1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/locking/mutex.c 4 * 5 * Mutexes: blocking mutual exclusion locks 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * 11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 12 * David Howells for suggestions and improvements. 13 * 14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 15 * from the -rt tree, where it was originally implemented for rtmutexes 16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 17 * and Sven Dietrich. 18 * 19 * Also see Documentation/locking/mutex-design.rst. 20 */ 21 #include <linux/mutex.h> 22 #include <linux/ww_mutex.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/wake_q.h> 26 #include <linux/sched/debug.h> 27 #include <linux/export.h> 28 #include <linux/spinlock.h> 29 #include <linux/interrupt.h> 30 #include <linux/debug_locks.h> 31 #include <linux/osq_lock.h> 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/lock.h> 35 36 #ifndef CONFIG_PREEMPT_RT 37 #include "mutex.h" 38 39 #ifdef CONFIG_DEBUG_MUTEXES 40 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond) 41 #else 42 # define MUTEX_WARN_ON(cond) 43 #endif 44 45 void 46 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 47 { 48 atomic_long_set(&lock->owner, 0); 49 raw_spin_lock_init(&lock->wait_lock); 50 INIT_LIST_HEAD(&lock->wait_list); 51 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 52 osq_lock_init(&lock->osq); 53 #endif 54 55 debug_mutex_init(lock, name, key); 56 } 57 EXPORT_SYMBOL(__mutex_init); 58 59 /* 60 * @owner: contains: 'struct task_struct *' to the current lock owner, 61 * NULL means not owned. Since task_struct pointers are aligned at 62 * at least L1_CACHE_BYTES, we have low bits to store extra state. 63 * 64 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup. 65 * Bit1 indicates unlock needs to hand the lock to the top-waiter 66 * Bit2 indicates handoff has been done and we're waiting for pickup. 67 */ 68 #define MUTEX_FLAG_WAITERS 0x01 69 #define MUTEX_FLAG_HANDOFF 0x02 70 #define MUTEX_FLAG_PICKUP 0x04 71 72 #define MUTEX_FLAGS 0x07 73 74 /* 75 * Internal helper function; C doesn't allow us to hide it :/ 76 * 77 * DO NOT USE (outside of mutex code). 78 */ 79 static inline struct task_struct *__mutex_owner(struct mutex *lock) 80 { 81 return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS); 82 } 83 84 static inline struct task_struct *__owner_task(unsigned long owner) 85 { 86 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 87 } 88 89 bool mutex_is_locked(struct mutex *lock) 90 { 91 return __mutex_owner(lock) != NULL; 92 } 93 EXPORT_SYMBOL(mutex_is_locked); 94 95 static inline unsigned long __owner_flags(unsigned long owner) 96 { 97 return owner & MUTEX_FLAGS; 98 } 99 100 /* 101 * Returns: __mutex_owner(lock) on failure or NULL on success. 102 */ 103 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff) 104 { 105 unsigned long owner, curr = (unsigned long)current; 106 107 owner = atomic_long_read(&lock->owner); 108 for (;;) { /* must loop, can race against a flag */ 109 unsigned long flags = __owner_flags(owner); 110 unsigned long task = owner & ~MUTEX_FLAGS; 111 112 if (task) { 113 if (flags & MUTEX_FLAG_PICKUP) { 114 if (task != curr) 115 break; 116 flags &= ~MUTEX_FLAG_PICKUP; 117 } else if (handoff) { 118 if (flags & MUTEX_FLAG_HANDOFF) 119 break; 120 flags |= MUTEX_FLAG_HANDOFF; 121 } else { 122 break; 123 } 124 } else { 125 MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP)); 126 task = curr; 127 } 128 129 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) { 130 if (task == curr) 131 return NULL; 132 break; 133 } 134 } 135 136 return __owner_task(owner); 137 } 138 139 /* 140 * Trylock or set HANDOFF 141 */ 142 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff) 143 { 144 return !__mutex_trylock_common(lock, handoff); 145 } 146 147 /* 148 * Actual trylock that will work on any unlocked state. 149 */ 150 static inline bool __mutex_trylock(struct mutex *lock) 151 { 152 return !__mutex_trylock_common(lock, false); 153 } 154 155 #ifndef CONFIG_DEBUG_LOCK_ALLOC 156 /* 157 * Lockdep annotations are contained to the slow paths for simplicity. 