~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/kthread.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /* Kernel thread helper functions.
  3  *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
  4  *   Copyright (C) 2009 Red Hat, Inc.
  5  *
  6  * Creation is done via kthreadd, so that we get a clean environment
  7  * even if we're invoked from userspace (think modprobe, hotplug cpu,
  8  * etc.).
  9  */
 10 #include <uapi/linux/sched/types.h>
 11 #include <linux/mm.h>
 12 #include <linux/mmu_context.h>
 13 #include <linux/sched.h>
 14 #include <linux/sched/mm.h>
 15 #include <linux/sched/task.h>
 16 #include <linux/kthread.h>
 17 #include <linux/completion.h>
 18 #include <linux/err.h>
 19 #include <linux/cgroup.h>
 20 #include <linux/cpuset.h>
 21 #include <linux/unistd.h>
 22 #include <linux/file.h>
 23 #include <linux/export.h>
 24 #include <linux/mutex.h>
 25 #include <linux/slab.h>
 26 #include <linux/freezer.h>
 27 #include <linux/ptrace.h>
 28 #include <linux/uaccess.h>
 29 #include <linux/numa.h>
 30 #include <linux/sched/isolation.h>
 31 #include <trace/events/sched.h>
 32 
 33 
 34 static DEFINE_SPINLOCK(kthread_create_lock);
 35 static LIST_HEAD(kthread_create_list);
 36 struct task_struct *kthreadd_task;
 37 
 38 struct kthread_create_info
 39 {
 40         /* Information passed to kthread() from kthreadd. */
 41         char *full_name;
 42         int (*threadfn)(void *data);
 43         void *data;
 44         int node;
 45 
 46         /* Result passed back to kthread_create() from kthreadd. */
 47         struct task_struct *result;
 48         struct completion *done;
 49 
 50         struct list_head list;
 51 };
 52 
 53 struct kthread {
 54         unsigned long flags;
 55         unsigned int cpu;
 56         int result;
 57         int (*threadfn)(void *);
 58         void *data;
 59         struct completion parked;
 60         struct completion exited;
 61 #ifdef CONFIG_BLK_CGROUP
 62         struct cgroup_subsys_state *blkcg_css;
 63 #endif
 64         /* To store the full name if task comm is truncated. */
 65         char *full_name;
 66 };
 67 
 68 enum KTHREAD_BITS {
 69         KTHREAD_IS_PER_CPU = 0,
 70         KTHREAD_SHOULD_STOP,
 71         KTHREAD_SHOULD_PARK,
 72 };
 73 
 74 static inline struct kthread *to_kthread(struct task_struct *k)
 75 {
 76         WARN_ON(!(k->flags & PF_KTHREAD));
 77         return k->worker_private;
 78 }
 79 
 80 /*
 81  * Variant of to_kthread() that doesn't assume @p is a kthread.
 82  *
 83  * Per construction; when:
 84  *
 85  *   (p->flags & PF_KTHREAD) && p->worker_private
 86  *
 87  * the task is both a kthread and struct kthread is persistent. However
 88  * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
 89  * begin_new_exec()).
 90  */
 91 static inline struct kthread *__to_kthread(struct task_struct *p)
 92 {
 93         void *kthread = p->worker_private;
 94         if (kthread && !(p->flags & PF_KTHREAD))
 95                 kthread = NULL;
 96         return kthread;
 97 }
 98 
 99 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
100 {
101         struct kthread *kthread = to_kthread(tsk);
102 
103         if (!kthread || !kthread->full_name) {
104                 __get_task_comm(buf, buf_size, tsk);
105                 return;
106         }
107 
108         strscpy_pad(buf, kthread->full_name, buf_size);
109 }
110 
111 bool set_kthread_struct(struct task_struct *p)
112 {
113         struct kthread *kthread;
114 
115         if (WARN_ON_ONCE(to_kthread(p)))
116                 return false;
117 
118         kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
119         if (!kthread)
120                 return false;
121 
122         init_completion(&kthread->exited);
123         init_completion(&kthread->parked);
124         p->vfork_done = &kthread->exited;
125 
126         p->worker_private = kthread;
127         return true;
128 }
129 
130 void free_kthread_struct(struct task_struct *k)
131 {
132         struct kthread *kthread;
133 
134         /*
135          * Can be NULL if kmalloc() in set_kthread_struct() failed.
136          */
137         kthread = to_kthread(k);
138         if (!kthread)
139                 return;
140 
141 #ifdef CONFIG_BLK_CGROUP
142         WARN_ON_ONCE(kthread->blkcg_css);
143 #endif
144         k->worker_private = NULL;
145         kfree(kthread->full_name);
146         kfree(kthread);
147 }
148 
149 /**
150  * kthread_should_stop - should this kthread return now?
151  *
152  * When someone calls kthread_stop() on your kthread, it will be woken
153  * and this will return true.  You should then return, and your return
154  * value will be passed through to kthread_stop().
155  */
156 bool kthread_should_stop(void)
157 {
158         return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
159 }
160 EXPORT_SYMBOL(kthread_should_stop);
161 
162 static bool __kthread_should_park(struct task_struct *k)
163 {
164         return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
165 }
166 
167 /**
168  * kthread_should_park - should this kthread park now?
169  *
170  * When someone calls kthread_park() on your kthread, it will be woken
171  * and this will return true.  You should then do the necessary
172  * cleanup and call kthread_parkme()
173  *
174  * Similar to kthread_should_stop(), but this keeps the thread alive
175  * and in a park position. kthread_unpark() "restarts" the thread and
176  * calls the thread function again.
177  */
178 bool kthread_should_park(void)
179 {
180         return __kthread_should_park(current);
181 }
182 EXPORT_SYMBOL_GPL(kthread_should_park);
183 
184 bool kthread_should_stop_or_park(void)
185 {
186         struct kthread *kthread = __to_kthread(current);
187 
188         if (!kthread)
189                 return false;
190 
191         return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK));
192 }
193 
194 /**
195  * kthread_freezable_should_stop - should this freezable kthread return now?
196  * @was_frozen: optional out parameter, indicates whether %current was frozen
197  *
198  * kthread_should_stop() for freezable kthreads, which will enter
199  * refrigerator if necessary.  This function is safe from kthread_stop() /
200  * freezer deadlock and freezable kthreads should use this function instead
201  * of calling try_to_freeze() directly.
