~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/locking/mutex.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * kernel/locking/mutex.c
  4  *
  5  * Mutexes: blocking mutual exclusion locks
  6  *
  7  * Started by Ingo Molnar:
  8  *
  9  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 10  *
 11  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
 12  * David Howells for suggestions and improvements.
 13  *
 14  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
 15  *    from the -rt tree, where it was originally implemented for rtmutexes
 16  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
 17  *    and Sven Dietrich.
 18  *
 19  * Also see Documentation/locking/mutex-design.rst.
 20  */
 21 #include <linux/mutex.h>
 22 #include <linux/ww_mutex.h>
 23 #include <linux/sched/signal.h>
 24 #include <linux/sched/rt.h>
 25 #include <linux/sched/wake_q.h>
 26 #include <linux/sched/debug.h>
 27 #include <linux/export.h>
 28 #include <linux/spinlock.h>
 29 #include <linux/interrupt.h>
 30 #include <linux/debug_locks.h>
 31 #include <linux/osq_lock.h>
 32 
 33 #define CREATE_TRACE_POINTS
 34 #include <trace/events/lock.h>
 35 
 36 #ifndef CONFIG_PREEMPT_RT
 37 #include "mutex.h"
 38 
 39 #ifdef CONFIG_DEBUG_MUTEXES
 40 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond)
 41 #else
 42 # define MUTEX_WARN_ON(cond)
 43 #endif
 44 
 45 void
 46 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
 47 {
 48         atomic_long_set(&lock->owner, 0);
 49         raw_spin_lock_init(&lock->wait_lock);
 50         INIT_LIST_HEAD(&lock->wait_list);
 51 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 52         osq_lock_init(&lock->osq);
 53 #endif
 54 
 55         debug_mutex_init(lock, name, key);
 56 }
 57 EXPORT_SYMBOL(__mutex_init);
 58 
 59 /*
 60  * @owner: contains: 'struct task_struct *' to the current lock owner,
 61  * NULL means not owned. Since task_struct pointers are aligned at
 62  * at least L1_CACHE_BYTES, we have low bits to store extra state.
 63  *
 64  * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
 65  * Bit1 indicates unlock needs to hand the lock to the top-waiter
 66  * Bit2 indicates handoff has been done and we're waiting for pickup.
 67  */
 68 #define MUTEX_FLAG_WAITERS      0x01
 69 #define MUTEX_FLAG_HANDOFF      0x02
 70 #define MUTEX_FLAG_PICKUP       0x04
 71 
 72 #define MUTEX_FLAGS             0x07
 73 
 74 /*
 75  * Internal helper function; C doesn't allow us to hide it :/
 76  *
 77  * DO NOT USE (outside of mutex code).
 78  */
 79 static inline struct task_struct *__mutex_owner(struct mutex *lock)
 80 {
 81         return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
 82 }
 83 
 84 static inline struct task_struct *__owner_task(unsigned long owner)
 85 {
 86         return (struct task_struct *)(owner & ~MUTEX_FLAGS);
 87 }
 88 
 89 bool mutex_is_locked(struct mutex *lock)
 90 {
 91         return __mutex_owner(lock) != NULL;
 92 }
 93 EXPORT_SYMBOL(mutex_is_locked);
 94 
 95 static inline unsigned long __owner_flags(unsigned long owner)
 96 {
 97         return owner & MUTEX_FLAGS;
 98 }
 99 
100 /*
101  * Returns: __mutex_owner(lock) on failure or NULL on success.
102  */
103 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
104 {
105         unsigned long owner, curr = (unsigned long)current;
106 
107         owner = atomic_long_read(&lock->owner);
108         for (;;) { /* must loop, can race against a flag */
109                 unsigned long flags = __owner_flags(owner);
110                 unsigned long task = owner & ~MUTEX_FLAGS;
111 
112                 if (task) {
113                         if (flags & MUTEX_FLAG_PICKUP) {
114                                 if (task != curr)
115                                         break;
116                                 flags &= ~MUTEX_FLAG_PICKUP;
117                         } else if (handoff) {
118                                 if (flags & MUTEX_FLAG_HANDOFF)
119                                         break;
120                                 flags |= MUTEX_FLAG_HANDOFF;
121                         } else {
122                                 break;
123                         }
124                 } else {
125                         MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP));
126                         task = curr;
127                 }
128 
129                 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) {
130                         if (task == curr)
131                                 return NULL;
132                         break;
133                 }
134         }
135 
136         return __owner_task(owner);
137 }
138 
139 /*
140  * Trylock or set HANDOFF
141  */
142 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff)
143 {
144         return !__mutex_trylock_common(lock, handoff);
145 }
146 
147 /*
148  * Actual trylock that will work on any unlocked state.
