~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/pid.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Generic pidhash and scalable, time-bounded PID allocator
  4  *
  5  * (C) 2002-2003 Nadia Yvette Chambers, IBM
  6  * (C) 2004 Nadia Yvette Chambers, Oracle
  7  * (C) 2002-2004 Ingo Molnar, Red Hat
  8  *
  9  * pid-structures are backing objects for tasks sharing a given ID to chain
 10  * against. There is very little to them aside from hashing them and
 11  * parking tasks using given ID's on a list.
 12  *
 13  * The hash is always changed with the tasklist_lock write-acquired,
 14  * and the hash is only accessed with the tasklist_lock at least
 15  * read-acquired, so there's no additional SMP locking needed here.
 16  *
 17  * We have a list of bitmap pages, which bitmaps represent the PID space.
 18  * Allocating and freeing PIDs is completely lockless. The worst-case
 19  * allocation scenario when all but one out of 1 million PIDs possible are
 20  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 21  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 22  *
 23  * Pid namespaces:
 24  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 25  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 26  *     Many thanks to Oleg Nesterov for comments and help
 27  *
 28  */
 29 
 30 #include <linux/mm.h>
 31 #include <linux/export.h>
 32 #include <linux/slab.h>
 33 #include <linux/init.h>
 34 #include <linux/rculist.h>
 35 #include <linux/memblock.h>
 36 #include <linux/pid_namespace.h>
 37 #include <linux/init_task.h>
 38 #include <linux/syscalls.h>
 39 #include <linux/proc_ns.h>
 40 #include <linux/refcount.h>
 41 #include <linux/anon_inodes.h>
 42 #include <linux/sched/signal.h>
 43 #include <linux/sched/task.h>
 44 #include <linux/idr.h>
 45 #include <linux/pidfs.h>
 46 #include <net/sock.h>
 47 #include <uapi/linux/pidfd.h>
 48 
 49 struct pid init_struct_pid = {
 50         .count          = REFCOUNT_INIT(1),
 51         .tasks          = {
 52                 { .first = NULL },
 53                 { .first = NULL },
 54                 { .first = NULL },
 55         },
 56         .level          = 0,
 57         .numbers        = { {
 58                 .nr             = 0,
 59                 .ns             = &init_pid_ns,
 60         }, }
 61 };
 62 
 63 int pid_max = PID_MAX_DEFAULT;
 64 
 65 int pid_max_min = RESERVED_PIDS + 1;
 66 int pid_max_max = PID_MAX_LIMIT;
 67 /*
 68  * Pseudo filesystems start inode numbering after one. We use Reserved
 69  * PIDs as a natural offset.
 70  */
 71 static u64 pidfs_ino = RESERVED_PIDS;
 72 
 73 /*
 74  * PID-map pages start out as NULL, they get allocated upon
 75  * first use and are never deallocated. This way a low pid_max
 76  * value does not cause lots of bitmaps to be allocated, but
 77  * the scheme scales to up to 4 million PIDs, runtime.
 78  */
 79 struct pid_namespace init_pid_ns = {
 80         .ns.count = REFCOUNT_INIT(2),
 81         .idr = IDR_INIT(init_pid_ns.idr),
 82         .pid_allocated = PIDNS_ADDING,
 83         .level = 0,
 84         .child_reaper = &init_task,
 85         .user_ns = &init_user_ns,
 86         .ns.inum = PROC_PID_INIT_INO,
 87 #ifdef CONFIG_PID_NS
 88         .ns.ops = &pidns_operations,
 89 #endif
 90 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
 91         .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
 92 #endif
 93 };
 94 EXPORT_SYMBOL_GPL(init_pid_ns);
 95 
 96 /*
 97  * Note: disable interrupts while the pidmap_lock is held as an
 98  * interrupt might come in and do read_lock(&tasklist_lock).
 99  *
100  * If we don't disable interrupts there is a nasty deadlock between
101  * detach_pid()->free_pid() and another cpu that does
102  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
103  * read_lock(&tasklist_lock);
104  *
105  * After we clean up the tasklist_lock and know there are no
106  * irq handlers that take it we can leave the interrupts enabled.
