT_SYMBOL(kthread_complete_and_exit); 340 341 static int kthread(void *_create) 342 { 343 static const struct sched_param param = { .sched_priority = 0 }; 344 /* Copy data: it's on kthread's stack */ 345 struct kthread_create_info *create = _create; 346 int (*threadfn)(void *data) = create->threadfn; 347 void *data = create->data; 348 struct completion *done; 349 struct kthread *self; 350 int ret; 351 352 self = to_kthread(current); 353 354 /* Release the structure when caller killed by a fatal signal. */ 355 done = xchg(&create->done, NULL); 356 if (!done) { 357 kfree(create->full_name); 358 kfree(create); 359 kthread_exit(-EINTR); 360 } 361 362 self->full_name = create->full_name; 363 self->threadfn = threadfn; 364 self->data = data; 365 366 /* 367 * The new thread inherited kthreadd's priority and CPU mask. Reset 368 * back to default in case they have been changed. 369 */ 370 sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m); 371 set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD)); 372 373 /* OK, tell user we're spawned, wait for stop or wakeup */ 374 __set_current_state(TASK_UNINTERRUPTIBLE); 375 create->result = current; 376 /* 377 * Thread is going to call schedule(), do not preempt it, 378 * or the creator may spend more time in wait_task_inactive(). 379 */ 380 preempt_disable(); 381 complete(done); 382 schedule_preempt_disabled(); 383 preempt_enable(); 384 385 ret = -EINTR; 386 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) { 387 cgroup_kthread_ready(); 388 __kthread_parkme(self); 389 ret = threadfn(data); 390 } 391 kthread_exit(ret); 392 } 393 394 /* called from kernel_clone() to get node information for about to be created task */ 395 int tsk_fork_get_node(struct task_struct *tsk) 396 { 397 #ifdef CONFIG_NUMA 398 if (tsk == kthreadd_task) 399 return tsk->pref_node_fork; 400 #endif 401 return NUMA_NO_NODE; 402 } 403 404 static void create_kthread(struct kthread_create_info *create) 405 { 406 int pid; 407 408 #ifdef CONFIG_NUMA 409 current->pref_node_fork = create->node; 410 #endif 411 /* We want our own signal handler (we take no signals by default). */ 412 pid = kernel_thread(kthread, create, create->full_name, 413 CLONE_FS | CLONE_FILES | SIGCHLD); 414 if (pid < 0) { 415 /* Release the structure when caller killed by a fatal signal. */ 416 struct completion *done = xchg(&create->done, NULL); 417 418 kfree(create->full_name); 419 if (!done) { 420 kfree(create); 421 return; 422 } 423 create->result = ERR_PTR(pid); 424 complete(done); 425 } 426 } 427 428 static __printf(4, 0) 429 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), 430 void *data, int node, 431 const char namefmt[], 432 va_list args) 433 { 434 DECLARE_COMPLETION_ONSTACK(done); 435 struct task_struct *task; 436 struct kthread_create_info *create = kmalloc(sizeof(*create), 437 GFP_KERNEL); 438 439 if (!create) 440 return ERR_PTR(-ENOMEM); 441 create->threadfn = threadfn; 442 create->data = data; 443 create->node = node; 444 create->done = &done; 445 create->full_name = kvasprintf(GFP_KERNEL, namefmt, args); 446 if (!create->full_name) { 447 task = ERR_PTR(-ENOMEM); 448 goto free_create; 449 } 450 451 spin_lock(&kthread_create_lock); 452 list_add_tail(&create->list, &kthread_create_list); 453 spin_unlock(&kthread_create_lock); 454 455 wake_up_process(kthreadd_task); 456 /* 457 * Wait for completion in killable state, for I might be chosen by 458 * the OOM killer while kthreadd is trying to allocate memory for 459 * new kernel thread. 460 */ 461 if (unlikely(wait_for_completion_killable(&done))) { 462 /* 463 * If I was killed by a fatal signal before kthreadd (or new 464 * kernel thread) calls complete(), leave the cleanup of this 465 * structure to that thread. 466 */ 467 if (xchg(&create->done, NULL)) 468 return ERR_PTR(-EINTR); 469 /* 470 * kthreadd (or new kernel thread) will call complete() 471 * shortly. 472 */ 473 wait_for_completion(&done); 474 } 475 task = create->result; 476 free_create: 477 kfree(create); 478 return task; 479 } 480 481 /** 482 * kthread_create_on_node - create a kthread. 483 * @threadfn: the function to run until signal_pending(current). 484 * @data: data ptr for @threadfn. 485 * @node: task and thread structures for the thread are allocated on this node 486 * @namefmt: printf-style name for the thread. 487 * 488 * Description: This helper function creates and names a kernel 489 * thread. The thread will be stopped: use wake_up_process() to start 490 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and 491 * is affine to all CPUs. 492 * 493 * If thread is going to be bound on a particular cpu, give its node 494 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE. 495 * When woken, the thread will run @threadfn() with @data as its 496 * argument. @threadfn() can either return directly if it is a 497 * standalone thread for which no one will call kthread_stop(), or 498 * return when 'kthread_should_stop()' is true (which means 499 * kthread_stop() has been called). The return value should be zero 500 * or a negative error number; it will be passed to kthread_stop(). 