~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/power/snapshot.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * linux/kernel/power/snapshot.c
  4  *
  5  * This file provides system snapshot/restore functionality for swsusp.
  6  *
  7  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
  8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  9  */
 10 
 11 #define pr_fmt(fmt) "PM: hibernation: " fmt
 12 
 13 #include <linux/version.h>
 14 #include <linux/module.h>
 15 #include <linux/mm.h>
 16 #include <linux/suspend.h>
 17 #include <linux/delay.h>
 18 #include <linux/bitops.h>
 19 #include <linux/spinlock.h>
 20 #include <linux/kernel.h>
 21 #include <linux/pm.h>
 22 #include <linux/device.h>
 23 #include <linux/init.h>
 24 #include <linux/memblock.h>
 25 #include <linux/nmi.h>
 26 #include <linux/syscalls.h>
 27 #include <linux/console.h>
 28 #include <linux/highmem.h>
 29 #include <linux/list.h>
 30 #include <linux/slab.h>
 31 #include <linux/compiler.h>
 32 #include <linux/ktime.h>
 33 #include <linux/set_memory.h>
 34 
 35 #include <linux/uaccess.h>
 36 #include <asm/mmu_context.h>
 37 #include <asm/tlbflush.h>
 38 #include <asm/io.h>
 39 
 40 #include "power.h"
 41 
 42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
 43 static bool hibernate_restore_protection;
 44 static bool hibernate_restore_protection_active;
 45 
 46 void enable_restore_image_protection(void)
 47 {
 48         hibernate_restore_protection = true;
 49 }
 50 
 51 static inline void hibernate_restore_protection_begin(void)
 52 {
 53         hibernate_restore_protection_active = hibernate_restore_protection;
 54 }
 55 
 56 static inline void hibernate_restore_protection_end(void)
 57 {
 58         hibernate_restore_protection_active = false;
 59 }
 60 
 61 static inline int __must_check hibernate_restore_protect_page(void *page_address)
 62 {
 63         if (hibernate_restore_protection_active)
 64                 return set_memory_ro((unsigned long)page_address, 1);
 65         return 0;
 66 }
 67 
 68 static inline int hibernate_restore_unprotect_page(void *page_address)
 69 {
 70         if (hibernate_restore_protection_active)
 71                 return set_memory_rw((unsigned long)page_address, 1);
 72         return 0;
 73 }
 74 #else
 75 static inline void hibernate_restore_protection_begin(void) {}
 76 static inline void hibernate_restore_protection_end(void) {}
 77 static inline int __must_check hibernate_restore_protect_page(void *page_address) {return 0; }
 78 static inline int hibernate_restore_unprotect_page(void *page_address) {return 0; }
 79 #endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
 80 
 81 
 82 /*
 83  * The calls to set_direct_map_*() should not fail because remapping a page
 84  * here means that we only update protection bits in an existing PTE.
 85  * It is still worth to have a warning here if something changes and this
 86  * will no longer be the case.
 87  */
 88 static inline void hibernate_map_page(struct page *page)
 89 {
 90         if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
 91                 int ret = set_direct_map_default_noflush(page);
 92 
 93                 if (ret)
 94                         pr_warn_once("Failed to remap page\n");
 95         } else {
 96                 debug_pagealloc_map_pages(page, 1);
 97         }
 98 }
 99 
100 static inline void hibernate_unmap_page(struct page *page)
101 {
102         if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
103                 unsigned long addr = (unsigned long)page_address(page);
104                 int ret  = set_direct_map_invalid_noflush(page);
105 
106                 if (ret)
107                         pr_warn_once("Failed to remap page\n");
108 
109                 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
110         } else {
111                 debug_pagealloc_unmap_pages(page, 1);
112         }
113 }
114 
115 static int swsusp_page_is_free(struct page *);
116 static void swsusp_set_page_forbidden(struct page *);
117 static void swsusp_unset_page_forbidden(struct page *);
118 
119 /*
120  * Number of bytes to reserve for memory allocations made by device drivers
121  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
122  * cause image creation to fail (tunable via /sys/power/reserved_size).
123  */
124 unsigned long reserved_size;
125 
126 void __init hibernate_reserved_size_init(void)
127 {
128         reserved_size = SPARE_PAGES * PAGE_SIZE;
129 }
130 
131 /*
132  * Preferred image size in bytes (tunable via /sys/power/image_size).
133  * When it is set to N, swsusp will do its best to ensure the image
134  * size will not exceed N bytes, but if that is impossible, it will
135  * try to create the smallest image possible.
136  */
137 unsigned long image_size;
138 
139 void __init hibernate_image_size_init(void)
140 {
141         image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
142 }
143 
144 /*
145  * List of PBEs needed for restoring the pages that were allocated before
146  * the suspend and included in the suspend image, but have also been
147  * allocated by the "resume" kernel, so their contents cannot be written
148  * directly to their "original" page frames.
149  */
150 struct pbe *restore_pblist;
151 
152 /* struct linked_page is used to build chains of pages */
153 
154 #define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
155 
156 struct linked_page {
157         struct linked_page *next;
158         char data[LINKED_PAGE_DATA_SIZE];
159 } __packed;
160 
161 /*
162  * List of "safe" pages (ie. pages that were not used by the image kernel
163  * before hibernation) that may be used as temporary storage for image kernel
164  * memory contents.
165  */
166 static struct linked_page *safe_pages_list;
167 
168 /* Pointer to an auxiliary buffer (1 page) */
169 static void *buffer;
170 
171 #define PG_ANY          0
172 #define PG_SAFE         1
173 #define PG_UNSAFE_CLEAR 1
174 #define PG_UNSAFE_KEEP  0
175 
176 static unsigned int allocated_unsafe_pages;
177 
178 /**
179  * get_image_page - Allocate a page for a hibernation image.
180  * @gfp_mask: GFP mask for the allocation.
181  * @safe_needed: Get pages that were not used before hibernation (restore only)
182  *
183  * During image restoration, for storing the PBE list and the image data, we can
184  * only use memory pages that do not conflict with the pages used before
185  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
186  * using allocated_unsafe_pages.
187  *
188  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
189  * swsusp_free() can release it.
190  */
191 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
192 {
193         void *res;
194 
195         res = (void *)get_zeroed_page(gfp_mask);
196         if (safe_needed)
197                 while (res && swsusp_page_is_free(virt_to_page(res))) {
198                         /* The page is unsafe, mark it for swsusp_free() */
199                         swsusp_set_page_forbidden(virt_to_page(res));
200                         allocated_unsafe_pages++;
201                         res = (void *)get_zeroed_page(gfp_mask);
202                 }
203         if (res) {
204                 swsusp_set_page_forbidden(virt_to_page(res));
205                 swsusp_set_page_free(virt_to_page(res));
206         }
207         return res;
208 }
209 
210 static void *__get_safe_page(gfp_t gfp_mask)
211 {
212         if (safe_pages_list) {
213                 void *ret = safe_pages_list;
214 
215                 safe_pages_list = safe_pages_list->next;
216                 memset(ret, 0, PAGE_SIZE);
217                 return ret;
218         }
219         return get_image_page(gfp_mask, PG_SAFE);
220 }
221 
222 unsigned long get_safe_page(gfp_t gfp_mask)
223 {
224         return (unsigned long)__get_safe_page(gfp_mask);
225 }
226 
227 static struct page *alloc_image_page(gfp_t gfp_mask)
228 {
229         struct page *page;
230 
231         page = alloc_page(gfp_mask);
232         if (page) {
233                 swsusp_set_page_forbidden(page);
234                 swsusp_set_page_free(page);
235         }
236         return page;
237 }
238 
239 static void recycle_safe_page(void *page_address)
240 {
241         struct linked_page *lp = page_address;
242 
243         lp->next = safe_pages_list;
244         safe_pages_list = lp;
245 }
246 
247 /**
248  * free_image_page - Free a page allocated for hibernation image.
249  * @addr: Address of the page to free.
250  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
251  *
252  * The page to free should have been allocated by get_image_page() (page flags
253  * set by it are affected).
254  */
255 static inline void free_image_page(void *addr, int clear_nosave_free)
256 {
257         struct page *page;
258 
259         BUG_ON(!virt_addr_valid(addr));
260 
261         page = virt_to_page(addr);
262 
263         swsusp_unset_page_forbidden(page);
264         if (clear_nosave_free)
265                 swsusp_unset_page_free(page);
266 
267         __free_page(page);
268 }
269 
270 static inline void free_list_of_pages(struct linked_page *list,
271                                       int clear_page_nosave)
272 {
273         while (list) {
274                 struct linked_page *lp = list->next;
275 
276                 free_image_page(list, clear_page_nosave);
277                 list = lp;
278         }
279 }
280 
281 /*
282  * struct chain_allocator is used for allocating small objects out of
283  * a linked list of pages called 'the chain'.
284  *
285  * The chain grows each time when there is no room for a new object in
286  * the current page.  The allocated objects cannot be freed individually.
287  * It is only possible to free them all at once, by freeing the entire
288  * chain.
289  *
290  * NOTE: The chain allocator may be inefficient if the allocated objects
291  * are not much smaller than PAGE_SIZE.
292  */
293 struct chain_allocator {
294         struct linked_page *chain;      /* the chain */
295         unsigned int used_space;        /* total size of objects allocated out
296                                            of the current page */
297         gfp_t gfp_mask;         /* mask for allocating pages */
298         int safe_needed;        /* if set, only "safe" pages are allocated */
299 };
300 
301 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
302                        int safe_needed)
303 {
304         ca->chain = NULL;
305         ca->used_space = LINKED_PAGE_DATA_SIZE;
306         ca->gfp_mask = gfp_mask;
307         ca->safe_needed = safe_needed;
308 }
309 
310 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
311 {
312         void *ret;
313 
314         if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
315                 struct linked_page *lp;
316 
317                 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
318                                         get_image_page(ca->gfp_mask, PG_ANY);
319                 if (!lp)
320                         return NULL;
321 
322                 lp->next = ca->chain;
323                 ca->chain = lp;
324                 ca->used_space = 0;
325         }
326         ret = ca->chain->data + ca->used_space;
327         ca->used_space += size;
328         return ret;
329 }
330 
331 /*
332  * Data types related to memory bitmaps.