107  * For now it is easier to be safe than to prove it can't happen.
108  */
109 
110 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
111 
112 void put_pid(struct pid *pid)
113 {
114         struct pid_namespace *ns;
115 
116         if (!pid)
117                 return;
118 
119         ns = pid->numbers[pid->level].ns;
120         if (refcount_dec_and_test(&pid->count)) {
121                 kmem_cache_free(ns->pid_cachep, pid);
122                 put_pid_ns(ns);
123         }
124 }
125 EXPORT_SYMBOL_GPL(put_pid);
126 
127 static void delayed_put_pid(struct rcu_head *rhp)
128 {
129         struct pid *pid = container_of(rhp, struct pid, rcu);
130         put_pid(pid);
131 }
132 
133 void free_pid(struct pid *pid)
134 {
135         /* We can be called with write_lock_irq(&tasklist_lock) held */
136         int i;
137         unsigned long flags;
138 
139         spin_lock_irqsave(&pidmap_lock, flags);
140         for (i = 0; i <= pid->level; i++) {
141                 struct upid *upid = pid->numbers + i;
142                 struct pid_namespace *ns = upid->ns;
143                 switch (--ns->pid_allocated) {
144                 case 2:
145                 case 1:
146                         /* When all that is left in the pid namespace
147                          * is the reaper wake up the reaper.  The reaper
148                          * may be sleeping in zap_pid_ns_processes().
149                          */
150                         wake_up_process(ns->child_reaper);
151                         break;
152                 case PIDNS_ADDING:
153                         /* Handle a fork failure of the first process */
154                         WARN_ON(ns->child_reaper);
155                         ns->pid_allocated = 0;
156                         break;
157                 }
158 
159                 idr_remove(&ns->idr, upid->nr);
160         }
161         spin_unlock_irqrestore(&pidmap_lock, flags);
162 
163         call_rcu(&pid->rcu, delayed_put_pid);
164 }
165 
166 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
167                       size_t set_tid_size)
168 {
169         struct pid *pid;
170         enum pid_type type;
171         int i, nr;
172         struct pid_namespace *tmp;
173         struct upid *upid;
174         int retval = -ENOMEM;
175 
176         /*
177          * set_tid_size contains the size of the set_tid array. Starting at
178          * the most nested currently active PID namespace it tells alloc_pid()
179          * which PID to set for a process in that most nested PID namespace
180          * up to set_tid_size PID namespaces. It does not have to set the PID
181          * for a process in all nested PID namespaces but set_tid_size must
182          * never be greater than the current ns->level + 1.
183          */
184         if (set_tid_size > ns->level + 1)
185                 return ERR_PTR(-EINVAL);
186 
187         pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
188         if (!pid)
189                 return ERR_PTR(retval);
190 
191         tmp = ns;
192         pid->level = ns->level;
193 
194         for (i = ns->level; i >= 0; i--) {
195                 int tid = 0;
196 
197                 if (set_tid_size) {
198                         tid = set_tid[ns->level - i];
199 
200                         retval = -EINVAL;
201                         if (tid < 1 || tid >= pid_max)
202                                 goto out_free;
203                         /*
204                          * Also fail if a PID != 1 is requested and
205                          * no PID 1 exists.
206                          */
207                         if (tid != 1 && !tmp->child_reaper)
208                                 goto out_free;
209                         retval = -EPERM;
210                         if (!checkpoint_restore_ns_capable(tmp->user_ns))
211                                 goto out_free;
212                         set_tid_size--;
213                 }
214 
215                 idr_preload(GFP_KERNEL);
216                 spin_lock_irq(&pidmap_lock);
217 
218                 if (tid) {
219                         nr = idr_alloc(&tmp->idr, NULL, tid,
220                                        tid + 1, GFP_ATOMIC);
221                         /*
222                          * If ENOSPC is returned it means that the PID is
223                          * alreay in use. Return EEXIST in that case.