501 * 502 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR). 503 */ 504 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), 505 void *data, int node, 506 const char namefmt[], 507 ...) 508 { 509 struct task_struct *task; 510 va_list args; 511 512 va_start(args, namefmt); 513 task = __kthread_create_on_node(threadfn, data, node, namefmt, args); 514 va_end(args); 515 516 return task; 517 } 518 EXPORT_SYMBOL(kthread_create_on_node); 519 520 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state) 521 { 522 unsigned long flags; 523 524 if (!wait_task_inactive(p, state)) { 525 WARN_ON(1); 526 return; 527 } 528 529 /* It's safe because the task is inactive. */ 530 raw_spin_lock_irqsave(&p->pi_lock, flags); 531 do_set_cpus_allowed(p, mask); 532 p->flags |= PF_NO_SETAFFINITY; 533 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 534 } 535 536 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state) 537 { 538 __kthread_bind_mask(p, cpumask_of(cpu), state); 539 } 540 541 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) 542 { 543 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); 544 } 545 546 /** 547 * kthread_bind - bind a just-created kthread to a cpu. 548 * @p: thread created by kthread_create(). 549 * @cpu: cpu (might not be online, must be possible) for @k to run on. 550 * 551 * Description: This function is equivalent to set_cpus_allowed(), 552 * except that @cpu doesn't need to be online, and the thread must be 553 * stopped (i.e., just returned from kthread_create()). 554 */ 555 void kthread_bind(struct task_struct *p, unsigned int cpu) 556 { 557 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); 558 } 559 EXPORT_SYMBOL(kthread_bind); 560 561 /** 562 * kthread_create_on_cpu - Create a cpu bound kthread 563 * @threadfn: the function to run until signal_pending(current). 564 * @data: data ptr for @threadfn. 565 * @cpu: The cpu on which the thread should be bound, 566 * @namefmt: printf-style name for the thread. Format is restricted 567 * to "name.*%u". Code fills in cpu number. 568 * 569 * Description: This helper function creates and names a kernel thread 570 */ 571 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), 572 void *data, unsigned int cpu, 573 const char *namefmt) 574 { 575 struct task_struct *p; 576 577 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, 578 cpu); 579 if (IS_ERR(p)) 580 return p; 581 kthread_bind(p, cpu); 582 /* CPU hotplug need to bind once again when unparking the thread. */ 583 to_kthread(p)->cpu = cpu; 584 return p; 585 } 586 EXPORT_SYMBOL(kthread_create_on_cpu); 587 588 void kthread_set_per_cpu(struct task_struct *k, int cpu) 589 { 590 struct kthread *kthread = to_kthread(k); 591 if (!kthread) 592 return; 593 594 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY)); 595 596 if (cpu < 0) { 597 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 598 return; 599 } 600 601 kthread->cpu = cpu; 602 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 603 } 604 605 bool kthread_is_per_cpu(struct task_struct *p) 606 { 607 struct kthread *kthread = __to_kthread(p); 608 if (!kthread) 609 return false; 610 611 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 612 } 613 614 /** 615 * kthread_unpark - unpark a thread created by kthread_create(). 616 * @k: thread created by kthread_create(). 617 * 618 * Sets kthread_should_park() for @k to return false, wakes it, and 619 * waits for it to return. If the thread is marked percpu then its 620 * bound to the cpu again. 621 */ 622 void kthread_unpark(struct task_struct *k) 623 { 624 struct kthread *kthread = to_kthread(k); 625 626 if (!test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)) 627 return; 628 /* 629 * Newly created kthread was parked when the CPU was offline. 630 * The binding was lost and we need to set it again. 631 */ 632 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) 633 __kthread_bind(k, kthread->cpu, TASK_PARKED); 634 635 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 636 /* 637 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup. 638 */ 639 wake_up_state(k, TASK_PARKED); 640 } 641 EXPORT_SYMBOL_GPL(kthread_unpark); 642 643 /** 644 * kthread_park - park a thread created by kthread_create(). 645 * @k: thread created by kthread_create(). 646 * 647 * Sets kthread_should_park() for @k to return true, wakes it, and 648 * waits for it to return. This can also be called after kthread_create() 649 * instead of calling wake_up_process(): the thread will park without 650 * calling threadfn(). 651 * 652 * Returns 0 if the thread is parked, -ENOSYS if the thread exited. 