333  *
334  * Memory bitmap is a structure consisting of many linked lists of
335  * objects.  The main list's elements are of type struct zone_bitmap
336  * and each of them corresponds to one zone.  For each zone bitmap
337  * object there is a list of objects of type struct bm_block that
338  * represent each blocks of bitmap in which information is stored.
339  *
340  * struct memory_bitmap contains a pointer to the main list of zone
341  * bitmap objects, a struct bm_position used for browsing the bitmap,
342  * and a pointer to the list of pages used for allocating all of the
343  * zone bitmap objects and bitmap block objects.
344  *
345  * NOTE: It has to be possible to lay out the bitmap in memory
346  * using only allocations of order 0.  Additionally, the bitmap is
347  * designed to work with arbitrary number of zones (this is over the
348  * top for now, but let's avoid making unnecessary assumptions ;-).
349  *
350  * struct zone_bitmap contains a pointer to a list of bitmap block
351  * objects and a pointer to the bitmap block object that has been
352  * most recently used for setting bits.  Additionally, it contains the
353  * PFNs that correspond to the start and end of the represented zone.
354  *
355  * struct bm_block contains a pointer to the memory page in which
356  * information is stored (in the form of a block of bitmap)
357  * It also contains the pfns that correspond to the start and end of
358  * the represented memory area.
359  *
360  * The memory bitmap is organized as a radix tree to guarantee fast random
361  * access to the bits. There is one radix tree for each zone (as returned
362  * from create_mem_extents).
363  *
364  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
365  * two linked lists for the nodes of the tree, one for the inner nodes and
366  * one for the leave nodes. The linked leave nodes are used for fast linear
367  * access of the memory bitmap.
368  *
369  * The struct rtree_node represents one node of the radix tree.
370  */
371 
372 #define BM_END_OF_MAP   (~0UL)
373 
374 #define BM_BITS_PER_BLOCK       (PAGE_SIZE * BITS_PER_BYTE)
375 #define BM_BLOCK_SHIFT          (PAGE_SHIFT + 3)
376 #define BM_BLOCK_MASK           ((1UL << BM_BLOCK_SHIFT) - 1)
377 
378 /*
379  * struct rtree_node is a wrapper struct to link the nodes
380  * of the rtree together for easy linear iteration over
381  * bits and easy freeing
382  */
383 struct rtree_node {
384         struct list_head list;
385         unsigned long *data;
386 };
387 
388 /*
389  * struct mem_zone_bm_rtree represents a bitmap used for one
390  * populated memory zone.
391  */
392 struct mem_zone_bm_rtree {
393         struct list_head list;          /* Link Zones together         */
394         struct list_head nodes;         /* Radix Tree inner nodes      */
395         struct list_head leaves;        /* Radix Tree leaves           */
396         unsigned long start_pfn;        /* Zone start page frame       */
397         unsigned long end_pfn;          /* Zone end page frame + 1     */
398         struct rtree_node *rtree;       /* Radix Tree Root             */
399         int levels;                     /* Number of Radix Tree Levels */
400         unsigned int blocks;            /* Number of Bitmap Blocks     */
401 };
402 
403 /* struct bm_position is used for browsing memory bitmaps */
404 
405 struct bm_position {
406         struct mem_zone_bm_rtree *zone;
407         struct rtree_node *node;
408         unsigned long node_pfn;
409         unsigned long cur_pfn;
410         int node_bit;
411 };
412 
413 struct memory_bitmap {
414         struct list_head zones;
415         struct linked_page *p_list;     /* list of pages used to store zone
416                                            bitmap objects and bitmap block
417                                            objects */
418         struct bm_position cur; /* most recently used bit position */
419 };
420 
421 /* Functions that operate on memory bitmaps */
422 
423 #define BM_ENTRIES_PER_LEVEL    (PAGE_SIZE / sizeof(unsigned long))
424 #if BITS_PER_LONG == 32
425 #define BM_RTREE_LEVEL_SHIFT    (PAGE_SHIFT - 2)
426 #else
427 #define BM_RTREE_LEVEL_SHIFT    (PAGE_SHIFT - 3)
428 #endif
429 #define BM_RTREE_LEVEL_MASK     ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
430 
431 /**
432  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
433  * @gfp_mask: GFP mask for the allocation.
434  * @safe_needed: Get pages not used before hibernation (restore only)
435  * @ca: Pointer to a linked list of pages ("a chain") to allocate from
436  * @list: Radix Tree node to add.
437  *
438  * This function is used to allocate inner nodes as well as the
439  * leave nodes of the radix tree. It also adds the node to the
440  * corresponding linked list passed in by the *list parameter.
441  */
442 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
443                                            struct chain_allocator *ca,
444                                            struct list_head *list)
445 {
446         struct rtree_node *node;
447 
448         node = chain_alloc(ca, sizeof(struct rtree_node));
449         if (!node)
450                 return NULL;
451 
452         node->data = get_image_page(gfp_mask, safe_needed);
453         if (!node->data)
454                 return NULL;
455 
456         list_add_tail(&node->list, list);
457 
458         return node;
459 }
460 
461 /**
462  * add_rtree_block - Add a new leave node to the radix tree.
463  *
464  * The leave nodes need to be allocated in order to keep the leaves
465  * linked list in order. This is guaranteed by the zone->blocks
466  * counter.
467  */
468 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
469                            int safe_needed, struct chain_allocator *ca)
470 {
471         struct rtree_node *node, *block, **dst;
472         unsigned int levels_needed, block_nr;
473         int i;
474 
475         block_nr = zone->blocks;
476         levels_needed = 0;
477 
478         /* How many levels do we need for this block nr? */
479         while (block_nr) {
480                 levels_needed += 1;
481                 block_nr >>= BM_RTREE_LEVEL_SHIFT;
482         }
483 
484         /* Make sure the rtree has enough levels */
485         for (i = zone->levels; i < levels_needed; i++) {
486                 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
487                                         &zone->nodes);
488                 if (!node)
489                         return -ENOMEM;
490 
491                 node->data[0] = (unsigned long)zone->rtree;
492                 zone->rtree = node;
493                 zone->levels += 1;
494         }
495 
496         /* Allocate new block */
497         block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
498         if (!block)
499                 return -ENOMEM;
500 
501         /* Now walk the rtree to insert the block */
502         node = zone->rtree;
503         dst = &zone->rtree;
504         block_nr = zone->blocks;
505         for (i = zone->levels; i > 0; i--) {
506                 int index;
507 
508                 if (!node) {
509                         node = alloc_rtree_node(gfp_mask, safe_needed, ca,
510                                                 &zone->nodes);
511                         if (!node)
512                                 return -ENOMEM;
513                         *dst = node;
514                 }
515 
516                 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
517                 index &= BM_RTREE_LEVEL_MASK;
518                 dst = (struct rtree_node **)&((*dst)->data[index]);
519                 node = *dst;
520         }
521 
522         zone->blocks += 1;
523         *dst = block;
524 
525         return 0;
526 }
527 
528 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
529                                int clear_nosave_free);
530 
531 /**
532  * create_zone_bm_rtree - Create a radix tree for one zone.
533  *
534  * Allocated the mem_zone_bm_rtree structure and initializes it.
535  * This function also allocated and builds the radix tree for the
536  * zone.
537  */
538 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
539                                                       int safe_needed,
540                                                       struct chain_allocator *ca,
541                                                       unsigned long start,
542                                                       unsigned long end)
543 {
544         struct mem_zone_bm_rtree *zone;
545         unsigned int i, nr_blocks;
546         unsigned long pages;
547 
548         pages = end - start;
549         zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
550         if (!zone)
551                 return NULL;
552 
553         INIT_LIST_HEAD(&zone->nodes);
554         INIT_LIST_HEAD(&zone->leaves);
555         zone->start_pfn = start;
556         zone->end_pfn = end;
557         nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
558 
559         for (i = 0; i < nr_blocks; i++) {
560                 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
561                         free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
562                         return NULL;
563                 }
564         }
565 
566         return zone;
567 }
568 
569 /**
570  * free_zone_bm_rtree - Free the memory of the radix tree.
571  *
572  * Free all node pages of the radix tree. The mem_zone_bm_rtree
573  * structure itself is not freed here nor are the rtree_node
574  * structs.
575  */
576 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
577                                int clear_nosave_free)
578 {
579         struct rtree_node *node;
580 
581         list_for_each_entry(node, &zone->nodes, list)
582                 free_image_page(node->data, clear_nosave_free);
583 
584         list_for_each_entry(node, &zone->leaves, list)
585                 free_image_page(node->data, clear_nosave_free);
586 }
587 
588 static void memory_bm_position_reset(struct memory_bitmap *bm)
589 {
590         bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
591                                   list);
592         bm->cur.node = list_entry(bm->cur.zone->leaves.next,
593                                   struct rtree_node, list);
594         bm->cur.node_pfn = 0;
595         bm->cur.cur_pfn = BM_END_OF_MAP;
596         bm->cur.node_bit = 0;
597 }
598 
599 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
600 
601 struct mem_extent {
602         struct list_head hook;
603         unsigned long start;
604         unsigned long end;
605 };
606 
607 /**
608  * free_mem_extents - Free a list of memory extents.
609  * @list: List of extents to free.
610  */
611 static void free_mem_extents(struct list_head *list)
612 {
613         struct mem_extent *ext, *aux;
614 
615         list_for_each_entry_safe(ext, aux, list, hook) {
616                 list_del(&ext->hook);
617                 kfree(ext);
618         }
619 }
620 
621 /**
622  * create_mem_extents - Create a list of memory extents.
623  * @list: List to put the extents into.
624  * @gfp_mask: Mask to use for memory allocations.
625  *
626  * The extents represent contiguous ranges of PFNs.