202  */
203 bool kthread_freezable_should_stop(bool *was_frozen)
204 {
205         bool frozen = false;
206 
207         might_sleep();
208 
209         if (unlikely(freezing(current)))
210                 frozen = __refrigerator(true);
211 
212         if (was_frozen)
213                 *was_frozen = frozen;
214 
215         return kthread_should_stop();
216 }
217 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
218 
219 /**
220  * kthread_func - return the function specified on kthread creation
221  * @task: kthread task in question
222  *
223  * Returns NULL if the task is not a kthread.
224  */
225 void *kthread_func(struct task_struct *task)
226 {
227         struct kthread *kthread = __to_kthread(task);
228         if (kthread)
229                 return kthread->threadfn;
230         return NULL;
231 }
232 EXPORT_SYMBOL_GPL(kthread_func);
233 
234 /**
235  * kthread_data - return data value specified on kthread creation
236  * @task: kthread task in question
237  *
238  * Return the data value specified when kthread @task was created.
239  * The caller is responsible for ensuring the validity of @task when
240  * calling this function.
241  */
242 void *kthread_data(struct task_struct *task)
243 {
244         return to_kthread(task)->data;
245 }
246 EXPORT_SYMBOL_GPL(kthread_data);
247 
248 /**
249  * kthread_probe_data - speculative version of kthread_data()
250  * @task: possible kthread task in question
251  *
252  * @task could be a kthread task.  Return the data value specified when it
253  * was created if accessible.  If @task isn't a kthread task or its data is
254  * inaccessible for any reason, %NULL is returned.  This function requires
255  * that @task itself is safe to dereference.
256  */
257 void *kthread_probe_data(struct task_struct *task)
258 {
259         struct kthread *kthread = __to_kthread(task);
260         void *data = NULL;
261 
262         if (kthread)
263                 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
264         return data;
265 }
266 
267 static void __kthread_parkme(struct kthread *self)
268 {
269         for (;;) {
270                 /*
271                  * TASK_PARKED is a special state; we must serialize against
272                  * possible pending wakeups to avoid store-store collisions on
273                  * task->state.
274                  *
275                  * Such a collision might possibly result in the task state
276                  * changin from TASK_PARKED and us failing the
277                  * wait_task_inactive() in kthread_park().
278                  */
279                 set_special_state(TASK_PARKED);
280                 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
281                         break;
282 
283                 /*
284                  * Thread is going to call schedule(), do not preempt it,
285                  * or the caller of kthread_park() may spend more time in
286                  * wait_task_inactive().
287                  */
288                 preempt_disable();
289                 complete(&self->parked);
290                 schedule_preempt_disabled();
291                 preempt_enable();
292         }
293         __set_current_state(TASK_RUNNING);
294 }
295 
296 void kthread_parkme(void)
297 {
298         __kthread_parkme(to_kthread(current));
299 }
300 EXPORT_SYMBOL_GPL(kthread_parkme);
301 
302 /**
303  * kthread_exit - Cause the current kthread return @result to kthread_stop().
304  * @result: The integer value to return to kthread_stop().
305  *
306  * While kthread_exit can be called directly, it exists so that
307  * functions which do some additional work in non-modular code such as
308  * module_put_and_kthread_exit can be implemented.
309  *
310  * Does not return.
311  */
312 void __noreturn kthread_exit(long result)
313 {
314         struct kthread *kthread = to_kthread(current);
315         kthread->result = result;
316         do_exit(0);
317 }
318 EXPORT_SYMBOL(kthread_exit);
319 
320 /**
321  * kthread_complete_and_exit - Exit the current kthread.
322  * @comp: Completion to complete
323  * @code: The integer value to return to kthread_stop().
324  *
325  * If present, complete @comp and then return code to kthread_stop().
326  *
327  * A kernel thread whose module may be removed after the completion of
328  * @comp can use this function to exit safely.
329  *
330  * Does not return.
331  */
332 void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
333 {
334         if (comp)
335                 complete(comp);
336 
337         kthread_exit(code);
338 }
339 EXPORT_SYMBOL(kthread_complete_and_exit);
340 
341 static int kthread(void *_create)
342 {
343         static const struct sched_param param = { .sched_priority = 0 };
344         /* Copy data: it's on kthread's stack */
345         struct kthread_create_info *create = _create;
346         int (*threadfn)(void *data) = create->threadfn;
347         void *data = create->data;
348         struct completion *done;
349         struct kthread *self;
350         int ret;
351 
352         self = to_kthread(current);
353 
354         /* Release the structure when caller killed by a fatal signal. */
355         done = xchg(&create->done, NULL);
356         if (!done) {
357                 kfree(create->full_name);
358                 kfree(create);
359                 kthread_exit(-EINTR);
360         }
361 
362         self->full_name = create->full_name;
363         self->threadfn = threadfn;
364         self->data = data;
365 
366         /*
367          * The new thread inherited kthreadd's priority and CPU mask. Reset
368          * back to default in case they have been changed.
369          */
370         sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
371         set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD));
372 
373         /* OK, tell user we're spawned, wait for stop or wakeup */
374         __set_current_state(TASK_UNINTERRUPTIBLE);
375         create->result = current;
376         /*
377          * Thread is going to call schedule(), do not preempt it,
378          * or the creator may spend more time in wait_task_inactive().
