1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org> 6 */ 7 8 #define INCLUDE_VERMAGIC 9 10 #include <linux/export.h> 11 #include <linux/extable.h> 12 #include <linux/moduleloader.h> 13 #include <linux/module_signature.h> 14 #include <linux/trace_events.h> 15 #include <linux/init.h> 16 #include <linux/kallsyms.h> 17 #include <linux/buildid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/kstrtox.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/elf.h> 25 #include <linux/seq_file.h> 26 #include <linux/syscalls.h> 27 #include <linux/fcntl.h> 28 #include <linux/rcupdate.h> 29 #include <linux/capability.h> 30 #include <linux/cpu.h> 31 #include <linux/moduleparam.h> 32 #include <linux/errno.h> 33 #include <linux/err.h> 34 #include <linux/vermagic.h> 35 #include <linux/notifier.h> 36 #include <linux/sched.h> 37 #include <linux/device.h> 38 #include <linux/string.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <linux/set_memory.h> 44 #include <asm/mmu_context.h> 45 #include <linux/license.h> 46 #include <asm/sections.h> 47 #include <linux/tracepoint.h> 48 #include <linux/ftrace.h> 49 #include <linux/livepatch.h> 50 #include <linux/async.h> 51 #include <linux/percpu.h> 52 #include <linux/kmemleak.h> 53 #include <linux/jump_label.h> 54 #include <linux/pfn.h> 55 #include <linux/bsearch.h> 56 #include <linux/dynamic_debug.h> 57 #include <linux/audit.h> 58 #include <linux/cfi.h> 59 #include <linux/codetag.h> 60 #include <linux/debugfs.h> 61 #include <linux/execmem.h> 62 #include <uapi/linux/module.h> 63 #include "internal.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/module.h> 67 #include <linux/ccsecurity.h> 68 69 /* 70 * Mutex protects: 71 * 1) List of modules (also safely readable with preempt_disable), 72 * 2) module_use links, 73 * 3) mod_tree.addr_min/mod_tree.addr_max. 74 * (delete and add uses RCU list operations). 75 */ 76 DEFINE_MUTEX(module_mutex); 77 LIST_HEAD(modules); 78 79 /* Work queue for freeing init sections in success case */ 80 static void do_free_init(struct work_struct *w); 81 static DECLARE_WORK(init_free_wq, do_free_init); 82 static LLIST_HEAD(init_free_list); 83 84 struct mod_tree_root mod_tree __cacheline_aligned = { 85 .addr_min = -1UL, 86 }; 87 88 struct symsearch { 89 const struct kernel_symbol *start, *stop; 90 const s32 *crcs; 91 enum mod_license license; 92 }; 93 94 /* 95 * Bounds of module memory, for speeding up __module_address. 96 * Protected by module_mutex. 97 */ 98 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base, 99 unsigned int size, struct mod_tree_root *tree) 100 { 101 unsigned long min = (unsigned long)base; 102 unsigned long max = min + size; 103 104 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 105 if (mod_mem_type_is_core_data(type)) { 106 if (min < tree->data_addr_min) 107 tree->data_addr_min = min; 108 if (max > tree->data_addr_max) 109 tree->data_addr_max = max; 110 return; 111 } 112 #endif 113 if (min < tree->addr_min) 114 tree->addr_min = min; 115 if (max > tree->addr_max) 116 tree->addr_max = max; 117 } 118 119 static void mod_update_bounds(struct module *mod) 120 { 121 for_each_mod_mem_type(type) { 122 struct module_memory *mod_mem = &mod->mem[type]; 123 124 if (mod_mem->size) 125 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree); 126 } 127 } 128 129 /* Block module loading/unloading? */ 130 int modules_disabled; 131 core_param(nomodule, modules_disabled, bint, 0); 132 133 /* Waiting for a module to finish initializing? */ 134 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 135 136 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 137 138 int register_module_notifier(struct notifier_block *nb) 139 { 140 return blocking_notifier_chain_register(&module_notify_list, nb); 141 } 142 EXPORT_SYMBOL(register_module_notifier); 143 144 int unregister_module_notifier(struct notifier_block *nb) 145 { 146 return blocking_notifier_chain_unregister(&module_notify_list, nb); 147 } 148 EXPORT_SYMBOL(unregister_module_notifier); 149 150 /* 151 * We require a truly strong try_module_get(): 0 means success. 152 * Otherwise an error is returned due to ongoing or failed 153 * initialization etc. 154 */ 155 static inline int strong_try_module_get(struct module *mod) 156 { 157 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 158 if (mod && mod->state == MODULE_STATE_COMING) 159 return -EBUSY; 160 if (try_module_get(mod)) 161 return 0; 162 else 163 return -ENOENT; 164 } 165 166 static inline void add_taint_module(struct module *mod, unsigned flag, 167 enum lockdep_ok lockdep_ok) 168 { 169 add_taint(flag, lockdep_ok); 170 set_bit(flag, &mod->taints); 171 } 172 173 /* 174 * A thread that wants to hold a reference to a module only while it 175 * is running can call this to safely exit. 176 */ 177 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 178 { 179 module_put(mod); 180 kthread_exit(code); 181 } 182 EXPORT_SYMBOL(__module_put_and_kthread_exit); 183 184 /* Find a module section: 0 means not found. */ 185 static unsigned int find_sec(const struct load_info *info, const char *name) 186 { 187 unsigned int i; 188 189 for (i = 1; i < info->hdr->e_shnum; i++) { 190 Elf_Shdr *shdr = &info->sechdrs[i]; 191 /* Alloc bit cleared means "ignore it." */ 192 if ((shdr->sh_flags & SHF_ALLOC) 193 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 194 return i; 195 } 196 return 0; 197 } 198 199 /* Find a module section, or NULL. */ 200 static void *section_addr(const struct load_info *info, const char *name) 201 { 202 /* Section 0 has sh_addr 0. */ 203 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 204 } 205 206 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 207 static void *section_objs(const struct load_info *info, 208 const char *name, 209 size_t object_size, 210 unsigned int *num) 211 { 212 unsigned int sec = find_sec(info, name); 213 214 /* Section 0 has sh_addr 0 and sh_size 0. */ 215 *num = info->sechdrs[sec].sh_size / object_size; 216 return (void *)info->sechdrs[sec].sh_addr; 217 } 218 219 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 220 static unsigned int find_any_sec(const struct load_info *info, const char *name) 221 { 222 unsigned int i; 223 224 for (i = 1; i < info->hdr->e_shnum; i++) { 225 Elf_Shdr *shdr = &info->sechdrs[i]; 226 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 227 return i; 228 } 229 return 0; 230 } 231 232 /* 233 * Find a module section, or NULL. Fill in number of "objects" in section. 234 * Ignores SHF_ALLOC flag. 235 */ 236 static __maybe_unused void *any_section_objs(const struct load_info *info, 237 const char *name, 238 size_t object_size, 239 unsigned int *num) 240 { 241 unsigned int sec = find_any_sec(info, name); 242 243 /* Section 0 has sh_addr 0 and sh_size 0. */ 244 *num = info->sechdrs[sec].sh_size / object_size; 245 return (void *)info->sechdrs[sec].sh_addr; 246 } 247 248 #ifndef CONFIG_MODVERSIONS 249 #define symversion(base, idx) NULL 250 #else 251 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 252 #endif 253 254 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 255 { 256 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 257 return offset_to_ptr(&sym->name_offset); 258 #else 259 return sym->name; 260 #endif 261 } 262 263 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 264 { 265 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 266 if (!sym->namespace_offset) 267 return NULL; 268 return offset_to_ptr(&sym->namespace_offset); 269 #else 270 return sym->namespace; 271 #endif 272 } 273 274 int cmp_name(const void *name, const void *sym) 275 { 276 return strcmp(name, kernel_symbol_name(sym)); 277 } 278 279 static bool find_exported_symbol_in_section(const struct symsearch *syms, 280 struct module *owner, 281 struct find_symbol_arg *fsa) 282 { 283 struct kernel_symbol *sym; 284 285 if (!fsa->gplok && syms->license == GPL_ONLY) 286 return false; 287 288 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 289 sizeof(struct kernel_symbol), cmp_name); 290 if (!sym) 291 return false; 292 293 fsa->owner = owner; 294 fsa->crc = symversion(syms->crcs, sym - syms->start); 295 fsa->sym = sym; 296 fsa->license = syms->license; 297 298 return true; 299 } 300 301 /* 302 * Find an exported symbol and return it, along with, (optional) crc and 303 * (optional) module which owns it. Needs preempt disabled or module_mutex. 304 */ 305 bool find_symbol(struct find_symbol_arg *fsa) 306 { 307 static const struct symsearch arr[] = { 308 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 309 NOT_GPL_ONLY }, 310 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 311 __start___kcrctab_gpl, 312 GPL_ONLY }, 313 }; 314 struct module *mod; 315 unsigned int i; 316 317 module_assert_mutex_or_preempt(); 318 319 for (i = 0; i < ARRAY_SIZE(arr); i++) 320 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 321 return true; 322 323 list_for_each_entry_rcu(mod, &modules, list, 324 lockdep_is_held(&module_mutex)) { 325 struct symsearch arr[] = { 326 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 327 NOT_GPL_ONLY }, 328 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 329 mod->gpl_crcs, 330 GPL_ONLY }, 331 }; 332 333 if (mod->state == MODULE_STATE_UNFORMED) 334 continue; 335 336 for (i = 0; i < ARRAY_SIZE(arr); i++) 337 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 338 return true; 339 } 340 341 pr_debug("Failed to find symbol %s\n", fsa->name); 342 return false; 343 } 344 345 /* 346 * Search for module by name: must hold module_mutex (or preempt disabled 347 * for read-only access). 348 */ 349 struct module *find_module_all(const char *name, size_t len, 350 bool even_unformed) 351 { 352 struct module *mod; 353 354 module_assert_mutex_or_preempt(); 355 356 list_for_each_entry_rcu(mod, &modules, list, 357 lockdep_is_held(&module_mutex)) { 358 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 359 continue; 360 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 361 return mod; 362 } 363 return NULL; 364 } 365 366 struct module *find_module(const char *name) 367 { 368 return find_module_all(name, strlen(name), false); 369 } 370 371 #ifdef CONFIG_SMP 372 373 static inline void __percpu *mod_percpu(struct module *mod) 374 { 375 return mod->percpu; 376 } 377 378 static int percpu_modalloc(struct module *mod, struct load_info *info) 379 { 380 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 381 unsigned long align = pcpusec->sh_addralign; 382 383 if (!pcpusec->sh_size) 384 return 0; 385 386 if (align > PAGE_SIZE) { 387 pr_warn("%s: per-cpu alignment %li > %li\n", 388 mod->name, align, PAGE_SIZE); 389 align = PAGE_SIZE; 390 } 391 392 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 393 if (!mod->percpu) { 394 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 395 mod->name, (unsigned long)pcpusec->sh_size); 396 return -ENOMEM; 397 } 398 mod->percpu_size = pcpusec->sh_size; 399 return 0; 400 } 401 402 static void percpu_modfree(struct module *mod) 403 { 404 free_percpu(mod->percpu); 405 } 406 407 static unsigned int find_pcpusec(struct load_info *info) 408 { 409 return find_sec(info, ".data..percpu"); 410 } 411 412 static void percpu_modcopy(struct module *mod, 413 const void *from, unsigned long size) 414 { 415 int cpu; 416 417 for_each_possible_cpu(cpu) 418 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 419 } 420 421 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 422 { 423 struct module *mod; 424 unsigned int cpu; 425 426 preempt_disable(); 427 428 list_for_each_entry_rcu(mod, &modules, list) { 429 if (mod->state == MODULE_STATE_UNFORMED) 430 continue; 431 if (!mod->percpu_size) 432 continue; 433 for_each_possible_cpu(cpu) { 434 void *start = per_cpu_ptr(mod->percpu, cpu); 435 void *va = (void *)addr; 436 437 if (va >= start && va < start + mod->percpu_size) { 438 if (can_addr) { 439 *can_addr = (unsigned long) (va - start); 440 *can_addr += (unsigned long) 441 per_cpu_ptr(mod->percpu, 442 get_boot_cpu_id()); 443 } 444 preempt_enable(); 445 return true; 446 } 447 } 448 } 449 450 preempt_enable(); 451 return false; 452 } 453 454 /** 455 * is_module_percpu_address() - test whether address is from module static percpu 456 * @addr: address to test 457 * 458 * Test whether @addr belongs to module static percpu area. 459 * 460 * Return: %true if @addr is from module static percpu area 461 */ 462 bool is_module_percpu_address(unsigned long addr) 463 { 464 return __is_module_percpu_address(addr, NULL); 465 } 466 467 #else /* ... !CONFIG_SMP */ 468 469 static inline void __percpu *mod_percpu(struct module *mod) 470 { 471 return NULL; 472 } 473 static int percpu_modalloc(struct module *mod, struct load_info *info) 474 { 475 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 476 if (info->sechdrs[info->index.pcpu].sh_size != 0) 477 return -ENOMEM; 478 return 0; 479 } 480 static inline void percpu_modfree(struct module *mod) 481 { 482 } 483 static unsigned int find_pcpusec(struct load_info *info) 484 { 485 return 0; 486 } 487 static inline void percpu_modcopy(struct module *mod, 488 const void *from, unsigned long size) 489 { 490 /* pcpusec should be 0, and size of that section should be 0. */ 491 BUG_ON(size != 0); 492 } 493 bool is_module_percpu_address(unsigned long addr) 494 { 495 return false; 496 } 497 498 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 499 { 500 return false; 501 } 502 503 #endif /* CONFIG_SMP */ 504 505 #define MODINFO_ATTR(field) \ 506 static void setup_modinfo_##field(struct module *mod, const char *s) \ 507 { \ 508 mod->field = kstrdup(s, GFP_KERNEL); \ 509 } \ 510 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \ 511 struct module_kobject *mk, char *buffer) \ 512 { \ 513 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 514 } \ 515 static int modinfo_##field##_exists(struct module *mod) \ 516 { \ 517 return mod->field != NULL; \ 518 } \ 519 static void free_modinfo_##field(struct module *mod) \ 520 { \ 521 kfree(mod->field); \ 522 mod->field = NULL; \ 523 } \ 524 static struct module_attribute modinfo_##field = { \ 525 .attr = { .name = __stringify(field), .mode = 0444 }, \ 526 .show = show_modinfo_##field, \ 527 .setup = setup_modinfo_##field, \ 528 .test = modinfo_##field##_exists, \ 529 .free = free_modinfo_##field, \ 530 }; 531 532 MODINFO_ATTR(version); 533 MODINFO_ATTR(srcversion); 534 535 static struct { 536 char name[MODULE_NAME_LEN + 1]; 537 char taints[MODULE_FLAGS_BUF_SIZE]; 538 } last_unloaded_module; 539 540 #ifdef CONFIG_MODULE_UNLOAD 541 542 EXPORT_TRACEPOINT_SYMBOL(module_get); 543 544 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 545 #define MODULE_REF_BASE 1 546 547 /* Init the unload section of the module. */ 548 static int module_unload_init(struct module *mod) 549 { 550 /* 551 * Initialize reference counter to MODULE_REF_BASE. 552 * refcnt == 0 means module is going. 553 */ 554 atomic_set(&mod->refcnt, MODULE_REF_BASE); 555 556 INIT_LIST_HEAD(&mod->source_list); 557 INIT_LIST_HEAD(&mod->target_list); 558 559 /* Hold reference count during initialization. */ 560 atomic_inc(&mod->refcnt); 561 562 return 0; 563 } 564 565 /* Does a already use b? */ 566 static int already_uses(struct module *a, struct module *b) 567 { 568 struct module_use *use; 569 570 list_for_each_entry(use, &b->source_list, source_list) { 571 if (use->source == a) 572 return 1; 573 } 574 pr_debug("%s does not use %s!\n", a->name, b->name); 575 return 0; 576 } 577 578 /* 579 * Module a uses b 580 * - we add 'a' as a "source", 'b' as a "target" of module use 581 * - the module_use is added to the list of 'b' sources (so 582 * 'b' can walk the list to see who sourced them), and of 'a' 583 * targets (so 'a' can see what modules it targets). 584 */ 585 static int add_module_usage(struct module *a, struct module *b) 586 { 587 struct module_use *use; 588 589 pr_debug("Allocating new usage for %s.\n", a->name); 590 use = kmalloc(sizeof(*use), GFP_ATOMIC); 591 if (!use) 592 return -ENOMEM; 593 594 use->source = a; 595 use->target = b; 596 list_add(&use->source_list, &b->source_list); 597 list_add(&use->target_list, &a->target_list); 598 return 0; 599 } 600 601 /* Module a uses b: caller needs module_mutex() */ 602 static int ref_module(struct module *a, struct module *b) 603 { 604 int err; 605 606 if (b == NULL || already_uses(a, b)) 607 return 0; 608 609 /* If module isn't available, we fail. */ 610 err = strong_try_module_get(b); 611 if (err) 612 return err; 613 614 err = add_module_usage(a, b); 615 if (err) { 616 module_put(b); 617 return err; 618 } 619 return 0; 620 } 621 622 /* Clear the unload stuff of the module. */ 623 static void module_unload_free(struct module *mod) 624 { 625 struct module_use *use, *tmp; 626 627 mutex_lock(&module_mutex); 628 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 629 struct module *i = use->target; 630 pr_debug("%s unusing %s\n", mod->name, i->name); 631 module_put(i); 632 list_del(&use->source_list); 633 list_del(&use->target_list); 634 kfree(use); 635 } 636 mutex_unlock(&module_mutex); 637 } 638 639 #ifdef CONFIG_MODULE_FORCE_UNLOAD 640 static inline int try_force_unload(unsigned int flags) 641 { 642 int ret = (flags & O_TRUNC); 643 if (ret) 644 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 645 return ret; 646 } 647 #else 648 static inline int try_force_unload(unsigned int flags) 649 { 650 return 0; 651 } 652 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 653 654 /* Try to release refcount of module, 0 means success. */ 655 static int try_release_module_ref(struct module *mod) 656 { 657 int ret; 658 659 /* Try to decrement refcnt which we set at loading */ 660 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 661 BUG_ON(ret < 0); 662 if (ret) 663 /* Someone can put this right now, recover with checking */ 664 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 665 666 return ret; 667 } 668 669 static int try_stop_module(struct module *mod, int flags, int *forced) 670 { 671 /* If it's not unused, quit unless we're forcing. */ 672 if (try_release_module_ref(mod) != 0) { 673 *forced = try_force_unload(flags); 674 if (!(*forced)) 675 return -EWOULDBLOCK; 676 } 677 678 /* Mark it as dying. */ 679 mod->state = MODULE_STATE_GOING; 680 681 return 0; 682 } 683 684 /** 685 * module_refcount() - return the refcount or -1 if unloading 686 * @mod: the module we're checking 687 * 688 * Return: 689 * -1 if the module is in the process of unloading 690 * otherwise the number of references in the kernel to the module 691 */ 692 int module_refcount(struct module *mod) 693 { 694 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 695 } 696 EXPORT_SYMBOL(module_refcount); 697 698 /* This exists whether we can unload or not */ 699 static void free_module(struct module *mod); 700 701 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 702 unsigned int, flags) 703 { 704 struct module *mod; 705 char name[MODULE_NAME_LEN]; 706 char buf[MODULE_FLAGS_BUF_SIZE]; 707 int ret, forced = 0; 708 709 if (!capable(CAP_SYS_MODULE) || modules_disabled) 710 return -EPERM; 711 if (!ccs_capable(CCS_USE_KERNEL_MODULE)) 712 return -EPERM; 713 714 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 715 return -EFAULT; 716 name[MODULE_NAME_LEN-1] = '\0'; 717 718 audit_log_kern_module(name); 719 720 if (mutex_lock_interruptible(&module_mutex) != 0) 721 return -EINTR; 722 723 mod = find_module(name); 724 if (!mod) { 725 ret = -ENOENT; 726 goto out; 727 } 728 729 if (!list_empty(&mod->source_list)) { 730 /* Other modules depend on us: get rid of them first. */ 731 ret = -EWOULDBLOCK; 732 goto out; 733 } 734 735 /* Doing init or already dying? */ 736 if (mod->state != MODULE_STATE_LIVE) { 737 /* FIXME: if (force), slam module count damn the torpedoes */ 738 pr_debug("%s already dying\n", mod->name); 739 ret = -EBUSY; 740 goto out; 741 } 742 743 /* If it has an init func, it must have an exit func to unload */ 744 if (mod->init && !mod->exit) { 745 forced = try_force_unload(flags); 746 if (!forced) { 747 /* This module can't be removed */ 748 ret = -EBUSY; 749 goto out; 750 } 751 } 752 753 ret = try_stop_module(mod, flags, &forced); 754 if (ret != 0) 755 goto out; 756 757 mutex_unlock(&module_mutex); 758 /* Final destruction now no one is using it. */ 759 if (mod->exit != NULL) 760 mod->exit(); 761 blocking_notifier_call_chain(&module_notify_list, 762 MODULE_STATE_GOING, mod); 763 klp_module_going(mod); 764 ftrace_release_mod(mod); 765 766 async_synchronize_full(); 767 768 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 769 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name)); 770 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints)); 771 772 free_module(mod); 773 /* someone could wait for the module in add_unformed_module() */ 774 wake_up_all(&module_wq); 775 return 0; 776 out: 777 mutex_unlock(&module_mutex); 778 return ret; 779 } 780 781 void __symbol_put(const char *symbol) 782 { 783 struct find_symbol_arg fsa = { 784 .name = symbol, 785 .gplok = true, 786 }; 787 788 preempt_disable(); 789 BUG_ON(!find_symbol(&fsa)); 790 module_put(fsa.owner); 791 preempt_enable(); 792 } 793 EXPORT_SYMBOL(__symbol_put); 794 795 /* Note this assumes addr is a function, which it currently always is. */ 796 void symbol_put_addr(void *addr) 797 { 798 struct module *modaddr; 799 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 800 801 if (core_kernel_text(a)) 802 return; 803 804 /* 805 * Even though we hold a reference on the module; we still need to 806 * disable preemption in order to safely traverse the data structure. 807 */ 808 preempt_disable(); 809 modaddr = __module_text_address(a); 810 BUG_ON(!modaddr); 811 module_put(modaddr); 812 preempt_enable(); 813 } 814 EXPORT_SYMBOL_GPL(symbol_put_addr); 815 816 static ssize_t show_refcnt(struct module_attribute *mattr, 817 struct module_kobject *mk, char *buffer) 818 { 819 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 820 } 821 822 static struct module_attribute modinfo_refcnt = 823 __ATTR(refcnt, 0444, show_refcnt, NULL); 824 825 void __module_get(struct module *module) 826 { 827 if (module) { 828 atomic_inc(&module->refcnt); 829 trace_module_get(module, _RET_IP_); 830 } 831 } 832 EXPORT_SYMBOL(__module_get); 833 834 bool try_module_get(struct module *module) 835 { 836 bool ret = true; 837 838 if (module) { 839 /* Note: here, we can fail to get a reference */ 840 if (likely(module_is_live(module) && 841 atomic_inc_not_zero(&module->refcnt) != 0)) 842 trace_module_get(module, _RET_IP_); 843 else 844 ret = false; 845 } 846 return ret; 847 } 848 EXPORT_SYMBOL(try_module_get); 849 850 void module_put(struct module *module) 851 { 852 int ret; 853 854 if (module) { 855 ret = atomic_dec_if_positive(&module->refcnt); 856 WARN_ON(ret < 0); /* Failed to put refcount */ 857 trace_module_put(module, _RET_IP_); 858 } 859 } 860 EXPORT_SYMBOL(module_put); 861 862 #else /* !CONFIG_MODULE_UNLOAD */ 863 static inline void module_unload_free(struct module *mod) 864 { 865 } 866 867 static int ref_module(struct module *a, struct module *b) 868 { 869 return strong_try_module_get(b); 870 } 871 872 static inline int module_unload_init(struct module *mod) 873 { 874 return 0; 875 } 876 #endif /* CONFIG_MODULE_UNLOAD */ 877 878 size_t module_flags_taint(unsigned long taints, char *buf) 879 { 880 size_t l = 0; 881 int i; 882 883 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 884 if (taint_flags[i].module && test_bit(i, &taints)) 885 buf[l++] = taint_flags[i].c_true; 886 } 887 888 return l; 889 } 890 891 static ssize_t show_initstate(struct module_attribute *mattr, 892 struct module_kobject *mk, char *buffer) 893 { 894 const char *state = "unknown"; 895 896 switch (mk->mod->state) { 897 case MODULE_STATE_LIVE: 898 state = "live"; 899 break; 900 case MODULE_STATE_COMING: 901 state = "coming"; 902 break; 903 case MODULE_STATE_GOING: 904 state = "going"; 905 break; 906 default: 907 BUG(); 908 } 909 return sprintf(buffer, "%s\n", state); 910 } 911 912 static struct module_attribute modinfo_initstate = 913 __ATTR(initstate, 0444, show_initstate, NULL); 914 915 static ssize_t store_uevent(struct module_attribute *mattr, 916 struct module_kobject *mk, 917 const char *buffer, size_t count) 918 { 919 int rc; 920 921 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 922 return rc ? rc : count; 923 } 924 925 struct module_attribute