~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/locking/ww_mutex.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0-only */
  2 
  3 #ifndef WW_RT
  4 
  5 #define MUTEX           mutex
  6 #define MUTEX_WAITER    mutex_waiter
  7 
  8 static inline struct mutex_waiter *
  9 __ww_waiter_first(struct mutex *lock)
 10 {
 11         struct mutex_waiter *w;
 12 
 13         w = list_first_entry(&lock->wait_list, struct mutex_waiter, list);
 14         if (list_entry_is_head(w, &lock->wait_list, list))
 15                 return NULL;
 16 
 17         return w;
 18 }
 19 
 20 static inline struct mutex_waiter *
 21 __ww_waiter_next(struct mutex *lock, struct mutex_waiter *w)
 22 {
 23         w = list_next_entry(w, list);
 24         if (list_entry_is_head(w, &lock->wait_list, list))
 25                 return NULL;
 26 
 27         return w;
 28 }
 29 
 30 static inline struct mutex_waiter *
 31 __ww_waiter_prev(struct mutex *lock, struct mutex_waiter *w)
 32 {
 33         w = list_prev_entry(w, list);
 34         if (list_entry_is_head(w, &lock->wait_list, list))
 35                 return NULL;
 36 
 37         return w;
 38 }
 39 
 40 static inline struct mutex_waiter *
 41 __ww_waiter_last(struct mutex *lock)
 42 {
 43         struct mutex_waiter *w;
 44 
 45         w = list_last_entry(&lock->wait_list, struct mutex_waiter, list);
 46         if (list_entry_is_head(w, &lock->wait_list, list))
 47                 return NULL;
 48 
 49         return w;
 50 }
 51 
 52 static inline void
 53 __ww_waiter_add(struct mutex *lock, struct mutex_waiter *waiter, struct mutex_waiter *pos)
 54 {
 55         struct list_head *p = &lock->wait_list;
 56         if (pos)
 57                 p = &pos->list;
 58         __mutex_add_waiter(lock, waiter, p);
 59 }
 60 
 61 static inline struct task_struct *
 62 __ww_mutex_owner(struct mutex *lock)
 63 {
 64         return __mutex_owner(lock);
 65 }
 66 
 67 static inline bool
 68 __ww_mutex_has_waiters(struct mutex *lock)
 69 {
 70         return atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS;
 71 }
 72 
 73 static inline void lock_wait_lock(struct mutex *lock)
 74 {
 75         raw_spin_lock(&lock->wait_lock);
 76 }
 77 
 78 static inline void unlock_wait_lock(struct mutex *lock)
 79 {
 80         raw_spin_unlock(&lock->wait_lock);
 81 }
 82 
 83 static inline void lockdep_assert_wait_lock_held(struct mutex *lock)
 84 {
 85         lockdep_assert_held(&lock->wait_lock);
 86 }
 87 
 88 #else /* WW_RT */
 89 
 90 #define MUTEX           rt_mutex
 91 #define MUTEX_WAITER    rt_mutex_waiter
 92 
 93 static inline struct rt_mutex_waiter *
 94 __ww_waiter_first(struct rt_mutex *lock)
 95 {
 96         struct rb_node *n = rb_first(&lock->rtmutex.waiters.rb_root);
 97         if (!n)
 98                 return NULL;
 99         return rb_entry(n, struct rt_mutex_waiter, tree.entry);
100 }
101 
102 static inline struct rt_mutex_waiter *
103 __ww_waiter_next(struct rt_mutex *lock, struct rt_mutex_waiter *w)
104 {
105         struct rb_node *n = rb_next(&w->tree.entry);
106         if (!n)
107                 return NULL;
108         return rb_entry(n, struct rt_mutex_waiter, tree.entry);
109 }
110 
111 static inline struct rt_mutex_waiter *
112 __ww_waiter_prev(struct rt_mutex *lock, struct rt_mutex_waiter *w)
113 {
114         struct rb_node *n = rb_prev(&w->tree.entry);
115         if (!n)
116                 return NULL;
117         return rb_entry(n, struct rt_mutex_waiter, tree.entry);
118 }
119 
120 static inline struct rt_mutex_waiter *
121 __ww_waiter_last(struct rt_mutex *lock)
122 {
123         struct rb_node *n = rb_last(&lock->rtmutex.waiters.rb_root);
124         if (!n)
125                 return NULL;
126         return rb_entry(n, struct rt_mutex_waiter, tree.entry);
127 }
128 
129 static inline void
130 __ww_waiter_add(struct rt_mutex *lock, struct rt_mutex_waiter *waiter, struct rt_mutex_waiter *pos)
131 {
132         /* RT unconditionally adds the waiter first and then removes it on error */
133 }
134 
135 static inline struct task_struct *
136 __ww_mutex_owner(struct rt_mutex *lock)
137 {
138         return rt_mutex_owner(&lock->rtmutex);
139 }
140 
141 static inline bool
142 __ww_mutex_has_waiters(struct rt_mutex *lock)
143 {
144         return rt_mutex_has_waiters(&lock->rtmutex);
145 }
146 
147 static inline void lock_wait_lock(struct rt_mutex *lock)
148 {
149         raw_spin_lock(&lock->rtmutex.wait_lock);
150 }
151 
152 static inline void unlock_wait_lock(struct rt_mutex *lock)
153 {
154         raw_spin_unlock(&lock->rtmutex.wait_lock);
155 }
156 
157 static inline void lockdep_assert_wait_lock_held(struct rt_mutex *lock)
158 {
159         lockdep_assert_held(&lock->rtmutex.wait_lock);
160 }
161 
162 #endif /* WW_RT */
163 
164 /*
165  * Wait-Die:
166  *   The newer transactions are killed when:
167  *     It (the new transaction) makes a request for a lock being held
168  *     by an older transaction.
