~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/locking/qspinlock.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Queued spinlock
  4  *
  5  * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
  6  * (C) Copyright 2013-2014,2018 Red Hat, Inc.
  7  * (C) Copyright 2015 Intel Corp.
  8  * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
  9  *
 10  * Authors: Waiman Long <longman@redhat.com>
 11  *          Peter Zijlstra <peterz@infradead.org>
 12  */
 13 
 14 #ifndef _GEN_PV_LOCK_SLOWPATH
 15 
 16 #include <linux/smp.h>
 17 #include <linux/bug.h>
 18 #include <linux/cpumask.h>
 19 #include <linux/percpu.h>
 20 #include <linux/hardirq.h>
 21 #include <linux/mutex.h>
 22 #include <linux/prefetch.h>
 23 #include <asm/byteorder.h>
 24 #include <asm/qspinlock.h>
 25 #include <trace/events/lock.h>
 26 
 27 /*
 28  * Include queued spinlock statistics code
 29  */
 30 #include "qspinlock_stat.h"
 31 
 32 /*
 33  * The basic principle of a queue-based spinlock can best be understood
 34  * by studying a classic queue-based spinlock implementation called the
 35  * MCS lock. A copy of the original MCS lock paper ("Algorithms for Scalable
 36  * Synchronization on Shared-Memory Multiprocessors by Mellor-Crummey and
 37  * Scott") is available at
 38  *
 39  * https://bugzilla.kernel.org/show_bug.cgi?id=206115
 40  *
 41  * This queued spinlock implementation is based on the MCS lock, however to
 42  * make it fit the 4 bytes we assume spinlock_t to be, and preserve its
 43  * existing API, we must modify it somehow.
 44  *
 45  * In particular; where the traditional MCS lock consists of a tail pointer
 46  * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
 47  * unlock the next pending (next->locked), we compress both these: {tail,
 48  * next->locked} into a single u32 value.
 49  *
 50  * Since a spinlock disables recursion of its own context and there is a limit
 51  * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
 52  * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
 53  * we can encode the tail by combining the 2-bit nesting level with the cpu
 54  * number. With one byte for the lock value and 3 bytes for the tail, only a
 55  * 32-bit word is now needed. Even though we only need 1 bit for the lock,
 56  * we extend it to a full byte to achieve better performance for architectures
 57  * that support atomic byte write.
 58  *
 59  * We also change the first spinner to spin on the lock bit instead of its
 60  * node; whereby avoiding the need to carry a node from lock to unlock, and
 61  * preserving existing lock API. This also makes the unlock code simpler and
 62  * faster.
 63  *
 64  * N.B. The current implementation only supports architectures that allow
 65  *      atomic operations on smaller 8-bit and 16-bit data types.
 66  *
 67  */
 68 
 69 #include "mcs_spinlock.h"
 70 #define MAX_NODES       4
 71 
 72 /*
 73  * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in
 74  * size and four of them will fit nicely in one 64-byte cacheline. For
 75  * pvqspinlock, however, we need more space for extra data. To accommodate
 76  * that, we insert two more long words to pad it up to 32 bytes. IOW, only
 77  * two of them can fit in a cacheline in this case. That is OK as it is rare
 78  * to have more than 2 levels of slowpath nesting in actual use. We don't
 79  * want to penalize pvqspinlocks to optimize for a rare case in native
 80  * qspinlocks.
 81  */
 82 struct qnode {
 83         struct mcs_spinlock mcs;
 84 #ifdef CONFIG_PARAVIRT_SPINLOCKS
 85         long reserved[2];
 86 #endif
 87 };
 88 
 89 /*
 90  * The pending bit spinning loop count.
 91  * This heuristic is used to limit the number of lockword accesses
 92  * made by atomic_cond_read_relaxed when waiting for the lock to
 93  * transition out of the "== _Q_PENDING_VAL" state. We don't spin
 94  * indefinitely because there's no guarantee that we'll make forward
 95  * progress.
 96  */
 97 #ifndef _Q_PENDING_LOOPS
 98 #define _Q_PENDING_LOOPS        1
 99 #endif
100 
101 /*
102  * Per-CPU queue node structures; we can never have more than 4 nested
103  * contexts: task, softirq, hardirq, nmi.
104  *
105  * Exactly fits one 64-byte cacheline on a 64-bit architecture.
106  *
107  * PV doubles the storage and uses the second cacheline for PV state.
108  */
109 static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]);
110 
111 /*
112  * We must be able to distinguish between no-tail and the tail at 0:0,
113  * therefore increment the cpu number by one.