module_uevent = 926 __ATTR(uevent, 0200, NULL, store_uevent); 927 928 static ssize_t show_coresize(struct module_attribute *mattr, 929 struct module_kobject *mk, char *buffer) 930 { 931 unsigned int size = mk->mod->mem[MOD_TEXT].size; 932 933 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) { 934 for_class_mod_mem_type(type, core_data) 935 size += mk->mod->mem[type].size; 936 } 937 return sprintf(buffer, "%u\n", size); 938 } 939 940 static struct module_attribute modinfo_coresize = 941 __ATTR(coresize, 0444, show_coresize, NULL); 942 943 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 944 static ssize_t show_datasize(struct module_attribute *mattr, 945 struct module_kobject *mk, char *buffer) 946 { 947 unsigned int size = 0; 948 949 for_class_mod_mem_type(type, core_data) 950 size += mk->mod->mem[type].size; 951 return sprintf(buffer, "%u\n", size); 952 } 953 954 static struct module_attribute modinfo_datasize = 955 __ATTR(datasize, 0444, show_datasize, NULL); 956 #endif 957 958 static ssize_t show_initsize(struct module_attribute *mattr, 959 struct module_kobject *mk, char *buffer) 960 { 961 unsigned int size = 0; 962 963 for_class_mod_mem_type(type, init) 964 size += mk->mod->mem[type].size; 965 return sprintf(buffer, "%u\n", size); 966 } 967 968 static struct module_attribute modinfo_initsize = 969 __ATTR(initsize, 0444, show_initsize, NULL); 970 971 static ssize_t show_taint(struct module_attribute *mattr, 972 struct module_kobject *mk, char *buffer) 973 { 974 size_t l; 975 976 l = module_flags_taint(mk->mod->taints, buffer); 977 buffer[l++] = '\n'; 978 return l; 979 } 980 981 static struct module_attribute modinfo_taint = 982 __ATTR(taint, 0444, show_taint, NULL); 983 984 struct module_attribute *modinfo_attrs[] = { 985 &module_uevent, 986 &modinfo_version, 987 &modinfo_srcversion, 988 &modinfo_initstate, 989 &modinfo_coresize, 990 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 991 &modinfo_datasize, 992 #endif 993 &modinfo_initsize, 994 &modinfo_taint, 995 #ifdef CONFIG_MODULE_UNLOAD 996 &modinfo_refcnt, 997 #endif 998 NULL, 999 }; 1000 1001 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 1002 1003 static const char vermagic[] = VERMAGIC_STRING; 1004 1005 int try_to_force_load(struct module *mod, const char *reason) 1006 { 1007 #ifdef CONFIG_MODULE_FORCE_LOAD 1008 if (!test_taint(TAINT_FORCED_MODULE)) 1009 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 1010 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 1011 return 0; 1012 #else 1013 return -ENOEXEC; 1014 #endif 1015 } 1016 1017 /* Parse tag=value strings from .modinfo section */ 1018 char *module_next_tag_pair(char *string, unsigned long *secsize) 1019 { 1020 /* Skip non-zero chars */ 1021 while (string[0]) { 1022 string++; 1023 if ((*secsize)-- <= 1) 1024 return NULL; 1025 } 1026 1027 /* Skip any zero padding. */ 1028 while (!string[0]) { 1029 string++; 1030 if ((*secsize)-- <= 1) 1031 return NULL; 1032 } 1033 return string; 1034 } 1035 1036 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1037 char *prev) 1038 { 1039 char *p; 1040 unsigned int taglen = strlen(tag); 1041 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1042 unsigned long size = infosec->sh_size; 1043 1044 /* 1045 * get_modinfo() calls made before rewrite_section_headers() 1046 * must use sh_offset, as sh_addr isn't set! 1047 */ 1048 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1049 1050 if (prev) { 1051 size -= prev - modinfo; 1052 modinfo = module_next_tag_pair(prev, &size); 1053 } 1054 1055 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) { 1056 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1057 return p + taglen + 1; 1058 } 1059 return NULL; 1060 } 1061 1062 static char *get_modinfo(const struct load_info *info, const char *tag) 1063 { 1064 return get_next_modinfo(info, tag, NULL); 1065 } 1066 1067 static int verify_namespace_is_imported(const struct load_info *info, 1068 const struct kernel_symbol *sym, 1069 struct module *mod) 1070 { 1071 const char *namespace; 1072 char *imported_namespace; 1073 1074 namespace = kernel_symbol_namespace(sym); 1075 if (namespace && namespace[0]) { 1076 for_each_modinfo_entry(imported_namespace, info, "import_ns") { 1077 if (strcmp(namespace, imported_namespace) == 0) 1078 return 0; 1079 } 1080 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1081 pr_warn( 1082 #else 1083 pr_err( 1084 #endif 1085 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1086 mod->name, kernel_symbol_name(sym), namespace); 1087 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1088 return -EINVAL; 1089 #endif 1090 } 1091 return 0; 1092 } 1093 1094 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1095 { 1096 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1097 return true; 1098 1099 if (mod->using_gplonly_symbols) { 1100 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1101 mod->name, name, owner->name); 1102 return false; 1103 } 1104 1105 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1106 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1107 mod->name, name, owner->name); 1108 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1109 } 1110 return true; 1111 } 1112 1113 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1114 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1115 const struct load_info *info, 1116 const char *name, 1117 char ownername[]) 1118 { 1119 struct find_symbol_arg fsa = { 1120 .name = name, 1121 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1122 .warn = true, 1123 }; 1124 int err; 1125 1126 /* 1127 * The module_mutex should not be a heavily contended lock; 1128 * if we get the occasional sleep here, we'll go an extra iteration 1129 * in the wait_event_interruptible(), which is harmless. 1130 */ 1131 sched_annotate_sleep(); 1132 mutex_lock(&module_mutex); 1133 if (!find_symbol(&fsa)) 1134 goto unlock; 1135 1136 if (fsa.license == GPL_ONLY) 1137 mod->using_gplonly_symbols = true; 1138 1139 if (!inherit_taint(mod, fsa.owner, name)) { 1140 fsa.sym = NULL; 1141 goto getname; 1142 } 1143 1144 if (!check_version(info, name, mod, fsa.crc)) { 1145 fsa.sym = ERR_PTR(-EINVAL); 1146 goto getname; 1147 } 1148 1149 err = verify_namespace_is_imported(info, fsa.sym, mod); 1150 if (err) { 1151 fsa.sym = ERR_PTR(err); 1152 goto getname; 1153 } 1154 1155 err = ref_module(mod, fsa.owner); 1156 if (err) { 1157 fsa.sym = ERR_PTR(err); 1158 goto getname; 1159 } 1160 1161 getname: 1162 /* We must make copy under the lock if we failed to get ref. */ 1163 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1164 unlock: 1165 mutex_unlock(&module_mutex); 1166 return fsa.sym; 1167 } 1168 1169 static const struct kernel_symbol * 1170 resolve_symbol_wait(struct module *mod, 1171 const struct load_info *info, 1172 const char *name) 1173 { 1174 const struct kernel_symbol *ksym; 1175 char owner[MODULE_NAME_LEN]; 1176 1177 if (wait_event_interruptible_timeout(module_wq, 1178 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1179 || PTR_ERR(ksym) != -EBUSY, 1180 30 * HZ) <= 0) { 1181 pr_warn("%s: gave up waiting for init of module %s.\n", 1182 mod->name, owner); 1183 } 1184 return ksym; 1185 } 1186 1187 void __weak module_arch_cleanup(struct module *mod) 1188 { 1189 } 1190 1191 void __weak module_arch_freeing_init(struct module *mod) 1192 { 1193 } 1194 1195 static int module_memory_alloc(struct module *mod, enum mod_mem_type type) 1196 { 1197 unsigned int size = PAGE_ALIGN(mod->mem[type].size); 1198 enum execmem_type execmem_type; 1199 void *ptr; 1200 1201 mod->mem[type].size = size; 1202 1203 if (mod_mem_type_is_data(type)) 1204 execmem_type = EXECMEM_MODULE_DATA; 1205 else 1206 execmem_type = EXECMEM_MODULE_TEXT; 1207 1208 ptr = execmem_alloc(execmem_type, size); 1209 if (!ptr) 1210 return -ENOMEM; 1211 1212 /* 1213 * The pointer to these blocks of memory are stored on the module 1214 * structure and we keep that around so long as the module is 1215 * around. We only free that memory when we unload the module. 1216 * Just mark them as not being a leak then. The .init* ELF 1217 * sections *do* get freed after boot so we *could* treat them 1218 * slightly differently with kmemleak_ignore() and only grey 1219 * them out as they work as typical memory allocations which 1220 * *do* eventually get freed, but let's just keep things simple 1221 * and avoid *any* false positives. 1222 */ 1223 kmemleak_not_leak(ptr); 1224 1225 memset(ptr, 0, size); 1226 mod->mem[type].base = ptr; 1227 1228 return 0; 1229 } 1230 1231 static void module_memory_free(struct module *mod, enum mod_mem_type type, 1232 bool unload_codetags) 1233 { 1234 void *ptr = mod->mem[type].base; 1235 1236 if (!unload_codetags && mod_mem_type_is_core_data(type)) 1237 return; 1238 1239 execmem_free(ptr); 1240 } 1241 1242 static void free_mod_mem(struct module *mod, bool unload_codetags) 1243 { 1244 for_each_mod_mem_type(type) { 1245 struct module_memory *mod_mem = &mod->mem[type]; 1246 1247 if (type == MOD_DATA) 1248 continue; 1249 1250 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1251 lockdep_free_key_range(mod_mem->base, mod_mem->size); 1252 if (mod_mem->size) 1253 module_memory_free(mod, type, unload_codetags); 1254 } 1255 1256 /* MOD_DATA hosts mod, so free it at last */ 1257 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size); 1258 module_memory_free(mod, MOD_DATA, unload_codetags); 1259 } 1260 1261 /* Free a module, remove from lists, etc. */ 1262 static void free_module(struct module *mod) 1263 { 1264 bool unload_codetags; 1265 1266 trace_module_free(mod); 1267 1268 unload_codetags = codetag_unload_module(mod); 1269 if (!unload_codetags) 1270 pr_warn("%s: memory allocation(s) from the module still alive, cannot unload cleanly\n", 1271 mod->name); 1272 1273 mod_sysfs_teardown(mod); 1274 1275 /* 1276 * We leave it in list to prevent duplicate loads, but make sure 1277 * that noone uses it while it's being deconstructed. 1278 */ 1279 mutex_lock(&module_mutex); 1280 mod->state = MODULE_STATE_UNFORMED; 1281 mutex_unlock(&module_mutex); 1282 1283 /* Arch-specific cleanup. */ 1284 module_arch_cleanup(mod); 1285 1286 /* Module unload stuff */ 1287 module_unload_free(mod); 1288 1289 /* Free any allocated parameters. */ 1290 destroy_params(mod->kp, mod->num_kp); 1291 1292 if (is_livepatch_module(mod)) 1293 free_module_elf(mod); 1294 1295 /* Now we can delete it from the lists */ 1296 mutex_lock(&module_mutex); 1297 /* Unlink carefully: kallsyms could be walking list. */ 1298 list_del_rcu(&mod->list); 1299 mod_tree_remove(mod); 1300 /* Remove this module from bug list, this uses list_del_rcu */ 1301 module_bug_cleanup(mod); 1302 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */ 1303 synchronize_rcu(); 1304 if (try_add_tainted_module(mod)) 1305 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1306 mod->name); 1307 mutex_unlock(&module_mutex); 1308 1309 /* This may be empty, but that's OK */ 1310 module_arch_freeing_init(mod); 1311 kfree(mod->args); 1312 percpu_modfree(mod); 1313 1314 free_mod_mem(mod, unload_codetags); 1315 } 1316 1317 void *__symbol_get(const char *symbol) 1318 { 1319 struct find_symbol_arg fsa = { 1320 .name = symbol, 1321 .gplok = true, 1322 .warn = true, 1323 }; 1324 1325 preempt_disable(); 1326 if (!find_symbol(&fsa)) 1327 goto fail; 1328 if (fsa.license != GPL_ONLY) { 1329 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n", 1330 symbol); 1331 goto fail; 1332 } 1333 if (strong_try_module_get(fsa.owner)) 1334 goto fail; 1335 preempt_enable(); 1336 return (void *)kernel_symbol_value(fsa.sym); 1337 fail: 1338 preempt_enable(); 1339 return NULL; 1340 } 1341 EXPORT_SYMBOL_GPL(__symbol_get); 1342 1343 /* 1344 * Ensure that an exported symbol [global namespace] does not already exist 1345 * in the kernel or in some other module's exported symbol table. 1346 * 1347 * You must hold the module_mutex. 