158 * There is nothing that would stop spreading the lockdep annotations outwards 159 * except more code. 160 */ 161 162 /* 163 * Optimistic trylock that only works in the uncontended case. Make sure to 164 * follow with a __mutex_trylock() before failing. 165 */ 166 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 167 { 168 unsigned long curr = (unsigned long)current; 169 unsigned long zero = 0UL; 170 171 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) 172 return true; 173 174 return false; 175 } 176 177 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 178 { 179 unsigned long curr = (unsigned long)current; 180 181 return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL); 182 } 183 #endif 184 185 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 186 { 187 atomic_long_or(flag, &lock->owner); 188 } 189 190 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 191 { 192 atomic_long_andnot(flag, &lock->owner); 193 } 194 195 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 196 { 197 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 198 } 199 200 /* 201 * Add @waiter to a given location in the lock wait_list and set the 202 * FLAG_WAITERS flag if it's the first waiter. 203 */ 204 static void 205 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter, 206 struct list_head *list) 207 { 208 debug_mutex_add_waiter(lock, waiter, current); 209 210 list_add_tail(&waiter->list, list); 211 if (__mutex_waiter_is_first(lock, waiter)) 212 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 213 } 214 215 static void 216 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter) 217 { 218 list_del(&waiter->list); 219 if (likely(list_empty(&lock->wait_list))) 220 __mutex_clear_flag(lock, MUTEX_FLAGS); 221 222 debug_mutex_remove_waiter(lock, waiter, current); 223 } 224 225 /* 226 * Give up ownership to a specific task, when @task = NULL, this is equivalent 227 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves 228 * WAITERS. Provides RELEASE semantics like a regular unlock, the 229 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. 230 */ 231 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 232 { 233 unsigned long owner = atomic_long_read(&lock->owner); 234 235 for (;;) { 236 unsigned long new; 237 238 MUTEX_WARN_ON(__owner_task(owner) != current); 239 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 240 241 new = (owner & MUTEX_FLAG_WAITERS); 242 new |= (unsigned long)task; 243 if (task) 244 new |= MUTEX_FLAG_PICKUP; 245 246 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new)) 247 break; 248 } 249 } 250 251 #ifndef CONFIG_DEBUG_LOCK_ALLOC 252 /* 253 * We split the mutex lock/unlock logic into separate fastpath and 254 * slowpath functions, to reduce the register pressure on the fastpath. 255 * We also put the fastpath first in the kernel image, to make sure the 256 * branch is predicted by the CPU as default-untaken. 257 */ 258 static void __sched __mutex_lock_slowpath(struct mutex *lock); 259 260 /** 261 * mutex_lock - acquire the mutex 262 * @lock: the mutex to be acquired 263 * 264 * Lock the mutex exclusively for this task. If the mutex is not 265 * available right now, it will sleep until it can get it. 266 * 267 * The mutex must later on be released by the same task that 268 * acquired it. Recursive locking is not allowed. The task 269 * may not exit without first unlocking the mutex. Also, kernel 270 * memory where the mutex resides must not be freed with 271 * the mutex still locked. The mutex must first be initialized 272 * (or statically defined) before it can be locked. memset()-ing 273 * the mutex to 0 is not allowed. 274 * 275 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging 276 * checks that will enforce the restrictions and will also do 277 * deadlock debugging) 278 * 279 * This function is similar to (but not equivalent to) down(). 280 */ 281 void __sched mutex_lock(struct mutex *lock) 282 { 283 might_sleep(); 284 285 if (!