169  *
170  * Wound-Wait:
171  *   The newer transactions are wounded when:
172  *     An older transaction makes a request for a lock being held by
173  *     the newer transaction.
174  */
175 
176 /*
177  * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
178  * it.
179  */
180 static __always_inline void
181 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
182 {
183 #ifdef DEBUG_WW_MUTEXES
184         /*
185          * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
186          * but released with a normal mutex_unlock in this call.
187          *
188          * This should never happen, always use ww_mutex_unlock.
189          */
190         DEBUG_LOCKS_WARN_ON(ww->ctx);
191 
192         /*
193          * Not quite done after calling ww_acquire_done() ?
194          */
195         DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
196 
197         if (ww_ctx->contending_lock) {
198                 /*
199                  * After -EDEADLK you tried to
200                  * acquire a different ww_mutex? Bad!
201                  */
202                 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
203 
204                 /*
205                  * You called ww_mutex_lock after receiving -EDEADLK,
206                  * but 'forgot' to unlock everything else first?
207                  */
208                 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
209                 ww_ctx->contending_lock = NULL;
210         }
211 
212         /*
213          * Naughty, using a different class will lead to undefined behavior!
214          */
215         DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
216 #endif
217         ww_ctx->acquired++;
218         ww->ctx = ww_ctx;
219 }
220 
221 /*
222  * Determine if @a is 'less' than @b. IOW, either @a is a lower priority task
223  * or, when of equal priority, a younger transaction than @b.
224  *
225  * Depending on the algorithm, @a will either need to wait for @b, or die.
226  */
227 static inline bool
228 __ww_ctx_less(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
229 {
230 /*
231  * Can only do the RT prio for WW_RT, because task->prio isn't stable due to PI,
232  * so the wait_list ordering will go wobbly. rt_mutex re-queues the waiter and
233  * isn't affected by this.
234  */
235 #ifdef WW_RT
236         /* kernel prio; less is more */
237         int a_prio = a->task->prio;
238         int b_prio = b->task->prio;
239 
240         if (rt_prio(a_prio) || rt_prio(b_prio)) {
241 
242                 if (a_prio > b_prio)
243                         return true;
244 
245                 if (a_prio < b_prio)
246                         return false;
247 
248                 /* equal static prio */
249 
250                 if (dl_prio(a_prio)) {
251                         if (dl_time_before(b->task->dl.deadline,
252                                            a->task->dl.deadline))
253                                 return true;
254 
255                         if (dl_time_before(a->task->dl.deadline,
256                                            b->task->dl.deadline))
257                                 return false;
258                 }
259 
260                 /* equal prio */
261         }
262 #endif
263 
264         /* FIFO order tie break -- bigger is younger */
265         return (signed long)(a->stamp - b->stamp) > 0;
266 }
267 
268 /*
269  * Wait-Die; wake a lesser waiter context (when locks held) such that it can
270  * die.
271  *
272  * Among waiters with context, only the first one can have other locks acquired
273  * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
274  * __ww_mutex_check_kill() wake any but the earliest context.
275  */
276 static bool
277 __ww_mutex_die(struct MUTEX *lock, struct MUTEX_WAITER *waiter,
278                struct ww_acquire_ctx *ww_ctx)
279 {
280         if (!ww_ctx->is_wait_die)
281                 return false;
282 
283         if (waiter->ww_ctx->acquired > 0 && __ww_ctx_less(waiter->ww_ctx, ww_ctx)) {
284 #ifndef WW_RT
285                 debug_mutex_wake_waiter(lock, waiter);
286 #endif
287                 wake_up_process(waiter->task);
288         }
289 
290         return true;
291 }
292 
293 /*
294  * Wound-Wait; wound a lesser @hold_ctx if it holds the lock.