1348 */ 1349 static int verify_exported_symbols(struct module *mod) 1350 { 1351 unsigned int i; 1352 const struct kernel_symbol *s; 1353 struct { 1354 const struct kernel_symbol *sym; 1355 unsigned int num; 1356 } arr[] = { 1357 { mod->syms, mod->num_syms }, 1358 { mod->gpl_syms, mod->num_gpl_syms }, 1359 }; 1360 1361 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1362 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1363 struct find_symbol_arg fsa = { 1364 .name = kernel_symbol_name(s), 1365 .gplok = true, 1366 }; 1367 if (find_symbol(&fsa)) { 1368 pr_err("%s: exports duplicate symbol %s" 1369 " (owned by %s)\n", 1370 mod->name, kernel_symbol_name(s), 1371 module_name(fsa.owner)); 1372 return -ENOEXEC; 1373 } 1374 } 1375 } 1376 return 0; 1377 } 1378 1379 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1380 { 1381 /* 1382 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1383 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1384 * i386 has a similar problem but may not deserve a fix. 1385 * 1386 * If we ever have to ignore many symbols, consider refactoring the code to 1387 * only warn if referenced by a relocation. 1388 */ 1389 if (emachine == EM_386 || emachine == EM_X86_64) 1390 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1391 return false; 1392 } 1393 1394 /* Change all symbols so that st_value encodes the pointer directly. */ 1395 static int simplify_symbols(struct module *mod, const struct load_info *info) 1396 { 1397 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1398 Elf_Sym *sym = (void *)symsec->sh_addr; 1399 unsigned long secbase; 1400 unsigned int i; 1401 int ret = 0; 1402 const struct kernel_symbol *ksym; 1403 1404 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1405 const char *name = info->strtab + sym[i].st_name; 1406 1407 switch (sym[i].st_shndx) { 1408 case SHN_COMMON: 1409 /* Ignore common symbols */ 1410 if (!strncmp(name, "__gnu_lto", 9)) 1411 break; 1412 1413 /* 1414 * We compiled with -fno-common. These are not 1415 * supposed to happen. 1416 */ 1417 pr_debug("Common symbol: %s\n", name); 1418 pr_warn("%s: please compile with -fno-common\n", 1419 mod->name); 1420 ret = -ENOEXEC; 1421 break; 1422 1423 case SHN_ABS: 1424 /* Don't need to do anything */ 1425 pr_debug("Absolute symbol: 0x%08lx %s\n", 1426 (long)sym[i].st_value, name); 1427 break; 1428 1429 case SHN_LIVEPATCH: 1430 /* Livepatch symbols are resolved by livepatch */ 1431 break; 1432 1433 case SHN_UNDEF: 1434 ksym = resolve_symbol_wait(mod, info, name); 1435 /* Ok if resolved. */ 1436 if (ksym && !IS_ERR(ksym)) { 1437 sym[i].st_value = kernel_symbol_value(ksym); 1438 break; 1439 } 1440 1441 /* Ok if weak or ignored. */ 1442 if (!ksym && 1443 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1444 ignore_undef_symbol(info->hdr->e_machine, name))) 1445 break; 1446 1447 ret = PTR_ERR(ksym) ?: -ENOENT; 1448 pr_warn("%s: Unknown symbol %s (err %d)\n", 1449 mod->name, name, ret); 1450 break; 1451 1452 default: 1453 /* Divert to percpu allocation if a percpu var. */ 1454 if (sym[i].st_shndx == info->index.pcpu) 1455 secbase = (unsigned long)mod_percpu(mod); 1456 else 1457 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1458 sym[i].st_value += secbase; 1459 break; 1460 } 1461 } 1462 1463 return ret; 1464 } 1465 1466 static int apply_relocations(struct module *mod, const struct load_info *info) 1467 { 1468 unsigned int i; 1469 int err = 0; 1470 1471 /* Now do relocations. */ 1472 for (i = 1; i < info->hdr->e_shnum; i++) { 1473 unsigned int infosec = info->sechdrs[i].sh_info; 1474 1475 /* Not a valid relocation section? */ 1476 if (infosec >= info->hdr->e_shnum) 1477 continue; 1478 1479 /* Don't bother with non-allocated sections */ 1480 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1481 continue; 1482 1483 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1484 err = klp_apply_section_relocs(mod, info->sechdrs, 1485 info->secstrings, 1486 info->strtab, 1487 info->index.sym, i, 1488 NULL); 1489 else if (info->sechdrs[i].sh_type == SHT_REL) 1490 err = apply_relocate(info->sechdrs, info->strtab, 1491 info->index.sym, i, mod); 1492 else if (info->sechdrs[i].sh_type == SHT_RELA) 1493 err = apply_relocate_add(info->sechdrs, info->strtab, 1494 info->index.sym, i, mod); 1495 if (err < 0) 1496 break; 1497 } 1498 return err; 1499 } 1500 1501 /* Additional bytes needed by arch in front of individual sections */ 1502 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1503 unsigned int section) 1504 { 1505 /* default implementation just returns zero */ 1506 return 0; 1507 } 1508 1509 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type, 1510 Elf_Shdr *sechdr, unsigned int section) 1511 { 1512 long offset; 1513 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT; 1514 1515 mod->mem[type].size += arch_mod_section_prepend(mod, section); 1516 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1); 1517 mod->mem[type].size = offset + sechdr->sh_size; 1518 1519 WARN_ON_ONCE(offset & mask); 1520 return offset | mask; 1521 } 1522 1523 bool module_init_layout_section(const char *sname) 1524 { 1525 #ifndef CONFIG_MODULE_UNLOAD 1526 if (module_exit_section(sname)) 1527 return true; 1528 #endif 1529 return module_init_section(sname); 1530 } 1531 1532 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init) 1533 { 1534 unsigned int m, i; 1535 1536 static const unsigned long masks[][2] = { 1537 /* 1538 * NOTE: all executable code must be the first section 1539 * in this array; otherwise modify the text_size 1540 * finder in the two loops below 1541 */ 1542 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1543 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1544 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1545 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1546 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1547 }; 1548 static const int core_m_to_mem_type[] = { 1549 MOD_TEXT, 1550 MOD_RODATA, 1551 MOD_RO_AFTER_INIT, 1552 MOD_DATA, 1553 MOD_DATA, 1554 }; 1555 static const int init_m_to_mem_type[] = { 1556 MOD_INIT_TEXT, 1557 MOD_INIT_RODATA, 1558 MOD_INVALID, 1559 MOD_INIT_DATA, 1560 MOD_INIT_DATA, 1561 }; 1562 1563 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1564 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m]; 1565 1566 for (i = 0; i < info->hdr->e_shnum; ++i) { 1567 Elf_Shdr *s = &info->sechdrs[i]; 1568 const char *sname = info->secstrings + s->sh_name; 1569 1570 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1571 || (s->sh_flags & masks[m][1]) 1572 || s->sh_entsize != ~0UL 1573 || is_init != module_init_layout_section(sname)) 1574 continue; 1575 1576 if (WARN_ON_ONCE(type == MOD_INVALID)) 1577 continue; 1578 1579 s->sh_entsize = module_get_offset_and_type(mod, type, s, i); 1580 pr_debug("\t%s\n", sname); 1581 } 1582 } 1583 } 1584 1585 /* 1586 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1587 * might -- code, read-only data, read-write data, small data. Tally 1588 * sizes, and place the offsets into sh_entsize fields: high bit means it 1589 * belongs in init. 1590 */ 1591 static void layout_sections(struct module *mod, struct load_info *info) 1592 { 1593 unsigned int i; 1594 1595 for (i = 0; i < info->hdr->e_shnum; i++) 1596 info->sechdrs[i].sh_entsize = ~0UL; 1597 1598 pr_debug("Core section allocation order for %s:\n", mod->name); 1599 __layout_sections(mod, info, false); 1600 1601 pr_debug("Init section allocation order for %s:\n", mod->name); 1602 __layout_sections(mod, info, true); 1603 } 1604 1605 static void module_license_taint_check(struct module *mod, const char *license) 1606 { 1607 if (!license) 1608 license = "unspecified"; 1609 1610 if (!license_is_gpl_compatible(license)) { 1611 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1612 pr_warn("%s: module license '%s' taints kernel.\n", 1613 mod->name, license); 1614 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1615 LOCKDEP_NOW_UNRELIABLE); 1616 } 1617 } 1618 1619 static void setup_modinfo(struct module *mod, struct load_info *info) 1620 { 1621 struct module_attribute *attr; 1622 int i; 1623 1624 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1625 if (attr->setup) 1626 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1627 } 1628 } 1629 1630 static void free_modinfo(struct module *mod) 1631 { 1632 struct module_attribute *attr; 1633 int i; 1634 1635 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1636 if (attr->free) 1637 attr->free(mod); 1638 } 1639 } 1640 1641 bool __weak module_init_section(const char *name) 1642 { 1643 return strstarts(name, ".init"); 1644 } 1645 1646 bool __weak module_exit_section(const char *name) 1647 { 1648 return strstarts(name, ".exit"); 1649 } 1650 1651 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr) 1652 { 1653 #if defined(CONFIG_64BIT) 1654 unsigned long long secend; 1655 #else 1656 unsigned long secend; 1657 #endif 1658 1659 /* 1660 * Check for both overflow and offset/size being 1661 * too large. 1662 */ 1663 secend = shdr->sh_offset + shdr->sh_size; 1664 if (secend < shdr->sh_offset || secend > info->len) 1665 return -ENOEXEC; 1666 1667 return 0; 1668 } 1669 1670 /* 1671 * Check userspace passed ELF module against our expectations, and cache 1672 * useful variables for further processing as we go. 1673 * 1674 * This does basic validity checks against section offsets and sizes, the 1675 * section name string table, and the indices used for it (sh_name). 1676 * 1677 * As a last step, since we're already checking the ELF sections we cache 1678 * useful variables which will be used later for our convenience: 1679 * 1680 * o pointers to section headers 1681 * o cache the modinfo symbol section 1682 * o cache the string symbol section 1683 * o cache the module section 1684 * 1685 * As a last step we set info->mod to the temporary copy of the module in 1686 * info->hdr. The final one will be allocated in move_module(). Any 1687 * modifications we make to our copy of the module will be carried over 1688 * to the final minted module. 1689 */ 1690 static int elf_validity_cache_copy(struct load_info *info, int flags) 1691 { 1692 unsigned int i; 1693 Elf_Shdr *shdr, *strhdr; 1694 int err; 1695 unsigned int num_mod_secs = 0, mod_idx; 1696 unsigned int num_info_secs = 0, info_idx; 1697 unsigned int num_sym_secs = 0, sym_idx; 1698 1699 if (info->len < sizeof(*(info->hdr))) { 1700 pr_err("Invalid ELF header len %lu\n", info->len); 1701 goto no_exec; 1702 } 1703 1704 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1705 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1706 goto no_exec; 1707 } 1708 if (info->hdr->e_type != ET_REL) { 1709 pr_err("Invalid ELF header type: %u != %u\n", 1710 info->hdr->e_type, ET_REL); 1711 goto no_exec; 1712 } 1713 if (!elf_check_arch(info->hdr)) { 1714 pr_err("Invalid architecture in ELF header: %u\n", 1715 info->hdr->e_machine); 1716 goto no_exec; 1717 } 1718 if (!module_elf_check_arch(info->hdr)) { 1719 pr_err("Invalid module architecture in ELF header: %u\n", 1720 info->hdr->e_machine); 1721 goto no_exec; 1722 } 1723 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1724 pr_err("Invalid ELF section header size\n"); 1725 goto no_exec; 1726 } 1727 1728 /* 1729 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1730 * known and small. So e_shnum * sizeof(Elf_Shdr) 1731 * will not overflow unsigned long on any platform. 1732 */ 1733 if (info->hdr->e_shoff >= info->len 1734 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1735 info->len - info->hdr->e_shoff)) { 1736 pr_err("Invalid ELF section header overflow\n"); 1737 goto no_exec; 1738 } 1739 1740 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1741 1742 /* 1743 * Verify if the section name table index is valid. 