__mutex_trylock_fast(lock)) 286 __mutex_lock_slowpath(lock); 287 } 288 EXPORT_SYMBOL(mutex_lock); 289 #endif 290 291 #include "ww_mutex.h" 292 293 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 294 295 /* 296 * Trylock variant that returns the owning task on failure. 297 */ 298 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) 299 { 300 return __mutex_trylock_common(lock, false); 301 } 302 303 static inline 304 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 305 struct mutex_waiter *waiter) 306 { 307 struct ww_mutex *ww; 308 309 ww = container_of(lock, struct ww_mutex, base); 310 311 /* 312 * If ww->ctx is set the contents are undefined, only 313 * by acquiring wait_lock there is a guarantee that 314 * they are not invalid when reading. 315 * 316 * As such, when deadlock detection needs to be 317 * performed the optimistic spinning cannot be done. 318 * 319 * Check this in every inner iteration because we may 320 * be racing against another thread's ww_mutex_lock. 321 */ 322 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) 323 return false; 324 325 /* 326 * If we aren't on the wait list yet, cancel the spin 327 * if there are waiters. We want to avoid stealing the 328 * lock from a waiter with an earlier stamp, since the 329 * other thread may already own a lock that we also 330 * need. 331 */ 332 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) 333 return false; 334 335 /* 336 * Similarly, stop spinning if we are no longer the 337 * first waiter. 338 */ 339 if (waiter && !__mutex_waiter_is_first(lock, waiter)) 340 return false; 341 342 return true; 343 } 344 345 /* 346 * Look out! "owner" is an entirely speculative pointer access and not 347 * reliable. 348 * 349 * "noinline" so that this function shows up on perf profiles. 350 */ 351 static noinline 352 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, 353 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) 354 { 355 bool ret = true; 356 357 lockdep_assert_preemption_disabled(); 358 359 while (__mutex_owner(lock) == owner) { 360 /* 361 * Ensure we emit the owner->on_cpu, dereference _after_ 362 * checking lock->owner still matches owner. And we already 363 * disabled preemption which is equal to the RCU read-side 364 * crital section in optimistic spinning code. Thus the 365 * task_strcut structure won't go away during the spinning 366 * period 367 */ 368 barrier(); 369 370 /* 371 * Use vcpu_is_preempted to detect lock holder preemption issue. 372 */ 373 if (!owner_on_cpu(owner) || need_resched()) { 374 ret = false; 375 break; 376 } 377 378 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { 379 ret = false; 380 break; 381 } 382 383 cpu_relax(); 384 } 385 386 return ret; 387 } 388 389 /* 390 * Initial check for entering the mutex spinning loop 391 */ 392 static inline int mutex_can_spin_on_owner(struct mutex *lock) 393 { 394 struct task_struct *owner; 395 int retval = 1; 396 397 lockdep_assert_preemption_disabled(); 398 399 if (need_resched()) 400 return 0; 401 402 /* 403 * We already disabled preemption which is equal to the RCU read-side 404 * crital section in optimistic spinning code. Thus the task_strcut 405 * structure won't go away during the spinning period. 406 */ 407 owner = __mutex_owner(lock); 408 if (owner) 409 retval = owner_on_cpu(owner); 410 411 /* 412 * If lock->owner is not set, the mutex has been released. Return true 413 * such that we'll trylock in the spin path, which is a faster option 414 * than the blocking slow path. 415 */ 416 return retval; 417 } 418 419 /* 420 * Optimistic spinning. 421 * 422 * We try to spin for acquisition when we find that the lock owner 423 * is currently running on a (different) CPU and while we don't 424 * need to reschedule. The rationale is that if the lock owner is 425 * running, it is likely to release the lock soon. 426 * 427 * The mutex spinners are queued up using MCS lock so that only one 428 * spinner can compete for the mutex. However, if mutex spinning isn't 429 * going to happen, there is no point in going through the lock/unlock 430 * overhead. 