653 * If called by the kthread itself just the park bit is set. 654 */ 655 int kthread_park(struct task_struct *k) 656 { 657 struct kthread *kthread = to_kthread(k); 658 659 if (WARN_ON(k->flags & PF_EXITING)) 660 return -ENOSYS; 661 662 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))) 663 return -EBUSY; 664 665 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 666 if (k != current) { 667 wake_up_process(k); 668 /* 669 * Wait for __kthread_parkme() to complete(), this means we 670 * _will_ have TASK_PARKED and are about to call schedule(). 671 */ 672 wait_for_completion(&kthread->parked); 673 /* 674 * Now wait for that schedule() to complete and the task to 675 * get scheduled out. 676 */ 677 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED)); 678 } 679 680 return 0; 681 } 682 EXPORT_SYMBOL_GPL(kthread_park); 683 684 /** 685 * kthread_stop - stop a thread created by kthread_create(). 686 * @k: thread created by kthread_create(). 687 * 688 * Sets kthread_should_stop() for @k to return true, wakes it, and 689 * waits for it to exit. This can also be called after kthread_create() 690 * instead of calling wake_up_process(): the thread will exit without 691 * calling threadfn(). 692 * 693 * If threadfn() may call kthread_exit() itself, the caller must ensure 694 * task_struct can't go away. 695 * 696 * Returns the result of threadfn(), or %-EINTR if wake_up_process() 697 * was never called. 698 */ 699 int kthread_stop(struct task_struct *k) 700 { 701 struct kthread *kthread; 702 int ret; 703 704 trace_sched_kthread_stop(k); 705 706 get_task_struct(k); 707 kthread = to_kthread(k); 708 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); 709 kthread_unpark(k); 710 set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL); 711 wake_up_process(k); 712 wait_for_completion(&kthread->exited); 713 ret = kthread->result; 714 put_task_struct(k); 715 716 trace_sched_kthread_stop_ret(ret); 717 return ret; 718 } 719 EXPORT_SYMBOL(kthread_stop); 720 721 /** 722 * kthread_stop_put - stop a thread and put its task struct 723 * @k: thread created by kthread_create(). 724 * 725 * Stops a thread created by kthread_create() and put its task_struct. 726 * Only use when holding an extra task struct reference obtained by 727 * calling get_task_struct(). 728 */ 729 int kthread_stop_put(struct task_struct *k) 730 { 731 int ret; 732 733 ret = kthread_stop(k); 734 put_task_struct(k); 735 return ret; 736 } 737 EXPORT_SYMBOL(kthread_stop_put); 738 739 int kthreadd(void *unused) 740 { 741 struct task_struct *tsk = current; 742 743 /* Setup a clean context for our children to inherit. */ 744 set_task_comm(tsk, "kthreadd"); 745 ignore_signals(tsk); 746 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD)); 747 set_mems_allowed(node_states[N_MEMORY]); 748 749 current->flags |= PF_NOFREEZE; 750 cgroup_init_kthreadd(); 751 752 for (;;) { 753 set_current_state(TASK_INTERRUPTIBLE); 754 if (list_empty(&kthread_create_list)) 755 schedule(); 756 __set_current_state(TASK_RUNNING); 757 758 spin_lock(&kthread_create_lock); 759 while (!list_empty(&kthread_create_list)) { 760 struct kthread_create_info *create; 761 762 create = list_entry(kthread_create_list.next, 763 struct kthread_create_info, list); 764 list_del_init(&create->list); 765 spin_unlock(&kthread_create_lock); 766 767 create_kthread(create); 768 769 spin_lock(&kthread_create_lock); 770 } 771 spin_unlock(&kthread_create_lock); 772 } 773 774 return 0; 775 } 776 777 void __kthread_init_worker(struct kthread_worker *worker, 778 const char *name, 779 struct lock_class_key *key) 780 { 781 memset(worker, 0, sizeof(struct kthread_worker)); 782 raw_spin_lock_init(&worker->lock); 783 lockdep_set_class_and_name(&worker->lock, key, name); 784 INIT_LIST_HEAD(&worker->work_list); 785 INIT_LIST_HEAD(&worker->delayed_work_list); 786 } 787 EXPORT_SYMBOL_GPL(__kthread_init_worker); 788 789 /** 790 * kthread_worker_fn - kthread function to process kthread_worker 791 * @worker_ptr: pointer to initialized kthread_worker 792 * 793 * This function implements the main cycle of kthread worker. It processes 794 * work_list until it is stopped with kthread_stop(). It sleeps when the queue 795 * is empty. 796 * 797 * The works are not allowed to keep any locks, disable preemption or interrupts 798 * when they finish. There is defined a safe point for freezing when one work 799 * finishes and before a new one is started. 800 * 801 * Also the works must not be handled by more than one worker at the same time, 802 * see also kthread_queue_work(). 803 */ 804 int kthread_worker_fn(void *worker_ptr) 805 { 806 struct kthread_worker *worker = worker_ptr; 807 struct kthread_work *work; 808 809 /* 810 * FIXME: Update the check and remove the assignment when all kthread 811 * worker users are created using kthread_create_worker*() functions. 