149  */
150 static inline bool __mutex_trylock(struct mutex *lock)
151 {
152         return !__mutex_trylock_common(lock, false);
153 }
154 
155 #ifndef CONFIG_DEBUG_LOCK_ALLOC
156 /*
157  * Lockdep annotations are contained to the slow paths for simplicity.
158  * There is nothing that would stop spreading the lockdep annotations outwards
159  * except more code.
160  */
161 
162 /*
163  * Optimistic trylock that only works in the uncontended case. Make sure to
164  * follow with a __mutex_trylock() before failing.
165  */
166 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
167 {
168         unsigned long curr = (unsigned long)current;
169         unsigned long zero = 0UL;
170 
171         if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
172                 return true;
173 
174         return false;
175 }
176 
177 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
178 {
179         unsigned long curr = (unsigned long)current;
180 
181         return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL);
182 }
183 #endif
184 
185 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
186 {
187         atomic_long_or(flag, &lock->owner);
188 }
189 
190 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
191 {
192         atomic_long_andnot(flag, &lock->owner);
193 }
194 
195 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
196 {
197         return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
198 }
199 
200 /*
201  * Add @waiter to a given location in the lock wait_list and set the
202  * FLAG_WAITERS flag if it's the first waiter.
203  */
204 static void
205 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
206                    struct list_head *list)
207 {
208         debug_mutex_add_waiter(lock, waiter, current);
209 
210         list_add_tail(&waiter->list, list);
211         if (__mutex_waiter_is_first(lock, waiter))
212                 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
213 }
214 
215 static void
216 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
217 {
218         list_del(&waiter->list);
219         if (likely(list_empty(&lock->wait_list)))
220                 __mutex_clear_flag(lock, MUTEX_FLAGS);
221 
222         debug_mutex_remove_waiter(lock, waiter, current);
223 }
224 
225 /*
226  * Give up ownership to a specific task, when @task = NULL, this is equivalent
227  * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
228  * WAITERS. Provides RELEASE semantics like a regular unlock, the
229  * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
230  */
231 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
232 {
233         unsigned long owner = atomic_long_read(&lock->owner);
234 
235         for (;;) {
236                 unsigned long new;
237 
238                 MUTEX_WARN_ON(__owner_task(owner) != current);
239                 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
240 
241                 new = (owner & MUTEX_FLAG_WAITERS);
242                 new |= (unsigned long)task;
243                 if (task)
244                         new |= MUTEX_FLAG_PICKUP;
245 
246                 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new))
247                         break;
248         }
249 }
250 
251 #ifndef CONFIG_DEBUG_LOCK_ALLOC
252 /*
253  * We split the mutex lock/unlock logic into separate fastpath and
254  * slowpath functions, to reduce the register pressure on the fastpath.
255  * We also put the fastpath first in the kernel image, to make sure the
256  * branch is predicted by the CPU as default-untaken.
257  */
258 static void __sched __mutex_lock_slowpath(struct mutex *lock);
259 
260 /**
261  * mutex_lock - acquire the mutex
262  * @lock: the mutex to be acquired
263  *
264  * Lock the mutex exclusively for this task. If the mutex is not
265  * available right now, it will sleep until it can get it.
266  *
267  * The mutex must later on be released by the same task that
268  * acquired it. Recursive locking is not allowed. The task
269  * may not exit without first unlocking the mutex. Also, kernel
270  * memory where the mutex resides must not be freed with
271  * the mutex still locked. The mutex must first be initialized
272  * (or statically defined) before it can be locked. memset()-ing
273  * the mutex to 0 is not allowed.
274  *
275  * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
276  * checks that will enforce the restrictions and will also do
277  * deadlock debugging)
278  *
279  * This function is similar to (but not equivalent to) down().