431 * 432 * Returns true when the lock was taken, otherwise false, indicating 433 * that we need to jump to the slowpath and sleep. 434 * 435 * The waiter flag is set to true if the spinner is a waiter in the wait 436 * queue. The waiter-spinner will spin on the lock directly and concurrently 437 * with the spinner at the head of the OSQ, if present, until the owner is 438 * changed to itself. 439 */ 440 static __always_inline bool 441 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 442 struct mutex_waiter *waiter) 443 { 444 if (!waiter) { 445 /* 446 * The purpose of the mutex_can_spin_on_owner() function is 447 * to eliminate the overhead of osq_lock() and osq_unlock() 448 * in case spinning isn't possible. As a waiter-spinner 449 * is not going to take OSQ lock anyway, there is no need 450 * to call mutex_can_spin_on_owner(). 451 */ 452 if (!mutex_can_spin_on_owner(lock)) 453 goto fail; 454 455 /* 456 * In order to avoid a stampede of mutex spinners trying to 457 * acquire the mutex all at once, the spinners need to take a 458 * MCS (queued) lock first before spinning on the owner field. 459 */ 460 if (!osq_lock(&lock->osq)) 461 goto fail; 462 } 463 464 for (;;) { 465 struct task_struct *owner; 466 467 /* Try to acquire the mutex... */ 468 owner = __mutex_trylock_or_owner(lock); 469 if (!owner) 470 break; 471 472 /* 473 * There's an owner, wait for it to either 474 * release the lock or go to sleep. 475 */ 476 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) 477 goto fail_unlock; 478 479 /* 480 * The cpu_relax() call is a compiler barrier which forces 481 * everything in this loop to be re-loaded. We don't need 482 * memory barriers as we'll eventually observe the right 483 * values at the cost of a few extra spins. 484 */ 485 cpu_relax(); 486 } 487 488 if (!waiter) 489 osq_unlock(&lock->osq); 490 491 return true; 492 493 494 fail_unlock: 495 if (!waiter) 496 osq_unlock(&lock->osq); 497 498 fail: 499 /* 500 * If we fell out of the spin path because of need_resched(), 501 * reschedule now, before we try-lock the mutex. This avoids getting 502 * scheduled out right after we obtained the mutex. 503 */ 504 if (need_resched()) { 505 /* 506 * We _should_ have TASK_RUNNING here, but just in case 507 * we do not, make it so, otherwise we might get stuck. 508 */ 509 __set_current_state(TASK_RUNNING); 510 schedule_preempt_disabled(); 511 } 512 513 return false; 514 } 515 #else 516 static __always_inline bool 517 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 518 struct mutex_waiter *waiter) 519 { 520 return false; 521 } 522 #endif 523 524 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 525 526 /** 527 * mutex_unlock - release the mutex 528 * @lock: the mutex to be released 529 * 530 * Unlock a mutex that has been locked by this task previously. 531 * 532 * This function must not be used in interrupt context. Unlocking 533 * of a not locked mutex is not allowed. 534 * 535 * The caller must ensure that the mutex stays alive until this function has 536 * returned - mutex_unlock() can NOT directly be used to release an object such 537 * that another concurrent task can free it. 538 * Mutexes are different from spinlocks & refcounts in this aspect. 539 * 540 * This function is similar to (but not equivalent to) up(). 541 */ 542 void __sched mutex_unlock(struct mutex *lock) 543 { 544 #ifndef CONFIG_DEBUG_LOCK_ALLOC 545 if (__mutex_unlock_fast(lock)) 546 return; 547 #endif 548 __mutex_unlock_slowpath(lock, _RET_IP_); 549 } 550 EXPORT_SYMBOL(mutex_unlock); 551 552 /** 553 * ww_mutex_unlock - release the w/w mutex 554 * @lock: the mutex to be released 555 * 556 * Unlock a mutex that has been locked by this task previously with any of the 557 * ww_mutex_lock* functions (with or without an acquire context). It is 558 * forbidden to release the locks after releasing the acquire context. 559 * 560 * This function must not be used in interrupt context. Unlocking 561 * of a unlocked mutex is not allowed. 