812 */ 813 WARN_ON(worker->task && worker->task != current); 814 worker->task = current; 815 816 if (worker->flags & KTW_FREEZABLE) 817 set_freezable(); 818 819 repeat: 820 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ 821 822 if (kthread_should_stop()) { 823 __set_current_state(TASK_RUNNING); 824 raw_spin_lock_irq(&worker->lock); 825 worker->task = NULL; 826 raw_spin_unlock_irq(&worker->lock); 827 return 0; 828 } 829 830 work = NULL; 831 raw_spin_lock_irq(&worker->lock); 832 if (!list_empty(&worker->work_list)) { 833 work = list_first_entry(&worker->work_list, 834 struct kthread_work, node); 835 list_del_init(&work->node); 836 } 837 worker->current_work = work; 838 raw_spin_unlock_irq(&worker->lock); 839 840 if (work) { 841 kthread_work_func_t func = work->func; 842 __set_current_state(TASK_RUNNING); 843 trace_sched_kthread_work_execute_start(work); 844 work->func(work); 845 /* 846 * Avoid dereferencing work after this point. The trace 847 * event only cares about the address. 848 */ 849 trace_sched_kthread_work_execute_end(work, func); 850 } else if (!freezing(current)) { 851 schedule(); 852 } else { 853 /* 854 * Handle the case where the current remains 855 * TASK_INTERRUPTIBLE. try_to_freeze() expects 856 * the current to be TASK_RUNNING. 857 */ 858 __set_current_state(TASK_RUNNING); 859 } 860 861 try_to_freeze(); 862 cond_resched(); 863 goto repeat; 864 } 865 EXPORT_SYMBOL_GPL(kthread_worker_fn); 866 867 static __printf(3, 0) struct kthread_worker * 868 __kthread_create_worker(int cpu, unsigned int flags, 869 const char namefmt[], va_list args) 870 { 871 struct kthread_worker *worker; 872 struct task_struct *task; 873 int node = NUMA_NO_NODE; 874 875 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 876 if (!worker) 877 return ERR_PTR(-ENOMEM); 878 879 kthread_init_worker(worker); 880 881 if (cpu >= 0) 882 node = cpu_to_node(cpu); 883 884 task = __kthread_create_on_node(kthread_worker_fn, worker, 885 node, namefmt, args); 886 if (IS_ERR(task)) 887 goto fail_task; 888 889 if (cpu >= 0) 890 kthread_bind(task, cpu); 891 892 worker->flags = flags; 893 worker->task = task; 894 wake_up_process(task); 895 return worker; 896 897 fail_task: 898 kfree(worker); 899 return ERR_CAST(task); 900 } 901 902 /** 903 * kthread_create_worker - create a kthread worker 904 * @flags: flags modifying the default behavior of the worker 905 * @namefmt: printf-style name for the kthread worker (task). 906 * 907 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 908 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 909 * when the caller was killed by a fatal signal. 910 */ 911 struct kthread_worker * 912 kthread_create_worker(unsigned int flags, const char namefmt[], ...) 913 { 914 struct kthread_worker *worker; 915 va_list args; 916 917 va_start(args, namefmt); 918 worker = __kthread_create_worker(-1, flags, namefmt, args); 919 va_end(args); 920 921 return worker; 922 } 923 EXPORT_SYMBOL(kthread_create_worker); 924 925 /** 926 * kthread_create_worker_on_cpu - create a kthread worker and bind it 927 * to a given CPU and the associated NUMA node. 928 * @cpu: CPU number 929 * @flags: flags modifying the default behavior of the worker 930 * @namefmt: printf-style name for the kthread worker (task). 931 * 932 * Use a valid CPU number if you want to bind the kthread worker 933 * to the given CPU and the associated NUMA node. 934 * 935 * A good practice is to add the cpu number also into the worker name. 936 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu). 937 * 938 * CPU hotplug: 939 * The kthread worker API is simple and generic. It just provides a way 940 * to create, use, and destroy workers. 941 * 942 * It is up to the API user how to handle CPU hotplug. They have to decide 943 * how to handle pending work items, prevent queuing new ones, and 944 * restore the functionality when the CPU goes off and on. There are a 945 * few catches: 946 * 947 * - CPU affinity gets lost when it is scheduled on an offline CPU. 948 * 949 * - The worker might not exist when the CPU was off when the user 950 * created the workers. 951 * 952 * Good practice is to implement two CPU hotplug callbacks and to 953 * destroy/create the worker when the CPU goes down/up. 954 * 955 * Return: 956 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 957 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 958 * when the caller was killed by a fatal signal. 959 */ 960 struct kthread_worker * 961 kthread_create_worker_on_cpu(int cpu, unsigned int flags, 962 const char namefmt[], ...) 963 { 964 struct kthread_worker *worker; 965 va_list args; 966 967 va_start(args, namefmt); 968 worker = __kthread_create_worker(cpu, flags, namefmt, args); 969 va_end(args); 970 971 return worker; 972 } 973 EXPORT_SYMBOL(kthread_create_worker_on_cpu); 974 975 /* 976 * Returns true when the work could not be queued at the moment. 