280  */
281 void __sched mutex_lock(struct mutex *lock)
282 {
283         might_sleep();
284 
285         if (!__mutex_trylock_fast(lock))
286                 __mutex_lock_slowpath(lock);
287 }
288 EXPORT_SYMBOL(mutex_lock);
289 #endif
290 
291 #include "ww_mutex.h"
292 
293 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
294 
295 /*
296  * Trylock variant that returns the owning task on failure.
297  */
298 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
299 {
300         return __mutex_trylock_common(lock, false);
301 }
302 
303 static inline
304 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
305                             struct mutex_waiter *waiter)
306 {
307         struct ww_mutex *ww;
308 
309         ww = container_of(lock, struct ww_mutex, base);
310 
311         /*
312          * If ww->ctx is set the contents are undefined, only
313          * by acquiring wait_lock there is a guarantee that
314          * they are not invalid when reading.
315          *
316          * As such, when deadlock detection needs to be
317          * performed the optimistic spinning cannot be done.
318          *
319          * Check this in every inner iteration because we may
320          * be racing against another thread's ww_mutex_lock.
321          */
322         if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
323                 return false;
324 
325         /*
326          * If we aren't on the wait list yet, cancel the spin
327          * if there are waiters. We want  to avoid stealing the
328          * lock from a waiter with an earlier stamp, since the
329          * other thread may already own a lock that we also
330          * need.
331          */
332         if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
333                 return false;
334 
335         /*
336          * Similarly, stop spinning if we are no longer the
337          * first waiter.
338          */
339         if (waiter && !__mutex_waiter_is_first(lock, waiter))
340                 return false;
341 
342         return true;
343 }
344 
345 /*
346  * Look out! "owner" is an entirely speculative pointer access and not
347  * reliable.
348  *
349  * "noinline" so that this function shows up on perf profiles.
350  */
351 static noinline
352 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
353                          struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
354 {
355         bool ret = true;
356 
357         lockdep_assert_preemption_disabled();
358 
359         while (__mutex_owner(lock) == owner) {
360                 /*
361                  * Ensure we emit the owner->on_cpu, dereference _after_
362                  * checking lock->owner still matches owner. And we already
363                  * disabled preemption which is equal to the RCU read-side
364                  * crital section in optimistic spinning code. Thus the
365                  * task_strcut structure won't go away during the spinning
366                  * period
367                  */
368                 barrier();
369 
370                 /*
371                  * Use vcpu_is_preempted to detect lock holder preemption issue.
372                  */
373                 if (!owner_on_cpu(owner) || need_resched()) {
374                         ret = false;
375                         break;
376                 }
377 
378                 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
379                         ret = false;
380                         break;
381                 }
382 
383                 cpu_relax();
384         }
385 
386         return ret;
387 }
388 
389 /*
390  * Initial check for entering the mutex spinning loop
391  */
392 static inline int mutex_can_spin_on_owner(struct mutex *lock)
393 {
394         struct task_struct *owner;
395         int retval = 1;
396 
397         lockdep_assert_preemption_disabled();
398 
399         if (need_resched())
400                 return 0;
401 
402         /*
403          * We already disabled preemption which is equal to the RCU read-side
404          * crital section in optimistic spinning code. Thus the task_strcut
405          * structure won't go away during the spinning period.
406          */
407         owner = __mutex_owner(lock);
408         if (owner)
409                 retval = owner_on_cpu(owner);
410 
411         /*
412          * If lock->owner is not set, the mutex has been released. Return true
413          * such that we'll trylock in the spin path, which is a faster option
414          * than the blocking slow path.
415          */
416         return retval;
417 }
418 
419 /*
420  * Optimistic spinning.
421  *
422  * We try to spin for acquisition when we find that the lock owner
423  * is currently running on a (different) CPU and while we don't
424  * need to reschedule. The rationale is that if the lock owner is
425  * running, it is likely to release the lock soon.
426  *
427  * The mutex spinners are queued up using MCS lock so that only one
428  * spinner can compete for the mutex. However, if mutex spinning isn't
429  * going to happen, there is no point in going through the lock/unlock
430  * overhead.
431  *
432  * Returns true when the lock was taken, otherwise false, indicating
433  * that we need to jump to the slowpath and sleep.