1744 */ 1745 if (info->hdr->e_shstrndx == SHN_UNDEF 1746 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1747 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1748 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1749 info->hdr->e_shnum); 1750 goto no_exec; 1751 } 1752 1753 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1754 err = validate_section_offset(info, strhdr); 1755 if (err < 0) { 1756 pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type); 1757 return err; 1758 } 1759 1760 /* 1761 * The section name table must be NUL-terminated, as required 1762 * by the spec. This makes strcmp and pr_* calls that access 1763 * strings in the section safe. 1764 */ 1765 info->secstrings = (void *)info->hdr + strhdr->sh_offset; 1766 if (strhdr->sh_size == 0) { 1767 pr_err("empty section name table\n"); 1768 goto no_exec; 1769 } 1770 if (info->secstrings[strhdr->sh_size - 1] != '\0') { 1771 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1772 goto no_exec; 1773 } 1774 1775 /* 1776 * The code assumes that section 0 has a length of zero and 1777 * an addr of zero, so check for it. 1778 */ 1779 if (info->sechdrs[0].sh_type != SHT_NULL 1780 || info->sechdrs[0].sh_size != 0 1781 || info->sechdrs[0].sh_addr != 0) { 1782 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1783 info->sechdrs[0].sh_type); 1784 goto no_exec; 1785 } 1786 1787 for (i = 1; i < info->hdr->e_shnum; i++) { 1788 shdr = &info->sechdrs[i]; 1789 switch (shdr->sh_type) { 1790 case SHT_NULL: 1791 case SHT_NOBITS: 1792 continue; 1793 case SHT_SYMTAB: 1794 if (shdr->sh_link == SHN_UNDEF 1795 || shdr->sh_link >= info->hdr->e_shnum) { 1796 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 1797 shdr->sh_link, shdr->sh_link, 1798 info->hdr->e_shnum); 1799 goto no_exec; 1800 } 1801 num_sym_secs++; 1802 sym_idx = i; 1803 fallthrough; 1804 default: 1805 err = validate_section_offset(info, shdr); 1806 if (err < 0) { 1807 pr_err("Invalid ELF section in module (section %u type %u)\n", 1808 i, shdr->sh_type); 1809 return err; 1810 } 1811 if (strcmp(info->secstrings + shdr->sh_name, 1812 ".gnu.linkonce.this_module") == 0) { 1813 num_mod_secs++; 1814 mod_idx = i; 1815 } else if (strcmp(info->secstrings + shdr->sh_name, 1816 ".modinfo") == 0) { 1817 num_info_secs++; 1818 info_idx = i; 1819 } 1820 1821 if (shdr->sh_flags & SHF_ALLOC) { 1822 if (shdr->sh_name >= strhdr->sh_size) { 1823 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1824 i, shdr->sh_type); 1825 return -ENOEXEC; 1826 } 1827 } 1828 break; 1829 } 1830 } 1831 1832 if (num_info_secs > 1) { 1833 pr_err("Only one .modinfo section must exist.\n"); 1834 goto no_exec; 1835 } else if (num_info_secs == 1) { 1836 /* Try to find a name early so we can log errors with a module name */ 1837 info->index.info = info_idx; 1838 info->name = get_modinfo(info, "name"); 1839 } 1840 1841 if (num_sym_secs != 1) { 1842 pr_warn("%s: module has no symbols (stripped?)\n", 1843 info->name ?: "(missing .modinfo section or name field)"); 1844 goto no_exec; 1845 } 1846 1847 /* Sets internal symbols and strings. */ 1848 info->index.sym = sym_idx; 1849 shdr = &info->sechdrs[sym_idx]; 1850 info->index.str = shdr->sh_link; 1851 info->strtab = (char *)info->hdr + info->sechdrs[info->index.str].sh_offset; 1852 1853 /* 1854 * The ".gnu.linkonce.this_module" ELF section is special. It is 1855 * what modpost uses to refer to __this_module and let's use rely 1856 * on THIS_MODULE to point to &__this_module properly. The kernel's 1857 * modpost declares it on each modules's *.mod.c file. If the struct 1858 * module of the kernel changes a full kernel rebuild is required. 1859 * 1860 * We have a few expectaions for this special section, the following 1861 * code validates all this for us: 1862 * 1863 * o Only one section must exist 1864 * o We expect the kernel to always have to allocate it: SHF_ALLOC 1865 * o The section size must match the kernel's run time's struct module 1866 * size 1867 */ 1868 if (num_mod_secs != 1) { 1869 pr_err("module %s: Only one .gnu.linkonce.this_module section must exist.\n", 1870 info->name ?: "(missing .modinfo section or name field)"); 1871 goto no_exec; 1872 } 1873 1874 shdr = &info->sechdrs[mod_idx]; 1875 1876 /* 1877 * This is already implied on the switch above, however let's be 1878 * pedantic about it. 1879 */ 1880 if (shdr->sh_type == SHT_NOBITS) { 1881 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n", 1882 info->name ?: "(missing .modinfo section or name field)"); 1883 goto no_exec; 1884 } 1885 1886 if (!(shdr->sh_flags & SHF_ALLOC)) { 1887 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n", 1888 info->name ?: "(missing .modinfo section or name field)"); 1889 goto no_exec; 1890 } 1891 1892 if (shdr->sh_size != sizeof(struct module)) { 1893 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n", 1894 info->name ?: "(missing .modinfo section or name field)"); 1895 goto no_exec; 1896 } 1897 1898 info->index.mod = mod_idx; 1899 1900 /* This is temporary: point mod into copy of data. */ 1901 info->mod = (void *)info->hdr + shdr->sh_offset; 1902 1903 /* 1904 * If we didn't load the .modinfo 'name' field earlier, fall back to 1905 * on-disk struct mod 'name' field. 1906 */ 1907 if (!info->name) 1908 info->name = info->mod->name; 1909 1910 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) 1911 info->index.vers = 0; /* Pretend no __versions section! */ 1912 else 1913 info->index.vers = find_sec(info, "__versions"); 1914 1915 info->index.pcpu = find_pcpusec(info); 1916 1917 return 0; 1918 1919 no_exec: 1920 return -ENOEXEC; 1921 } 1922 1923 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 1924 1925 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 1926 { 1927 do { 1928 unsigned long n = min(len, COPY_CHUNK_SIZE); 1929 1930 if (copy_from_user(dst, usrc, n) != 0) 1931 return -EFAULT; 1932 cond_resched(); 1933 dst += n; 1934 usrc += n; 1935 len -= n; 1936 } while (len); 1937 return 0; 1938 } 1939 1940 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 1941 { 1942 if (!get_modinfo(info, "livepatch")) 1943 /* Nothing more to do */ 1944 return 0; 1945 1946 if (set_livepatch_module(mod)) 1947 return 0; 1948 1949 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 1950 mod->name); 1951 return -ENOEXEC; 1952 } 1953 1954 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 1955 { 1956 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 1957 return; 1958 1959 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 1960 mod->name); 1961 } 1962 1963 /* Sets info->hdr and info->len. */ 1964 static int copy_module_from_user(const void __user *umod, unsigned long len, 1965 struct load_info *info) 1966 { 1967 int err; 1968 1969 info->len = len; 1970 if (info->len < sizeof(*(info->hdr))) 1971 return -ENOEXEC; 1972 1973 err = security_kernel_load_data(LOADING_MODULE, true); 1974 if (err) 1975 return err; 1976 1977 /* Suck in entire file: we'll want most of it. */ 1978 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 1979 if (!info->hdr) 1980 return -ENOMEM; 1981 1982 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 1983 err = -EFAULT; 1984 goto out; 1985 } 1986 1987 err = security_kernel_post_load_data((char *)info->hdr, info->len, 1988 LOADING_MODULE, "init_module"); 1989 out: 1990 if (err) 1991 vfree(info->hdr); 1992 1993 return err; 1994 } 1995 1996 static void free_copy(struct load_info *info, int flags) 1997 { 1998 if (flags & MODULE_INIT_COMPRESSED_FILE) 1999 module_decompress_cleanup(info); 2000 else 2001 vfree(info->hdr); 2002 } 2003 2004 static int rewrite_section_headers(struct load_info *info, int flags) 2005 { 2006 unsigned int i; 2007 2008 /* This should always be true, but let's be sure. */ 2009 info->sechdrs[0].sh_addr = 0; 2010 2011 for (i = 1; i < info->hdr->e_shnum; i++) { 2012 Elf_Shdr *shdr = &info->sechdrs[i]; 2013 2014 /* 2015 * Mark all sections sh_addr with their address in the 2016 * temporary image. 2017 */ 2018 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 2019 2020 } 2021 2022 /* Track but don't keep modinfo and version sections. */ 2023 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 2024 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 2025 2026 return 0; 2027 } 2028 2029 /* 2030 * These calls taint the kernel depending certain module circumstances */ 2031 static void module_augment_kernel_taints(struct module *mod, struct load_info *info) 2032 { 2033 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2034 2035 if (!get_modinfo(info, "intree")) { 2036 if (!test_taint(TAINT_OOT_MODULE)) 2037 pr_warn("%s: loading out-of-tree module taints kernel.\n", 2038 mod->name); 2039 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 2040 } 2041 2042 check_modinfo_retpoline(mod, info); 2043 2044 if (get_modinfo(info, "staging")) { 2045 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 2046 pr_warn("%s: module is from the staging directory, the quality " 2047 "is unknown, you have been warned.\n", mod->name); 2048 } 2049 2050 if (is_livepatch_module(mod)) { 2051 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 2052 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 2053 mod->name); 2054 } 2055 2056 module_license_taint_check(mod, get_modinfo(info, "license")); 2057 2058 if (get_modinfo(info, "test")) { 2059 if (!test_taint(TAINT_TEST)) 2060 pr_warn("%s: loading test module taints kernel.\n", 2061 mod->name); 2062 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 2063 } 2064 #ifdef CONFIG_MODULE_SIG 2065 mod->sig_ok = info->sig_ok; 2066 if (!mod->sig_ok) { 2067 pr_notice_once("%s: module verification failed: signature " 2068 "and/or required key missing - tainting " 2069 "kernel\n", mod->name); 2070 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2071 } 2072 #endif 2073 2074 /* 2075 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2076 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2077 * using GPL-only symbols it needs. 2078 */ 2079 if (strcmp(mod->name, "ndiswrapper") == 0) 2080 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2081 2082 /* driverloader was caught wrongly pretending to be under GPL */ 2083 if (strcmp(mod->name, "driverloader") == 0) 2084 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2085 LOCKDEP_NOW_UNRELIABLE); 2086 2087 /* lve claims to be GPL but upstream won't provide source */ 2088 if (strcmp(mod->name, "lve") == 0) 2089 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2090 LOCKDEP_NOW_UNRELIABLE); 2091 2092 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2093 pr_warn("%s: module license taints kernel.\n", mod->name); 2094 2095 } 2096 2097 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 2098 { 2099 const char *modmagic = get_modinfo(info, "vermagic"); 2100 int err; 2101 2102 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 2103 modmagic = NULL; 2104 2105 /* This is allowed: modprobe --force will invalidate it. */ 2106 if (!modmagic) { 2107 err = try_to_force_load(mod, "bad vermagic"); 2108 if (err) 2109 return err; 2110 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 2111 pr_err("%s: version magic '%s' should be '%s'\n", 2112 info->name, modmagic, vermagic); 2113 return -ENOEXEC; 2114 } 2115 2116 err = check_modinfo_livepatch(mod, info); 2117 if (err) 2118 return err; 2119 2120 return 0; 2121 } 2122 2123 static int find_module_sections(struct module *mod, struct load_info *info) 2124 { 2125 mod->kp = section_objs(info, "__param", 2126 sizeof(*mod->kp), &mod->num_kp); 2127 mod->syms = section_objs(info, "__ksymtab", 2128 sizeof(*mod->syms), &mod->num_syms); 2129 mod->crcs = section_addr(info, "__kcrctab"); 2130 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2131 sizeof(*mod->gpl_syms), 2132 &mod->num_gpl_syms); 2133 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2134 2135 #ifdef CONFIG_CONSTRUCTORS 2136 mod->ctors = section_objs(info, ".ctors", 2137 sizeof(*mod->ctors), &mod->num_ctors); 2138 if (!mod->ctors) 2139 mod->ctors = section_objs(info, ".init_array", 2140 sizeof(*mod->ctors), &mod->num_ctors); 2141 else if (find_sec(info, ".init_array")) { 2142 /* 2143 * This shouldn't happen with same compiler and binutils 2144 * building all parts of the module. 2145 */ 2146 pr_warn("%s: has both .ctors and .init_array.