627  */
628 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
629 {
630         struct zone *zone;
631 
632         INIT_LIST_HEAD(list);
633 
634         for_each_populated_zone(zone) {
635                 unsigned long zone_start, zone_end;
636                 struct mem_extent *ext, *cur, *aux;
637 
638                 zone_start = zone->zone_start_pfn;
639                 zone_end = zone_end_pfn(zone);
640 
641                 list_for_each_entry(ext, list, hook)
642                         if (zone_start <= ext->end)
643                                 break;
644 
645                 if (&ext->hook == list || zone_end < ext->start) {
646                         /* New extent is necessary */
647                         struct mem_extent *new_ext;
648 
649                         new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
650                         if (!new_ext) {
651                                 free_mem_extents(list);
652                                 return -ENOMEM;
653                         }
654                         new_ext->start = zone_start;
655                         new_ext->end = zone_end;
656                         list_add_tail(&new_ext->hook, &ext->hook);
657                         continue;
658                 }
659 
660                 /* Merge this zone's range of PFNs with the existing one */
661                 if (zone_start < ext->start)
662                         ext->start = zone_start;
663                 if (zone_end > ext->end)
664                         ext->end = zone_end;
665 
666                 /* More merging may be possible */
667                 cur = ext;
668                 list_for_each_entry_safe_continue(cur, aux, list, hook) {
669                         if (zone_end < cur->start)
670                                 break;
671                         if (zone_end < cur->end)
672                                 ext->end = cur->end;
673                         list_del(&cur->hook);
674                         kfree(cur);
675                 }
676         }
677 
678         return 0;
679 }
680 
681 /**
682  * memory_bm_create - Allocate memory for a memory bitmap.
683  */
684 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
685                             int safe_needed)
686 {
687         struct chain_allocator ca;
688         struct list_head mem_extents;
689         struct mem_extent *ext;
690         int error;
691 
692         chain_init(&ca, gfp_mask, safe_needed);
693         INIT_LIST_HEAD(&bm->zones);
694 
695         error = create_mem_extents(&mem_extents, gfp_mask);
696         if (error)
697                 return error;
698 
699         list_for_each_entry(ext, &mem_extents, hook) {
700                 struct mem_zone_bm_rtree *zone;
701 
702                 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
703                                             ext->start, ext->end);
704                 if (!zone) {
705                         error = -ENOMEM;
706                         goto Error;
707                 }
708                 list_add_tail(&zone->list, &bm->zones);
709         }
710 
711         bm->p_list = ca.chain;
712         memory_bm_position_reset(bm);
713  Exit:
714         free_mem_extents(&mem_extents);
715         return error;
716 
717  Error:
718         bm->p_list = ca.chain;
719         memory_bm_free(bm, PG_UNSAFE_CLEAR);
720         goto Exit;
721 }
722 
723 /**
724  * memory_bm_free - Free memory occupied by the memory bitmap.
725  * @bm: Memory bitmap.
726  */
727 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
728 {
729         struct mem_zone_bm_rtree *zone;
730 
731         list_for_each_entry(zone, &bm->zones, list)
732                 free_zone_bm_rtree(zone, clear_nosave_free);
733 
734         free_list_of_pages(bm->p_list, clear_nosave_free);
735 
736         INIT_LIST_HEAD(&bm->zones);
737 }
738 
739 /**
740  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
741  *
742  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
743  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
744  *
745  * Walk the radix tree to find the page containing the bit that represents @pfn
746  * and return the position of the bit in @addr and @bit_nr.
747  */
748 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
749                               void **addr, unsigned int *bit_nr)
750 {
751         struct mem_zone_bm_rtree *curr, *zone;
752         struct rtree_node *node;
753         int i, block_nr;
754 
755         zone = bm->cur.zone;
756 
757         if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
758                 goto zone_found;
759 
760         zone = NULL;
761 
762         /* Find the right zone */
763         list_for_each_entry(curr, &bm->zones, list) {
764                 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
765                         zone = curr;
766                         break;
767                 }
768         }
769 
770         if (!zone)
771                 return -EFAULT;
772 
773 zone_found:
774         /*
775          * We have found the zone. Now walk the radix tree to find the leaf node
776          * for our PFN.
777          */
778 
779         /*
780          * If the zone we wish to scan is the current zone and the
781          * pfn falls into the current node then we do not need to walk
782          * the tree.
783          */
784         node = bm->cur.node;
785         if (zone == bm->cur.zone &&
786             ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
787                 goto node_found;
788 
789         node      = zone->rtree;
790         block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
791 
792         for (i = zone->levels; i > 0; i--) {
793                 int index;
794 
795                 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
796                 index &= BM_RTREE_LEVEL_MASK;
797                 BUG_ON(node->data[index] == 0);
798                 node = (struct rtree_node *)node->data[index];
799         }
800 
801 node_found:
802         /* Update last position */
803         bm->cur.zone = zone;
804         bm->cur.node = node;
805         bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
806         bm->cur.cur_pfn = pfn;
807 
808         /* Set return values */
809         *addr = node->data;
810         *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
811 
812         return 0;
813 }
814 
815 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
816 {
817         void *addr;
818         unsigned int bit;
819         int error;
820 
821         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
822         BUG_ON(error);
823         set_bit(bit, addr);
824 }
825 
826 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
827 {
828         void *addr;
829         unsigned int bit;
830         int error;
831 
832         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
833         if (!error)
834                 set_bit(bit, addr);
835 
836         return error;
837 }
838 
839 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
840 {
841         void *addr;
842         unsigned int bit;
843         int error;
844 
845         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
846         BUG_ON(error);
847         clear_bit(bit, addr);
848 }
849 
850 static void memory_bm_clear_current(struct memory_bitmap *bm)
851 {
852         int bit;
853 
854         bit = max(bm->cur.node_bit - 1, 0);
855         clear_bit(bit, bm->cur.node->data);
856 }
857 
858 static unsigned long memory_bm_get_current(struct memory_bitmap *bm)
859 {
860         return bm->cur.cur_pfn;
861 }
862 
863 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
864 {
865         void *addr;
866         unsigned int bit;
867         int error;
868 
869         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
870         BUG_ON(error);
871         return test_bit(bit, addr);
872 }
873 
874 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
875 {
876         void *addr;
877         unsigned int bit;
878 
879         return !memory_bm_find_bit(bm, pfn, &addr, &bit);
880 }
881 
882 /*
883  * rtree_next_node - Jump to the next leaf node.
884  *
885  * Set the position to the beginning of the next node in the
886  * memory bitmap. This is either the next node in the current
887  * zone's radix tree or the first node in the radix tree of the
888  * next zone.
889  *
890  * Return true if there is a next node, false otherwise.
891  */
892 static bool rtree_next_node(struct memory_bitmap *bm)
893 {
894         if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
895                 bm->cur.node = list_entry(bm->cur.node->list.next,
896                                           struct rtree_node, list);
897                 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
898                 bm->cur.node_bit  = 0;
899                 touch_softlockup_watchdog();
900                 return true;
901         }
902 
903         /* No more nodes, goto next zone */
904         if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
905                 bm->cur.zone = list_entry(bm->cur.zone->list.next,
906                                   struct mem_zone_bm_rtree, list);
907                 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
908                                           struct rtree_node, list);
909                 bm->cur.node_pfn = 0;
910                 bm->cur.node_bit = 0;
911                 return true;
912         }
913 
914         /* No more zones */
915         return false;
916 }
917 
918 /**
919  * memory_bm_next_pfn - Find the next set bit in a memory bitmap.
920  * @bm: Memory bitmap.
921  *
922  * Starting from the last returned position this function searches for the next
923  * set bit in @bm and returns the PFN represented by it.  If no more bits are
924  * set, BM_END_OF_MAP is returned.
925  *
926  * It is required to run memory_bm_position_reset() before the first call to
927  * this function for the given memory bitmap.
928  */
929 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
930 {
931         unsigned long bits, pfn, pages;
932         int bit;
933 
934         do {
935                 pages     = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
936                 bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
937                 bit       = find_next_bit(bm->cur.node->data, bits,
938                                           bm->cur.node_bit);
939                 if (bit < bits) {
940                         pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
941                         bm->cur.node_bit = bit + 1;
942                         bm->cur.cur_pfn = pfn;
943                         return pfn;
944                 }
945         } while (rtree_next_node(bm));
946 
947         bm->cur.cur_pfn = BM_END_OF_MAP;
948         return BM_END_OF_MAP;
949 }
950 
951 /*
952  * This structure represents a range of page frames the contents of which
953  * should not be saved during hibernation.
954  */
955 struct nosave_region {
956         struct list_head list;
957         unsigned long start_pfn;
958         unsigned long end_pfn;
959 };
960 
961 static LIST_HEAD(nosave_regions);
962 
963 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
964 {
965         struct rtree_node *node;
966 
967         list_for_each_entry(node, &zone->nodes, list)
968                 recycle_safe_page(node->data);
969 
970         list_for_each_entry(node, &zone->leaves, list)
971                 recycle_safe_page(node->data);
972 }
973 
974 static void memory_bm_recycle(struct memory_bitmap *bm)
975 {
976         struct mem_zone_bm_rtree *zone;
977         struct linked_page *p_list;
978 
979         list_for_each_entry(zone, &bm->zones, list)
980                 recycle_zone_bm_rtree(zone);
981 
982         p_list = bm->p_list;
983         while (p_list) {
984                 struct linked_page *lp = p_list;
985 
986                 p_list = lp->next;
987                 recycle_safe_page(lp);
988         }
989 }
990 
991 /**
992  * register_nosave_region - Register a region of unsaveable memory.
993  *
994  * Register a range of page frames the contents of which should not be saved
995  * during hibernation (to be used in the early initialization code).
996  */
997 void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
998 {
999         struct nosave_region *region;
1000 
1001         if (start_pfn >= end_pfn)
1002                 return;
1003 
1004         if (!list_empty(&nosave_regions)) {
1005                 /* Try to extend the previous region (they should be sorted) */
1006                 region = list_entry(nosave_regions.prev,
1007                                         struct nosave_region, list);
1008                 if (region->end_pfn == start_pfn) {
1009                         region->end_pfn = end_pfn;
1010                         goto Report;
1011                 }
1012         }
1013         /* This allocation cannot fail */
1014         region = memblock_alloc(sizeof(struct nosave_region),
1015                                 SMP_CACHE_BYTES);
1016         if (!region)
1017                 panic("%s: Failed to allocate %zu bytes\n", __func__,
1018                       sizeof(struct nosave_region));
1019         region->start_pfn = start_pfn;
1020         region->end_pfn = end_pfn;
1021         list_add_tail(&region->list, &nosave_regions);
1022  Report:
1023         pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1024                 (unsigned long long) start_pfn << PAGE_SHIFT,
1025                 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1026 }
1027 
1028 /*
1029  * Set bits in this map correspond to the page frames the contents of which
1030  * should not be saved during the suspend.