379          */
380         preempt_disable();
381         complete(done);
382         schedule_preempt_disabled();
383         preempt_enable();
384 
385         ret = -EINTR;
386         if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
387                 cgroup_kthread_ready();
388                 __kthread_parkme(self);
389                 ret = threadfn(data);
390         }
391         kthread_exit(ret);
392 }
393 
394 /* called from kernel_clone() to get node information for about to be created task */
395 int tsk_fork_get_node(struct task_struct *tsk)
396 {
397 #ifdef CONFIG_NUMA
398         if (tsk == kthreadd_task)
399                 return tsk->pref_node_fork;
400 #endif
401         return NUMA_NO_NODE;
402 }
403 
404 static void create_kthread(struct kthread_create_info *create)
405 {
406         int pid;
407 
408 #ifdef CONFIG_NUMA
409         current->pref_node_fork = create->node;
410 #endif
411         /* We want our own signal handler (we take no signals by default). */
412         pid = kernel_thread(kthread, create, create->full_name,
413                             CLONE_FS | CLONE_FILES | SIGCHLD);
414         if (pid < 0) {
415                 /* Release the structure when caller killed by a fatal signal. */
416                 struct completion *done = xchg(&create->done, NULL);
417 
418                 kfree(create->full_name);
419                 if (!done) {
420                         kfree(create);
421                         return;
422                 }
423                 create->result = ERR_PTR(pid);
424                 complete(done);
425         }
426 }
427 
428 static __printf(4, 0)
429 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
430                                                     void *data, int node,
431                                                     const char namefmt[],
432                                                     va_list args)
433 {
434         DECLARE_COMPLETION_ONSTACK(done);
435         struct task_struct *task;
436         struct kthread_create_info *create = kmalloc(sizeof(*create),
437                                                      GFP_KERNEL);
438 
439         if (!create)
440                 return ERR_PTR(-ENOMEM);
441         create->threadfn = threadfn;
442         create->data = data;
443         create->node = node;
444         create->done = &done;
445         create->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
446         if (!create->full_name) {
447                 task = ERR_PTR(-ENOMEM);
448                 goto free_create;
449         }
450 
451         spin_lock(&kthread_create_lock);
452         list_add_tail(&create->list, &kthread_create_list);
453         spin_unlock(&kthread_create_lock);
454 
455         wake_up_process(kthreadd_task);
456         /*
457          * Wait for completion in killable state, for I might be chosen by
458          * the OOM killer while kthreadd is trying to allocate memory for
459          * new kernel thread.
460          */
461         if (unlikely(wait_for_completion_killable(&done))) {
462                 /*
463                  * If I was killed by a fatal signal before kthreadd (or new
464                  * kernel thread) calls complete(), leave the cleanup of this
465                  * structure to that thread.
466                  */
467                 if (xchg(&create->done, NULL))
468                         return ERR_PTR(-EINTR);
469                 /*
470                  * kthreadd (or new kernel thread) will call complete()
471                  * shortly.
472                  */
473                 wait_for_completion(&done);
474         }
475         task = create->result;
476 free_create:
477         kfree(create);
478         return task;
479 }
480 
481 /**
482  * kthread_create_on_node - create a kthread.
483  * @threadfn: the function to run until signal_pending(current).
484  * @data: data ptr for @threadfn.
485  * @node: task and thread structures for the thread are allocated on this node
486  * @namefmt: printf-style name for the thread.
487  *
488  * Description: This helper function creates and names a kernel
489  * thread.  The thread will be stopped: use wake_up_process() to start
490  * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
491  * is affine to all CPUs.
492  *
493  * If thread is going to be bound on a particular cpu, give its node
494  * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
495  * When woken, the thread will run @threadfn() with @data as its
496  * argument. @threadfn() can either return directly if it is a
497  * standalone thread for which no one will call kthread_stop(), or
498  * return when 'kthread_should_stop()' is true (which means
499  * kthread_stop() has been called).  The return value should be zero
500  * or a negative error number; it will be passed to kthread_stop().
501  *
502  * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
503  */
504 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
505                                            void *data, int node,
506                                            const char namefmt[],
507                                            ...)
508 {
509         struct task_struct *task;
510         va_list args;
511 
512         va_start(args, namefmt);
513         task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
514         va_end(args);
515 
516         return task;
517 }
518 EXPORT_SYMBOL(kthread_create_on_node);
519 
520 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
521 {
522         unsigned long flags;
523 
524         if (!wait_task_inactive(p, state)) {
525                 WARN_ON(1);
526                 return;
527         }
528 
529         /* It's safe because the task is inactive. */
530         raw_spin_lock_irqsave(&p->pi_lock, flags);
531         do_set_cpus_allowed(p, mask);
532         p->flags |= PF_NO_SETAFFINITY;
533         raw_spin_unlock_irqrestore(&p->pi_lock, flags);
534 }
535 
536 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
537 {
538         __kthread_bind_mask(p, cpumask_of(cpu), state);
539 }
540 
541 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
542 {
543         __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
544 }
545 
546 /**
547  * kthread_bind - bind a just-created kthread to a cpu.
548  * @p: thread created by kthread_create().
549  * @cpu: cpu (might not be online, must be possible) for @k to run on.
550  *
551  * Description: This function is equivalent to set_cpus_allowed(),
552  * except that @cpu doesn't need to be online, and the thread must be
553  * stopped (i.e., just returned from kthread_create()).
554  */
555 void kthread_bind(struct task_struct *p, unsigned int cpu)
556 {
557         __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
558 }
559 EXPORT_SYMBOL(kthread_bind);
560 
561 /**
562  * kthread_create_on_cpu - Create a cpu bound kthread
563  * @threadfn: the function to run until signal_pending(current).
564  * @data: data ptr for @threadfn.
565  * @cpu: The cpu on which the thread should be bound,
566  * @namefmt: printf-style name for the thread. Format is restricted
567  *           to "name.*%u". Code fills in cpu number.
568  *
569  * Description: This helper function creates and names a kernel thread
570  */
571 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
572                                           void *data, unsigned int cpu,
573                                           const char *namefmt)
574 {
575         struct task_struct *p;
576 
577         p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
578                                    cpu);
579         if (IS_ERR(p))
580                 return p;
581         kthread_bind(p, cpu);
582         /* CPU hotplug need to bind once again when unparking the thread. */
583         to_kthread(p)->cpu = cpu;
584         return p;
585 }
586 EXPORT_SYMBOL(kthread_create_on_cpu);
587 
588 void kthread_set_per_cpu(struct task_struct *k, int cpu)
589 {
590         struct kthread *kthread = to_kthread(k);
591         if (!kthread)
592                 return;
593 
594         WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
595 
596         if (cpu < 0) {
597                 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
598                 return;
599         }
600 
601         kthread->cpu = cpu;
602         set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
603 }
604 
605 bool kthread_is_per_cpu(struct task_struct *p)
606 {
607         struct kthread *kthread = __to_kthread(p);
608         if (!kthread)
609                 return false;
610 
611         return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
612 }
613 
614 /**
615  * kthread_unpark - unpark a thread created by kthread_create().
616  * @k:          thread created by kthread_create().