\n", 2147 mod->name); 2148 return -EINVAL; 2149 } 2150 #endif 2151 2152 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2153 &mod->noinstr_text_size); 2154 2155 #ifdef CONFIG_TRACEPOINTS 2156 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2157 sizeof(*mod->tracepoints_ptrs), 2158 &mod->num_tracepoints); 2159 #endif 2160 #ifdef CONFIG_TREE_SRCU 2161 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2162 sizeof(*mod->srcu_struct_ptrs), 2163 &mod->num_srcu_structs); 2164 #endif 2165 #ifdef CONFIG_BPF_EVENTS 2166 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2167 sizeof(*mod->bpf_raw_events), 2168 &mod->num_bpf_raw_events); 2169 #endif 2170 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2171 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2172 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1, 2173 &mod->btf_base_data_size); 2174 #endif 2175 #ifdef CONFIG_JUMP_LABEL 2176 mod->jump_entries = section_objs(info, "__jump_table", 2177 sizeof(*mod->jump_entries), 2178 &mod->num_jump_entries); 2179 #endif 2180 #ifdef CONFIG_EVENT_TRACING 2181 mod->trace_events = section_objs(info, "_ftrace_events", 2182 sizeof(*mod->trace_events), 2183 &mod->num_trace_events); 2184 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2185 sizeof(*mod->trace_evals), 2186 &mod->num_trace_evals); 2187 #endif 2188 #ifdef CONFIG_TRACING 2189 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2190 sizeof(*mod->trace_bprintk_fmt_start), 2191 &mod->num_trace_bprintk_fmt); 2192 #endif 2193 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2194 /* sechdrs[0].sh_size is always zero */ 2195 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2196 sizeof(*mod->ftrace_callsites), 2197 &mod->num_ftrace_callsites); 2198 #endif 2199 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2200 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2201 sizeof(*mod->ei_funcs), 2202 &mod->num_ei_funcs); 2203 #endif 2204 #ifdef CONFIG_KPROBES 2205 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2206 &mod->kprobes_text_size); 2207 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2208 sizeof(unsigned long), 2209 &mod->num_kprobe_blacklist); 2210 #endif 2211 #ifdef CONFIG_PRINTK_INDEX 2212 mod->printk_index_start = section_objs(info, ".printk_index", 2213 sizeof(*mod->printk_index_start), 2214 &mod->printk_index_size); 2215 #endif 2216 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2217 mod->static_call_sites = section_objs(info, ".static_call_sites", 2218 sizeof(*mod->static_call_sites), 2219 &mod->num_static_call_sites); 2220 #endif 2221 #if IS_ENABLED(CONFIG_KUNIT) 2222 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2223 sizeof(*mod->kunit_suites), 2224 &mod->num_kunit_suites); 2225 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites", 2226 sizeof(*mod->kunit_init_suites), 2227 &mod->num_kunit_init_suites); 2228 #endif 2229 2230 mod->extable = section_objs(info, "__ex_table", 2231 sizeof(*mod->extable), &mod->num_exentries); 2232 2233 if (section_addr(info, "__obsparm")) 2234 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2235 2236 #ifdef CONFIG_DYNAMIC_DEBUG_CORE 2237 mod->dyndbg_info.descs = section_objs(info, "__dyndbg", 2238 sizeof(*mod->dyndbg_info.descs), 2239 &mod->dyndbg_info.num_descs); 2240 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes", 2241 sizeof(*mod->dyndbg_info.classes), 2242 &mod->dyndbg_info.num_classes); 2243 #endif 2244 2245 return 0; 2246 } 2247 2248 static int move_module(struct module *mod, struct load_info *info) 2249 { 2250 int i; 2251 enum mod_mem_type t = 0; 2252 int ret = -ENOMEM; 2253 2254 for_each_mod_mem_type(type) { 2255 if (!mod->mem[type].size) { 2256 mod->mem[type].base = NULL; 2257 continue; 2258 } 2259 2260 ret = module_memory_alloc(mod, type); 2261 if (ret) { 2262 t = type; 2263 goto out_enomem; 2264 } 2265 } 2266 2267 /* Transfer each section which specifies SHF_ALLOC */ 2268 pr_debug("Final section addresses for %s:\n", mod->name); 2269 for (i = 0; i < info->hdr->e_shnum; i++) { 2270 void *dest; 2271 Elf_Shdr *shdr = &info->sechdrs[i]; 2272 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT; 2273 2274 if (!(shdr->sh_flags & SHF_ALLOC)) 2275 continue; 2276 2277 dest = mod->mem[type].base + (shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK); 2278 2279 if (shdr->sh_type != SHT_NOBITS) { 2280 /* 2281 * Our ELF checker already validated this, but let's 2282 * be pedantic and make the goal clearer. We actually 2283 * end up copying over all modifications made to the 2284 * userspace copy of the entire struct module. 2285 */ 2286 if (i == info->index.mod && 2287 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) { 2288 ret = -ENOEXEC; 2289 goto out_enomem; 2290 } 2291 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2292 } 2293 /* 2294 * Update the userspace copy's ELF section address to point to 2295 * our newly allocated memory as a pure convenience so that 2296 * users of info can keep taking advantage and using the newly 2297 * minted official memory area. 2298 */ 2299 shdr->sh_addr = (unsigned long)dest; 2300 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr, 2301 (long)shdr->sh_size, info->secstrings + shdr->sh_name); 2302 } 2303 2304 return 0; 2305 out_enomem: 2306 for (t--; t >= 0; t--) 2307 module_memory_free(mod, t, true); 2308 return ret; 2309 } 2310 2311 static int check_export_symbol_versions(struct module *mod) 2312 { 2313 #ifdef CONFIG_MODVERSIONS 2314 if ((mod->num_syms && !mod->crcs) || 2315 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2316 return try_to_force_load(mod, 2317 "no versions for exported symbols"); 2318 } 2319 #endif 2320 return 0; 2321 } 2322 2323 static void flush_module_icache(const struct module *mod) 2324 { 2325 /* 2326 * Flush the instruction cache, since we've played with text. 2327 * Do it before processing of module parameters, so the module 2328 * can provide parameter accessor functions of its own. 2329 */ 2330 for_each_mod_mem_type(type) { 2331 const struct module_memory *mod_mem = &mod->mem[type]; 2332 2333 if (mod_mem->size) { 2334 flush_icache_range((unsigned long)mod_mem->base, 2335 (unsigned long)mod_mem->base + mod_mem->size); 2336 } 2337 } 2338 } 2339 2340 bool __weak module_elf_check_arch(Elf_Ehdr *hdr) 2341 { 2342 return true; 2343 } 2344 2345 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2346 Elf_Shdr *sechdrs, 2347 char *secstrings, 2348 struct module *mod) 2349 { 2350 return 0; 2351 } 2352 2353 /* module_blacklist is a comma-separated list of module names */ 2354 static char *module_blacklist; 2355 static bool blacklisted(const char *module_name) 2356 { 2357 const char *p; 2358 size_t len; 2359 2360 if (!module_blacklist) 2361 return false; 2362 2363 for (p = module_blacklist; *p; p += len) { 2364 len = strcspn(p, ","); 2365 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2366 return true; 2367 if (p[len] == ',') 2368 len++; 2369 } 2370 return false; 2371 } 2372 core_param(module_blacklist, module_blacklist, charp, 0400); 2373 2374 static struct module *layout_and_allocate(struct load_info *info, int flags) 2375 { 2376 struct module *mod; 2377 unsigned int ndx; 2378 int err; 2379 2380 /* Allow arches to frob section contents and sizes. */ 2381 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2382 info->secstrings, info->mod); 2383 if (err < 0) 2384 return ERR_PTR(err); 2385 2386 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2387 info->secstrings, info->mod); 2388 if (err < 0) 2389 return ERR_PTR(err); 2390 2391 /* We will do a special allocation for per-cpu sections later. */ 2392 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2393 2394 /* 2395 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that 2396 * layout_sections() can put it in the right place. 2397 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2398 */ 2399 ndx = find_sec(info, ".data..ro_after_init"); 2400 if (ndx) 2401 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2402 /* 2403 * Mark the __jump_table section as ro_after_init as well: these data 2404 * structures are never modified, with the exception of entries that 2405 * refer to code in the __init section, which are annotated as such 2406 * at module load time. 2407 */ 2408 ndx = find_sec(info, "__jump_table"); 2409 if (ndx) 2410 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2411 2412 /* 2413 * Determine total sizes, and put offsets in sh_entsize. For now 2414 * this is done generically; there doesn't appear to be any 2415 * special cases for the architectures. 2416 */ 2417 layout_sections(info->mod, info); 2418 layout_symtab(info->mod, info); 2419 2420 /* Allocate and move to the final place */ 2421 err = move_module(info->mod, info); 2422 if (err) 2423 return ERR_PTR(err); 2424 2425 /* Module has been copied to its final place now: return it. */ 2426 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2427 kmemleak_load_module(mod, info); 2428 return mod; 2429 } 2430 2431 /* mod is no longer valid after this! */ 2432 static void module_deallocate(struct module *mod, struct load_info *info) 2433 { 2434 percpu_modfree(mod); 2435 module_arch_freeing_init(mod); 2436 2437 free_mod_mem(mod, true); 2438 } 2439 2440 int __weak module_finalize(const Elf_Ehdr *hdr, 2441 const Elf_Shdr *sechdrs, 2442 struct module *me) 2443 { 2444 return 0; 2445 } 2446 2447 static int post_relocation(struct module *mod, const struct load_info *info) 2448 { 2449 /* Sort exception table now relocations are done. */ 2450 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2451 2452 /* Copy relocated percpu area over. */ 2453 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2454 info->sechdrs[info->index.pcpu].sh_size); 2455 2456 /* Setup kallsyms-specific fields. */ 2457 add_kallsyms(mod, info); 2458 2459 /* Arch-specific module finalizing. */ 2460 return module_finalize(info->hdr, info->sechdrs, mod); 2461 } 2462 2463 /* Call module constructors. */ 2464 static void do_mod_ctors(struct module *mod) 2465 { 2466 #ifdef CONFIG_CONSTRUCTORS 2467 unsigned long i; 2468 2469 for (i = 0; i < mod->num_ctors; i++) 2470 mod->ctors[i](); 2471 #endif 2472 } 2473 2474 /* For freeing module_init on success, in case kallsyms traversing */ 2475 struct mod_initfree { 2476 struct llist_node node; 2477 void *init_text; 2478 void *init_data; 2479 void *init_rodata; 2480 }; 2481 2482 static void do_free_init(struct work_struct *w) 2483 { 2484 struct llist_node *pos, *n, *list; 2485 struct mod_initfree *initfree; 2486 2487 list = llist_del_all(&init_free_list); 2488 2489 synchronize_rcu(); 2490 2491 llist_for_each_safe(pos, n, list) { 2492 initfree = container_of(pos, struct mod_initfree, node); 2493 execmem_free(initfree->init_text); 2494 execmem_free(initfree->init_data); 2495 execmem_free(initfree->init_rodata); 2496 kfree(initfree); 2497 } 2498 } 2499 2500 void flush_module_init_free_work(void) 2501 { 2502 flush_work(&init_free_wq); 2503 } 2504 2505 #undef MODULE_PARAM_PREFIX 2506 #define MODULE_PARAM_PREFIX "module." 2507 /* Default value for module->async_probe_requested */ 2508 static bool async_probe; 2509 module_param(async_probe, bool, 0644); 2510 2511 /* 2512 * This is where the real work happens. 2513 * 2514 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2515 * helper command 'lx-symbols'. 2516 */ 2517 static noinline int do_init_module(struct module *mod) 2518 { 2519 int ret = 0; 2520 struct mod_initfree *freeinit; 2521 #if defined(CONFIG_MODULE_STATS) 2522 unsigned int text_size = 0, total_size = 0; 2523 2524 for_each_mod_mem_type(type) { 2525 const struct module_memory *mod_mem = &mod->mem[type]; 2526 if (mod_mem->size) { 2527 total_size += mod_mem->size; 2528 if (type == MOD_TEXT || type == MOD_INIT_TEXT) 2529 text_size += mod_mem->size; 2530 } 2531 } 2532 #endif 2533 2534 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2535 if (!freeinit) { 2536 ret = -ENOMEM; 2537 goto fail; 2538 } 2539 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base; 2540 freeinit->init_data = mod->mem[MOD_INIT_DATA].base; 2541 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base; 2542 2543 do_mod_ctors(mod); 2544 /* Start the module */ 2545 if (mod->init != NULL) 2546 ret = do_one_initcall(mod->init); 2547 if (ret < 0) { 2548 goto fail_free_freeinit; 2549 } 2550 if (ret > 0) { 2551 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2552 "follow 0/-E convention\n" 2553 "%s: loading module anyway...\n", 2554 __func__, mod->name, ret, __func__); 2555 dump_stack(); 2556 } 2557 2558 /* Now it's a first class citizen! */ 2559 mod->state = MODULE_STATE_LIVE; 2560 blocking_notifier_call_chain(&module_notify_list, 2561 MODULE_STATE_LIVE, mod); 2562 2563 /* Delay uevent until module has finished its init routine */ 2564 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 2565 2566 /* 2567 * We need to finish all async code before the module init sequence 2568 * is done. This has potential to deadlock if synchronous module 2569 * loading is requested from async (which is not allowed!). 