1031  */
1032 static struct memory_bitmap *forbidden_pages_map;
1033 
1034 /* Set bits in this map correspond to free page frames. */
1035 static struct memory_bitmap *free_pages_map;
1036 
1037 /*
1038  * Each page frame allocated for creating the image is marked by setting the
1039  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1040  */
1041 
1042 void swsusp_set_page_free(struct page *page)
1043 {
1044         if (free_pages_map)
1045                 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1046 }
1047 
1048 static int swsusp_page_is_free(struct page *page)
1049 {
1050         return free_pages_map ?
1051                 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1052 }
1053 
1054 void swsusp_unset_page_free(struct page *page)
1055 {
1056         if (free_pages_map)
1057                 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1058 }
1059 
1060 static void swsusp_set_page_forbidden(struct page *page)
1061 {
1062         if (forbidden_pages_map)
1063                 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1064 }
1065 
1066 int swsusp_page_is_forbidden(struct page *page)
1067 {
1068         return forbidden_pages_map ?
1069                 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1070 }
1071 
1072 static void swsusp_unset_page_forbidden(struct page *page)
1073 {
1074         if (forbidden_pages_map)
1075                 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1076 }
1077 
1078 /**
1079  * mark_nosave_pages - Mark pages that should not be saved.
1080  * @bm: Memory bitmap.
1081  *
1082  * Set the bits in @bm that correspond to the page frames the contents of which
1083  * should not be saved.
1084  */
1085 static void mark_nosave_pages(struct memory_bitmap *bm)
1086 {
1087         struct nosave_region *region;
1088 
1089         if (list_empty(&nosave_regions))
1090                 return;
1091 
1092         list_for_each_entry(region, &nosave_regions, list) {
1093                 unsigned long pfn;
1094 
1095                 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1096                          (unsigned long long) region->start_pfn << PAGE_SHIFT,
1097                          ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1098                                 - 1);
1099 
1100                 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1101                         if (pfn_valid(pfn)) {
1102                                 /*
1103                                  * It is safe to ignore the result of
1104                                  * mem_bm_set_bit_check() here, since we won't
1105                                  * touch the PFNs for which the error is
1106                                  * returned anyway.
1107                                  */
1108                                 mem_bm_set_bit_check(bm, pfn);
1109                         }
1110         }
1111 }
1112 
1113 /**
1114  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1115  *
1116  * Create bitmaps needed for marking page frames that should not be saved and
1117  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1118  * only modified if everything goes well, because we don't want the bits to be
1119  * touched before both bitmaps are set up.
1120  */
1121 int create_basic_memory_bitmaps(void)
1122 {
1123         struct memory_bitmap *bm1, *bm2;
1124         int error;
1125 
1126         if (forbidden_pages_map && free_pages_map)
1127                 return 0;
1128         else
1129                 BUG_ON(forbidden_pages_map || free_pages_map);
1130 
1131         bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1132         if (!bm1)
1133                 return -ENOMEM;
1134 
1135         error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1136         if (error)
1137                 goto Free_first_object;
1138 
1139         bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1140         if (!bm2)
1141                 goto Free_first_bitmap;
1142 
1143         error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1144         if (error)
1145                 goto Free_second_object;
1146 
1147         forbidden_pages_map = bm1;
1148         free_pages_map = bm2;
1149         mark_nosave_pages(forbidden_pages_map);
1150 
1151         pr_debug("Basic memory bitmaps created\n");
1152 
1153         return 0;
1154 
1155  Free_second_object:
1156         kfree(bm2);
1157  Free_first_bitmap:
1158         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1159  Free_first_object:
1160         kfree(bm1);
1161         return -ENOMEM;
1162 }
1163 
1164 /**
1165  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1166  *
1167  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1168  * auxiliary pointers are necessary so that the bitmaps themselves are not
1169  * referred to while they are being freed.
1170  */
1171 void free_basic_memory_bitmaps(void)
1172 {
1173         struct memory_bitmap *bm1, *bm2;
1174 
1175         if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1176                 return;
1177 
1178         bm1 = forbidden_pages_map;
1179         bm2 = free_pages_map;
1180         forbidden_pages_map = NULL;
1181         free_pages_map = NULL;
1182         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1183         kfree(bm1);
1184         memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1185         kfree(bm2);
1186 
1187         pr_debug("Basic memory bitmaps freed\n");
1188 }
1189 
1190 static void clear_or_poison_free_page(struct page *page)
1191 {
1192         if (page_poisoning_enabled_static())
1193                 __kernel_poison_pages(page, 1);
1194         else if (want_init_on_free())
1195                 clear_highpage(page);
1196 }
1197 
1198 void clear_or_poison_free_pages(void)
1199 {
1200         struct memory_bitmap *bm = free_pages_map;
1201         unsigned long pfn;
1202 
1203         if (WARN_ON(!(free_pages_map)))
1204                 return;
1205 
1206         if (page_poisoning_enabled() || want_init_on_free()) {
1207                 memory_bm_position_reset(bm);
1208                 pfn = memory_bm_next_pfn(bm);
1209                 while (pfn != BM_END_OF_MAP) {
1210                         if (pfn_valid(pfn))
1211                                 clear_or_poison_free_page(pfn_to_page(pfn));
1212 
1213                         pfn = memory_bm_next_pfn(bm);
1214                 }
1215                 memory_bm_position_reset(bm);
1216                 pr_info("free pages cleared after restore\n");
1217         }
1218 }
1219 
1220 /**
1221  * snapshot_additional_pages - Estimate the number of extra pages needed.
1222  * @zone: Memory zone to carry out the computation for.
1223  *
1224  * Estimate the number of additional pages needed for setting up a hibernation
1225  * image data structures for @zone (usually, the returned value is greater than
1226  * the exact number).
1227  */
1228 unsigned int snapshot_additional_pages(struct zone *zone)
1229 {
1230         unsigned int rtree, nodes;
1231 
1232         rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1233         rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1234                               LINKED_PAGE_DATA_SIZE);
1235         while (nodes > 1) {
1236                 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1237                 rtree += nodes;
1238         }
1239 
1240         return 2 * rtree;
1241 }
1242 
1243 /*
1244  * Touch the watchdog for every WD_PAGE_COUNT pages.
1245  */
1246 #define WD_PAGE_COUNT   (128*1024)
1247 
1248 static void mark_free_pages(struct zone *zone)
1249 {
1250         unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
1251         unsigned long flags;
1252         unsigned int order, t;
1253         struct page *page;
1254 
1255         if (zone_is_empty(zone))
1256                 return;
1257 
1258         spin_lock_irqsave(&zone->lock, flags);
1259 
1260         max_zone_pfn = zone_end_pfn(zone);
1261         for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1262                 if (pfn_valid(pfn)) {
1263                         page = pfn_to_page(pfn);
1264 
1265                         if (!--page_count) {
1266                                 touch_nmi_watchdog();
1267                                 page_count = WD_PAGE_COUNT;
1268                         }
1269 
1270                         if (page_zone(page) != zone)
1271                                 continue;
1272 
1273                         if (!swsusp_page_is_forbidden(page))
1274                                 swsusp_unset_page_free(page);
1275                 }
1276 
1277         for_each_migratetype_order(order, t) {
1278                 list_for_each_entry(page,
1279                                 &zone->free_area[order].free_list[t], buddy_list) {
1280                         unsigned long i;
1281 
1282                         pfn = page_to_pfn(page);
1283                         for (i = 0; i < (1UL << order); i++) {
1284                                 if (!--page_count) {
1285                                         touch_nmi_watchdog();
1286                                         page_count = WD_PAGE_COUNT;
1287                                 }
1288                                 swsusp_set_page_free(pfn_to_page(pfn + i));
1289                         }
1290                 }
1291         }
1292         spin_unlock_irqrestore(&zone->lock, flags);
1293 }
1294 
1295 #ifdef CONFIG_HIGHMEM
1296 /**
1297  * count_free_highmem_pages - Compute the total number of free highmem pages.
1298  *
1299  * The returned number is system-wide.
1300  */
1301 static unsigned int count_free_highmem_pages(void)
1302 {
1303         struct zone *zone;
1304         unsigned int cnt = 0;
1305 
1306         for_each_populated_zone(zone)
1307                 if (is_highmem(zone))
1308                         cnt += zone_page_state(zone, NR_FREE_PAGES);
1309 
1310         return cnt;
1311 }
1312 
1313 /**
1314  * saveable_highmem_page - Check if a highmem page is saveable.
1315  *
1316  * Determine whether a highmem page should be included in a hibernation image.
1317  *
1318  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1319  * and it isn't part of a free chunk of pages.
1320  */
1321 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1322 {
1323         struct page *page;
1324 
1325         if (!pfn_valid(pfn))
1326                 return NULL;
1327 
1328         page = pfn_to_online_page(pfn);
1329         if (!page || page_zone(page) != zone)
1330                 return NULL;
1331 
1332         BUG_ON(!PageHighMem(page));
1333 
1334         if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1335                 return NULL;
1336 
1337         if (PageReserved(page) || PageOffline(page))
1338                 return NULL;
1339 
1340         if (page_is_guard(page))
1341                 return NULL;
1342 
1343         return page;
1344 }
1345 
1346 /**
1347  * count_highmem_pages - Compute the total number of saveable highmem pages.
1348  */
1349 static unsigned int count_highmem_pages(void)
1350 {
1351         struct zone *zone;
1352         unsigned int n = 0;
1353 
1354         for_each_populated_zone(zone) {
1355                 unsigned long pfn, max_zone_pfn;
1356 
1357                 if (!is_highmem(zone))
1358                         continue;
1359 
1360                 mark_free_pages(zone);
1361                 max_zone_pfn = zone_end_pfn(zone);
1362                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1363                         if (saveable_highmem_page(zone, pfn))
1364                                 n++;
1365         }
1366         return n;
1367 }
1368 #else
1369 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1370 {
1371         return NULL;
1372 }
1373 #endif /* CONFIG_HIGHMEM */
1374 
1375 /**
1376  * saveable_page - Check if the given page is saveable.
1377  *
1378  * Determine whether a non-highmem page should be included in a hibernation
1379  * image.
1380  *
1381  * We should save the page if it isn't Nosave, and is not in the range
1382  * of pages statically defined as 'unsaveable', and it isn't part of
1383  * a free chunk of pages.