617  *
618  * Sets kthread_should_park() for @k to return false, wakes it, and
619  * waits for it to return. If the thread is marked percpu then its
620  * bound to the cpu again.
621  */
622 void kthread_unpark(struct task_struct *k)
623 {
624         struct kthread *kthread = to_kthread(k);
625 
626         if (!test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))
627                 return;
628         /*
629          * Newly created kthread was parked when the CPU was offline.
630          * The binding was lost and we need to set it again.
631          */
632         if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
633                 __kthread_bind(k, kthread->cpu, TASK_PARKED);
634 
635         clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
636         /*
637          * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
638          */
639         wake_up_state(k, TASK_PARKED);
640 }
641 EXPORT_SYMBOL_GPL(kthread_unpark);
642 
643 /**
644  * kthread_park - park a thread created by kthread_create().
645  * @k: thread created by kthread_create().
646  *
647  * Sets kthread_should_park() for @k to return true, wakes it, and
648  * waits for it to return. This can also be called after kthread_create()
649  * instead of calling wake_up_process(): the thread will park without
650  * calling threadfn().
651  *
652  * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
653  * If called by the kthread itself just the park bit is set.
654  */
655 int kthread_park(struct task_struct *k)
656 {
657         struct kthread *kthread = to_kthread(k);
658 
659         if (WARN_ON(k->flags & PF_EXITING))
660                 return -ENOSYS;
661 
662         if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
663                 return -EBUSY;
664 
665         set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
666         if (k != current) {
667                 wake_up_process(k);
668                 /*
669                  * Wait for __kthread_parkme() to complete(), this means we
670                  * _will_ have TASK_PARKED and are about to call schedule().
671                  */
672                 wait_for_completion(&kthread->parked);
673                 /*
674                  * Now wait for that schedule() to complete and the task to
675                  * get scheduled out.
676                  */
677                 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
678         }
679 
680         return 0;
681 }
682 EXPORT_SYMBOL_GPL(kthread_park);
683 
684 /**
685  * kthread_stop - stop a thread created by kthread_create().
686  * @k: thread created by kthread_create().
687  *
688  * Sets kthread_should_stop() for @k to return true, wakes it, and
689  * waits for it to exit. This can also be called after kthread_create()
690  * instead of calling wake_up_process(): the thread will exit without
691  * calling threadfn().
692  *
693  * If threadfn() may call kthread_exit() itself, the caller must ensure
694  * task_struct can't go away.
695  *
696  * Returns the result of threadfn(), or %-EINTR if wake_up_process()
697  * was never called.
698  */
699 int kthread_stop(struct task_struct *k)
700 {
701         struct kthread *kthread;
702         int ret;
703 
704         trace_sched_kthread_stop(k);
705 
706         get_task_struct(k);
707         kthread = to_kthread(k);
708         set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
709         kthread_unpark(k);
710         set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL);
711         wake_up_process(k);
712         wait_for_completion(&kthread->exited);
713         ret = kthread->result;
714         put_task_struct(k);
715 
716         trace_sched_kthread_stop_ret(ret);
717         return ret;
718 }
719 EXPORT_SYMBOL(kthread_stop);
720 
721 /**
722  * kthread_stop_put - stop a thread and put its task struct
723  * @k: thread created by kthread_create().
724  *
725  * Stops a thread created by kthread_create() and put its task_struct.
726  * Only use when holding an extra task struct reference obtained by
727  * calling get_task_struct().
728  */
729 int kthread_stop_put(struct task_struct *k)
730 {
731         int ret;
732 
733         ret = kthread_stop(k);
734         put_task_struct(k);
735         return ret;
736 }
737 EXPORT_SYMBOL(kthread_stop_put);
738 
739 int kthreadd(void *unused)
740 {
741         struct task_struct *tsk = current;
742 
743         /* Setup a clean context for our children to inherit. */
744         set_task_comm(tsk, "kthreadd");
745         ignore_signals(tsk);
746         set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
747         set_mems_allowed(node_states[N_MEMORY]);
748 
749         current->flags |= PF_NOFREEZE;
750         cgroup_init_kthreadd();
751 
752         for (;;) {
753                 set_current_state(TASK_INTERRUPTIBLE);
754                 if (list_empty(&kthread_create_list))
755                         schedule();
756                 __set_current_state(TASK_RUNNING);
757 
758                 spin_lock(&kthread_create_lock);
759                 while (!list_empty(&kthread_create_list)) {
760                         struct kthread_create_info *create;
761 
762                         create = list_entry(kthread_create_list.next,
763                                             struct kthread_create_info, list);
764                         list_del_init(&create->list);
765                         spin_unlock(&kthread_create_lock);
766 
767                         create_kthread(create);
768 
769                         spin_lock(&kthread_create_lock);
770                 }
771                 spin_unlock(&kthread_create_lock);
772         }
773 
774         return 0;
775 }
776 
777 void __kthread_init_worker(struct kthread_worker *worker,
778                                 const char *name,
779                                 struct lock_class_key *key)
780 {
781         memset(worker, 0, sizeof(struct kthread_worker));
782         raw_spin_lock_init(&worker->lock);
783         lockdep_set_class_and_name(&worker->lock, key, name);
784         INIT_LIST_HEAD(&worker->work_list);
785         INIT_LIST_HEAD(&worker->delayed_work_list);
786 }
787 EXPORT_SYMBOL_GPL(__kthread_init_worker);
788 
789 /**
790  * kthread_worker_fn - kthread function to process kthread_worker
791  * @worker_ptr: pointer to initialized kthread_worker
792  *
793  * This function implements the main cycle of kthread worker. It processes
794  * work_list until it is stopped with kthread_stop(). It sleeps when the queue
795  * is empty.
796  *
797  * The works are not allowed to keep any locks, disable preemption or interrupts
798  * when they finish. There is defined a safe point for freezing when one work
799  * finishes and before a new one is started.
800  *
801  * Also the works must not be handled by more than one worker at the same time,
802  * see also kthread_queue_work().
803  */
804 int kthread_worker_fn(void *worker_ptr)
805 {
806         struct kthread_worker *worker = worker_ptr;
807         struct kthread_work *work;
808 
809         /*
810          * FIXME: Update the check and remove the assignment when all kthread
811          * worker users are created using kthread_create_worker*() functions.