2570 * 2571 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 2572 * request_module() from async workers") for more details. 2573 */ 2574 if (!mod->async_probe_requested) 2575 async_synchronize_full(); 2576 2577 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base, 2578 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size); 2579 mutex_lock(&module_mutex); 2580 /* Drop initial reference. */ 2581 module_put(mod); 2582 trim_init_extable(mod); 2583 #ifdef CONFIG_KALLSYMS 2584 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 2585 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 2586 #endif 2587 ret = module_enable_rodata_ro(mod, true); 2588 if (ret) 2589 goto fail_mutex_unlock; 2590 mod_tree_remove_init(mod); 2591 module_arch_freeing_init(mod); 2592 for_class_mod_mem_type(type, init) { 2593 mod->mem[type].base = NULL; 2594 mod->mem[type].size = 0; 2595 } 2596 2597 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2598 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */ 2599 mod->btf_data = NULL; 2600 mod->btf_base_data = NULL; 2601 #endif 2602 /* 2603 * We want to free module_init, but be aware that kallsyms may be 2604 * walking this with preempt disabled. In all the failure paths, we 2605 * call synchronize_rcu(), but we don't want to slow down the success 2606 * path. execmem_free() cannot be called in an interrupt, so do the 2607 * work and call synchronize_rcu() in a work queue. 2608 * 2609 * Note that execmem_alloc() on most architectures creates W+X page 2610 * mappings which won't be cleaned up until do_free_init() runs. Any 2611 * code such as mark_rodata_ro() which depends on those mappings to 2612 * be cleaned up needs to sync with the queued work by invoking 2613 * flush_module_init_free_work(). 2614 */ 2615 if (llist_add(&freeinit->node, &init_free_list)) 2616 schedule_work(&init_free_wq); 2617 2618 mutex_unlock(&module_mutex); 2619 wake_up_all(&module_wq); 2620 2621 mod_stat_add_long(text_size, &total_text_size); 2622 mod_stat_add_long(total_size, &total_mod_size); 2623 2624 mod_stat_inc(&modcount); 2625 2626 return 0; 2627 2628 fail_mutex_unlock: 2629 mutex_unlock(&module_mutex); 2630 fail_free_freeinit: 2631 kfree(freeinit); 2632 fail: 2633 /* Try to protect us from buggy refcounters. */ 2634 mod->state = MODULE_STATE_GOING; 2635 synchronize_rcu(); 2636 module_put(mod); 2637 blocking_notifier_call_chain(&module_notify_list, 2638 MODULE_STATE_GOING, mod); 2639 klp_module_going(mod); 2640 ftrace_release_mod(mod); 2641 free_module(mod); 2642 wake_up_all(&module_wq); 2643 2644 return ret; 2645 } 2646 2647 static int may_init_module(void) 2648 { 2649 if (!capable(CAP_SYS_MODULE) || modules_disabled) 2650 return -EPERM; 2651 if (!ccs_capable(CCS_USE_KERNEL_MODULE)) 2652 return -EPERM; 2653 2654 return 0; 2655 } 2656 2657 /* Is this module of this name done loading? No locks held. */ 2658 static bool finished_loading(const char *name) 2659 { 2660 struct module *mod; 2661 bool ret; 2662 2663 /* 2664 * The module_mutex should not be a heavily contended lock; 2665 * if we get the occasional sleep here, we'll go an extra iteration 2666 * in the wait_event_interruptible(), which is harmless. 2667 */ 2668 sched_annotate_sleep(); 2669 mutex_lock(&module_mutex); 2670 mod = find_module_all(name, strlen(name), true); 2671 ret = !mod || mod->state == MODULE_STATE_LIVE 2672 || mod->state == MODULE_STATE_GOING; 2673 mutex_unlock(&module_mutex); 2674 2675 return ret; 2676 } 2677 2678 /* Must be called with module_mutex held */ 2679 static int module_patient_check_exists(const char *name, 2680 enum fail_dup_mod_reason reason) 2681 { 2682 struct module *old; 2683 int err = 0; 2684 2685 old = find_module_all(name, strlen(name), true); 2686 if (old == NULL) 2687 return 0; 2688 2689 if (old->state == MODULE_STATE_COMING || 2690 old->state == MODULE_STATE_UNFORMED) { 2691 /* Wait in case it fails to load. */ 2692 mutex_unlock(&module_mutex); 2693 err = wait_event_interruptible(module_wq, 2694 finished_loading(name)); 2695 mutex_lock(&module_mutex); 2696 if (err) 2697 return err; 2698 2699 /* The module might have gone in the meantime. */ 2700 old = find_module_all(name, strlen(name), true); 2701 } 2702 2703 if (try_add_failed_module(name, reason)) 2704 pr_warn("Could not add fail-tracking for module: %s\n", name); 2705 2706 /* 2707 * We are here only when the same module was being loaded. Do 2708 * not try to load it again right now. It prevents long delays 2709 * caused by serialized module load failures. It might happen 2710 * when more devices of the same type trigger load of 2711 * a particular module. 2712 */ 2713 if (old && old->state == MODULE_STATE_LIVE) 2714 return -EEXIST; 2715 return -EBUSY; 2716 } 2717 2718 /* 2719 * We try to place it in the list now to make sure it's unique before 2720 * we dedicate too many resources. In particular, temporary percpu 2721 * memory exhaustion. 2722 */ 2723 static int add_unformed_module(struct module *mod) 2724 { 2725 int err; 2726 2727 mod->state = MODULE_STATE_UNFORMED; 2728 2729 mutex_lock(&module_mutex); 2730 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD); 2731 if (err) 2732 goto out; 2733 2734 mod_update_bounds(mod); 2735 list_add_rcu(&mod->list, &modules); 2736 mod_tree_insert(mod); 2737 err = 0; 2738 2739 out: 2740 mutex_unlock(&module_mutex); 2741 return err; 2742 } 2743 2744 static int complete_formation(struct module *mod, struct load_info *info) 2745 { 2746 int err; 2747 2748 mutex_lock(&module_mutex); 2749 2750 /* Find duplicate symbols (must be called under lock). */ 2751 err = verify_exported_symbols(mod); 2752 if (err < 0) 2753 goto out; 2754 2755 /* These rely on module_mutex for list integrity. */ 2756 module_bug_finalize(info->hdr, info->sechdrs, mod); 2757 module_cfi_finalize(info->hdr, info->sechdrs, mod); 2758 2759 err = module_enable_rodata_ro(mod, false); 2760 if (err) 2761 goto out_strict_rwx; 2762 err = module_enable_data_nx(mod); 2763 if (err) 2764 goto out_strict_rwx; 2765 err = module_enable_text_rox(mod); 2766 if (err) 2767 goto out_strict_rwx; 2768 2769 /* 2770 * Mark state as coming so strong_try_module_get() ignores us, 2771 * but kallsyms etc. can see us. 2772 */ 2773 mod->state = MODULE_STATE_COMING; 2774 mutex_unlock(&module_mutex); 2775 2776 return 0; 2777 2778 out_strict_rwx: 2779 module_bug_cleanup(mod); 2780 out: 2781 mutex_unlock(&module_mutex); 2782 return err; 2783 } 2784 2785 static int prepare_coming_module(struct module *mod) 2786 { 2787 int err; 2788 2789 ftrace_module_enable(mod); 2790 err = klp_module_coming(mod); 2791 if (err) 2792 return err; 2793 2794 err = blocking_notifier_call_chain_robust(&module_notify_list, 2795 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 2796 err = notifier_to_errno(err); 2797 if (err) 2798 klp_module_going(mod); 2799 2800 return err; 2801 } 2802 2803 static int unknown_module_param_cb(char *param, char *val, const char *modname, 2804 void *arg) 2805 { 2806 struct module *mod = arg; 2807 int ret; 2808 2809 if (strcmp(param, "async_probe") == 0) { 2810 if (kstrtobool(val, &mod->async_probe_requested)) 2811 mod->async_probe_requested = true; 2812 return 0; 2813 } 2814 2815 /* Check for magic 'dyndbg' arg */ 2816 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 2817 if (ret != 0) 2818 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 2819 return 0; 2820 } 2821 2822 /* Module within temporary copy, this doesn't do any allocation */ 2823 static int early_mod_check(struct load_info *info, int flags) 2824 { 2825 int err; 2826 2827 /* 2828 * Now that we know we have the correct module name, check 2829 * if it's blacklisted. 2830 */ 2831 if (blacklisted(info->name)) { 2832 pr_err("Module %s is blacklisted\n", info->name); 2833 return -EPERM; 2834 } 2835 2836 err = rewrite_section_headers(info, flags); 2837 if (err) 2838 return err; 2839 2840 /* Check module struct version now, before we try to use module. */ 2841 if (!check_modstruct_version(info, info->mod)) 2842 return -ENOEXEC; 2843 2844 err = check_modinfo(info->mod, info, flags); 2845 if (err) 2846 return err; 2847 2848 mutex_lock(&module_mutex); 2849 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING); 2850 mutex_unlock(&module_mutex); 2851 2852 return err; 2853 } 2854 2855 /* 2856 * Allocate and load the module: note that size of section 0 is always 2857 * zero, and we rely on this for optional sections. 2858 */ 2859 static int load_module(struct load_info *info, const char __user *uargs, 2860 int flags) 2861 { 2862 struct module *mod; 2863 bool module_allocated = false; 2864 long err = 0; 2865 char *after_dashes; 2866 2867 /* 2868 * Do the signature check (if any) first. All that 2869 * the signature check needs is info->len, it does 2870 * not need any of the section info. That can be 2871 * set up later. This will minimize the chances 2872 * of a corrupt module causing problems before 2873 * we even get to the signature check. 2874 * 2875 * The check will also adjust info->len by stripping 2876 * off the sig length at the end of the module, making 2877 * checks against info->len more correct. 2878 */ 2879 err = module_sig_check(info, flags); 2880 if (err) 2881 goto free_copy; 2882 2883 /* 2884 * Do basic sanity checks against the ELF header and 2885 * sections. Cache useful sections and set the 2886 * info->mod to the userspace passed struct module. 2887 */ 2888 err = elf_validity_cache_copy(info, flags); 2889 if (err) 2890 goto free_copy; 2891 2892 err = early_mod_check(info, flags); 2893 if (err) 2894 goto free_copy; 2895 2896 /* Figure out module layout, and allocate all the memory. */ 2897 mod = layout_and_allocate(info, flags); 2898 if (IS_ERR(mod)) { 2899 err = PTR_ERR(mod); 2900 goto free_copy; 2901 } 2902 2903 module_allocated = true; 2904 2905 audit_log_kern_module(mod->name); 2906 2907 /* Reserve our place in the list. */ 2908 err = add_unformed_module(mod); 2909 if (err) 2910 goto free_module; 2911 2912 /* 2913 * We are tainting your kernel if your module gets into 2914 * the modules linked list somehow. 2915 */ 2916 module_augment_kernel_taints(mod, info); 2917 2918 /* To avoid stressing percpu allocator, do this once we're unique. */ 2919 err = percpu_modalloc(mod, info); 2920 if (err) 2921 goto unlink_mod; 2922 2923 /* Now module is in final location, initialize linked lists, etc. */ 2924 err = module_unload_init(mod); 2925 if (err) 2926 goto unlink_mod; 2927 2928 init_param_lock(mod); 2929 2930 /* 2931 * Now we've got everything in the final locations, we can 2932 * find optional sections. 