224                          */
225                         if (nr == -ENOSPC)
226                                 nr = -EEXIST;
227                 } else {
228                         int pid_min = 1;
229                         /*
230                          * init really needs pid 1, but after reaching the
231                          * maximum wrap back to RESERVED_PIDS
232                          */
233                         if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
234                                 pid_min = RESERVED_PIDS;
235 
236                         /*
237                          * Store a null pointer so find_pid_ns does not find
238                          * a partially initialized PID (see below).
239                          */
240                         nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
241                                               pid_max, GFP_ATOMIC);
242                 }
243                 spin_unlock_irq(&pidmap_lock);
244                 idr_preload_end();
245 
246                 if (nr < 0) {
247                         retval = (nr == -ENOSPC) ? -EAGAIN : nr;
248                         goto out_free;
249                 }
250 
251                 pid->numbers[i].nr = nr;
252                 pid->numbers[i].ns = tmp;
253                 tmp = tmp->parent;
254         }
255 
256         /*
257          * ENOMEM is not the most obvious choice especially for the case
258          * where the child subreaper has already exited and the pid
259          * namespace denies the creation of any new processes. But ENOMEM
260          * is what we have exposed to userspace for a long time and it is
261          * documented behavior for pid namespaces. So we can't easily
262          * change it even if there were an error code better suited.
263          */
264         retval = -ENOMEM;
265 
266         get_pid_ns(ns);
267         refcount_set(&pid->count, 1);
268         spin_lock_init(&pid->lock);
269         for (type = 0; type < PIDTYPE_MAX; ++type)
270                 INIT_HLIST_HEAD(&pid->tasks[type]);
271 
272         init_waitqueue_head(&pid->wait_pidfd);
273         INIT_HLIST_HEAD(&pid->inodes);
274 
275         upid = pid->numbers + ns->level;
276         spin_lock_irq(&pidmap_lock);
277         if (!(ns->pid_allocated & PIDNS_ADDING))
278                 goto out_unlock;
279         pid->stashed = NULL;
280         pid->ino = ++pidfs_ino;
281         for ( ; upid >= pid->numbers; --upid) {
282                 /* Make the PID visible to find_pid_ns. */
283                 idr_replace(&upid->ns->idr, pid, upid->nr);
284                 upid->ns->pid_allocated++;
285         }
286         spin_unlock_irq(&pidmap_lock);
287 
288         return pid;
289 
290 out_unlock:
291         spin_unlock_irq(&pidmap_lock);
292         put_pid_ns(ns);
293 
294 out_free:
295         spin_lock_irq(&pidmap_lock);
296         while (++i <= ns->level) {
297                 upid = pid->numbers + i;
298                 idr_remove(&upid->ns->idr, upid->nr);
299         }
300 
301         /* On failure to allocate the first pid, reset the state */
302         if (ns->pid_allocated == PIDNS_ADDING)
303                 idr_set_cursor(&ns->idr, 0);
304 
305         spin_unlock_irq(&pidmap_lock);
306 
307         kmem_cache_free(ns->pid_cachep, pid);
308         return ERR_PTR(retval);
309 }
310 
311 void disable_pid_allocation(struct pid_namespace *ns)
312 {
313         spin_lock_irq(&pidmap_lock);
314         ns->pid_allocated &= ~PIDNS_ADDING;
315         spin_unlock_irq(&pidmap_lock);
316 }
317 
318 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
319 {
320         return idr_find(&ns->idr, nr);
321 }
322 EXPORT_SYMBOL_GPL(find_pid_ns);
323 
324 struct pid *find_vpid(int nr)
325 {
326         return find_pid_ns(nr, task_active_pid_ns(current));
327 }
328 EXPORT_SYMBOL_GPL(find_vpid);
329 
330 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
331 {
332         return (type == PIDTYPE_PID) ?
333                 &task->thread_pid :
334                 &task->signal->pids[type];
335 }
336 
337 /*
338  * attach_pid() must be called with the tasklist_lock write-held.