562 */ 563 void __sched ww_mutex_unlock(struct ww_mutex *lock) 564 { 565 __ww_mutex_unlock(lock); 566 mutex_unlock(&lock->base); 567 } 568 EXPORT_SYMBOL(ww_mutex_unlock); 569 570 /* 571 * Lock a mutex (possibly interruptible), slowpath: 572 */ 573 static __always_inline int __sched 574 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass, 575 struct lockdep_map *nest_lock, unsigned long ip, 576 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 577 { 578 struct mutex_waiter waiter; 579 struct ww_mutex *ww; 580 int ret; 581 582 if (!use_ww_ctx) 583 ww_ctx = NULL; 584 585 might_sleep(); 586 587 MUTEX_WARN_ON(lock->magic != lock); 588 589 ww = container_of(lock, struct ww_mutex, base); 590 if (ww_ctx) { 591 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 592 return -EALREADY; 593 594 /* 595 * Reset the wounded flag after a kill. No other process can 596 * race and wound us here since they can't have a valid owner 597 * pointer if we don't have any locks held. 598 */ 599 if (ww_ctx->acquired == 0) 600 ww_ctx->wounded = 0; 601 602 #ifdef CONFIG_DEBUG_LOCK_ALLOC 603 nest_lock = &ww_ctx->dep_map; 604 #endif 605 } 606 607 preempt_disable(); 608 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 609 610 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN); 611 if (__mutex_trylock(lock) || 612 mutex_optimistic_spin(lock, ww_ctx, NULL)) { 613 /* got the lock, yay! */ 614 lock_acquired(&lock->dep_map, ip); 615 if (ww_ctx) 616 ww_mutex_set_context_fastpath(ww, ww_ctx); 617 trace_contention_end(lock, 0); 618 preempt_enable(); 619 return 0; 620 } 621 622 raw_spin_lock(&lock->wait_lock); 623 /* 624 * After waiting to acquire the wait_lock, try again. 625 */ 626 if (__mutex_trylock(lock)) { 627 if (ww_ctx) 628 __ww_mutex_check_waiters(lock, ww_ctx); 629 630 goto skip_wait; 631 } 632 633 debug_mutex_lock_common(lock, &waiter); 634 waiter.task = current; 635 if (use_ww_ctx) 636 waiter.ww_ctx = ww_ctx; 637 638 lock_contended(&lock->dep_map, ip); 639 640 if (!use_ww_ctx) { 641 /* add waiting tasks to the end of the waitqueue (FIFO): */ 642 __mutex_add_waiter(lock, &waiter, &lock->wait_list); 643 } else { 644 /* 645 * Add in stamp order, waking up waiters that must kill 646 * themselves. 647 */ 648 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx); 649 if (ret) 650 goto err_early_kill; 651 } 652 653 set_current_state(state); 654 trace_contention_begin(lock, LCB_F_MUTEX); 655 for (;;) { 656 bool first; 657 658 /* 659 * Once we hold wait_lock, we're serialized against 660 * mutex_unlock() handing the lock off to us, do a trylock 661 * before testing the error conditions to make sure we pick up 662 * the handoff. 663 */ 664 if (__mutex_trylock(lock)) 665 goto acquired; 666 667 /* 668 * Check for signals and kill conditions while holding 669 * wait_lock. This ensures the lock cancellation is ordered 670 * against mutex_unlock() and wake-ups do not go missing. 671 */ 672 if (signal_pending_state(state, current)) { 673 ret = -EINTR; 674 goto err; 675 } 676 677 if (ww_ctx) { 678 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx); 679 if (ret) 680 goto err; 681 } 682 683 raw_spin_unlock(&lock->wait_lock); 684 schedule_preempt_disabled(); 685 686 first = __mutex_waiter_is_first(lock, &waiter); 687 688 set_current_state(state); 689 /* 690 * Here we order against unlock; we must either see it change 691 * state back to RUNNING and fall through the next schedule(), 692 * or we must see its unlock and acquire. 693 */ 694 if (__mutex_trylock_or_handoff(lock, first)) 695 break; 696 697 if (first) { 698 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN); 699 if (mutex_optimistic_spin(lock, ww_ctx, &waiter)) 700 break; 701 trace_contention_begin(lock, LCB_F_MUTEX); 702 } 703 704 raw_spin_lock(&lock->wait_lock); 705 } 706 raw_spin_lock(&lock->wait_lock); 707 acquired: 708 __set_current_state(TASK_RUNNING); 709 710 if (ww_ctx) { 711 /* 712 * Wound-Wait; we stole the lock (!first_waiter), check the 713 * waiters as anyone might want to wound us. 714 */ 715 if (!ww_ctx->is_wait_die && 716 !