977 * It happens when it is already pending in a worker list 978 * or when it is being cancelled. 979 */ 980 static inline bool queuing_blocked(struct kthread_worker *worker, 981 struct kthread_work *work) 982 { 983 lockdep_assert_held(&worker->lock); 984 985 return !list_empty(&work->node) || work->canceling; 986 } 987 988 static void kthread_insert_work_sanity_check(struct kthread_worker *worker, 989 struct kthread_work *work) 990 { 991 lockdep_assert_held(&worker->lock); 992 WARN_ON_ONCE(!list_empty(&work->node)); 993 /* Do not use a work with >1 worker, see kthread_queue_work() */ 994 WARN_ON_ONCE(work->worker && work->worker != worker); 995 } 996 997 /* insert @work before @pos in @worker */ 998 static void kthread_insert_work(struct kthread_worker *worker, 999 struct kthread_work *work, 1000 struct list_head *pos) 1001 { 1002 kthread_insert_work_sanity_check(worker, work); 1003 1004 trace_sched_kthread_work_queue_work(worker, work); 1005 1006 list_add_tail(&work->node, pos); 1007 work->worker = worker; 1008 if (!worker->current_work && likely(worker->task)) 1009 wake_up_process(worker->task); 1010 } 1011 1012 /** 1013 * kthread_queue_work - queue a kthread_work 1014 * @worker: target kthread_worker 1015 * @work: kthread_work to queue 1016 * 1017 * Queue @work to work processor @task for async execution. @task 1018 * must have been created with kthread_worker_create(). Returns %true 1019 * if @work was successfully queued, %false if it was already pending. 1020 * 1021 * Reinitialize the work if it needs to be used by another worker. 1022 * For example, when the worker was stopped and started again. 1023 */ 1024 bool kthread_queue_work(struct kthread_worker *worker, 1025 struct kthread_work *work) 1026 { 1027 bool ret = false; 1028 unsigned long flags; 1029 1030 raw_spin_lock_irqsave(&worker->lock, flags); 1031 if (!queuing_blocked(worker, work)) { 1032 kthread_insert_work(worker, work, &worker->work_list); 1033 ret = true; 1034 } 1035 raw_spin_unlock_irqrestore(&worker->lock, flags); 1036 return ret; 1037 } 1038 EXPORT_SYMBOL_GPL(kthread_queue_work); 1039 1040 /** 1041 * kthread_delayed_work_timer_fn - callback that queues the associated kthread 1042 * delayed work when the timer expires. 1043 * @t: pointer to the expired timer 1044 * 1045 * The format of the function is defined by struct timer_list. 1046 * It should have been called from irqsafe timer with irq already off. 1047 */ 1048 void kthread_delayed_work_timer_fn(struct timer_list *t) 1049 { 1050 struct kthread_delayed_work *dwork = from_timer(dwork, t, timer); 1051 struct kthread_work *work = &dwork->work; 1052 struct kthread_worker *worker = work->worker; 1053 unsigned long flags; 1054 1055 /* 1056 * This might happen when a pending work is reinitialized. 1057 * It means that it is used a wrong way. 1058 */ 1059 if (WARN_ON_ONCE(!worker)) 1060 return; 1061 1062 raw_spin_lock_irqsave(&worker->lock, flags); 1063 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1064 WARN_ON_ONCE(work->worker != worker); 1065 1066 /* Move the work from worker->delayed_work_list. */ 1067 WARN_ON_ONCE(list_empty(&work->node)); 1068 list_del_init(&work->node); 1069 if (!work->canceling) 1070 kthread_insert_work(worker, work, &worker->work_list); 1071 1072 raw_spin_unlock_irqrestore(&worker->lock, flags); 1073 } 1074 EXPORT_SYMBOL(kthread_delayed_work_timer_fn); 1075 1076 static void __kthread_queue_delayed_work(struct kthread_worker *worker, 1077 struct kthread_delayed_work *dwork, 1078 unsigned long delay) 1079 { 1080 struct timer_list *timer = &dwork->timer; 1081 struct kthread_work *work = &dwork->work; 1082 1083 WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn); 1084 1085 /* 1086 * If @delay is 0, queue @dwork->work immediately. This is for 1087 * both optimization and correctness. The earliest @timer can 1088 * expire is on the closest next tick and delayed_work users depend 1089 * on that there's no such delay when @delay is 0. 1090 */ 1091 if (!delay) { 1092 kthread_insert_work(worker, work, &worker->work_list); 1093 return; 1094 } 1095 1096 /* Be paranoid and try to detect possible races already now. */ 1097 kthread_insert_work_sanity_check(worker, work); 1098 1099 list_add(&work->node, &worker->delayed_work_list); 1100 work->worker = worker; 1101 timer->expires = jiffies + delay; 1102 add_timer(timer); 1103 } 1104 1105 /** 1106 * kthread_queue_delayed_work - queue the associated kthread work 1107 * after a delay. 1108 * @worker: target kthread_worker 1109 * @dwork: kthread_delayed_work to queue 1110 * @delay: number of jiffies to wait before queuing 1111 * 1112 * If the work has not been pending it starts a timer that will queue 1113 * the work after the given @delay. If @delay is zero, it queues the 1114 * work immediately. 