114  */
115 
116 static inline __pure u32 encode_tail(int cpu, int idx)
117 {
118         u32 tail;
119 
120         tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
121         tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
122 
123         return tail;
124 }
125 
126 static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
127 {
128         int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
129         int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
130 
131         return per_cpu_ptr(&qnodes[idx].mcs, cpu);
132 }
133 
134 static inline __pure
135 struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx)
136 {
137         return &((struct qnode *)base + idx)->mcs;
138 }
139 
140 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
141 
142 #if _Q_PENDING_BITS == 8
143 /**
144  * clear_pending - clear the pending bit.
145  * @lock: Pointer to queued spinlock structure
146  *
147  * *,1,* -> *,0,*
148  */
149 static __always_inline void clear_pending(struct qspinlock *lock)
150 {
151         WRITE_ONCE(lock->pending, 0);
152 }
153 
154 /**
155  * clear_pending_set_locked - take ownership and clear the pending bit.
156  * @lock: Pointer to queued spinlock structure
157  *
158  * *,1,0 -> *,0,1
159  *
160  * Lock stealing is not allowed if this function is used.
161  */
162 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
163 {
164         WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
165 }
166 
167 /*
168  * xchg_tail - Put in the new queue tail code word & retrieve previous one
169  * @lock : Pointer to queued spinlock structure
170  * @tail : The new queue tail code word
171  * Return: The previous queue tail code word
172  *
173  * xchg(lock, tail), which heads an address dependency
174  *
175  * p,*,* -> n,*,* ; prev = xchg(lock, node)
176  */
177 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
178 {
179         /*
180          * We can use relaxed semantics since the caller ensures that the
181          * MCS node is properly initialized before updating the tail.
182          */
183         return (u32)xchg_relaxed(&lock->tail,
184                                  tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
185 }
186 
187 #else /* _Q_PENDING_BITS == 8 */
188 
189 /**
190  * clear_pending - clear the pending bit.
191  * @lock: Pointer to queued spinlock structure
192  *
193  * *,1,* -> *,0,*
194  */
195 static __always_inline void clear_pending(struct qspinlock *lock)
196 {
197         atomic_andnot(_Q_PENDING_VAL, &lock->val);
198 }
199 
200 /**
201  * clear_pending_set_locked - take ownership and clear the pending bit.
202  * @lock: Pointer to queued spinlock structure
203  *
204  * *,1,0 -> *,0,1
205  */
206 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
207 {
208         atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
209 }
210 
211 /**
212  * xchg_tail - Put in the new queue tail code word & retrieve previous one
213  * @lock : Pointer to queued spinlock structure
214  * @tail : The new queue tail code word
215  * Return: The previous queue tail code word
216  *
217  * xchg(lock, tail)
218  *
219  * p,*,* -> n,*,* ; prev = xchg(lock, node)
220  */
221 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
222 {
223         u32 old, new;
224 
225         old = atomic_read(&lock->val);
226         do {
227                 new = (old & _Q_LOCKED_PENDING_MASK) | tail;
228                 /*
229                  * We can use relaxed semantics since the caller ensures that
230                  * the MCS node is properly initialized before updating the
231                  * tail.
232                  */
233         } while (!atomic_try_cmpxchg_relaxed(&lock->val, &old, new));
234 
235         return old;
236 }
237 #endif /* _Q_PENDING_BITS == 8 */
238 
239 /**
240  * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
241  * @lock : Pointer to queued spinlock structure
242  * Return: The previous lock value
243  *
244  * *,*,* -> *,1,*
245  */
246 #ifndef queued_fetch_set_pending_acquire
247 static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
248 {
249         return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
250 }
251 #endif
252 
253 /**
254  * set_locked - Set the lock bit and own the lock
255  * @lock: Pointer to queued spinlock structure
256  *
257  * *,*,0 -> *,0,1
258  */
259 static __always_inline void set_locked(struct qspinlock *lock)
260 {
261         WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
262 }
263 
264 
265 /*
266  * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
267  * all the PV callbacks.