434  *
435  * The waiter flag is set to true if the spinner is a waiter in the wait
436  * queue. The waiter-spinner will spin on the lock directly and concurrently
437  * with the spinner at the head of the OSQ, if present, until the owner is
438  * changed to itself.
439  */
440 static __always_inline bool
441 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
442                       struct mutex_waiter *waiter)
443 {
444         if (!waiter) {
445                 /*
446                  * The purpose of the mutex_can_spin_on_owner() function is
447                  * to eliminate the overhead of osq_lock() and osq_unlock()
448                  * in case spinning isn't possible. As a waiter-spinner
449                  * is not going to take OSQ lock anyway, there is no need
450                  * to call mutex_can_spin_on_owner().
451                  */
452                 if (!mutex_can_spin_on_owner(lock))
453                         goto fail;
454 
455                 /*
456                  * In order to avoid a stampede of mutex spinners trying to
457                  * acquire the mutex all at once, the spinners need to take a
458                  * MCS (queued) lock first before spinning on the owner field.
459                  */
460                 if (!osq_lock(&lock->osq))
461                         goto fail;
462         }
463 
464         for (;;) {
465                 struct task_struct *owner;
466 
467                 /* Try to acquire the mutex... */
468                 owner = __mutex_trylock_or_owner(lock);
469                 if (!owner)
470                         break;
471 
472                 /*
473                  * There's an owner, wait for it to either
474                  * release the lock or go to sleep.
475                  */
476                 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
477                         goto fail_unlock;
478 
479                 /*
480                  * The cpu_relax() call is a compiler barrier which forces
481                  * everything in this loop to be re-loaded. We don't need
482                  * memory barriers as we'll eventually observe the right
483                  * values at the cost of a few extra spins.
484                  */
485                 cpu_relax();
486         }
487 
488         if (!waiter)
489                 osq_unlock(&lock->osq);
490 
491         return true;
492 
493 
494 fail_unlock:
495         if (!waiter)
496                 osq_unlock(&lock->osq);
497 
498 fail:
499         /*
500          * If we fell out of the spin path because of need_resched(),
501          * reschedule now, before we try-lock the mutex. This avoids getting
502          * scheduled out right after we obtained the mutex.
503          */
504         if (need_resched()) {
505                 /*
506                  * We _should_ have TASK_RUNNING here, but just in case
507                  * we do not, make it so, otherwise we might get stuck.
508                  */
509                 __set_current_state(TASK_RUNNING);
510                 schedule_preempt_disabled();
511         }
512 
513         return false;
514 }
515 #else
516 static __always_inline bool
517 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
518                       struct mutex_waiter *waiter)
519 {
520         return false;
521 }
522 #endif
523 
524 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
525 
526 /**
527  * mutex_unlock - release the mutex
528  * @lock: the mutex to be released
529  *
530  * Unlock a mutex that has been locked by this task previously.
531  *
532  * This function must not be used in interrupt context. Unlocking
533  * of a not locked mutex is not allowed.
534  *
535  * The caller must ensure that the mutex stays alive until this function has
536  * returned - mutex_unlock() can NOT directly be used to release an object such
537  * that another concurrent task can free it.
538  * Mutexes are different from spinlocks & refcounts in this aspect.
539  *
540  * This function is similar to (but not equivalent to) up().
541  */
542 void __sched mutex_unlock(struct mutex *lock)
543 {
544 #ifndef CONFIG_DEBUG_LOCK_ALLOC
545         if (__mutex_unlock_fast(lock))
546                 return;
547 #endif
548         __mutex_unlock_slowpath(lock, _RET_IP_);
549 }
550 EXPORT_SYMBOL(mutex_unlock);
551 
552 /**
553  * ww_mutex_unlock - release the w/w mutex
554  * @lock: the mutex to be released
555  *
556  * Unlock a mutex that has been locked by this task previously with any of the
557  * ww_mutex_lock* functions (with or without an acquire context). It is
558  * forbidden to release the locks after releasing the acquire context.
559  *
560  * This function must not be used in interrupt context. Unlocking
561  * of a unlocked mutex is not allowed.