812          */
813         WARN_ON(worker->task && worker->task != current);
814         worker->task = current;
815 
816         if (worker->flags & KTW_FREEZABLE)
817                 set_freezable();
818 
819 repeat:
820         set_current_state(TASK_INTERRUPTIBLE);  /* mb paired w/ kthread_stop */
821 
822         if (kthread_should_stop()) {
823                 __set_current_state(TASK_RUNNING);
824                 raw_spin_lock_irq(&worker->lock);
825                 worker->task = NULL;
826                 raw_spin_unlock_irq(&worker->lock);
827                 return 0;
828         }
829 
830         work = NULL;
831         raw_spin_lock_irq(&worker->lock);
832         if (!list_empty(&worker->work_list)) {
833                 work = list_first_entry(&worker->work_list,
834                                         struct kthread_work, node);
835                 list_del_init(&work->node);
836         }
837         worker->current_work = work;
838         raw_spin_unlock_irq(&worker->lock);
839 
840         if (work) {
841                 kthread_work_func_t func = work->func;
842                 __set_current_state(TASK_RUNNING);
843                 trace_sched_kthread_work_execute_start(work);
844                 work->func(work);
845                 /*
846                  * Avoid dereferencing work after this point.  The trace
847                  * event only cares about the address.
848                  */
849                 trace_sched_kthread_work_execute_end(work, func);
850         } else if (!freezing(current)) {
851                 schedule();
852         } else {
853                 /*
854                  * Handle the case where the current remains
855                  * TASK_INTERRUPTIBLE. try_to_freeze() expects
856                  * the current to be TASK_RUNNING.
857                  */
858                 __set_current_state(TASK_RUNNING);
859         }
860 
861         try_to_freeze();
862         cond_resched();
863         goto repeat;
864 }
865 EXPORT_SYMBOL_GPL(kthread_worker_fn);
866 
867 static __printf(3, 0) struct kthread_worker *
868 __kthread_create_worker(int cpu, unsigned int flags,
869                         const char namefmt[], va_list args)
870 {
871         struct kthread_worker *worker;
872         struct task_struct *task;
873         int node = NUMA_NO_NODE;
874 
875         worker = kzalloc(sizeof(*worker), GFP_KERNEL);
876         if (!worker)
877                 return ERR_PTR(-ENOMEM);
878 
879         kthread_init_worker(worker);
880 
881         if (cpu >= 0)
882                 node = cpu_to_node(cpu);
883 
884         task = __kthread_create_on_node(kthread_worker_fn, worker,
885                                                 node, namefmt, args);
886         if (IS_ERR(task))
887                 goto fail_task;
888 
889         if (cpu >= 0)
890                 kthread_bind(task, cpu);
891 
892         worker->flags = flags;
893         worker->task = task;
894         wake_up_process(task);
895         return worker;
896 
897 fail_task:
898         kfree(worker);
899         return ERR_CAST(task);
900 }
901 
902 /**
903  * kthread_create_worker - create a kthread worker
904  * @flags: flags modifying the default behavior of the worker
905  * @namefmt: printf-style name for the kthread worker (task).
906  *
907  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
908  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
909  * when the caller was killed by a fatal signal.
910  */
911 struct kthread_worker *
912 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
913 {
914         struct kthread_worker *worker;
915         va_list args;
916 
917         va_start(args, namefmt);
918         worker = __kthread_create_worker(-1, flags, namefmt, args);
919         va_end(args);
920 
921         return worker;
922 }
923 EXPORT_SYMBOL(kthread_create_worker);
924 
925 /**
926  * kthread_create_worker_on_cpu - create a kthread worker and bind it
927  *      to a given CPU and the associated NUMA node.
928  * @cpu: CPU number
929  * @flags: flags modifying the default behavior of the worker
930  * @namefmt: printf-style name for the kthread worker (task).
931  *
932  * Use a valid CPU number if you want to bind the kthread worker
933  * to the given CPU and the associated NUMA node.
934  *
935  * A good practice is to add the cpu number also into the worker name.
936  * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
937  *
938  * CPU hotplug:
939  * The kthread worker API is simple and generic. It just provides a way
940  * to create, use, and destroy workers.
941  *
942  * It is up to the API user how to handle CPU hotplug. They have to decide
943  * how to handle pending work items, prevent queuing new ones, and
944  * restore the functionality when the CPU goes off and on. There are a
945  * few catches:
946  *
947  *    - CPU affinity gets lost when it is scheduled on an offline CPU.
948  *
949  *    - The worker might not exist when the CPU was off when the user
950  *      created the workers.
951  *
952  * Good practice is to implement two CPU hotplug callbacks and to
953  * destroy/create the worker when the CPU goes down/up.
954  *
955  * Return:
956  * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
957  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
958  * when the caller was killed by a fatal signal.
959  */
960 struct kthread_worker *
961 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
962                              const char namefmt[], ...)
963 {
964         struct kthread_worker *worker;
965         va_list args;
966 
967         va_start(args, namefmt);
968         worker = __kthread_create_worker(cpu, flags, namefmt, args);
969         va_end(args);
970 
971         return worker;
972 }
973 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
974 
975 /*
976  * Returns true when the work could not be queued at the moment.
977  * It happens when it is already pending in a worker list
978  * or when it is being cancelled.
979  */
980 static inline bool queuing_blocked(struct kthread_worker *worker,
981                                    struct kthread_work *work)
982 {
983         lockdep_assert_held(&worker->lock);
984 
985         return !list_empty(&work->node) || work->canceling;
986 }
987 
988 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
989                                              struct kthread_work *work)
990 {
991         lockdep_assert_held(&worker->lock);
992         WARN_ON_ONCE(!list_empty(&work->node));
993         /* Do not use a work with >1 worker, see kthread_queue_work() */
994         WARN_ON_ONCE(work->worker && work->worker != worker);
995 }
996 
997 /* insert @work before @pos in @worker */
998 static void kthread_insert_work(struct kthread_worker *worker,
999                                 struct kthread_work *work,
1000                                 struct list_head *pos)
1001 {
1002         kthread_insert_work_sanity_check(worker, work);
1003 
1004         trace_sched_kthread_work_queue_work(worker, work);
1005 
1006         list_add_tail(&work->node, pos);
1007         work->worker = worker;
1008         if (!worker->current_work && likely(worker->task))
1009                 wake_up_process(worker->task);
1010 }
1011 
1012 /**
1013  * kthread_queue_work - queue a kthread_work
1014  * @worker: target kthread_worker
1015  * @work: kthread_work to queue
1016  *
1017  * Queue @work to work processor @task for async execution.  @task
1018  * must have been created with kthread_worker_create().  Returns %true
1019  * if @work was successfully queued, %false if it was already pending.