1384  */
1385 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1386 {
1387         struct page *page;
1388 
1389         if (!pfn_valid(pfn))
1390                 return NULL;
1391 
1392         page = pfn_to_online_page(pfn);
1393         if (!page || page_zone(page) != zone)
1394                 return NULL;
1395 
1396         BUG_ON(PageHighMem(page));
1397 
1398         if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1399                 return NULL;
1400 
1401         if (PageOffline(page))
1402                 return NULL;
1403 
1404         if (PageReserved(page)
1405             && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1406                 return NULL;
1407 
1408         if (page_is_guard(page))
1409                 return NULL;
1410 
1411         return page;
1412 }
1413 
1414 /**
1415  * count_data_pages - Compute the total number of saveable non-highmem pages.
1416  */
1417 static unsigned int count_data_pages(void)
1418 {
1419         struct zone *zone;
1420         unsigned long pfn, max_zone_pfn;
1421         unsigned int n = 0;
1422 
1423         for_each_populated_zone(zone) {
1424                 if (is_highmem(zone))
1425                         continue;
1426 
1427                 mark_free_pages(zone);
1428                 max_zone_pfn = zone_end_pfn(zone);
1429                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1430                         if (saveable_page(zone, pfn))
1431                                 n++;
1432         }
1433         return n;
1434 }
1435 
1436 /*
1437  * This is needed, because copy_page and memcpy are not usable for copying
1438  * task structs. Returns true if the page was filled with only zeros,
1439  * otherwise false.
1440  */
1441 static inline bool do_copy_page(long *dst, long *src)
1442 {
1443         long z = 0;
1444         int n;
1445 
1446         for (n = PAGE_SIZE / sizeof(long); n; n--) {
1447                 z |= *src;
1448                 *dst++ = *src++;
1449         }
1450         return !z;
1451 }
1452 
1453 /**
1454  * safe_copy_page - Copy a page in a safe way.
1455  *
1456  * Check if the page we are going to copy is marked as present in the kernel
1457  * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1458  * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1459  * always returns 'true'. Returns true if the page was entirely composed of
1460  * zeros, otherwise it will return false.
1461  */
1462 static bool safe_copy_page(void *dst, struct page *s_page)
1463 {
1464         bool zeros_only;
1465 
1466         if (kernel_page_present(s_page)) {
1467                 zeros_only = do_copy_page(dst, page_address(s_page));
1468         } else {
1469                 hibernate_map_page(s_page);
1470                 zeros_only = do_copy_page(dst, page_address(s_page));
1471                 hibernate_unmap_page(s_page);
1472         }
1473         return zeros_only;
1474 }
1475 
1476 #ifdef CONFIG_HIGHMEM
1477 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1478 {
1479         return is_highmem(zone) ?
1480                 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1481 }
1482 
1483 static bool copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1484 {
1485         struct page *s_page, *d_page;
1486         void *src, *dst;
1487         bool zeros_only;
1488 
1489         s_page = pfn_to_page(src_pfn);
1490         d_page = pfn_to_page(dst_pfn);
1491         if (PageHighMem(s_page)) {
1492                 src = kmap_local_page(s_page);
1493                 dst = kmap_local_page(d_page);
1494                 zeros_only = do_copy_page(dst, src);
1495                 kunmap_local(dst);
1496                 kunmap_local(src);
1497         } else {
1498                 if (PageHighMem(d_page)) {
1499                         /*
1500                          * The page pointed to by src may contain some kernel
1501                          * data modified by kmap_atomic()
1502                          */
1503                         zeros_only = safe_copy_page(buffer, s_page);
1504                         dst = kmap_local_page(d_page);
1505                         copy_page(dst, buffer);
1506                         kunmap_local(dst);
1507                 } else {
1508                         zeros_only = safe_copy_page(page_address(d_page), s_page);
1509                 }
1510         }
1511         return zeros_only;
1512 }
1513 #else
1514 #define page_is_saveable(zone, pfn)     saveable_page(zone, pfn)
1515 
1516 static inline int copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1517 {
1518         return safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1519                                 pfn_to_page(src_pfn));
1520 }
1521 #endif /* CONFIG_HIGHMEM */
1522 
1523 /*
1524  * Copy data pages will copy all pages into pages pulled from the copy_bm.
1525  * If a page was entirely filled with zeros it will be marked in the zero_bm.
1526  *
1527  * Returns the number of pages copied.
1528  */
1529 static unsigned long copy_data_pages(struct memory_bitmap *copy_bm,
1530                             struct memory_bitmap *orig_bm,
1531                             struct memory_bitmap *zero_bm)
1532 {
1533         unsigned long copied_pages = 0;
1534         struct zone *zone;
1535         unsigned long pfn, copy_pfn;
1536 
1537         for_each_populated_zone(zone) {
1538                 unsigned long max_zone_pfn;
1539 
1540                 mark_free_pages(zone);
1541                 max_zone_pfn = zone_end_pfn(zone);
1542                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1543                         if (page_is_saveable(zone, pfn))
1544                                 memory_bm_set_bit(orig_bm, pfn);
1545         }
1546         memory_bm_position_reset(orig_bm);
1547         memory_bm_position_reset(copy_bm);
1548         copy_pfn = memory_bm_next_pfn(copy_bm);
1549         for(;;) {
1550                 pfn = memory_bm_next_pfn(orig_bm);
1551                 if (unlikely(pfn == BM_END_OF_MAP))
1552                         break;
1553                 if (copy_data_page(copy_pfn, pfn)) {
1554                         memory_bm_set_bit(zero_bm, pfn);
1555                         /* Use this copy_pfn for a page that is not full of zeros */
1556                         continue;
1557                 }
1558                 copied_pages++;
1559                 copy_pfn = memory_bm_next_pfn(copy_bm);
1560         }
1561         return copied_pages;
1562 }
1563 
1564 /* Total number of image pages */
1565 static unsigned int nr_copy_pages;
1566 /* Number of pages needed for saving the original pfns of the image pages */
1567 static unsigned int nr_meta_pages;
1568 /* Number of zero pages */
1569 static unsigned int nr_zero_pages;
1570 
1571 /*
1572  * Numbers of normal and highmem page frames allocated for hibernation image
1573  * before suspending devices.
1574  */
1575 static unsigned int alloc_normal, alloc_highmem;
1576 /*
1577  * Memory bitmap used for marking saveable pages (during hibernation) or
1578  * hibernation image pages (during restore)
1579  */
1580 static struct memory_bitmap orig_bm;
1581 /*
1582  * Memory bitmap used during hibernation for marking allocated page frames that
1583  * will contain copies of saveable pages.  During restore it is initially used
1584  * for marking hibernation image pages, but then the set bits from it are
1585  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1586  * used for marking "safe" highmem pages, but it has to be reinitialized for
1587  * this purpose.
1588  */
1589 static struct memory_bitmap copy_bm;
1590 
1591 /* Memory bitmap which tracks which saveable pages were zero filled. */
1592 static struct memory_bitmap zero_bm;
1593 
1594 /**
1595  * swsusp_free - Free pages allocated for hibernation image.
1596  *
1597  * Image pages are allocated before snapshot creation, so they need to be
1598  * released after resume.
1599  */
1600 void swsusp_free(void)
1601 {
1602         unsigned long fb_pfn, fr_pfn;
1603 
1604         if (!forbidden_pages_map || !free_pages_map)
1605                 goto out;
1606 
1607         memory_bm_position_reset(forbidden_pages_map);
1608         memory_bm_position_reset(free_pages_map);
1609 
1610 loop:
1611         fr_pfn = memory_bm_next_pfn(free_pages_map);
1612         fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1613 
1614         /*
1615          * Find the next bit set in both bitmaps. This is guaranteed to
1616          * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1617          */
1618         do {
1619                 if (fb_pfn < fr_pfn)
1620                         fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1621                 if (fr_pfn < fb_pfn)
1622                         fr_pfn = memory_bm_next_pfn(free_pages_map);
1623         } while (fb_pfn != fr_pfn);
1624 
1625         if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1626                 struct page *page = pfn_to_page(fr_pfn);
1627 
1628                 memory_bm_clear_current(forbidden_pages_map);
1629                 memory_bm_clear_current(free_pages_map);
1630                 hibernate_restore_unprotect_page(page_address(page));
1631                 __free_page(page);
1632                 goto loop;
1633         }
1634 
1635 out:
1636         nr_copy_pages = 0;
1637         nr_meta_pages = 0;
1638         nr_zero_pages = 0;
1639         restore_pblist = NULL;
1640         buffer = NULL;
1641         alloc_normal = 0;
1642         alloc_highmem = 0;
1643         hibernate_restore_protection_end();
1644 }
1645 
1646 /* Helper functions used for the shrinking of memory. */
1647 
1648 #define GFP_IMAGE       (GFP_KERNEL | __GFP_NOWARN)
1649 
1650 /**
1651  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1652  * @nr_pages: Number of page frames to allocate.
1653  * @mask: GFP flags to use for the allocation.