295  *
296  * Wound the lock holder if there are waiters with more important transactions
297  * than the lock holders. Even if multiple waiters may wound the lock holder,
298  * it's sufficient that only one does.
299  */
300 static bool __ww_mutex_wound(struct MUTEX *lock,
301                              struct ww_acquire_ctx *ww_ctx,
302                              struct ww_acquire_ctx *hold_ctx)
303 {
304         struct task_struct *owner = __ww_mutex_owner(lock);
305 
306         lockdep_assert_wait_lock_held(lock);
307 
308         /*
309          * Possible through __ww_mutex_add_waiter() when we race with
310          * ww_mutex_set_context_fastpath(). In that case we'll get here again
311          * through __ww_mutex_check_waiters().
312          */
313         if (!hold_ctx)
314                 return false;
315 
316         /*
317          * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
318          * it cannot go away because we'll have FLAG_WAITERS set and hold
319          * wait_lock.
320          */
321         if (!owner)
322                 return false;
323 
324         if (ww_ctx->acquired > 0 && __ww_ctx_less(hold_ctx, ww_ctx)) {
325                 hold_ctx->wounded = 1;
326 
327                 /*
328                  * wake_up_process() paired with set_current_state()
329                  * inserts sufficient barriers to make sure @owner either sees
330                  * it's wounded in __ww_mutex_check_kill() or has a
331                  * wakeup pending to re-read the wounded state.
332                  */
333                 if (owner != current)
334                         wake_up_process(owner);
335 
336                 return true;
337         }
338 
339         return false;
340 }
341 
342 /*
343  * We just acquired @lock under @ww_ctx, if there are more important contexts
344  * waiting behind us on the wait-list, check if they need to die, or wound us.
345  *
346  * See __ww_mutex_add_waiter() for the list-order construction; basically the
347  * list is ordered by stamp, smallest (oldest) first.
348  *
349  * This relies on never mixing wait-die/wound-wait on the same wait-list;
350  * which is currently ensured by that being a ww_class property.
351  *
352  * The current task must not be on the wait list.
353  */
354 static void
355 __ww_mutex_check_waiters(struct MUTEX *lock, struct ww_acquire_ctx *ww_ctx)
356 {
357         struct MUTEX_WAITER *cur;
358 
359         lockdep_assert_wait_lock_held(lock);
360 
361         for (cur = __ww_waiter_first(lock); cur;
362              cur = __ww_waiter_next(lock, cur)) {
363 
364                 if (!cur->ww_ctx)
365                         continue;
366 
367                 if (__ww_mutex_die(lock, cur, ww_ctx) ||
368                     __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
369                         break;
370         }
371 }
372 
373 /*
374  * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
375  * and wake up any waiters so they can recheck.
376  */
377 static __always_inline void
378 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
379 {
380         ww_mutex_lock_acquired(lock, ctx);
381 
382         /*
383          * The lock->ctx update should be visible on all cores before
384          * the WAITERS check is done, otherwise contended waiters might be
385          * missed. The contended waiters will either see ww_ctx == NULL
386          * and keep spinning, or it will acquire wait_lock, add itself
387          * to waiter list and sleep.
388          */
389         smp_mb(); /* See comments above and below. */
390 
391         /*
392          * [W] ww->ctx = ctx        [W] MUTEX_FLAG_WAITERS
393          *     MB                       MB
394          * [R] MUTEX_FLAG_WAITERS   [R] ww->ctx
395          *
396          * The memory barrier above pairs with the memory barrier in
397          * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
398          * and/or !empty list.
399          */
400         if (likely(!__ww_mutex_has_waiters(&lock->base)))
401                 return;
402 
403         /*
404          * Uh oh, we raced in fastpath, check if any of the waiters need to
405          * die or wound us.
406          */
407         lock_wait_lock(&lock->base);
408         __ww_mutex_check_waiters(&lock->base, ctx);
409         unlock_wait_lock(&lock->base);
410 }
411 
412 static __always_inline int
413 __ww_mutex_kill(struct MUTEX *lock, struct ww_acquire_ctx *ww_ctx)
414 {
415         if (ww_ctx->acquired > 0) {
416 #ifdef DEBUG_WW_MUTEXES
417                 struct ww_mutex *ww;
418 
419                 ww = container_of(lock, struct ww_mutex, base);
420                 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
421                 ww_ctx->contending_lock = ww;
422 #endif
423                 return -EDEADLK;
424         }
425 
426         return 0;
427 }
428 
429 /*
430  * Check the wound condition for the current lock acquire.