2933 */ 2934 err = find_module_sections(mod, info); 2935 if (err) 2936 goto free_unload; 2937 2938 err = check_export_symbol_versions(mod); 2939 if (err) 2940 goto free_unload; 2941 2942 /* Set up MODINFO_ATTR fields */ 2943 setup_modinfo(mod, info); 2944 2945 /* Fix up syms, so that st_value is a pointer to location. */ 2946 err = simplify_symbols(mod, info); 2947 if (err < 0) 2948 goto free_modinfo; 2949 2950 err = apply_relocations(mod, info); 2951 if (err < 0) 2952 goto free_modinfo; 2953 2954 err = post_relocation(mod, info); 2955 if (err < 0) 2956 goto free_modinfo; 2957 2958 flush_module_icache(mod); 2959 2960 /* Now copy in args */ 2961 mod->args = strndup_user(uargs, ~0UL >> 1); 2962 if (IS_ERR(mod->args)) { 2963 err = PTR_ERR(mod->args); 2964 goto free_arch_cleanup; 2965 } 2966 2967 init_build_id(mod, info); 2968 2969 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 2970 ftrace_module_init(mod); 2971 2972 /* Finally it's fully formed, ready to start executing. */ 2973 err = complete_formation(mod, info); 2974 if (err) 2975 goto ddebug_cleanup; 2976 2977 err = prepare_coming_module(mod); 2978 if (err) 2979 goto bug_cleanup; 2980 2981 mod->async_probe_requested = async_probe; 2982 2983 /* Module is ready to execute: parsing args may do that. */ 2984 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 2985 -32768, 32767, mod, 2986 unknown_module_param_cb); 2987 if (IS_ERR(after_dashes)) { 2988 err = PTR_ERR(after_dashes); 2989 goto coming_cleanup; 2990 } else if (after_dashes) { 2991 pr_warn("%s: parameters '%s' after `--' ignored\n", 2992 mod->name, after_dashes); 2993 } 2994 2995 /* Link in to sysfs. */ 2996 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 2997 if (err < 0) 2998 goto coming_cleanup; 2999 3000 if (is_livepatch_module(mod)) { 3001 err = copy_module_elf(mod, info); 3002 if (err < 0) 3003 goto sysfs_cleanup; 3004 } 3005 3006 /* Get rid of temporary copy. */ 3007 free_copy(info, flags); 3008 3009 codetag_load_module(mod); 3010 3011 /* Done! */ 3012 trace_module_load(mod); 3013 3014 return do_init_module(mod); 3015 3016 sysfs_cleanup: 3017 mod_sysfs_teardown(mod); 3018 coming_cleanup: 3019 mod->state = MODULE_STATE_GOING; 3020 destroy_params(mod->kp, mod->num_kp); 3021 blocking_notifier_call_chain(&module_notify_list, 3022 MODULE_STATE_GOING, mod); 3023 klp_module_going(mod); 3024 bug_cleanup: 3025 mod->state = MODULE_STATE_GOING; 3026 /* module_bug_cleanup needs module_mutex protection */ 3027 mutex_lock(&module_mutex); 3028 module_bug_cleanup(mod); 3029 mutex_unlock(&module_mutex); 3030 3031 ddebug_cleanup: 3032 ftrace_release_mod(mod); 3033 synchronize_rcu(); 3034 kfree(mod->args); 3035 free_arch_cleanup: 3036 module_arch_cleanup(mod); 3037 free_modinfo: 3038 free_modinfo(mod); 3039 free_unload: 3040 module_unload_free(mod); 3041 unlink_mod: 3042 mutex_lock(&module_mutex); 3043 /* Unlink carefully: kallsyms could be walking list. */ 3044 list_del_rcu(&mod->list); 3045 mod_tree_remove(mod); 3046 wake_up_all(&module_wq); 3047 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 3048 synchronize_rcu(); 3049 mutex_unlock(&module_mutex); 3050 free_module: 3051 mod_stat_bump_invalid(info, flags); 3052 /* Free lock-classes; relies on the preceding sync_rcu() */ 3053 for_class_mod_mem_type(type, core_data) { 3054 lockdep_free_key_range(mod->mem[type].base, 3055 mod->mem[type].size); 3056 } 3057 3058 module_deallocate(mod, info); 3059 free_copy: 3060 /* 3061 * The info->len is always set. We distinguish between 3062 * failures once the proper module was allocated and 3063 * before that. 3064 */ 3065 if (!module_allocated) 3066 mod_stat_bump_becoming(info, flags); 3067 free_copy(info, flags); 3068 return err; 3069 } 3070 3071 SYSCALL_DEFINE3(init_module, void __user *, umod, 3072 unsigned long, len, const char __user *, uargs) 3073 { 3074 int err; 3075 struct load_info info = { }; 3076 3077 err = may_init_module(); 3078 if (err) 3079 return err; 3080 3081 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 3082 umod, len, uargs); 3083 3084 err = copy_module_from_user(umod, len, &info); 3085 if (err) { 3086 mod_stat_inc(&failed_kreads); 3087 mod_stat_add_long(len, &invalid_kread_bytes); 3088 return err; 3089 } 3090 3091 return load_module(&info, uargs, 0); 3092 } 3093 3094 struct idempotent { 3095 const void *cookie; 3096 struct hlist_node entry; 3097 struct completion complete; 3098 int ret; 3099 }; 3100 3101 #define IDEM_HASH_BITS 8 3102 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS]; 3103 static DEFINE_SPINLOCK(idem_lock); 3104 3105 static bool idempotent(struct idempotent *u, const void *cookie) 3106 { 3107 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3108 struct hlist_head *head = idem_hash + hash; 3109 struct idempotent *existing; 3110 bool first; 3111 3112 u->ret = -EINTR; 3113 u->cookie = cookie; 3114 init_completion(&u->complete); 3115 3116 spin_lock(&idem_lock); 3117 first = true; 3118 hlist_for_each_entry(existing, head, entry) { 3119 if (existing->cookie != cookie) 3120 continue; 3121 first = false; 3122 break; 3123 } 3124 hlist_add_head(&u->entry, idem_hash + hash); 3125 spin_unlock(&idem_lock); 3126 3127 return !first; 3128 } 3129 3130 /* 3131 * We were the first one with 'cookie' on the list, and we ended 3132 * up completing the operation. We now need to walk the list, 3133 * remove everybody - which includes ourselves - fill in the return 3134 * value, and then complete the operation. 3135 */ 3136 static int idempotent_complete(struct idempotent *u, int ret) 3137 { 3138 const void *cookie = u->cookie; 3139 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3140 struct hlist_head *head = idem_hash + hash; 3141 struct hlist_node *next; 3142 struct idempotent *pos; 3143 3144 spin_lock(&idem_lock); 3145 hlist_for_each_entry_safe(pos, next, head, entry) { 3146 if (pos->cookie != cookie) 3147 continue; 3148 hlist_del_init(&pos->entry); 3149 pos->ret = ret; 3150 complete(&pos->complete); 3151 } 3152 spin_unlock(&idem_lock); 3153 return ret; 3154 } 3155 3156 /* 3157 * Wait for the idempotent worker. 3158 * 3159 * If we get interrupted, we need to remove ourselves from the 3160 * the idempotent list, and the completion may still come in. 3161 * 3162 * The 'idem_lock' protects against the race, and 'idem.ret' was 3163 * initialized to -EINTR and is thus always the right return 3164 * value even if the idempotent work then completes between 3165 * the wait_for_completion and the cleanup. 3166 */ 3167 static int idempotent_wait_for_completion(struct idempotent *u) 3168 { 3169 if (wait_for_completion_interruptible(&u->complete)) { 3170 spin_lock(&idem_lock); 3171 if (!hlist_unhashed(&u->entry)) 3172 hlist_del(&u->entry); 3173 spin_unlock(&idem_lock); 3174 } 3175 return u->ret; 3176 } 3177 3178 static int init_module_from_file(struct file *f, const char __user * uargs, int flags) 3179 { 3180 struct load_info info = { }; 3181 void *buf = NULL; 3182 int len; 3183 3184 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE); 3185 if (len < 0) { 3186 mod_stat_inc(&failed_kreads); 3187 return len; 3188 } 3189 3190 if (flags & MODULE_INIT_COMPRESSED_FILE) { 3191 int err = module_decompress(&info, buf, len); 3192 vfree(buf); /* compressed data is no longer needed */ 3193 if (err) { 3194 mod_stat_inc(&failed_decompress); 3195 mod_stat_add_long(len, &invalid_decompress_bytes); 3196 return err; 3197 } 3198 } else { 3199 info.hdr = buf; 3200 info.len = len; 3201 } 3202 3203 return load_module(&info, uargs, flags); 3204 } 3205 3206 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags) 3207 { 3208 struct idempotent idem; 3209 3210 if (!f || !(f->f_mode & FMODE_READ)) 3211 return -EBADF; 3212 3213 /* Are we the winners of the race and get to do this? */ 3214 if (!idempotent(&idem, file_inode(f))) { 3215 int ret = init_module_from_file(f, uargs, flags); 3216 return idempotent_complete(&idem, ret); 3217 } 3218 3219 /* 3220 * Somebody else won the race and is loading the module. 3221 */ 3222 return idempotent_wait_for_completion(&idem); 3223 } 3224 3225 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 3226 { 3227 int err; 3228 struct fd f; 3229 3230 err = may_init_module(); 3231 if (err) 3232 return err; 3233 3234 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 3235 3236 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 3237 |MODULE_INIT_IGNORE_VERMAGIC 3238 |MODULE_INIT_COMPRESSED_FILE)) 3239 return -EINVAL; 3240 3241 f = fdget(fd); 3242 err = idempotent_init_module(f.file, uargs, flags); 3243 fdput(f); 3244 return err; 3245 } 3246 3247 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 3248 char *module_flags(struct module *mod, char *buf, bool show_state) 3249 { 3250 int bx = 0; 3251 3252 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 3253 if (!mod->taints && !show_state) 3254 goto out; 3255 if (mod->taints || 3256 mod->state == MODULE_STATE_GOING || 3257 mod->state == MODULE_STATE_COMING) { 3258 buf[bx++] = '('; 3259 bx += module_flags_taint(mod->taints, buf + bx); 3260 /* Show a - for module-is-being-unloaded */ 3261 if (mod->state == MODULE_STATE_GOING && show_state) 3262 buf[bx++] = '-'; 3263 /* Show a + for module-is-being-loaded */ 3264 if (mod->state == MODULE_STATE_COMING && show_state) 3265 buf[bx++] = '+'; 3266 buf[bx++] = ')'; 3267 } 3268 out: 3269 buf[bx] = '\0'; 3270 3271 return buf; 3272 } 3273 3274 /* Given an address, look for it in the module exception tables. */ 3275 const struct exception_table_entry *search_module_extables(unsigned long addr) 3276 { 3277 const struct exception_table_entry *e = NULL; 3278 struct module *mod; 3279 3280 preempt_disable(); 3281 mod = __module_address(addr); 3282 if (!mod) 3283 goto out; 3284 3285 if (!mod->num_exentries) 3286 goto out; 3287 3288 e = search_extable(mod->extable, 3289 mod->num_exentries, 3290 addr); 3291 out: 3292 preempt_enable(); 3293 3294 /* 3295 * Now, if we found one, we are running inside it now, hence 3296 * we cannot unload the module, hence no refcnt needed. 3297 */ 3298 return e; 3299 } 3300 3301 /** 3302 * is_module_address() - is this address inside a module? 3303 * @addr: the address to check. 3304 * 3305 * See is_module_text_address() if you simply want to see if the address 3306 * is code (not data). 3307 */ 3308 bool is_module_address(unsigned long addr) 3309 { 3310 bool ret; 3311 3312 preempt_disable(); 3313 ret = __module_address(addr) != NULL; 3314 preempt_enable(); 3315 3316 return ret; 3317 } 3318 3319 /** 3320 * __module_address() - get the module which contains an address. 3321 * @addr: the address. 3322 * 3323 * Must be called with preempt disabled or module mutex held so that 3324 * module doesn't get freed during this. 3325 */ 3326 struct module *__module_address(unsigned long addr) 3327 { 3328 struct module *mod; 3329 3330 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3331 goto lookup; 3332 3333 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3334 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max) 3335 goto lookup; 3336 #endif 3337 3338 return NULL; 3339 3340 lookup: 3341 module_assert_mutex_or_preempt(); 3342 3343 mod = mod_find(addr, &mod_tree); 3344 if (mod) { 3345 BUG_ON(!within_module(addr, mod)); 3346 if (mod->state == MODULE_STATE_UNFORMED) 3347 mod = NULL; 3348 } 3349 return mod; 3350 } 3351 3352 /** 3353 * is_module_text_address() - is this address inside module code? 3354 * @addr: the address to check. 3355 * 3356 * See is_module_address() if you simply want to see if the address is 3357 * anywhere in a module. See kernel_text_address() for testing if an 3358 * address corresponds to kernel or module code. 3359 */ 3360 bool is_module_text_address(unsigned long addr) 3361 { 3362 bool ret; 3363 3364 preempt_disable(); 3365 ret = __module_text_address(addr) != NULL; 3366 preempt_enable(); 3367 3368 return ret; 3369 } 3370 3371 /** 3372 * __module_text_address() - get the module whose code contains an address. 3373 * @addr: the address. 3374 * 3375 * Must be called with preempt disabled or module mutex held so that 3376 * module doesn't get freed during this. 3377 */ 3378 struct module *__module_text_address(unsigned long addr) 3379 { 3380 struct module *mod = __module_address(addr); 3381 if (mod) { 3382 /* Make sure it's within the text section. */ 3383 if (!within_module_mem_type(addr, mod, MOD_TEXT) && 3384 !within_module_mem_type(addr, mod, MOD_INIT_TEXT)) 3385 mod = NULL; 3386 } 3387 return mod; 3388 } 3389 3390 /* Don't grab lock, we're oopsing. */ 3391 void print_modules(void) 3392 { 3393 struct module *mod; 3394 char buf[MODULE_FLAGS_BUF_SIZE]; 3395 3396 printk(KERN_DEFAULT "Modules linked in:"); 3397 /* Most callers should already have preempt disabled, but make sure */ 3398 preempt_disable(); 3399 list_for_each_entry_rcu(mod, &modules, list) { 3400 if (mod->state == MODULE_STATE_UNFORMED) 3401 continue; 3402 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3403 } 3404 3405 print_unloaded_tainted_modules(); 3406 preempt_enable(); 3407 if (last_unloaded_module.name[0]) 3408 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3409 last_unloaded_module.taints); 3410 pr_cont("\n"); 3411 } 3412 3413 #ifdef CONFIG_MODULE_DEBUGFS 3414 struct dentry *mod_debugfs_root; 3415 3416 static int module_debugfs_init(void) 3417 { 3418 mod_debugfs_root = debugfs_create_dir("modules", NULL); 3419 return 0; 3420 } 3421 module_init(module_debugfs_init); 3422 #endif 3423
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.