268  */
269 
270 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
271 static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
272                                            struct mcs_spinlock *prev) { }
273 static __always_inline void __pv_kick_node(struct qspinlock *lock,
274                                            struct mcs_spinlock *node) { }
275 static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
276                                                    struct mcs_spinlock *node)
277                                                    { return 0; }
278 
279 #define pv_enabled()            false
280 
281 #define pv_init_node            __pv_init_node
282 #define pv_wait_node            __pv_wait_node
283 #define pv_kick_node            __pv_kick_node
284 #define pv_wait_head_or_lock    __pv_wait_head_or_lock
285 
286 #ifdef CONFIG_PARAVIRT_SPINLOCKS
287 #define queued_spin_lock_slowpath       native_queued_spin_lock_slowpath
288 #endif
289 
290 #endif /* _GEN_PV_LOCK_SLOWPATH */
291 
292 /**
293  * queued_spin_lock_slowpath - acquire the queued spinlock
294  * @lock: Pointer to queued spinlock structure
295  * @val: Current value of the queued spinlock 32-bit word
296  *
297  * (queue tail, pending bit, lock value)
298  *
299  *              fast     :    slow                                  :    unlock
300  *                       :                                          :
301  * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
302  *                       :       | ^--------.------.             /  :
303  *                       :       v           \      \            |  :
304  * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
305  *                       :       | ^--'              |           |  :
306  *                       :       v                   |           |  :
307  * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
308  *   queue               :       | ^--'                          |  :
309  *                       :       v                               |  :
310  * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
311  *   queue               :         ^--'                             :
312  */
313 void __lockfunc queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
314 {
315         struct mcs_spinlock *prev, *next, *node;
316         u32 old, tail;
317         int idx;
318 
319         BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
320 
321         if (pv_enabled())
322                 goto pv_queue;
323 
324         if (virt_spin_lock(lock))
325                 return;
326 
327         /*
328          * Wait for in-progress pending->locked hand-overs with a bounded
329          * number of spins so that we guarantee forward progress.
330          *
331          * 0,1,0 -> 0,0,1
332          */
333         if (val == _Q_PENDING_VAL) {
334                 int cnt = _Q_PENDING_LOOPS;
335                 val = atomic_cond_read_relaxed(&lock->val,
336                                                (VAL != _Q_PENDING_VAL) || !cnt--);
337         }
338 
339         /*
340          * If we observe any contention; queue.
341          */
342         if (val & ~_Q_LOCKED_MASK)
343                 goto queue;
344 
345         /*
346          * trylock || pending
347          *
348          * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock
349          */
350         val = queued_fetch_set_pending_acquire(lock);
351 
352         /*
353          * If we observe contention, there is a concurrent locker.
354          *
355          * Undo and queue; our setting of PENDING might have made the
356          * n,0,0 -> 0,0,0 transition fail and it will now be waiting
357          * on @next to become !NULL.
358          */
359         if (unlikely(val & ~_Q_LOCKED_MASK)) {
360 
361                 /* Undo PENDING if we set it. */
362                 if (!(val & _Q_PENDING_MASK))
363                         clear_pending(lock);
364 
365                 goto queue;
366         }
367 
368         /*
369          * We're pending, wait for the owner to go away.
370          *
371          * 0,1,1 -> *,1,0
372          *
373          * this wait loop must be a load-acquire such that we match the
374          * store-release that clears the locked bit and create lock
375          * sequentiality; this is because not all
376          * clear_pending_set_locked() implementations imply full
377          * barriers.
378          */
379         if (val & _Q_LOCKED_MASK)
380                 smp_cond_load_acquire(&lock->locked, !VAL);
381 
382         /*
383          * take ownership and clear the pending bit.
384          *
385          * 0,1,0 -> 0,0,1
386          */
387         clear_pending_set_locked(lock);
388         lockevent_inc(lock_pending);
389         return;
390 
391         /*
392          * End of pending bit optimistic spinning and beginning of MCS
393          * queuing.
394          */
395 queue:
396         lockevent_inc(lock_slowpath);
397 pv_queue:
398         node = this_cpu_ptr(&qnodes[0].mcs);
399         idx = node->count++;
400         tail = encode_tail(smp_processor_id(), idx);
401 
402         trace_contention_begin(lock, LCB_F_SPIN);
403 
404         /*
405          * 4 nodes are allocated based on the assumption that there will
406          * not be nested NMIs taking spinlocks. That may not be true in
407          * some architectures even though the chance of needing more than
408          * 4 nodes will still be extremely unlikely. When that happens,
409          * we fall back to spinning on the lock directly without using
410          * any MCS node. This is not the most elegant solution, but is
411          * simple enough.
412          */
413         if (unlikely(idx >= MAX_NODES)) {
414                 lockevent_inc(lock_no_node);
415                 while (!queued_spin_trylock(lock))
416                         cpu_relax();
417                 goto release;
418         }
419 
420         node = grab_mcs_node(node, idx);
421 
422         /*
423          * Keep counts of non-zero index values:
424          */
425         lockevent_cond_inc(lock_use_node2 + idx - 1, idx);
426 
427         /*
428          * Ensure that we increment the head node->count before initialising
429          * the actual node. If the compiler is kind enough to reorder these
430          * stores, then an IRQ could overwrite our assignments.
431          */
432         barrier();
433 
434         node->locked = 0;
435         node->next = NULL;
436         pv_init_node(node);
437 
438         /*
439          * We touched a (possibly) cold cacheline in the per-cpu queue node;
440          * attempt the trylock once more in the hope someone let go while we
441          * weren't watching.