__mutex_waiter_is_first(lock, &waiter)) 717 __ww_mutex_check_waiters(lock, ww_ctx); 718 } 719 720 __mutex_remove_waiter(lock, &waiter); 721 722 debug_mutex_free_waiter(&waiter); 723 724 skip_wait: 725 /* got the lock - cleanup and rejoice! */ 726 lock_acquired(&lock->dep_map, ip); 727 trace_contention_end(lock, 0); 728 729 if (ww_ctx) 730 ww_mutex_lock_acquired(ww, ww_ctx); 731 732 raw_spin_unlock(&lock->wait_lock); 733 preempt_enable(); 734 return 0; 735 736 err: 737 __set_current_state(TASK_RUNNING); 738 __mutex_remove_waiter(lock, &waiter); 739 err_early_kill: 740 trace_contention_end(lock, ret); 741 raw_spin_unlock(&lock->wait_lock); 742 debug_mutex_free_waiter(&waiter); 743 mutex_release(&lock->dep_map, ip); 744 preempt_enable(); 745 return ret; 746 } 747 748 static int __sched 749 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 750 struct lockdep_map *nest_lock, unsigned long ip) 751 { 752 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); 753 } 754 755 static int __sched 756 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, 757 unsigned long ip, struct ww_acquire_ctx *ww_ctx) 758 { 759 return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true); 760 } 761 762 /** 763 * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context 764 * @ww: mutex to lock 765 * @ww_ctx: optional w/w acquire context 766 * 767 * Trylocks a mutex with the optional acquire context; no deadlock detection is 768 * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise. 769 * 770 * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is 771 * specified, -EALREADY handling may happen in calls to ww_mutex_trylock. 772 * 773 * A mutex acquired with this function must be released with ww_mutex_unlock. 774 */ 775 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) 776 { 777 if (!ww_ctx) 778 return mutex_trylock(&ww->base); 779 780 MUTEX_WARN_ON(ww->base.magic != &ww->base); 781 782 /* 783 * Reset the wounded flag after a kill. No other process can 784 * race and wound us here, since they can't have a valid owner 785 * pointer if we don't have any locks held. 786 */ 787 if (ww_ctx->acquired == 0) 788 ww_ctx->wounded = 0; 789 790 if (__mutex_trylock(&ww->base)) { 791 ww_mutex_set_context_fastpath(ww, ww_ctx); 792 mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_); 793 return 1; 794 } 795 796 return 0; 797 } 798 EXPORT_SYMBOL(ww_mutex_trylock); 799 800 #ifdef CONFIG_DEBUG_LOCK_ALLOC 801 void __sched 802 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 803 { 804 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 805 } 806 807 EXPORT_SYMBOL_GPL(mutex_lock_nested); 808 809 void __sched 810 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 811 { 812 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); 813 } 814 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 815 816 int __sched 817 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 818 { 819 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 820 } 821 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 822 823 int __sched 824 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 825 { 826 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 827 } 828 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 829 830 void __sched 831 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 832 { 833 int token; 834 835 might_sleep(); 836 837 token = io_schedule_prepare(); 838 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 839 subclass, NULL, _RET_IP_, NULL, 0); 840 io_schedule_finish(token); 841 } 842 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 843 844 static inline int 845 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 846 { 847 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 848 unsigned tmp; 849 850 if (ctx->deadlock_inject_countdown-- == 0) { 851 tmp = ctx->deadlock_inject_interval; 852 if (tmp > UINT_MAX/4) 853 tmp = UINT_MAX; 854 else 855 tmp = tmp*2 + tmp + tmp/2; 856 857 ctx->deadlock_inject_interval = tmp; 858 ctx->deadlock_inject_countdown = tmp; 859 ctx->contending_lock = lock; 860 861 ww_mutex_unlock(lock); 862 863 return -EDEADLK; 864 } 865 #endif 866 867 return 