1115 * 1116 * Return: %false if the @work has already been pending. It means that 1117 * either the timer was running or the work was queued. It returns %true 1118 * otherwise. 1119 */ 1120 bool kthread_queue_delayed_work(struct kthread_worker *worker, 1121 struct kthread_delayed_work *dwork, 1122 unsigned long delay) 1123 { 1124 struct kthread_work *work = &dwork->work; 1125 unsigned long flags; 1126 bool ret = false; 1127 1128 raw_spin_lock_irqsave(&worker->lock, flags); 1129 1130 if (!queuing_blocked(worker, work)) { 1131 __kthread_queue_delayed_work(worker, dwork, delay); 1132 ret = true; 1133 } 1134 1135 raw_spin_unlock_irqrestore(&worker->lock, flags); 1136 return ret; 1137 } 1138 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work); 1139 1140 struct kthread_flush_work { 1141 struct kthread_work work; 1142 struct completion done; 1143 }; 1144 1145 static void kthread_flush_work_fn(struct kthread_work *work) 1146 { 1147 struct kthread_flush_work *fwork = 1148 container_of(work, struct kthread_flush_work, work); 1149 complete(&fwork->done); 1150 } 1151 1152 /** 1153 * kthread_flush_work - flush a kthread_work 1154 * @work: work to flush 1155 * 1156 * If @work is queued or executing, wait for it to finish execution. 1157 */ 1158 void kthread_flush_work(struct kthread_work *work) 1159 { 1160 struct kthread_flush_work fwork = { 1161 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1162 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1163 }; 1164 struct kthread_worker *worker; 1165 bool noop = false; 1166 1167 worker = work->worker; 1168 if (!worker) 1169 return; 1170 1171 raw_spin_lock_irq(&worker->lock); 1172 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1173 WARN_ON_ONCE(work->worker != worker); 1174 1175 if (!list_empty(&work->node)) 1176 kthread_insert_work(worker, &fwork.work, work->node.next); 1177 else if (worker->current_work == work) 1178 kthread_insert_work(worker, &fwork.work, 1179 worker->work_list.next); 1180 else 1181 noop = true; 1182 1183 raw_spin_unlock_irq(&worker->lock); 1184 1185 if (!noop) 1186 wait_for_completion(&fwork.done); 1187 } 1188 EXPORT_SYMBOL_GPL(kthread_flush_work); 1189 1190 /* 1191 * Make sure that the timer is neither set nor running and could 1192 * not manipulate the work list_head any longer. 1193 * 1194 * The function is called under worker->lock. The lock is temporary 1195 * released but the timer can't be set again in the meantime. 1196 */ 1197 static void kthread_cancel_delayed_work_timer(struct kthread_work *work, 1198 unsigned long *flags) 1199 { 1200 struct kthread_delayed_work *dwork = 1201 container_of(work, struct kthread_delayed_work, work); 1202 struct kthread_worker *worker = work->worker; 1203 1204 /* 1205 * del_timer_sync() must be called to make sure that the timer 1206 * callback is not running. The lock must be temporary released 1207 * to avoid a deadlock with the callback. In the meantime, 1208 * any queuing is blocked by setting the canceling counter. 1209 */ 1210 work->canceling++; 1211 raw_spin_unlock_irqrestore(&worker->lock, *flags); 1212 del_timer_sync(&dwork->timer); 1213 raw_spin_lock_irqsave(&worker->lock, *flags); 1214 work->canceling--; 1215 } 1216 1217 /* 1218 * This function removes the work from the worker queue. 1219 * 1220 * It is called under worker->lock. The caller must make sure that 1221 * the timer used by delayed work is not running, e.g. by calling 1222 * kthread_cancel_delayed_work_timer(). 1223 * 1224 * The work might still be in use when this function finishes. See the 1225 * current_work proceed by the worker. 1226 * 1227 * Return: %true if @work was pending and successfully canceled, 1228 * %false if @work was not pending 1229 */ 1230 static bool __kthread_cancel_work(struct kthread_work *work) 1231 { 1232 /* 1233 * Try to remove the work from a worker list. It might either 1234 * be from worker->work_list or from worker->delayed_work_list. 1235 */ 1236 if (!list_empty(&work->node)) { 1237 list_del_init(&work->node); 1238 return true; 1239 } 1240 1241 return false; 1242 } 1243 1244 /** 1245 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work 1246 * @worker: kthread worker to use 1247 * @dwork: kthread delayed work to queue 1248 * @delay: number of jiffies to wait before queuing 1249 * 1250 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, 1251 * modify @dwork's timer so that it expires after @delay. If @delay is zero, 1252 * @work is guaranteed to be queued immediately. 1253 * 1254 * Return: %false if @dwork was idle and queued, %true otherwise. 1255 * 1256 * A special case is when the work is being canceled in parallel. 1257 * It might be caused either by the real kthread_cancel_delayed_work_sync() 1258 * or yet another kthread_mod_delayed_work() call. We let the other command 1259 * win and return %true here. The return value can be used for reference 1260 * counting and the number of queued works stays the same. Anyway, the caller 1261 * is supposed to synchronize these operations a reasonable way. 1262 * 1263 * This function is safe to call from any context including IRQ handler. 