1654  *
1655  * Return value: Number of page frames actually allocated
1656  */
1657 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1658 {
1659         unsigned long nr_alloc = 0;
1660 
1661         while (nr_pages > 0) {
1662                 struct page *page;
1663 
1664                 page = alloc_image_page(mask);
1665                 if (!page)
1666                         break;
1667                 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1668                 if (PageHighMem(page))
1669                         alloc_highmem++;
1670                 else
1671                         alloc_normal++;
1672                 nr_pages--;
1673                 nr_alloc++;
1674         }
1675 
1676         return nr_alloc;
1677 }
1678 
1679 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1680                                               unsigned long avail_normal)
1681 {
1682         unsigned long alloc;
1683 
1684         if (avail_normal <= alloc_normal)
1685                 return 0;
1686 
1687         alloc = avail_normal - alloc_normal;
1688         if (nr_pages < alloc)
1689                 alloc = nr_pages;
1690 
1691         return preallocate_image_pages(alloc, GFP_IMAGE);
1692 }
1693 
1694 #ifdef CONFIG_HIGHMEM
1695 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1696 {
1697         return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1698 }
1699 
1700 /**
1701  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1702  */
1703 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1704 {
1705         return div64_u64(x * multiplier, base);
1706 }
1707 
1708 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1709                                                   unsigned long highmem,
1710                                                   unsigned long total)
1711 {
1712         unsigned long alloc = __fraction(nr_pages, highmem, total);
1713 
1714         return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1715 }
1716 #else /* CONFIG_HIGHMEM */
1717 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1718 {
1719         return 0;
1720 }
1721 
1722 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1723                                                          unsigned long highmem,
1724                                                          unsigned long total)
1725 {
1726         return 0;
1727 }
1728 #endif /* CONFIG_HIGHMEM */
1729 
1730 /**
1731  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1732  */
1733 static unsigned long free_unnecessary_pages(void)
1734 {
1735         unsigned long save, to_free_normal, to_free_highmem, free;
1736 
1737         save = count_data_pages();
1738         if (alloc_normal >= save) {
1739                 to_free_normal = alloc_normal - save;
1740                 save = 0;
1741         } else {
1742                 to_free_normal = 0;
1743                 save -= alloc_normal;
1744         }
1745         save += count_highmem_pages();
1746         if (alloc_highmem >= save) {
1747                 to_free_highmem = alloc_highmem - save;
1748         } else {
1749                 to_free_highmem = 0;
1750                 save -= alloc_highmem;
1751                 if (to_free_normal > save)
1752                         to_free_normal -= save;
1753                 else
1754                         to_free_normal = 0;
1755         }
1756         free = to_free_normal + to_free_highmem;
1757 
1758         memory_bm_position_reset(&copy_bm);
1759 
1760         while (to_free_normal > 0 || to_free_highmem > 0) {
1761                 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1762                 struct page *page = pfn_to_page(pfn);
1763 
1764                 if (PageHighMem(page)) {
1765                         if (!to_free_highmem)
1766                                 continue;
1767                         to_free_highmem--;
1768                         alloc_highmem--;
1769                 } else {
1770                         if (!to_free_normal)
1771                                 continue;
1772                         to_free_normal--;
1773                         alloc_normal--;
1774                 }
1775                 memory_bm_clear_bit(&copy_bm, pfn);
1776                 swsusp_unset_page_forbidden(page);
1777                 swsusp_unset_page_free(page);
1778                 __free_page(page);
1779         }
1780 
1781         return free;
1782 }
1783 
1784 /**
1785  * minimum_image_size - Estimate the minimum acceptable size of an image.
1786  * @saveable: Number of saveable pages in the system.
1787  *
1788  * We want to avoid attempting to free too much memory too hard, so estimate the
1789  * minimum acceptable size of a hibernation image to use as the lower limit for
1790  * preallocating memory.
1791  *
1792  * We assume that the minimum image size should be proportional to
1793  *
1794  * [number of saveable pages] - [number of pages that can be freed in theory]
1795  *
1796  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1797  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1798  */
1799 static unsigned long minimum_image_size(unsigned long saveable)
1800 {
1801         unsigned long size;
1802 
1803         size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1804                 + global_node_page_state(NR_ACTIVE_ANON)
1805                 + global_node_page_state(NR_INACTIVE_ANON)
1806                 + global_node_page_state(NR_ACTIVE_FILE)
1807                 + global_node_page_state(NR_INACTIVE_FILE);
1808 
1809         return saveable <= size ? 0 : saveable - size;
1810 }
1811 
1812 /**
1813  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1814  *
1815  * To create a hibernation image it is necessary to make a copy of every page
1816  * frame in use.  We also need a number of page frames to be free during
1817  * hibernation for allocations made while saving the image and for device
1818  * drivers, in case they need to allocate memory from their hibernation
1819  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1820  * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1821  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1822  * total number of available page frames and allocate at least
1823  *
1824  * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1825  *  - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1826  *
1827  * of them, which corresponds to the maximum size of a hibernation image.
1828  *
1829  * If image_size is set below the number following from the above formula,
1830  * the preallocation of memory is continued until the total number of saveable
1831  * pages in the system is below the requested image size or the minimum
1832  * acceptable image size returned by minimum_image_size(), whichever is greater.
1833  */
1834 int hibernate_preallocate_memory(void)
1835 {
1836         struct zone *zone;
1837         unsigned long saveable, size, max_size, count, highmem, pages = 0;
1838         unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1839         ktime_t start, stop;
1840         int error;
1841 
1842         pr_info("Preallocating image memory\n");
1843         start = ktime_get();
1844 
1845         error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1846         if (error) {
1847                 pr_err("Cannot allocate original bitmap\n");
1848                 goto err_out;
1849         }
1850 
1851         error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1852         if (error) {
1853                 pr_err("Cannot allocate copy bitmap\n");
1854                 goto err_out;
1855         }
1856 
1857         error = memory_bm_create(&zero_bm, GFP_IMAGE, PG_ANY);
1858         if (error) {
1859                 pr_err("Cannot allocate zero bitmap\n");
1860                 goto err_out;
1861         }
1862 
1863         alloc_normal = 0;
1864         alloc_highmem = 0;
1865         nr_zero_pages = 0;
1866 
1867         /* Count the number of saveable data pages. */
1868         save_highmem = count_highmem_pages();
1869         saveable = count_data_pages();
1870 
1871         /*
1872          * Compute the total number of page frames we can use (count) and the
1873          * number of pages needed for image metadata (size).
1874          */
1875         count = saveable;
1876         saveable += save_highmem;
1877         highmem = save_highmem;
1878         size = 0;
1879         for_each_populated_zone(zone) {
1880                 size += snapshot_additional_pages(zone);
1881                 if (is_highmem(zone))
1882                         highmem += zone_page_state(zone, NR_FREE_PAGES);
1883                 else
1884                         count += zone_page_state(zone, NR_FREE_PAGES);
1885         }
1886         avail_normal = count;
1887         count += highmem;
1888         count -= totalreserve_pages;
1889 
1890         /* Compute the maximum number of saveable pages to leave in memory. */
1891         max_size = (count - (size + PAGES_FOR_IO)) / 2
1892                         - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1893         /* Compute the desired number of image pages specified by image_size. */
1894         size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1895         if (size > max_size)
1896                 size = max_size;
1897         /*
1898          * If the desired number of image pages is at least as large as the
1899          * current number of saveable pages in memory, allocate page frames for
1900          * the image and we're done.
1901          */
1902         if (size >= saveable) {
1903                 pages = preallocate_image_highmem(save_highmem);
1904                 pages += preallocate_image_memory(saveable - pages, avail_normal);
1905                 goto out;
1906         }
1907 
1908         /* Estimate the minimum size of the image. */
1909         pages = minimum_image_size(saveable);
1910         /*
1911          * To avoid excessive pressure on the normal zone, leave room in it to
1912          * accommodate an image of the minimum size (unless it's already too
1913          * small, in which case don't preallocate pages from it at all).
1914          */
1915         if (avail_normal > pages)
1916                 avail_normal -= pages;
1917         else
1918                 avail_normal = 0;
1919         if (size < pages)
1920                 size = min_t(unsigned long, pages, max_size);
1921 
1922         /*
1923          * Let the memory management subsystem know that we're going to need a
1924          * large number of page frames to allocate and make it free some memory.
1925          * NOTE: If this is not done, performance will be hurt badly in some
1926          * test cases.
1927          */
1928         shrink_all_memory(saveable - size);
1929 
1930         /*
1931          * The number of saveable pages in memory was too high, so apply some
1932          * pressure to decrease it.  First, make room for the largest possible
1933          * image and fail if that doesn't work.  Next, try to decrease the size
1934          * of the image as much as indicated by 'size' using allocations from
1935          * highmem and non-highmem zones separately.
1936          */
1937         pages_highmem = preallocate_image_highmem(highmem / 2);
1938         alloc = count - max_size;
1939         if (alloc > pages_highmem)
1940                 alloc -= pages_highmem;
1941         else
1942                 alloc = 0;
1943         pages = preallocate_image_memory(alloc, avail_normal);
1944         if (pages < alloc) {
1945                 /* We have exhausted non-highmem pages, try highmem. */
1946                 alloc -= pages;
1947                 pages += pages_highmem;
1948                 pages_highmem = preallocate_image_highmem(alloc);
1949                 if (pages_highmem < alloc) {
1950                         pr_err("Image allocation is %lu pages short\n",
1951                                 alloc - pages_highmem);
1952                         goto err_out;
1953                 }
1954                 pages += pages_highmem;
1955                 /*
1956                  * size is the desired number of saveable pages to leave in
1957                  * memory, so try to preallocate (all memory - size) pages.
1958                  */
1959                 alloc = (count - pages) - size;
1960                 pages += preallocate_image_highmem(alloc);
1961         } else {
1962                 /*
1963                  * There are approximately max_size saveable pages at this point
1964                  * and we want to reduce this number down to size.
1965                  */
1966                 alloc = max_size - size;
1967                 size = preallocate_highmem_fraction(alloc, highmem, count);
1968                 pages_highmem += size;
1969                 alloc -= size;
1970                 size = preallocate_image_memory(alloc, avail_normal);
1971                 pages_highmem += preallocate_image_highmem(alloc - size);
1972                 pages += pages_highmem + size;
1973         }
1974 
1975         /*
1976          * We only need as many page frames for the image as there are saveable
1977          * pages in memory, but we have allocated more.  Release the excessive
1978          * ones now.
1979          */
1980         pages -= free_unnecessary_pages();
1981 
1982  out:
1983         stop = ktime_get();
1984         pr_info("Allocated %lu pages for snapshot\n", pages);
1985         swsusp_show_speed(start, stop, pages, "Allocated");
1986 
1987         return 0;
1988 
1989  err_out:
1990         swsusp_free();
1991         return -ENOMEM;
1992 }
1993 
1994 #ifdef CONFIG_HIGHMEM
1995 /**
1996  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1997  *
1998  * Compute the number of non-highmem pages that will be necessary for creating
1999  * copies of highmem pages.
2000  */
2001 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
2002 {
2003         unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
2004 
2005         if (free_highmem >= nr_highmem)
2006                 nr_highmem = 0;
2007         else
2008                 nr_highmem -= free_highmem;
2009 
2010         return nr_highmem;
2011 }
2012 #else
2013 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
2014 #endif /* CONFIG_HIGHMEM */
2015 
2016 /**
2017  * enough_free_mem - Check if there is enough free memory for the image.
2018  */
2019 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
2020 {
2021         struct zone *zone;
2022         unsigned int free = alloc_normal;
2023 
2024         for_each_populated_zone(zone)
2025                 if (!is_highmem(zone))
2026                         free += zone_page_state(zone, NR_FREE_PAGES);
2027 
2028         nr_pages += count_pages_for_highmem(nr_highmem);
2029         pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
2030                  nr_pages, PAGES_FOR_IO, free);
2031 
2032         return free > nr_pages + PAGES_FOR_IO;
2033 }
2034 
2035 #ifdef CONFIG_HIGHMEM
2036 /**
2037  * get_highmem_buffer - Allocate a buffer for highmem pages.