339  */
340 void attach_pid(struct task_struct *task, enum pid_type type)
341 {
342         struct pid *pid = *task_pid_ptr(task, type);
343         hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
344 }
345 
346 static void __change_pid(struct task_struct *task, enum pid_type type,
347                         struct pid *new)
348 {
349         struct pid **pid_ptr = task_pid_ptr(task, type);
350         struct pid *pid;
351         int tmp;
352 
353         pid = *pid_ptr;
354 
355         hlist_del_rcu(&task->pid_links[type]);
356         *pid_ptr = new;
357 
358         if (type == PIDTYPE_PID) {
359                 WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID));
360                 wake_up_all(&pid->wait_pidfd);
361         }
362 
363         for (tmp = PIDTYPE_MAX; --tmp >= 0; )
364                 if (pid_has_task(pid, tmp))
365                         return;
366 
367         free_pid(pid);
368 }
369 
370 void detach_pid(struct task_struct *task, enum pid_type type)
371 {
372         __change_pid(task, type, NULL);
373 }
374 
375 void change_pid(struct task_struct *task, enum pid_type type,
376                 struct pid *pid)
377 {
378         __change_pid(task, type, pid);
379         attach_pid(task, type);
380 }
381 
382 void exchange_tids(struct task_struct *left, struct task_struct *right)
383 {
384         struct pid *pid1 = left->thread_pid;
385         struct pid *pid2 = right->thread_pid;
386         struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
387         struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
388 
389         /* Swap the single entry tid lists */
390         hlists_swap_heads_rcu(head1, head2);
391 
392         /* Swap the per task_struct pid */
393         rcu_assign_pointer(left->thread_pid, pid2);
394         rcu_assign_pointer(right->thread_pid, pid1);
395 
396         /* Swap the cached value */
397         WRITE_ONCE(left->pid, pid_nr(pid2));
398         WRITE_ONCE(right->pid, pid_nr(pid1));
399 }
400 
401 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
402 void transfer_pid(struct task_struct *old, struct task_struct *new,
403                            enum pid_type type)
404 {
405         WARN_ON_ONCE(type == PIDTYPE_PID);
406         hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
407 }
408 
409 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
410 {
411         struct task_struct *result = NULL;
412         if (pid) {
413                 struct hlist_node *first;
414                 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
415                                               lockdep_tasklist_lock_is_held());
416                 if (first)
417                         result = hlist_entry(first, struct task_struct, pid_links[(type)]);
418         }
419         return result;
420 }
421 EXPORT_SYMBOL(pid_task);
422 
423 /*
424  * Must be called under rcu_read_lock().
425  */
426 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
427 {
428         RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
429                          "find_task_by_pid_ns() needs rcu_read_lock() protection");
430         return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
431 }
432 
433 struct task_struct *find_task_by_vpid(pid_t vnr)
434 {
435         return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
436 }
437 
438 struct task_struct *find_get_task_by_vpid(pid_t nr)
439 {
440         struct task_struct *task;
441 
442         rcu_read_lock();
443         task = find_task_by_vpid(nr);
444         if (task)
445                 get_task_struct(task);
446         rcu_read_unlock();
447 
448         return task;
449 }
450 
451 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
452 {
453         struct pid *pid;
454         rcu_read_lock();
455         pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
456         rcu_read_unlock();
457         return pid;
458 }
459 EXPORT_SYMBOL_GPL(get_task_pid);
460 
461 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
462 {
463         struct task_struct *result;
464         rcu_read_lock();
465         result = pid_task(pid, type);
466         if (result)
467                 get_task_struct(result);
468         rcu_read_unlock();
469         return result;
470 }
471 EXPORT_SYMBOL_GPL(get_pid_task);
472 
473 struct pid *find_get_pid(pid_t nr)
474 {
475         struct pid *pid;
476 
477         rcu_read_lock();
478         pid = get_pid(find_vpid(nr));
479         rcu_read_unlock();
480 
481         return pid;
482 }
483 EXPORT_SYMBOL_GPL(find_get_pid);
484 
485 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
486 {
487         struct upid *upid;
488         pid_t nr = 0;
489 
490         if (pid && ns->level <= pid->level) {
491                 upid = &pid->numbers[ns->level];
492                 if (upid->ns == ns)
493                         nr = upid->nr;
494         }
495         return nr;
496 }
497 EXPORT_SYMBOL_GPL(pid_nr_ns);
498 
499 pid_t pid_vnr(struct pid *pid)
500 {
501         return pid_nr_ns(pid, task_active_pid_ns(current));
502 }
503 EXPORT_SYMBOL_GPL(pid_vnr);
504 
505 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
506                         struct pid_namespace *ns)
507 {
508         pid_t nr = 0;
509 
510         rcu_read_lock();
511         if (!ns)
512                 ns = task_active_pid_ns(current);
513         nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
514         rcu_read_unlock();
515 
516         return nr;
517 }
518 EXPORT_SYMBOL(__task_pid_nr_ns);
519 
520 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
521 {
522         return ns_of_pid(task_pid(tsk));
523 }
524 EXPORT_SYMBOL_GPL(task_active_pid_ns);
525 
526 /*
527  * Used by proc to find the first pid that is greater than or equal to nr.