1020  *
1021  * Reinitialize the work if it needs to be used by another worker.
1022  * For example, when the worker was stopped and started again.
1023  */
1024 bool kthread_queue_work(struct kthread_worker *worker,
1025                         struct kthread_work *work)
1026 {
1027         bool ret = false;
1028         unsigned long flags;
1029 
1030         raw_spin_lock_irqsave(&worker->lock, flags);
1031         if (!queuing_blocked(worker, work)) {
1032                 kthread_insert_work(worker, work, &worker->work_list);
1033                 ret = true;
1034         }
1035         raw_spin_unlock_irqrestore(&worker->lock, flags);
1036         return ret;
1037 }
1038 EXPORT_SYMBOL_GPL(kthread_queue_work);
1039 
1040 /**
1041  * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1042  *      delayed work when the timer expires.
1043  * @t: pointer to the expired timer
1044  *
1045  * The format of the function is defined by struct timer_list.
1046  * It should have been called from irqsafe timer with irq already off.
1047  */
1048 void kthread_delayed_work_timer_fn(struct timer_list *t)
1049 {
1050         struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
1051         struct kthread_work *work = &dwork->work;
1052         struct kthread_worker *worker = work->worker;
1053         unsigned long flags;
1054 
1055         /*
1056          * This might happen when a pending work is reinitialized.
1057          * It means that it is used a wrong way.
1058          */
1059         if (WARN_ON_ONCE(!worker))
1060                 return;
1061 
1062         raw_spin_lock_irqsave(&worker->lock, flags);
1063         /* Work must not be used with >1 worker, see kthread_queue_work(). */
1064         WARN_ON_ONCE(work->worker != worker);
1065 
1066         /* Move the work from worker->delayed_work_list. */
1067         WARN_ON_ONCE(list_empty(&work->node));
1068         list_del_init(&work->node);
1069         if (!work->canceling)
1070                 kthread_insert_work(worker, work, &worker->work_list);
1071 
1072         raw_spin_unlock_irqrestore(&worker->lock, flags);
1073 }
1074 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1075 
1076 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1077                                          struct kthread_delayed_work *dwork,
1078                                          unsigned long delay)
1079 {
1080         struct timer_list *timer = &dwork->timer;
1081         struct kthread_work *work = &dwork->work;
1082 
1083         WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
1084 
1085         /*
1086          * If @delay is 0, queue @dwork->work immediately.  This is for
1087          * both optimization and correctness.  The earliest @timer can
1088          * expire is on the closest next tick and delayed_work users depend
1089          * on that there's no such delay when @delay is 0.
1090          */
1091         if (!delay) {
1092                 kthread_insert_work(worker, work, &worker->work_list);
1093                 return;
1094         }
1095 
1096         /* Be paranoid and try to detect possible races already now. */
1097         kthread_insert_work_sanity_check(worker, work);
1098 
1099         list_add(&work->node, &worker->delayed_work_list);
1100         work->worker = worker;
1101         timer->expires = jiffies + delay;
1102         add_timer(timer);
1103 }
1104 
1105 /**
1106  * kthread_queue_delayed_work - queue the associated kthread work
1107  *      after a delay.
1108  * @worker: target kthread_worker
1109  * @dwork: kthread_delayed_work to queue
1110  * @delay: number of jiffies to wait before queuing
1111  *
1112  * If the work has not been pending it starts a timer that will queue
1113  * the work after the given @delay. If @delay is zero, it queues the
1114  * work immediately.
1115  *
1116  * Return: %false if the @work has already been pending. It means that
1117  * either the timer was running or the work was queued. It returns %true
1118  * otherwise.
1119  */
1120 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1121                                 struct kthread_delayed_work *dwork,
1122                                 unsigned long delay)
1123 {
1124         struct kthread_work *work = &dwork->work;
1125         unsigned long flags;
1126         bool ret = false;
1127 
1128         raw_spin_lock_irqsave(&worker->lock, flags);
1129 
1130         if (!queuing_blocked(worker, work)) {
1131                 __kthread_queue_delayed_work(worker, dwork, delay);
1132                 ret = true;
1133         }
1134 
1135         raw_spin_unlock_irqrestore(&worker->lock, flags);
1136         return ret;
1137 }
1138 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1139 
1140 struct kthread_flush_work {
1141         struct kthread_work     work;
1142         struct completion       done;
1143 };
1144 
1145 static void kthread_flush_work_fn(struct kthread_work *work)
1146 {
1147         struct kthread_flush_work *fwork =
1148                 container_of(work, struct kthread_flush_work, work);
1149         complete(&fwork->done);
1150 }
1151 
1152 /**
1153  * kthread_flush_work - flush a kthread_work
1154  * @work: work to flush
1155  *
1156  * If @work is queued or executing, wait for it to finish execution.
1157  */
1158 void kthread_flush_work(struct kthread_work *work)
1159 {
1160         struct kthread_flush_work fwork = {
1161                 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1162                 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1163         };
1164         struct kthread_worker *worker;
1165         bool noop = false;
1166 
1167         worker = work->worker;
1168         if (!worker)
1169                 return;
1170 
1171         raw_spin_lock_irq(&worker->lock);
1172         /* Work must not be used with >1 worker, see kthread_queue_work(). */
1173         WARN_ON_ONCE(work->worker != worker);
1174 
1175         if (!list_empty(&work->node))
1176                 kthread_insert_work(worker, &fwork.work, work->node.next);
1177         else if (worker->current_work == work)
1178                 kthread_insert_work(worker, &fwork.work,
1179                                     worker->work_list.next);
1180         else
1181                 noop = true;
1182 
1183         raw_spin_unlock_irq(&worker->lock);
1184 
1185         if (!noop)
1186                 wait_for_completion(&fwork.done);
1187 }
1188 EXPORT_SYMBOL_GPL(kthread_flush_work);
1189 
1190 /*
1191  * Make sure that the timer is neither set nor running and could
1192  * not manipulate the work list_head any longer.