2038  *
2039  * If there are some highmem pages in the hibernation image, we may need a
2040  * buffer to copy them and/or load their data.
2041  */
2042 static inline int get_highmem_buffer(int safe_needed)
2043 {
2044         buffer = get_image_page(GFP_ATOMIC, safe_needed);
2045         return buffer ? 0 : -ENOMEM;
2046 }
2047 
2048 /**
2049  * alloc_highmem_pages - Allocate some highmem pages for the image.
2050  *
2051  * Try to allocate as many pages as needed, but if the number of free highmem
2052  * pages is less than that, allocate them all.
2053  */
2054 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2055                                                unsigned int nr_highmem)
2056 {
2057         unsigned int to_alloc = count_free_highmem_pages();
2058 
2059         if (to_alloc > nr_highmem)
2060                 to_alloc = nr_highmem;
2061 
2062         nr_highmem -= to_alloc;
2063         while (to_alloc-- > 0) {
2064                 struct page *page;
2065 
2066                 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
2067                 memory_bm_set_bit(bm, page_to_pfn(page));
2068         }
2069         return nr_highmem;
2070 }
2071 #else
2072 static inline int get_highmem_buffer(int safe_needed) { return 0; }
2073 
2074 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2075                                                unsigned int n) { return 0; }
2076 #endif /* CONFIG_HIGHMEM */
2077 
2078 /**
2079  * swsusp_alloc - Allocate memory for hibernation image.
2080  *
2081  * We first try to allocate as many highmem pages as there are
2082  * saveable highmem pages in the system.  If that fails, we allocate
2083  * non-highmem pages for the copies of the remaining highmem ones.
2084  *
2085  * In this approach it is likely that the copies of highmem pages will
2086  * also be located in the high memory, because of the way in which
2087  * copy_data_pages() works.
2088  */
2089 static int swsusp_alloc(struct memory_bitmap *copy_bm,
2090                         unsigned int nr_pages, unsigned int nr_highmem)
2091 {
2092         if (nr_highmem > 0) {
2093                 if (get_highmem_buffer(PG_ANY))
2094                         goto err_out;
2095                 if (nr_highmem > alloc_highmem) {
2096                         nr_highmem -= alloc_highmem;
2097                         nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
2098                 }
2099         }
2100         if (nr_pages > alloc_normal) {
2101                 nr_pages -= alloc_normal;
2102                 while (nr_pages-- > 0) {
2103                         struct page *page;
2104 
2105                         page = alloc_image_page(GFP_ATOMIC);
2106                         if (!page)
2107                                 goto err_out;
2108                         memory_bm_set_bit(copy_bm, page_to_pfn(page));
2109                 }
2110         }
2111 
2112         return 0;
2113 
2114  err_out:
2115         swsusp_free();
2116         return -ENOMEM;
2117 }
2118 
2119 asmlinkage __visible int swsusp_save(void)
2120 {
2121         unsigned int nr_pages, nr_highmem;
2122 
2123         pr_info("Creating image:\n");
2124 
2125         drain_local_pages(NULL);
2126         nr_pages = count_data_pages();
2127         nr_highmem = count_highmem_pages();
2128         pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2129 
2130         if (!enough_free_mem(nr_pages, nr_highmem)) {
2131                 pr_err("Not enough free memory\n");
2132                 return -ENOMEM;
2133         }
2134 
2135         if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
2136                 pr_err("Memory allocation failed\n");
2137                 return -ENOMEM;
2138         }
2139 
2140         /*
2141          * During allocating of suspend pagedir, new cold pages may appear.
2142          * Kill them.
2143          */
2144         drain_local_pages(NULL);
2145         nr_copy_pages = copy_data_pages(&copy_bm, &orig_bm, &zero_bm);
2146 
2147         /*
2148          * End of critical section. From now on, we can write to memory,
2149          * but we should not touch disk. This specially means we must _not_
2150          * touch swap space! Except we must write out our image of course.
2151          */
2152         nr_pages += nr_highmem;
2153         /* We don't actually copy the zero pages */
2154         nr_zero_pages = nr_pages - nr_copy_pages;
2155         nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2156 
2157         pr_info("Image created (%d pages copied, %d zero pages)\n", nr_copy_pages, nr_zero_pages);
2158 
2159         return 0;
2160 }
2161 
2162 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2163 static int init_header_complete(struct swsusp_info *info)
2164 {
2165         memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2166         info->version_code = LINUX_VERSION_CODE;
2167         return 0;
2168 }
2169 
2170 static const char *check_image_kernel(struct swsusp_info *info)
2171 {
2172         if (info->version_code != LINUX_VERSION_CODE)
2173                 return "kernel version";
2174         if (strcmp(info->uts.sysname,init_utsname()->sysname))
2175                 return "system type";
2176         if (strcmp(info->uts.release,init_utsname()->release))
2177                 return "kernel release";
2178         if (strcmp(info->uts.version,init_utsname()->version))
2179                 return "version";
2180         if (strcmp(info->uts.machine,init_utsname()->machine))
2181                 return "machine";
2182         return NULL;
2183 }
2184 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2185 
2186 unsigned long snapshot_get_image_size(void)
2187 {
2188         return nr_copy_pages + nr_meta_pages + 1;
2189 }
2190 
2191 static int init_header(struct swsusp_info *info)
2192 {
2193         memset(info, 0, sizeof(struct swsusp_info));
2194         info->num_physpages = get_num_physpages();
2195         info->image_pages = nr_copy_pages;
2196         info->pages = snapshot_get_image_size();
2197         info->size = info->pages;
2198         info->size <<= PAGE_SHIFT;
2199         return init_header_complete(info);
2200 }
2201 
2202 #define ENCODED_PFN_ZERO_FLAG ((unsigned long)1 << (BITS_PER_LONG - 1))
2203 #define ENCODED_PFN_MASK (~ENCODED_PFN_ZERO_FLAG)
2204 
2205 /**
2206  * pack_pfns - Prepare PFNs for saving.
2207  * @bm: Memory bitmap.
2208  * @buf: Memory buffer to store the PFNs in.
2209  * @zero_bm: Memory bitmap containing PFNs of zero pages.
2210  *
2211  * PFNs corresponding to set bits in @bm are stored in the area of memory
2212  * pointed to by @buf (1 page at a time). Pages which were filled with only
2213  * zeros will have the highest bit set in the packed format to distinguish
2214  * them from PFNs which will be contained in the image file.
2215  */
2216 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm,
2217                 struct memory_bitmap *zero_bm)
2218 {
2219         int j;
2220 
2221         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2222                 buf[j] = memory_bm_next_pfn(bm);
2223                 if (unlikely(buf[j] == BM_END_OF_MAP))
2224                         break;
2225                 if (memory_bm_test_bit(zero_bm, buf[j]))
2226                         buf[j] |= ENCODED_PFN_ZERO_FLAG;
2227         }
2228 }
2229 
2230 /**
2231  * snapshot_read_next - Get the address to read the next image page from.
2232  * @handle: Snapshot handle to be used for the reading.
2233  *
2234  * On the first call, @handle should point to a zeroed snapshot_handle
2235  * structure.  The structure gets populated then and a pointer to it should be
2236  * passed to this function every next time.
2237  *
2238  * On success, the function returns a positive number.  Then, the caller
2239  * is allowed to read up to the returned number of bytes from the memory
2240  * location computed by the data_of() macro.
2241  *
2242  * The function returns 0 to indicate the end of the data stream condition,
2243  * and negative numbers are returned on errors.  If that happens, the structure
2244  * pointed to by @handle is not updated and should not be used any more.
2245  */
2246 int snapshot_read_next(struct snapshot_handle *handle)
2247 {
2248         if (handle->cur > nr_meta_pages + nr_copy_pages)
2249                 return 0;
2250 
2251         if (!buffer) {
2252                 /* This makes the buffer be freed by swsusp_free() */
2253                 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2254                 if (!buffer)
2255                         return -ENOMEM;
2256         }
2257         if (!handle->cur) {
2258                 int error;
2259 
2260                 error = init_header((struct swsusp_info *)buffer);
2261                 if (error)
2262                         return error;
2263                 handle->buffer = buffer;
2264                 memory_bm_position_reset(&orig_bm);
2265                 memory_bm_position_reset(&copy_bm);
2266         } else if (handle->cur <= nr_meta_pages) {
2267                 clear_page(buffer);
2268                 pack_pfns(buffer, &orig_bm, &zero_bm);
2269         } else {
2270                 struct page *page;
2271 
2272                 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2273                 if (PageHighMem(page)) {
2274                         /*
2275                          * Highmem pages are copied to the buffer,
2276                          * because we can't return with a kmapped
2277                          * highmem page (we may not be called again).
2278                          */
2279                         void *kaddr;
2280 
2281                         kaddr = kmap_atomic(page);
2282                         copy_page(buffer, kaddr);
2283                         kunmap_atomic(kaddr);
2284                         handle->buffer = buffer;
2285                 } else {
2286                         handle->buffer = page_address(page);
2287                 }
2288         }
2289         handle->cur++;
2290         return PAGE_SIZE;
2291 }
2292 
2293 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2294                                     struct memory_bitmap *src)
2295 {
2296         unsigned long pfn;
2297 
2298         memory_bm_position_reset(src);
2299         pfn = memory_bm_next_pfn(src);
2300         while (pfn != BM_END_OF_MAP) {
2301                 memory_bm_set_bit(dst, pfn);
2302                 pfn = memory_bm_next_pfn(src);
2303         }
2304 }
2305 
2306 /**
2307  * mark_unsafe_pages - Mark pages that were used before hibernation.
2308  *
2309  * Mark the pages that cannot be used for storing the image during restoration,
2310  * because they conflict with the pages that had been used before hibernation.