0; 868 } 869 870 int __sched 871 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 872 { 873 int ret; 874 875 might_sleep(); 876 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 877 0, _RET_IP_, ctx); 878 if (!ret && ctx && ctx->acquired > 1) 879 return ww_mutex_deadlock_injection(lock, ctx); 880 881 return ret; 882 } 883 EXPORT_SYMBOL_GPL(ww_mutex_lock); 884 885 int __sched 886 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 887 { 888 int ret; 889 890 might_sleep(); 891 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 892 0, _RET_IP_, ctx); 893 894 if (!ret && ctx && ctx->acquired > 1) 895 return ww_mutex_deadlock_injection(lock, ctx); 896 897 return ret; 898 } 899 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); 900 901 #endif 902 903 /* 904 * Release the lock, slowpath: 905 */ 906 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 907 { 908 struct task_struct *next = NULL; 909 DEFINE_WAKE_Q(wake_q); 910 unsigned long owner; 911 912 mutex_release(&lock->dep_map, ip); 913 914 /* 915 * Release the lock before (potentially) taking the spinlock such that 916 * other contenders can get on with things ASAP. 917 * 918 * Except when HANDOFF, in that case we must not clear the owner field, 919 * but instead set it to the top waiter. 920 */ 921 owner = atomic_long_read(&lock->owner); 922 for (;;) { 923 MUTEX_WARN_ON(__owner_task(owner) != current); 924 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); 925 926 if (owner & MUTEX_FLAG_HANDOFF) 927 break; 928 929 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) { 930 if (owner & MUTEX_FLAG_WAITERS) 931 break; 932 933 return; 934 } 935 } 936 937 raw_spin_lock(&lock->wait_lock); 938 debug_mutex_unlock(lock); 939 if (!list_empty(&lock->wait_list)) { 940 /* get the first entry from the wait-list: */ 941 struct mutex_waiter *waiter = 942 list_first_entry(&lock->wait_list, 943 struct mutex_waiter, list); 944 945 next = waiter->task; 946 947 debug_mutex_wake_waiter(lock, waiter); 948 wake_q_add(&wake_q, next); 949 } 950 951 if (owner & MUTEX_FLAG_HANDOFF) 952 __mutex_handoff(lock, next); 953 954 raw_spin_unlock(&lock->wait_lock); 955 956 wake_up_q(&wake_q); 957 } 958 959 #ifndef CONFIG_DEBUG_LOCK_ALLOC 960 /* 961 * Here come the less common (and hence less performance-critical) APIs: 962 * mutex_lock_interruptible() and mutex_trylock(). 963 */ 964 static noinline int __sched 965 __mutex_lock_killable_slowpath(struct mutex *lock); 966 967 static noinline int __sched 968 __mutex_lock_interruptible_slowpath(struct mutex *lock); 969 970 /** 971 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. 972 * @lock: The mutex to be acquired. 973 * 974 * Lock the mutex like mutex_lock(). If a signal is delivered while the 975 * process is sleeping, this function will return without acquiring the 976 * mutex. 977 * 978 * Context: Process context. 979 * Return: 0 if the lock was successfully acquired or %-EINTR if a 980 * signal arrived. 981 */ 982 int __sched mutex_lock_interruptible(struct mutex *lock) 983 { 984 might_sleep(); 985 986 if (__mutex_trylock_fast(lock)) 987 return 0; 988 989 return __mutex_lock_interruptible_slowpath(lock); 990 } 991 992 EXPORT_SYMBOL(mutex_lock_interruptible); 993 994 /** 995 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. 996 * @lock: The mutex to be acquired. 997 * 998 * Lock the mutex like mutex_lock(). If a signal which will be fatal to 999 * the current process is delivered while the process is sleeping, this 1000 * function will return without acquiring the mutex. 1001 * 1002 * Context: Process context. 1003 * Return: 0 if the lock was successfully acquired or %-EINTR if a 1004 * fatal signal arrived. 1005 */ 1006 int __sched mutex_lock_killable(struct mutex *lock) 1007 { 1008 might_sleep(); 1009 1010 if (__mutex_trylock_fast(lock)) 1011 return 0; 1012 1013 return __mutex_lock_killable_slowpath(lock); 1014 } 1015 EXPORT_SYMBOL(mutex_lock_killable); 1016 1017 /** 1018 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O 1019 * @lock: The mutex to be acquired. 