431  *
432  * Wound-Wait: If we're wounded, kill ourself.
433  *
434  * Wait-Die: If we're trying to acquire a lock already held by an older
435  *           context, kill ourselves.
436  *
437  * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
438  * look at waiters before us in the wait-list.
439  */
440 static inline int
441 __ww_mutex_check_kill(struct MUTEX *lock, struct MUTEX_WAITER *waiter,
442                       struct ww_acquire_ctx *ctx)
443 {
444         struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
445         struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
446         struct MUTEX_WAITER *cur;
447 
448         if (ctx->acquired == 0)
449                 return 0;
450 
451         if (!ctx->is_wait_die) {
452                 if (ctx->wounded)
453                         return __ww_mutex_kill(lock, ctx);
454 
455                 return 0;
456         }
457 
458         if (hold_ctx && __ww_ctx_less(ctx, hold_ctx))
459                 return __ww_mutex_kill(lock, ctx);
460 
461         /*
462          * If there is a waiter in front of us that has a context, then its
463          * stamp is earlier than ours and we must kill ourself.
464          */
465         for (cur = __ww_waiter_prev(lock, waiter); cur;
466              cur = __ww_waiter_prev(lock, cur)) {
467 
468                 if (!cur->ww_ctx)
469                         continue;
470 
471                 return __ww_mutex_kill(lock, ctx);
472         }
473 
474         return 0;
475 }
476 
477 /*
478  * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
479  * first. Such that older contexts are preferred to acquire the lock over
480  * younger contexts.
481  *
482  * Waiters without context are interspersed in FIFO order.
483  *
484  * Furthermore, for Wait-Die kill ourself immediately when possible (there are
485  * older contexts already waiting) to avoid unnecessary waiting and for
486  * Wound-Wait ensure we wound the owning context when it is younger.
487  */
488 static inline int
489 __ww_mutex_add_waiter(struct MUTEX_WAITER *waiter,
490                       struct MUTEX *lock,
491                       struct ww_acquire_ctx *ww_ctx)
492 {
493         struct MUTEX_WAITER *cur, *pos = NULL;
494         bool is_wait_die;
495 
496         if (!ww_ctx) {
497                 __ww_waiter_add(lock, waiter, NULL);
498                 return 0;
499         }
500 
501         is_wait_die = ww_ctx->is_wait_die;
502 
503         /*
504          * Add the waiter before the first waiter with a higher stamp.
505          * Waiters without a context are skipped to avoid starving
506          * them. Wait-Die waiters may die here. Wound-Wait waiters
507          * never die here, but they are sorted in stamp order and
508          * may wound the lock holder.
509          */
510         for (cur = __ww_waiter_last(lock); cur;
511              cur = __ww_waiter_prev(lock, cur)) {
512 
513                 if (!cur->ww_ctx)
514                         continue;
515 
516                 if (__ww_ctx_less(ww_ctx, cur->ww_ctx)) {
517                         /*
518                          * Wait-Die: if we find an older context waiting, there
519                          * is no point in queueing behind it, as we'd have to
520                          * die the moment it would acquire the lock.
521                          */
522                         if (is_wait_die) {
523                                 int ret = __ww_mutex_kill(lock, ww_ctx);
524 
525                                 if (ret)
526                                         return ret;
527                         }
528 
529                         break;
530                 }
531 
532                 pos = cur;
533 
534                 /* Wait-Die: ensure younger waiters die. */
535                 __ww_mutex_die(lock, cur, ww_ctx);
536         }
537 
538         __ww_waiter_add(lock, waiter, pos);
539 
540         /*
541          * Wound-Wait: if we're blocking on a mutex owned by a younger context,
542          * wound that such that we might proceed.
543          */
544         if (!is_wait_die) {
545                 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
546 
547                 /*
548                  * See ww_mutex_set_context_fastpath(). Orders setting
549                  * MUTEX_FLAG_WAITERS vs the ww->ctx load,
550                  * such that either we or the fastpath will wound @ww->ctx.
551                  */
552                 smp_mb();
553                 __ww_mutex_wound(lock, ww_ctx, ww->ctx);
554         }
555 
556         return 0;
557 }
558 
559 static inline void __ww_mutex_unlock(struct ww_mutex *lock)
560 {
561         if (lock->ctx) {
562 #ifdef DEBUG_WW_MUTEXES
563                 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
564 #endif
565                 if (lock->ctx->acquired > 0)
566                         lock->ctx->acquired--;
567                 lock->ctx = NULL;
568         }
569 }
570 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php