528  *
529  * If there is a pid at nr this function is exactly the same as find_pid_ns.
530  */
531 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
532 {
533         return idr_get_next(&ns->idr, &nr);
534 }
535 EXPORT_SYMBOL_GPL(find_ge_pid);
536 
537 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
538 {
539         struct fd f;
540         struct pid *pid;
541 
542         f = fdget(fd);
543         if (!f.file)
544                 return ERR_PTR(-EBADF);
545 
546         pid = pidfd_pid(f.file);
547         if (!IS_ERR(pid)) {
548                 get_pid(pid);
549                 *flags = f.file->f_flags;
550         }
551 
552         fdput(f);
553         return pid;
554 }
555 
556 /**
557  * pidfd_get_task() - Get the task associated with a pidfd
558  *
559  * @pidfd: pidfd for which to get the task
560  * @flags: flags associated with this pidfd
561  *
562  * Return the task associated with @pidfd. The function takes a reference on
563  * the returned task. The caller is responsible for releasing that reference.
564  *
565  * Return: On success, the task_struct associated with the pidfd.
566  *         On error, a negative errno number will be returned.
567  */
568 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
569 {
570         unsigned int f_flags;
571         struct pid *pid;
572         struct task_struct *task;
573 
574         pid = pidfd_get_pid(pidfd, &f_flags);
575         if (IS_ERR(pid))
576                 return ERR_CAST(pid);
577 
578         task = get_pid_task(pid, PIDTYPE_TGID);
579         put_pid(pid);
580         if (!task)
581                 return ERR_PTR(-ESRCH);
582 
583         *flags = f_flags;
584         return task;
585 }
586 
587 /**
588  * pidfd_create() - Create a new pid file descriptor.
589  *
590  * @pid:   struct pid that the pidfd will reference
591  * @flags: flags to pass
592  *
593  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
594  *
595  * Note, that this function can only be called after the fd table has
596  * been unshared to avoid leaking the pidfd to the new process.
597  *
598  * This symbol should not be explicitly exported to loadable modules.
599  *
600  * Return: On success, a cloexec pidfd is returned.
601  *         On error, a negative errno number will be returned.
602  */
603 static int pidfd_create(struct pid *pid, unsigned int flags)
604 {
605         int pidfd;
606         struct file *pidfd_file;
607 
608         pidfd = pidfd_prepare(pid, flags, &pidfd_file);
609         if (pidfd < 0)
610                 return pidfd;
611 
612         fd_install(pidfd, pidfd_file);
613         return pidfd;
614 }
615 
616 /**
617  * sys_pidfd_open() - Open new pid file descriptor.
618  *
619  * @pid:   pid for which to retrieve a pidfd
620  * @flags: flags to pass
621  *
622  * This creates a new pid file descriptor with the O_CLOEXEC flag set for
623  * the task identified by @pid. Without PIDFD_THREAD flag the target task
624  * must be a thread-group leader.
625  *
626  * Return: On success, a cloexec pidfd is returned.
627  *         On error, a negative errno number will be returned.