1264 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn() 1265 * for details. 1266 */ 1267 bool kthread_mod_delayed_work(struct kthread_worker *worker, 1268 struct kthread_delayed_work *dwork, 1269 unsigned long delay) 1270 { 1271 struct kthread_work *work = &dwork->work; 1272 unsigned long flags; 1273 int ret; 1274 1275 raw_spin_lock_irqsave(&worker->lock, flags); 1276 1277 /* Do not bother with canceling when never queued. */ 1278 if (!work->worker) { 1279 ret = false; 1280 goto fast_queue; 1281 } 1282 1283 /* Work must not be used with >1 worker, see kthread_queue_work() */ 1284 WARN_ON_ONCE(work->worker != worker); 1285 1286 /* 1287 * Temporary cancel the work but do not fight with another command 1288 * that is canceling the work as well. 1289 * 1290 * It is a bit tricky because of possible races with another 1291 * mod_delayed_work() and cancel_delayed_work() callers. 1292 * 1293 * The timer must be canceled first because worker->lock is released 1294 * when doing so. But the work can be removed from the queue (list) 1295 * only when it can be queued again so that the return value can 1296 * be used for reference counting. 1297 */ 1298 kthread_cancel_delayed_work_timer(work, &flags); 1299 if (work->canceling) { 1300 /* The number of works in the queue does not change. */ 1301 ret = true; 1302 goto out; 1303 } 1304 ret = __kthread_cancel_work(work); 1305 1306 fast_queue: 1307 __kthread_queue_delayed_work(worker, dwork, delay); 1308 out: 1309 raw_spin_unlock_irqrestore(&worker->lock, flags); 1310 return ret; 1311 } 1312 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work); 1313 1314 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork) 1315 { 1316 struct kthread_worker *worker = work->worker; 1317 unsigned long flags; 1318 int ret = false; 1319 1320 if (!worker) 1321 goto out; 1322 1323 raw_spin_lock_irqsave(&worker->lock, flags); 1324 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1325 WARN_ON_ONCE(work->worker != worker); 1326 1327 if (is_dwork) 1328 kthread_cancel_delayed_work_timer(work, &flags); 1329 1330 ret = __kthread_cancel_work(work); 1331 1332 if (worker->current_work != work) 1333 goto out_fast; 1334 1335 /* 1336 * The work is in progress and we need to wait with the lock released. 1337 * In the meantime, block any queuing by setting the canceling counter. 1338 */ 1339 work->canceling++; 1340 raw_spin_unlock_irqrestore(&worker->lock, flags); 1341 kthread_flush_work(work); 1342 raw_spin_lock_irqsave(&worker->lock, flags); 1343 work->canceling--; 1344 1345 out_fast: 1346 raw_spin_unlock_irqrestore(&worker->lock, flags); 1347 out: 1348 return ret; 1349 } 1350 1351 /** 1352 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish 1353 * @work: the kthread work to cancel 1354 * 1355 * Cancel @work and wait for its execution to finish. This function 1356 * can be used even if the work re-queues itself. On return from this 1357 * function, @work is guaranteed to be not pending or executing on any CPU. 1358 * 1359 * kthread_cancel_work_sync(&delayed_work->work) must not be used for 1360 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead. 1361 * 1362 * The caller must ensure that the worker on which @work was last 1363 * queued can't be destroyed before this function returns. 1364 * 1365 * Return: %true if @work was pending, %false otherwise. 1366 */ 1367 bool kthread_cancel_work_sync(struct kthread_work *work) 1368 { 1369 return __kthread_cancel_work_sync(work, false); 1370 } 1371 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync); 1372 1373 /** 1374 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and 1375 * wait for it to finish. 1376 * @dwork: the kthread delayed work to cancel 1377 * 1378 * This is kthread_cancel_work_sync() for delayed works. 1379 * 1380 * Return: %true if @dwork was pending, %false otherwise. 1381 */ 1382 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork) 1383 { 1384 return __kthread_cancel_work_sync(&dwork->work, true); 1385 } 1386 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync); 1387 1388 /** 1389 * kthread_flush_worker - flush all current works on a kthread_worker 1390 * @worker: worker to flush 1391 * 1392 * Wait until all currently executing or pending works on @worker are 1393 * finished. 1394 */ 1395 void kthread_flush_worker(struct kthread_worker *worker) 1396 { 1397 struct kthread_flush_work fwork = { 1398 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1399 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1400 }; 1401 1402 kthread_queue_work(worker, &fwork.work); 1403 wait_for_completion(&fwork.done); 1404 } 1405 EXPORT_SYMBOL_GPL(kthread_flush_worker); 1406 1407 /** 1408 * kthread_destroy_worker - destroy a kthread worker 1409 * @worker: worker to be destroyed 1410 * 1411 * Flush and destroy @worker. The simple flush is enough because the kthread 1412 * worker API is used only in trivial scenarios. There are no multi-step state 1413 * machines needed. 