1193  *
1194  * The function is called under worker->lock. The lock is temporary
1195  * released but the timer can't be set again in the meantime.
1196  */
1197 static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1198                                               unsigned long *flags)
1199 {
1200         struct kthread_delayed_work *dwork =
1201                 container_of(work, struct kthread_delayed_work, work);
1202         struct kthread_worker *worker = work->worker;
1203 
1204         /*
1205          * del_timer_sync() must be called to make sure that the timer
1206          * callback is not running. The lock must be temporary released
1207          * to avoid a deadlock with the callback. In the meantime,
1208          * any queuing is blocked by setting the canceling counter.
1209          */
1210         work->canceling++;
1211         raw_spin_unlock_irqrestore(&worker->lock, *flags);
1212         del_timer_sync(&dwork->timer);
1213         raw_spin_lock_irqsave(&worker->lock, *flags);
1214         work->canceling--;
1215 }
1216 
1217 /*
1218  * This function removes the work from the worker queue.
1219  *
1220  * It is called under worker->lock. The caller must make sure that
1221  * the timer used by delayed work is not running, e.g. by calling
1222  * kthread_cancel_delayed_work_timer().
1223  *
1224  * The work might still be in use when this function finishes. See the
1225  * current_work proceed by the worker.
1226  *
1227  * Return: %true if @work was pending and successfully canceled,
1228  *      %false if @work was not pending
1229  */
1230 static bool __kthread_cancel_work(struct kthread_work *work)
1231 {
1232         /*
1233          * Try to remove the work from a worker list. It might either
1234          * be from worker->work_list or from worker->delayed_work_list.
1235          */
1236         if (!list_empty(&work->node)) {
1237                 list_del_init(&work->node);
1238                 return true;
1239         }
1240 
1241         return false;
1242 }
1243 
1244 /**
1245  * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1246  * @worker: kthread worker to use
1247  * @dwork: kthread delayed work to queue
1248  * @delay: number of jiffies to wait before queuing
1249  *
1250  * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1251  * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1252  * @work is guaranteed to be queued immediately.
1253  *
1254  * Return: %false if @dwork was idle and queued, %true otherwise.
1255  *
1256  * A special case is when the work is being canceled in parallel.
1257  * It might be caused either by the real kthread_cancel_delayed_work_sync()
1258  * or yet another kthread_mod_delayed_work() call. We let the other command
1259  * win and return %true here. The return value can be used for reference
1260  * counting and the number of queued works stays the same. Anyway, the caller
1261  * is supposed to synchronize these operations a reasonable way.
1262  *
1263  * This function is safe to call from any context including IRQ handler.
1264  * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1265  * for details.
1266  */
1267 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1268                               struct kthread_delayed_work *dwork,
1269                               unsigned long delay)
1270 {
1271         struct kthread_work *work = &dwork->work;
1272         unsigned long flags;
1273         int ret;
1274 
1275         raw_spin_lock_irqsave(&worker->lock, flags);
1276 
1277         /* Do not bother with canceling when never queued. */
1278         if (!work->worker) {
1279                 ret = false;
1280                 goto fast_queue;
1281         }
1282 
1283         /* Work must not be used with >1 worker, see kthread_queue_work() */
1284         WARN_ON_ONCE(work->worker != worker);
1285 
1286         /*
1287          * Temporary cancel the work but do not fight with another command
1288          * that is canceling the work as well.
1289          *
1290          * It is a bit tricky because of possible races with another
1291          * mod_delayed_work() and cancel_delayed_work() callers.
1292          *
1293          * The timer must be canceled first because worker->lock is released
1294          * when doing so. But the work can be removed from the queue (list)
1295          * only when it can be queued again so that the return value can
1296          * be used for reference counting.
1297          */
1298         kthread_cancel_delayed_work_timer(work, &flags);
1299         if (work->canceling) {
1300                 /* The number of works in the queue does not change. */
1301                 ret = true;
1302                 goto out;
1303         }
1304         ret = __kthread_cancel_work(work);
1305 
1306 fast_queue:
1307         __kthread_queue_delayed_work(worker, dwork, delay);
1308 out:
1309         raw_spin_unlock_irqrestore(&worker->lock, flags);
1310         return ret;
1311 }
1312 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1313 
1314 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1315 {
1316         struct kthread_worker *worker = work->worker;
1317         unsigned long flags;
1318         int ret = false;
1319 
1320         if (!worker)
1321                 goto out;
1322 
1323         raw_spin_lock_irqsave(&worker->lock, flags);
1324         /* Work must not be used with >1 worker, see kthread_queue_work(). */
1325         WARN_ON_ONCE(work->worker != worker);
1326 
1327         if (is_dwork)
1328                 kthread_cancel_delayed_work_timer(work, &flags);
1329 
1330         ret = __kthread_cancel_work(work);
1331 
1332         if (worker->current_work != work)
1333                 goto out_fast;
1334 
1335         /*
1336          * The work is in progress and we need to wait with the lock released.
1337          * In the meantime, block any queuing by setting the canceling counter.
1338          */
1339         work->canceling++;
1340         raw_spin_unlock_irqrestore(&worker->lock, flags);
1341         kthread_flush_work(work);
1342         raw_spin_lock_irqsave(&worker->lock, flags);
1343         work->canceling--;
1344 
1345 out_fast:
1346         raw_spin_unlock_irqrestore(&worker->lock, flags);
1347 out:
1348         return ret;
1349 }
1350 
1351 /**
1352  * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1353  * @work: the kthread work to cancel
1354  *
1355  * Cancel @work and wait for its execution to finish.  This function
1356  * can be used even if the work re-queues itself. On return from this
1357  * function, @work is guaranteed to be not pending or executing on any CPU.
1358  *
1359  * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1360  * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1361  *
1362  * The caller must ensure that the worker on which @work was last
1363  * queued can't be destroyed before this function returns.
1364  *
1365  * Return: %true if @work was pending, %false otherwise.
1366  */
1367 bool kthread_cancel_work_sync(struct kthread_work *work)
1368 {
1369         return __kthread_cancel_work_sync(work, false);
1370 }
1371 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1372 
1373 /**
1374  * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1375  *      wait for it to finish.