442          */
443         if (queued_spin_trylock(lock))
444                 goto release;
445 
446         /*
447          * Ensure that the initialisation of @node is complete before we
448          * publish the updated tail via xchg_tail() and potentially link
449          * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
450          */
451         smp_wmb();
452 
453         /*
454          * Publish the updated tail.
455          * We have already touched the queueing cacheline; don't bother with
456          * pending stuff.
457          *
458          * p,*,* -> n,*,*
459          */
460         old = xchg_tail(lock, tail);
461         next = NULL;
462 
463         /*
464          * if there was a previous node; link it and wait until reaching the
465          * head of the waitqueue.
466          */
467         if (old & _Q_TAIL_MASK) {
468                 prev = decode_tail(old);
469 
470                 /* Link @node into the waitqueue. */
471                 WRITE_ONCE(prev->next, node);
472 
473                 pv_wait_node(node, prev);
474                 arch_mcs_spin_lock_contended(&node->locked);
475 
476                 /*
477                  * While waiting for the MCS lock, the next pointer may have
478                  * been set by another lock waiter. We optimistically load
479                  * the next pointer & prefetch the cacheline for writing
480                  * to reduce latency in the upcoming MCS unlock operation.
481                  */
482                 next = READ_ONCE(node->next);
483                 if (next)
484                         prefetchw(next);
485         }
486 
487         /*
488          * we're at the head of the waitqueue, wait for the owner & pending to
489          * go away.
490          *
491          * *,x,y -> *,0,0
492          *
493          * this wait loop must use a load-acquire such that we match the
494          * store-release that clears the locked bit and create lock
495          * sequentiality; this is because the set_locked() function below
496          * does not imply a full barrier.
497          *
498          * The PV pv_wait_head_or_lock function, if active, will acquire
499          * the lock and return a non-zero value. So we have to skip the
500          * atomic_cond_read_acquire() call. As the next PV queue head hasn't
501          * been designated yet, there is no way for the locked value to become
502          * _Q_SLOW_VAL. So both the set_locked() and the
503          * atomic_cmpxchg_relaxed() calls will be safe.
504          *
505          * If PV isn't active, 0 will be returned instead.
506          *
507          */
508         if ((val = pv_wait_head_or_lock(lock, node)))
509                 goto locked;
510 
511         val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
512 
513 locked:
514         /*
515          * claim the lock:
516          *
517          * n,0,0 -> 0,0,1 : lock, uncontended
518          * *,*,0 -> *,*,1 : lock, contended
519          *
520          * If the queue head is the only one in the queue (lock value == tail)
521          * and nobody is pending, clear the tail code and grab the lock.
522          * Otherwise, we only need to grab the lock.
523          */
524 
525         /*
526          * In the PV case we might already have _Q_LOCKED_VAL set, because
527          * of lock stealing; therefore we must also allow:
528          *
529          * n,0,1 -> 0,0,1
530          *
531          * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the
532          *       above wait condition, therefore any concurrent setting of
533          *       PENDING will make the uncontended transition fail.
534          */
535         if ((val & _Q_TAIL_MASK) == tail) {
536                 if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
537                         goto release; /* No contention */
538         }
539 
540         /*
541          * Either somebody is queued behind us or _Q_PENDING_VAL got set
542          * which will then detect the remaining tail and queue behind us
543          * ensuring we'll see a @next.
544          */
545         set_locked(lock);
546 
547         /*
548          * contended path; wait for next if not observed yet, release.
549          */
550         if (!next)
551                 next = smp_cond_load_relaxed(&node->next, (VAL));
552 
553         arch_mcs_spin_unlock_contended(&next->locked);
554         pv_kick_node(lock, next);
555 
556 release:
557         trace_contention_end(lock, 0);
558 
559         /*
560          * release the node
561          */
562         __this_cpu_dec(qnodes[0].mcs.count);
563 }
564 EXPORT_SYMBOL(queued_spin_lock_slowpath);
565 
566 /*
567  * Generate the paravirt code for queued_spin_unlock_slowpath().
568  */
569 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
570 #define _GEN_PV_LOCK_SLOWPATH
571 
572 #undef  pv_enabled
573 #define pv_enabled()    true
574 
575 #undef pv_init_node
576 #undef pv_wait_node
577 #undef pv_kick_node
578 #undef pv_wait_head_or_lock
579 
580 #undef  queued_spin_lock_slowpath
581 #define queued_spin_lock_slowpath       __pv_queued_spin_lock_slowpath
582 
583 #include "qspinlock_paravirt.h"
584 #include "qspinlock.c"
585 
586 bool nopvspin;
587 static __init int parse_nopvspin(char *arg)
588 {
589         nopvspin = true;
590         return 0;
591 }
592 early_param("nopvspin", parse_nopvspin);
593 #endif
594 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php