1414 * 1415 * Note that this function is not responsible for handling delayed work, so 1416 * caller should be responsible for queuing or canceling all delayed work items 1417 * before invoke this function. 1418 */ 1419 void kthread_destroy_worker(struct kthread_worker *worker) 1420 { 1421 struct task_struct *task; 1422 1423 task = worker->task; 1424 if (WARN_ON(!task)) 1425 return; 1426 1427 kthread_flush_worker(worker); 1428 kthread_stop(task); 1429 WARN_ON(!list_empty(&worker->delayed_work_list)); 1430 WARN_ON(!list_empty(&worker->work_list)); 1431 kfree(worker); 1432 } 1433 EXPORT_SYMBOL(kthread_destroy_worker); 1434 1435 /** 1436 * kthread_use_mm - make the calling kthread operate on an address space 1437 * @mm: address space to operate on 1438 */ 1439 void kthread_use_mm(struct mm_struct *mm) 1440 { 1441 struct mm_struct *active_mm; 1442 struct task_struct *tsk = current; 1443 1444 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1445 WARN_ON_ONCE(tsk->mm); 1446 1447 /* 1448 * It is possible for mm to be the same as tsk->active_mm, but 1449 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm), 1450 * because these references are not equivalent. 1451 */ 1452 mmgrab(mm); 1453 1454 task_lock(tsk); 1455 /* Hold off tlb flush IPIs while switching mm's */ 1456 local_irq_disable(); 1457 active_mm = tsk->active_mm; 1458 tsk->active_mm = mm; 1459 tsk->mm = mm; 1460 membarrier_update_current_mm(mm); 1461 switch_mm_irqs_off(active_mm, mm, tsk); 1462 local_irq_enable(); 1463 task_unlock(tsk); 1464 #ifdef finish_arch_post_lock_switch 1465 finish_arch_post_lock_switch(); 1466 #endif 1467 1468 /* 1469 * When a kthread starts operating on an address space, the loop 1470 * in membarrier_{private,global}_expedited() may not observe 1471 * that tsk->mm, and not issue an IPI. Membarrier requires a 1472 * memory barrier after storing to tsk->mm, before accessing 1473 * user-space memory. A full memory barrier for membarrier 1474 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by 1475 * mmdrop_lazy_tlb(). 1476 */ 1477 mmdrop_lazy_tlb(active_mm); 1478 } 1479 EXPORT_SYMBOL_GPL(kthread_use_mm); 1480 1481 /** 1482 * kthread_unuse_mm - reverse the effect of kthread_use_mm() 1483 * @mm: address space to operate on 1484 */ 1485 void kthread_unuse_mm(struct mm_struct *mm) 1486 { 1487 struct task_struct *tsk = current; 1488 1489 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1490 WARN_ON_ONCE(!tsk->mm); 1491 1492 task_lock(tsk); 1493 /* 1494 * When a kthread stops operating on an address space, the loop 1495 * in membarrier_{private,global}_expedited() may not observe 1496 * that tsk->mm, and not issue an IPI. Membarrier requires a 1497 * memory barrier after accessing user-space memory, before 1498 * clearing tsk->mm. 1499 */ 1500 smp_mb__after_spinlock(); 1501 local_irq_disable(); 1502 tsk->mm = NULL; 1503 membarrier_update_current_mm(NULL); 1504 mmgrab_lazy_tlb(mm); 1505 /* active_mm is still 'mm' */ 1506 enter_lazy_tlb(mm, tsk); 1507 local_irq_enable(); 1508 task_unlock(tsk); 1509 1510 mmdrop(mm); 1511 } 1512 EXPORT_SYMBOL_GPL(kthread_unuse_mm); 1513 1514 #ifdef CONFIG_BLK_CGROUP 1515 /** 1516 * kthread_associate_blkcg - associate blkcg to current kthread 1517 * @css: the cgroup info 1518 * 1519 * Current thread must be a kthread. The thread is running jobs on behalf of 1520 * other threads. In some cases, we expect the jobs attach cgroup info of 1521 * original threads instead of that of current thread. This function stores 1522 * original thread's cgroup info in current kthread context for later 1523 * retrieval. 1524 */ 1525 void kthread_associate_blkcg(struct cgroup_subsys_state *css) 1526 { 1527 struct kthread *kthread; 1528 1529 if (!(current->flags & PF_KTHREAD)) 1530 return; 1531 kthread = to_kthread(current); 1532 if (!kthread) 1533 return; 1534 1535 if (kthread->blkcg_css) { 1536 css_put(kthread->blkcg_css); 1537 kthread->blkcg_css = NULL; 1538 } 1539 if (css) { 1540 css_get(css); 1541 kthread->blkcg_css = css; 1542 } 1543 } 1544 EXPORT_SYMBOL(kthread_associate_blkcg); 1545 1546 /** 1547 * kthread_blkcg - get associated blkcg css of current kthread 1548 * 1549 * Current thread must be a kthread. 1550 */ 1551 struct cgroup_subsys_state *kthread_blkcg(void) 1552 { 1553 struct kthread *kthread; 1554 1555 if (current->flags & PF_KTHREAD) { 1556 kthread = to_kthread(current); 1557 if (kthread) 1558 return kthread->blkcg_css; 1559 } 1560 return NULL; 1561 } 1562 #endif 1563
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.