562  */
563 void __sched ww_mutex_unlock(struct ww_mutex *lock)
564 {
565         __ww_mutex_unlock(lock);
566         mutex_unlock(&lock->base);
567 }
568 EXPORT_SYMBOL(ww_mutex_unlock);
569 
570 /*
571  * Lock a mutex (possibly interruptible), slowpath:
572  */
573 static __always_inline int __sched
574 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass,
575                     struct lockdep_map *nest_lock, unsigned long ip,
576                     struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
577 {
578         struct mutex_waiter waiter;
579         struct ww_mutex *ww;
580         int ret;
581 
582         if (!use_ww_ctx)
583                 ww_ctx = NULL;
584 
585         might_sleep();
586 
587         MUTEX_WARN_ON(lock->magic != lock);
588 
589         ww = container_of(lock, struct ww_mutex, base);
590         if (ww_ctx) {
591                 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
592                         return -EALREADY;
593 
594                 /*
595                  * Reset the wounded flag after a kill. No other process can
596                  * race and wound us here since they can't have a valid owner
597                  * pointer if we don't have any locks held.
598                  */
599                 if (ww_ctx->acquired == 0)
600                         ww_ctx->wounded = 0;
601 
602 #ifdef CONFIG_DEBUG_LOCK_ALLOC
603                 nest_lock = &ww_ctx->dep_map;
604 #endif
605         }
606 
607         preempt_disable();
608         mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
609 
610         trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
611         if (__mutex_trylock(lock) ||
612             mutex_optimistic_spin(lock, ww_ctx, NULL)) {
613                 /* got the lock, yay! */
614                 lock_acquired(&lock->dep_map, ip);
615                 if (ww_ctx)
616                         ww_mutex_set_context_fastpath(ww, ww_ctx);
617                 trace_contention_end(lock, 0);
618                 preempt_enable();
619                 return 0;
620         }
621 
622         raw_spin_lock(&lock->wait_lock);
623         /*
624          * After waiting to acquire the wait_lock, try again.
625          */
626         if (__mutex_trylock(lock)) {
627                 if (ww_ctx)
628                         __ww_mutex_check_waiters(lock, ww_ctx);
629 
630                 goto skip_wait;
631         }
632 
633         debug_mutex_lock_common(lock, &waiter);
634         waiter.task = current;
635         if (use_ww_ctx)
636                 waiter.ww_ctx = ww_ctx;
637 
638         lock_contended(&lock->dep_map, ip);
639 
640         if (!use_ww_ctx) {
641                 /* add waiting tasks to the end of the waitqueue (FIFO): */
642                 __mutex_add_waiter(lock, &waiter, &lock->wait_list);
643         } else {
644                 /*
645                  * Add in stamp order, waking up waiters that must kill
646                  * themselves.
647                  */
648                 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
649                 if (ret)
650                         goto err_early_kill;
651         }
652 
653         set_current_state(state);
654         trace_contention_begin(lock, LCB_F_MUTEX);
655         for (;;) {
656                 bool first;
657 
658                 /*
659                  * Once we hold wait_lock, we're serialized against
660                  * mutex_unlock() handing the lock off to us, do a trylock
661                  * before testing the error conditions to make sure we pick up
662                  * the handoff.
663                  */
664                 if (__mutex_trylock(lock))
665                         goto acquired;
666 
667                 /*
668                  * Check for signals and kill conditions while holding
669                  * wait_lock. This ensures the lock cancellation is ordered
670                  * against mutex_unlock() and wake-ups do not go missing.
671                  */
672                 if (signal_pending_state(state, current)) {
673                         ret = -EINTR;
674                         goto err;
675                 }
676 
677                 if (ww_ctx) {
678                         ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
679                         if (ret)
680                                 goto err;
681                 }
682 
683                 raw_spin_unlock(&lock->wait_lock);
684                 schedule_preempt_disabled();
685 
686                 first = __mutex_waiter_is_first(lock, &waiter);
687 
688                 set_current_state(state);
689                 /*
690                  * Here we order against unlock; we must either see it change
691                  * state back to RUNNING and fall through the next schedule(),
692                  * or we must see its unlock and acquire.