1020 * 1021 * Lock the mutex like mutex_lock(). While the task is waiting for this 1022 * mutex, it will be accounted as being in the IO wait state by the 1023 * scheduler. 1024 * 1025 * Context: Process context. 1026 */ 1027 void __sched mutex_lock_io(struct mutex *lock) 1028 { 1029 int token; 1030 1031 token = io_schedule_prepare(); 1032 mutex_lock(lock); 1033 io_schedule_finish(token); 1034 } 1035 EXPORT_SYMBOL_GPL(mutex_lock_io); 1036 1037 static noinline void __sched 1038 __mutex_lock_slowpath(struct mutex *lock) 1039 { 1040 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 1041 } 1042 1043 static noinline int __sched 1044 __mutex_lock_killable_slowpath(struct mutex *lock) 1045 { 1046 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 1047 } 1048 1049 static noinline int __sched 1050 __mutex_lock_interruptible_slowpath(struct mutex *lock) 1051 { 1052 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 1053 } 1054 1055 static noinline int __sched 1056 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1057 { 1058 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, 1059 _RET_IP_, ctx); 1060 } 1061 1062 static noinline int __sched 1063 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 1064 struct ww_acquire_ctx *ctx) 1065 { 1066 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, 1067 _RET_IP_, ctx); 1068 } 1069 1070 #endif 1071 1072 /** 1073 * mutex_trylock - try to acquire the mutex, without waiting 1074 * @lock: the mutex to be acquired 1075 * 1076 * Try to acquire the mutex atomically. Returns 1 if the mutex 1077 * has been acquired successfully, and 0 on contention. 1078 * 1079 * NOTE: this function follows the spin_trylock() convention, so 1080 * it is negated from the down_trylock() return values! Be careful 1081 * about this when converting semaphore users to mutexes. 1082 * 1083 * This function must not be used in interrupt context. The 1084 * mutex must be released by the same task that acquired it. 1085 */ 1086 int __sched mutex_trylock(struct mutex *lock) 1087 { 1088 bool locked; 1089 1090 MUTEX_WARN_ON(lock->magic != lock); 1091 1092 locked = __mutex_trylock(lock); 1093 if (locked) 1094 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1095 1096 return locked; 1097 } 1098 EXPORT_SYMBOL(mutex_trylock); 1099 1100 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1101 int __sched 1102 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1103 { 1104 might_sleep(); 1105 1106 if (__mutex_trylock_fast(&lock->base)) { 1107 if (ctx) 1108 ww_mutex_set_context_fastpath(lock, ctx); 1109 return 0; 1110 } 1111 1112 return __ww_mutex_lock_slowpath(lock, ctx); 1113 } 1114 EXPORT_SYMBOL(ww_mutex_lock); 1115 1116 int __sched 1117 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1118 { 1119 might_sleep(); 1120 1121 if (__mutex_trylock_fast(&lock->base)) { 1122 if (ctx) 1123 ww_mutex_set_context_fastpath(lock, ctx); 1124 return 0; 1125 } 1126 1127 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1128 } 1129 EXPORT_SYMBOL(ww_mutex_lock_interruptible); 1130 1131 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ 1132 #endif /* !CONFIG_PREEMPT_RT */ 1133 1134 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin); 1135 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end); 1136 1137 /** 1138 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1139 * @cnt: the atomic which we are to dec 1140 * @lock: the mutex to return holding if we dec to 0 1141 * 1142 * return true and hold lock if we dec to 0, return false otherwise 1143 */ 1144 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1145 { 1146 /* dec if we can't possibly hit 0 */ 1147 if (atomic_add_unless(cnt, -1, 1)) 1148 return 0; 1149 /* we might hit 0, so take the lock */ 1150 mutex_lock(lock); 1151 if (!atomic_dec_and_test(cnt)) { 1152 /* when we actually did the dec, we didn't hit 0 */ 1153 mutex_unlock(lock); 1154 return 0; 1155 } 1156 /* we hit 0, and we hold the lock */ 1157 return 1; 1158 } 1159 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1160
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.