628  */
629 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
630 {
631         int fd;
632         struct pid *p;
633 
634         if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD))
635                 return -EINVAL;
636 
637         if (pid <= 0)
638                 return -EINVAL;
639 
640         p = find_get_pid(pid);
641         if (!p)
642                 return -ESRCH;
643 
644         fd = pidfd_create(p, flags);
645 
646         put_pid(p);
647         return fd;
648 }
649 
650 void __init pid_idr_init(void)
651 {
652         /* Verify no one has done anything silly: */
653         BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
654 
655         /* bump default and minimum pid_max based on number of cpus */
656         pid_max = min(pid_max_max, max_t(int, pid_max,
657                                 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
658         pid_max_min = max_t(int, pid_max_min,
659                                 PIDS_PER_CPU_MIN * num_possible_cpus());
660         pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
661 
662         idr_init(&init_pid_ns.idr);
663 
664         init_pid_ns.pid_cachep = kmem_cache_create("pid",
665                         struct_size_t(struct pid, numbers, 1),
666                         __alignof__(struct pid),
667                         SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
668                         NULL);
669 }
670 
671 static struct file *__pidfd_fget(struct task_struct *task, int fd)
672 {
673         struct file *file;
674         int ret;
675 
676         ret = down_read_killable(&task->signal->exec_update_lock);
677         if (ret)
678                 return ERR_PTR(ret);
679 
680         if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
681                 file = fget_task(task, fd);
682         else
683                 file = ERR_PTR(-EPERM);
684 
685         up_read(&task->signal->exec_update_lock);
686 
687         if (!file) {
688                 /*
689                  * It is possible that the target thread is exiting; it can be
690                  * either:
691                  * 1. before exit_signals(), which gives a real fd
692                  * 2. before exit_files() takes the task_lock() gives a real fd
693                  * 3. after exit_files() releases task_lock(), ->files is NULL;
694                  *    this has PF_EXITING, since it was set in exit_signals(),
695                  *    __pidfd_fget() returns EBADF.
696                  * In case 3 we get EBADF, but that really means ESRCH, since
697                  * the task is currently exiting and has freed its files
698                  * struct, so we fix it up.
699                  */
700                 if (task->flags & PF_EXITING)
701                         file = ERR_PTR(-ESRCH);
702                 else
703                         file = ERR_PTR(-EBADF);
704         }
705 
706         return file;
707 }
708 
709 static int pidfd_getfd(struct pid *pid, int fd)
710 {
711         struct task_struct *task;
712         struct file *file;
713         int ret;
714 
715         task = get_pid_task(pid, PIDTYPE_PID);
716         if (!task)
717                 return -ESRCH;
718 
719         file = __pidfd_fget(task, fd);
720         put_task_struct(task);
721         if (IS_ERR(file))
722                 return PTR_ERR(file);
723 
724         ret = receive_fd(file, NULL, O_CLOEXEC);
725         fput(file);
726 
727         return ret;
728 }
729 
730 /**
731  * sys_pidfd_getfd() - Get a file descriptor from another process
732  *
733  * @pidfd:      the pidfd file descriptor of the process
734  * @fd:         the file descriptor number to get
735  * @flags:      flags on how to get the fd (reserved)
736  *
737  * This syscall gets a copy of a file descriptor from another process
738  * based on the pidfd, and file descriptor number. It requires that
739  * the calling process has the ability to ptrace the process represented
740  * by the pidfd. The process which is having its file descriptor copied
741  * is otherwise unaffected.
742  *
743  * Return: On success, a cloexec file descriptor is returned.
744  *         On error, a negative errno number will be returned.
745  */
746 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
747                 unsigned int, flags)
748 {
749         struct pid *pid;
750         struct fd f;
751         int ret;
752 
753         /* flags is currently unused - make sure it's unset */
754         if (flags)
755                 return -EINVAL;
756 
757         f = fdget(pidfd);
758         if (!f.file)
759                 return -EBADF;
760 
761         pid = pidfd_pid(f.file);
762         if (IS_ERR(pid))
763                 ret = PTR_ERR(pid);
764         else
765                 ret = pidfd_getfd(pid, fd);
766 
767         fdput(f);
768         return ret;
769 }
770 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php