693                  */
694                 if (__mutex_trylock_or_handoff(lock, first))
695                         break;
696 
697                 if (first) {
698                         trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
699                         if (mutex_optimistic_spin(lock, ww_ctx, &waiter))
700                                 break;
701                         trace_contention_begin(lock, LCB_F_MUTEX);
702                 }
703 
704                 raw_spin_lock(&lock->wait_lock);
705         }
706         raw_spin_lock(&lock->wait_lock);
707 acquired:
708         __set_current_state(TASK_RUNNING);
709 
710         if (ww_ctx) {
711                 /*
712                  * Wound-Wait; we stole the lock (!first_waiter), check the
713                  * waiters as anyone might want to wound us.
714                  */
715                 if (!ww_ctx->is_wait_die &&
716                     !__mutex_waiter_is_first(lock, &waiter))
717                         __ww_mutex_check_waiters(lock, ww_ctx);
718         }
719 
720         __mutex_remove_waiter(lock, &waiter);
721 
722         debug_mutex_free_waiter(&waiter);
723 
724 skip_wait:
725         /* got the lock - cleanup and rejoice! */
726         lock_acquired(&lock->dep_map, ip);
727         trace_contention_end(lock, 0);
728 
729         if (ww_ctx)
730                 ww_mutex_lock_acquired(ww, ww_ctx);
731 
732         raw_spin_unlock(&lock->wait_lock);
733         preempt_enable();
734         return 0;
735 
736 err:
737         __set_current_state(TASK_RUNNING);
738         __mutex_remove_waiter(lock, &waiter);
739 err_early_kill:
740         trace_contention_end(lock, ret);
741         raw_spin_unlock(&lock->wait_lock);
742         debug_mutex_free_waiter(&waiter);
743         mutex_release(&lock->dep_map, ip);
744         preempt_enable();
745         return ret;
746 }
747 
748 static int __sched
749 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
750              struct lockdep_map *nest_lock, unsigned long ip)
751 {
752         return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
753 }
754 
755 static int __sched
756 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
757                 unsigned long ip, struct ww_acquire_ctx *ww_ctx)
758 {
759         return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true);
760 }
761 
762 /**
763  * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context
764  * @ww: mutex to lock
765  * @ww_ctx: optional w/w acquire context
766  *
767  * Trylocks a mutex with the optional acquire context; no deadlock detection is
768  * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise.
769  *
770  * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is
771  * specified, -EALREADY handling may happen in calls to ww_mutex_trylock.
772  *
773  * A mutex acquired with this function must be released with ww_mutex_unlock.
774  */
775 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
776 {
777         if (!ww_ctx)
778                 return mutex_trylock(&ww->base);
779 
780         MUTEX_WARN_ON(ww->base.magic != &ww->base);
781 
782         /*
783          * Reset the wounded flag after a kill. No other process can
784          * race and wound us here, since they can't have a valid owner
785          * pointer if we don't have any locks held.
786          */
787         if (ww_ctx->acquired == 0)
788                 ww_ctx->wounded = 0;
789 
790         if (__mutex_trylock(&ww->base)) {
791                 ww_mutex_set_context_fastpath(ww, ww_ctx);
792                 mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_);
793                 return 1;
794         }
795 
796         return 0;
797 }
798 EXPORT_SYMBOL(ww_mutex_trylock);
799 
800 #ifdef CONFIG_DEBUG_LOCK_ALLOC
801 void __sched
802 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
803 {
804         __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
805 }
806 
807 EXPORT_SYMBOL_GPL(mutex_lock_nested);
808 
809 void __sched
810 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
811 {
812         __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
813 }
814 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
815 
816 int __sched
817 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
818 {
819         return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
820 }
821 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
822 
823 int __sched
824 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
825 {
826         return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
827 }
828 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
829 
830 void __sched
831 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
832 {
833         int token;
834 
835         might_sleep();
836 
837         token = io_schedule_prepare();
838         __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
839                             subclass, NULL, _RET_IP_, NULL, 0);
840         io_schedule_finish(token);
841 }
842 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
843 
844 static inline int
845 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