1376  * @dwork: the kthread delayed work to cancel
1377  *
1378  * This is kthread_cancel_work_sync() for delayed works.
1379  *
1380  * Return: %true if @dwork was pending, %false otherwise.
1381  */
1382 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1383 {
1384         return __kthread_cancel_work_sync(&dwork->work, true);
1385 }
1386 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1387 
1388 /**
1389  * kthread_flush_worker - flush all current works on a kthread_worker
1390  * @worker: worker to flush
1391  *
1392  * Wait until all currently executing or pending works on @worker are
1393  * finished.
1394  */
1395 void kthread_flush_worker(struct kthread_worker *worker)
1396 {
1397         struct kthread_flush_work fwork = {
1398                 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1399                 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1400         };
1401 
1402         kthread_queue_work(worker, &fwork.work);
1403         wait_for_completion(&fwork.done);
1404 }
1405 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1406 
1407 /**
1408  * kthread_destroy_worker - destroy a kthread worker
1409  * @worker: worker to be destroyed
1410  *
1411  * Flush and destroy @worker.  The simple flush is enough because the kthread
1412  * worker API is used only in trivial scenarios.  There are no multi-step state
1413  * machines needed.
1414  *
1415  * Note that this function is not responsible for handling delayed work, so
1416  * caller should be responsible for queuing or canceling all delayed work items
1417  * before invoke this function.
1418  */
1419 void kthread_destroy_worker(struct kthread_worker *worker)
1420 {
1421         struct task_struct *task;
1422 
1423         task = worker->task;
1424         if (WARN_ON(!task))
1425                 return;
1426 
1427         kthread_flush_worker(worker);
1428         kthread_stop(task);
1429         WARN_ON(!list_empty(&worker->delayed_work_list));
1430         WARN_ON(!list_empty(&worker->work_list));
1431         kfree(worker);
1432 }
1433 EXPORT_SYMBOL(kthread_destroy_worker);
1434 
1435 /**
1436  * kthread_use_mm - make the calling kthread operate on an address space
1437  * @mm: address space to operate on
1438  */
1439 void kthread_use_mm(struct mm_struct *mm)
1440 {
1441         struct mm_struct *active_mm;
1442         struct task_struct *tsk = current;
1443 
1444         WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1445         WARN_ON_ONCE(tsk->mm);
1446 
1447         /*
1448          * It is possible for mm to be the same as tsk->active_mm, but
1449          * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm),
1450          * because these references are not equivalent.
1451          */
1452         mmgrab(mm);
1453 
1454         task_lock(tsk);
1455         /* Hold off tlb flush IPIs while switching mm's */
1456         local_irq_disable();
1457         active_mm = tsk->active_mm;
1458         tsk->active_mm = mm;
1459         tsk->mm = mm;
1460         membarrier_update_current_mm(mm);
1461         switch_mm_irqs_off(active_mm, mm, tsk);
1462         local_irq_enable();
1463         task_unlock(tsk);
1464 #ifdef finish_arch_post_lock_switch
1465         finish_arch_post_lock_switch();
1466 #endif
1467 
1468         /*
1469          * When a kthread starts operating on an address space, the loop
1470          * in membarrier_{private,global}_expedited() may not observe
1471          * that tsk->mm, and not issue an IPI. Membarrier requires a
1472          * memory barrier after storing to tsk->mm, before accessing
1473          * user-space memory. A full memory barrier for membarrier
1474          * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1475          * mmdrop_lazy_tlb().
1476          */
1477         mmdrop_lazy_tlb(active_mm);
1478 }
1479 EXPORT_SYMBOL_GPL(kthread_use_mm);
1480 
1481 /**
1482  * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1483  * @mm: address space to operate on
1484  */
1485 void kthread_unuse_mm(struct mm_struct *mm)
1486 {
1487         struct task_struct *tsk = current;
1488 
1489         WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1490         WARN_ON_ONCE(!tsk->mm);
1491 
1492         task_lock(tsk);
1493         /*
1494          * When a kthread stops operating on an address space, the loop
1495          * in membarrier_{private,global}_expedited() may not observe
1496          * that tsk->mm, and not issue an IPI. Membarrier requires a
1497          * memory barrier after accessing user-space memory, before
1498          * clearing tsk->mm.
1499          */
1500         smp_mb__after_spinlock();
1501         local_irq_disable();
1502         tsk->mm = NULL;
1503         membarrier_update_current_mm(NULL);
1504         mmgrab_lazy_tlb(mm);
1505         /* active_mm is still 'mm' */
1506         enter_lazy_tlb(mm, tsk);
1507         local_irq_enable();
1508         task_unlock(tsk);
1509 
1510         mmdrop(mm);
1511 }
1512 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1513 
1514 #ifdef CONFIG_BLK_CGROUP
1515 /**
1516  * kthread_associate_blkcg - associate blkcg to current kthread
1517  * @css: the cgroup info
1518  *
1519  * Current thread must be a kthread. The thread is running jobs on behalf of
1520  * other threads. In some cases, we expect the jobs attach cgroup info of
1521  * original threads instead of that of current thread. This function stores
1522  * original thread's cgroup info in current kthread context for later
1523  * retrieval.
1524  */
1525 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1526 {
1527         struct kthread *kthread;
1528 
1529         if (!(current->flags & PF_KTHREAD))
1530                 return;
1531         kthread = to_kthread(current);
1532         if (!kthread)
1533                 return;
1534 
1535         if (kthread->blkcg_css) {
1536                 css_put(kthread->blkcg_css);
1537                 kthread->blkcg_css = NULL;
1538         }
1539         if (css) {
1540                 css_get(css);
1541                 kthread->blkcg_css = css;
1542         }
1543 }
1544 EXPORT_SYMBOL(kthread_associate_blkcg);
1545 
1546 /**
1547  * kthread_blkcg - get associated blkcg css of current kthread
1548  *
1549  * Current thread must be a kthread.
1550  */
1551 struct cgroup_subsys_state *kthread_blkcg(void)
1552 {
1553         struct kthread *kthread;
1554 
1555         if (current->flags & PF_KTHREAD) {
1556                 kthread = to_kthread(current);
1557                 if (kthread)
1558                         return kthread->blkcg_css;
1559         }
1560         return NULL;
1561 }
1562 #endif
1563 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php