846 {
847 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
848         unsigned tmp;
849 
850         if (ctx->deadlock_inject_countdown-- == 0) {
851                 tmp = ctx->deadlock_inject_interval;
852                 if (tmp > UINT_MAX/4)
853                         tmp = UINT_MAX;
854                 else
855                         tmp = tmp*2 + tmp + tmp/2;
856 
857                 ctx->deadlock_inject_interval = tmp;
858                 ctx->deadlock_inject_countdown = tmp;
859                 ctx->contending_lock = lock;
860 
861                 ww_mutex_unlock(lock);
862 
863                 return -EDEADLK;
864         }
865 #endif
866 
867         return 0;
868 }
869 
870 int __sched
871 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
872 {
873         int ret;
874 
875         might_sleep();
876         ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
877                                0, _RET_IP_, ctx);
878         if (!ret && ctx && ctx->acquired > 1)
879                 return ww_mutex_deadlock_injection(lock, ctx);
880 
881         return ret;
882 }
883 EXPORT_SYMBOL_GPL(ww_mutex_lock);
884 
885 int __sched
886 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
887 {
888         int ret;
889 
890         might_sleep();
891         ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
892                               0, _RET_IP_, ctx);
893 
894         if (!ret && ctx && ctx->acquired > 1)
895                 return ww_mutex_deadlock_injection(lock, ctx);
896 
897         return ret;
898 }
899 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
900 
901 #endif
902 
903 /*
904  * Release the lock, slowpath:
905  */
906 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
907 {
908         struct task_struct *next = NULL;
909         DEFINE_WAKE_Q(wake_q);
910         unsigned long owner;
911 
912         mutex_release(&lock->dep_map, ip);
913 
914         /*
915          * Release the lock before (potentially) taking the spinlock such that
916          * other contenders can get on with things ASAP.
917          *
918          * Except when HANDOFF, in that case we must not clear the owner field,
919          * but instead set it to the top waiter.
920          */
921         owner = atomic_long_read(&lock->owner);
922         for (;;) {
923                 MUTEX_WARN_ON(__owner_task(owner) != current);
924                 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
925 
926                 if (owner & MUTEX_FLAG_HANDOFF)
927                         break;
928 
929                 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) {
930                         if (owner & MUTEX_FLAG_WAITERS)
931                                 break;
932 
933                         return;
934                 }
935         }
936 
937         raw_spin_lock(&lock->wait_lock);
938         debug_mutex_unlock(lock);
939         if (!list_empty(&lock->wait_list)) {
940                 /* get the first entry from the wait-list: */
941                 struct mutex_waiter *waiter =
942                         list_first_entry(&lock->wait_list,
943                                          struct mutex_waiter, list);
944 
945                 next = waiter->task;
946 
947                 debug_mutex_wake_waiter(lock, waiter);
948                 wake_q_add(&wake_q, next);
949         }
950 
951         if (owner & MUTEX_FLAG_HANDOFF)
952                 __mutex_handoff(lock, next);
953 
954         raw_spin_unlock(&lock->wait_lock);
955 
956         wake_up_q(&wake_q);
957 }
958 
959 #ifndef CONFIG_DEBUG_LOCK_ALLOC
960 /*
961  * Here come the less common (and hence less performance-critical) APIs:
962  * mutex_lock_interruptible() and mutex_trylock().
963  */
964 static noinline int __sched
965 __mutex_lock_killable_slowpath(struct mutex *lock);
966 
967 static noinline int __sched
968 __mutex_lock_interruptible_slowpath(struct mutex *lock);
969 
970 /**
971  * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
972  * @lock: The mutex to be acquired.
973  *
974  * Lock the mutex like mutex_lock().  If a signal is delivered while the
975  * process is sleeping, this function will return without acquiring the
976  * mutex.
977  *
978  * Context: Process context.
979  * Return: 0 if the lock was successfully acquired or %-EINTR if a
980  * signal arrived.
981  */
982 int __sched mutex_lock_interruptible(struct mutex *lock)
983 {
984         might_sleep();
985 
986         if (__mutex_trylock_fast(lock))
987                 return 0;
988 
989         return __mutex_lock_interruptible_slowpath(lock);
990 }
991 
992 EXPORT_SYMBOL(mutex_lock_interruptible);
993 
994 /**
995  * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
996  * @lock: The mutex to be acquired.
997  *
998  * Lock the mutex like mutex_lock().  If a signal which will be fatal to
999  * the current process is delivered while the process is sleeping, this
1000  * function will return without acquiring the mutex.
1001  *
1002  * Context: Process context.
1003  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1004  * fatal signal arrived.
1005  */
1006 int __sched mutex_lock_killable(struct mutex *lock)
1007 {
1008         might_sleep();
1009 
1010         if (__mutex_trylock_fast(lock))
1011                 return 0;
1012 
1013         return __mutex_lock_killable_slowpath(lock);
1014 }
1015 EXPORT_SYMBOL(mutex_lock_killable);
1016 
1017 /**
1018  * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1019  * @lock: The mutex to be acquired.
1020  *
1021  * Lock the mutex like mutex_lock().  While the task is waiting for this
1022  * mutex, it will be accounted as being in the IO wait state by the
1023  * scheduler.
1024  *
1025  * Context: Process context.
1026  */
1027 void __sched mutex_lock_io(struct mutex *lock)
1028 {
1029         int token;
1030 
1031         token = io_schedule_prepare();
1032         mutex_lock(lock);
1033         io_schedule_finish(token);
1034 }
1035 EXPORT_SYMBOL_GPL(mutex_lock_io);
1036 
1037 static noinline void __sched
1038 __mutex_lock_slowpath(struct mutex *lock)
1039 {
1040         __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1041 }
1042 
1043 static noinline int __sched
1044 __mutex_lock_killable_slowpath(struct mutex *lock)
1045 {
1046         return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1047 }
1048 
1049 static noinline int __sched
1050 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1051 {
1052         return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1053 }
1054 
1055 static noinline int __sched
1056 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1057 {
1058         return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0,
1059                                _RET_IP_, ctx);
1060 }
1061 
1062 static noinline int __sched
1063 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1064                                             struct ww_acquire_ctx *ctx)
1065 {
1066         return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0,
1067                                _RET_IP_, ctx);
1068 }
1069 
1070 #endif
1071 
1072 /**
1073  * mutex_trylock - try to acquire the mutex, without waiting
1074  * @lock: the mutex to be acquired
1075  *
1076  * Try to acquire the mutex atomically. Returns 1 if the mutex
1077  * has been acquired successfully, and 0 on contention.
1078  *
1079  * NOTE: this function follows the spin_trylock() convention, so
1080  * it is negated from the down_trylock() return values! Be careful
1081  * about this when converting semaphore users to mutexes.
1082  *
1083  * This function must not be used in interrupt context. The
1084  * mutex must be released by the same task that acquired it.
1085  */
1086 int __sched mutex_trylock(struct mutex *lock)
1087 {
1088         bool locked;
1089 
1090         MUTEX_WARN_ON(lock->magic != lock);
1091 
1092         locked = __mutex_trylock(lock);
1093         if (locked)
1094                 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1095 
1096         return locked;
1097 }
1098 EXPORT_SYMBOL(mutex_trylock);
1099 
1100 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1101 int __sched
1102 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1103 {
1104         might_sleep();
1105 
1106         if (__mutex_trylock_fast(&lock->base)) {
1107                 if (ctx)
1108                         ww_mutex_set_context_fastpath(lock, ctx);
1109                 return 0;
1110         }
1111 
1112         return __ww_mutex_lock_slowpath(lock, ctx);
1113 }
1114 EXPORT_SYMBOL(ww_mutex_lock);
1115 
1116 int __sched
1117 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1118 {
1119         might_sleep();
1120 
1121         if (__mutex_trylock_fast(&lock->base)) {
1122                 if (ctx)
1123                         ww_mutex_set_context_fastpath(lock, ctx);
1124                 return 0;
1125         }
1126 
1127         return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1128 }
1129 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1130 
1131 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
1132 #endif /* !CONFIG_PREEMPT_RT */
1133 
1134 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin);
1135 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end);
1136 
1137 /**
1138  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1139  * @cnt: the atomic which we are to dec
1140  * @lock: the mutex to return holding if we dec to 0
1141  *
1142  * return true and hold lock if we dec to 0, return false otherwise
1143  */
1144 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1145 {
1146         /* dec if we can't possibly hit 0 */
1147         if (atomic_add_unless(cnt, -1, 1))
1148                 return 0;
1149         /* we might hit 0, so take the lock */
1150         mutex_lock(lock);
1151         if (!atomic_dec_and_test(cnt)) {
1152                 /* when we actually did the dec, we didn't hit 0 */
1153                 mutex_unlock(lock);
1154                 return 0;
1155         }
1156         /* we hit 0, and we hold the lock */
1157         return 1;
1158 }
1159 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1160 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php