2311  */
2312 static void mark_unsafe_pages(struct memory_bitmap *bm)
2313 {
2314         unsigned long pfn;
2315 
2316         /* Clear the "free"/"unsafe" bit for all PFNs */
2317         memory_bm_position_reset(free_pages_map);
2318         pfn = memory_bm_next_pfn(free_pages_map);
2319         while (pfn != BM_END_OF_MAP) {
2320                 memory_bm_clear_current(free_pages_map);
2321                 pfn = memory_bm_next_pfn(free_pages_map);
2322         }
2323 
2324         /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2325         duplicate_memory_bitmap(free_pages_map, bm);
2326 
2327         allocated_unsafe_pages = 0;
2328 }
2329 
2330 static int check_header(struct swsusp_info *info)
2331 {
2332         const char *reason;
2333 
2334         reason = check_image_kernel(info);
2335         if (!reason && info->num_physpages != get_num_physpages())
2336                 reason = "memory size";
2337         if (reason) {
2338                 pr_err("Image mismatch: %s\n", reason);
2339                 return -EPERM;
2340         }
2341         return 0;
2342 }
2343 
2344 /**
2345  * load_header - Check the image header and copy the data from it.
2346  */
2347 static int load_header(struct swsusp_info *info)
2348 {
2349         int error;
2350 
2351         restore_pblist = NULL;
2352         error = check_header(info);
2353         if (!error) {
2354                 nr_copy_pages = info->image_pages;
2355                 nr_meta_pages = info->pages - info->image_pages - 1;
2356         }
2357         return error;
2358 }
2359 
2360 /**
2361  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2362  * @bm: Memory bitmap.
2363  * @buf: Area of memory containing the PFNs.
2364  * @zero_bm: Memory bitmap with the zero PFNs marked.
2365  *
2366  * For each element of the array pointed to by @buf (1 page at a time), set the
2367  * corresponding bit in @bm. If the page was originally populated with only
2368  * zeros then a corresponding bit will also be set in @zero_bm.
2369  */
2370 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm,
2371                 struct memory_bitmap *zero_bm)
2372 {
2373         unsigned long decoded_pfn;
2374         bool zero;
2375         int j;
2376 
2377         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2378                 if (unlikely(buf[j] == BM_END_OF_MAP))
2379                         break;
2380 
2381                 zero = !!(buf[j] & ENCODED_PFN_ZERO_FLAG);
2382                 decoded_pfn = buf[j] & ENCODED_PFN_MASK;
2383                 if (pfn_valid(decoded_pfn) && memory_bm_pfn_present(bm, decoded_pfn)) {
2384                         memory_bm_set_bit(bm, decoded_pfn);
2385                         if (zero) {
2386                                 memory_bm_set_bit(zero_bm, decoded_pfn);
2387                                 nr_zero_pages++;
2388                         }
2389                 } else {
2390                         if (!pfn_valid(decoded_pfn))
2391                                 pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n",
2392                                        (unsigned long long)PFN_PHYS(decoded_pfn));
2393                         return -EFAULT;
2394                 }
2395         }
2396 
2397         return 0;
2398 }
2399 
2400 #ifdef CONFIG_HIGHMEM
2401 /*
2402  * struct highmem_pbe is used for creating the list of highmem pages that
2403  * should be restored atomically during the resume from disk, because the page
2404  * frames they have occupied before the suspend are in use.
2405  */
2406 struct highmem_pbe {
2407         struct page *copy_page; /* data is here now */
2408         struct page *orig_page; /* data was here before the suspend */
2409         struct highmem_pbe *next;
2410 };
2411 
2412 /*
2413  * List of highmem PBEs needed for restoring the highmem pages that were
2414  * allocated before the suspend and included in the suspend image, but have
2415  * also been allocated by the "resume" kernel, so their contents cannot be
2416  * written directly to their "original" page frames.
2417  */
2418 static struct highmem_pbe *highmem_pblist;
2419 
2420 /**
2421  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2422  * @bm: Memory bitmap.
2423  *
2424  * The bits in @bm that correspond to image pages are assumed to be set.
2425  */
2426 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2427 {
2428         unsigned long pfn;
2429         unsigned int cnt = 0;
2430 
2431         memory_bm_position_reset(bm);
2432         pfn = memory_bm_next_pfn(bm);
2433         while (pfn != BM_END_OF_MAP) {
2434                 if (PageHighMem(pfn_to_page(pfn)))
2435                         cnt++;
2436 
2437                 pfn = memory_bm_next_pfn(bm);
2438         }
2439         return cnt;
2440 }
2441 
2442 static unsigned int safe_highmem_pages;
2443 
2444 static struct memory_bitmap *safe_highmem_bm;
2445 
2446 /**
2447  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2448  * @bm: Pointer to an uninitialized memory bitmap structure.
2449  * @nr_highmem_p: Pointer to the number of highmem image pages.
2450  *
2451  * Try to allocate as many highmem pages as there are highmem image pages
2452  * (@nr_highmem_p points to the variable containing the number of highmem image
2453  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2454  * hibernation image is restored entirely) have the corresponding bits set in
2455  * @bm (it must be uninitialized).
2456  *
2457  * NOTE: This function should not be called if there are no highmem image pages.
2458  */
2459 static int prepare_highmem_image(struct memory_bitmap *bm,
2460                                  unsigned int *nr_highmem_p)
2461 {
2462         unsigned int to_alloc;
2463 
2464         if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2465                 return -ENOMEM;
2466 
2467         if (get_highmem_buffer(PG_SAFE))
2468                 return -ENOMEM;
2469 
2470         to_alloc = count_free_highmem_pages();
2471         if (to_alloc > *nr_highmem_p)
2472                 to_alloc = *nr_highmem_p;
2473         else
2474                 *nr_highmem_p = to_alloc;
2475 
2476         safe_highmem_pages = 0;
2477         while (to_alloc-- > 0) {
2478                 struct page *page;
2479 
2480                 page = alloc_page(__GFP_HIGHMEM);
2481                 if (!swsusp_page_is_free(page)) {
2482                         /* The page is "safe", set its bit the bitmap */
2483                         memory_bm_set_bit(bm, page_to_pfn(page));
2484                         safe_highmem_pages++;
2485                 }
2486                 /* Mark the page as allocated */
2487                 swsusp_set_page_forbidden(page);
2488                 swsusp_set_page_free(page);
2489         }
2490         memory_bm_position_reset(bm);
2491         safe_highmem_bm = bm;
2492         return 0;
2493 }
2494 
2495 static struct page *last_highmem_page;
2496 
2497 /**
2498  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2499  *
2500  * For a given highmem image page get a buffer that suspend_write_next() should
2501  * return to its caller to write to.
2502  *
2503  * If the page is to be saved to its "original" page frame or a copy of
2504  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2505  * the copy of the page is to be made in normal memory, so the address of
2506  * the copy is returned.
2507  *
2508  * If @buffer is returned, the caller of suspend_write_next() will write
2509  * the page's contents to @buffer, so they will have to be copied to the
2510  * right location on the next call to suspend_write_next() and it is done
2511  * with the help of copy_last_highmem_page().  For this purpose, if
2512  * @buffer is returned, @last_highmem_page is set to the page to which
2513  * the data will have to be copied from @buffer.
2514  */
2515 static void *get_highmem_page_buffer(struct page *page,
2516                                      struct chain_allocator *ca)
2517 {
2518         struct highmem_pbe *pbe;
2519         void *kaddr;
2520 
2521         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2522                 /*
2523                  * We have allocated the "original" page frame and we can
2524                  * use it directly to store the loaded page.
2525                  */
2526                 last_highmem_page = page;
2527                 return buffer;
2528         }
2529         /*
2530          * The "original" page frame has not been allocated and we have to
2531          * use a "safe" page frame to store the loaded page.
2532          */
2533         pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2534         if (!pbe) {
2535                 swsusp_free();
2536                 return ERR_PTR(-ENOMEM);
2537         }
2538         pbe->orig_page = page;
2539         if (safe_highmem_pages > 0) {
2540                 struct page *tmp;
2541 
2542                 /* Copy of the page will be stored in high memory */
2543                 kaddr = buffer;
2544                 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2545                 safe_highmem_pages--;
2546                 last_highmem_page = tmp;
2547                 pbe->copy_page = tmp;
2548         } else {
2549                 /* Copy of the page will be stored in normal memory */
2550                 kaddr = __get_safe_page(ca->gfp_mask);
2551                 if (!kaddr)
2552                         return ERR_PTR(-ENOMEM);
2553                 pbe->copy_page = virt_to_page(kaddr);
2554         }
2555         pbe->next = highmem_pblist;
2556         highmem_pblist = pbe;
2557         return kaddr;
2558 }
2559 
2560 /**
2561  * copy_last_highmem_page - Copy most the most recent highmem image page.
2562  *
2563  * Copy the contents of a highmem image from @buffer, where the caller of
2564  * snapshot_write_next() has stored them, to the right location represented by
2565  * @last_highmem_page .
2566  */
2567 static void copy_last_highmem_page(void)
2568 {
2569         if (last_highmem_page) {
2570                 void *dst;
2571 
2572                 dst = kmap_atomic(last_highmem_page);
2573                 copy_page(dst, buffer);
2574                 kunmap_atomic(dst);
2575                 last_highmem_page = NULL;
2576         }
2577 }
2578 
2579 static inline int last_highmem_page_copied(void)
2580 {
2581         return !last_highmem_page;
2582 }
2583 
2584 static inline void free_highmem_data(void)
2585 {
2586         if (safe_highmem_bm)
2587                 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2588 
2589         if (buffer)
2590                 free_image_page(buffer, PG_UNSAFE_CLEAR);
2591 }
2592 #else
2593 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2594 
2595 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2596                                         unsigned int *nr_highmem_p) { return 0; }
2597 
2598 static inline void *get_highmem_page_buffer(struct page *page,
2599                                             struct chain_allocator *ca)
2600 {
2601         return ERR_PTR(-EINVAL);
2602 }
2603 
2604 static inline void copy_last_highmem_page(void) {}
2605 static inline int last_highmem_page_copied(void) { return 1; }
2606 static inline void free_highmem_data(void) {}
2607 #endif /* CONFIG_HIGHMEM */
2608 
2609 #define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2610 
2611 /**
2612  * prepare_image - Make room for loading hibernation image.
2613  * @new_bm: Uninitialized memory bitmap structure.
2614  * @bm: Memory bitmap with unsafe pages marked.
2615  * @zero_bm: Memory bitmap containing the zero pages.
2616  *
2617  * Use @bm to mark the pages that will be overwritten in the process of
2618  * restoring the system memory state from the suspend image ("unsafe" pages)
2619  * and allocate memory for the image.
2620  *
2621  * The idea is to allocate a new memory bitmap first and then allocate
2622  * as many pages as needed for image data, but without specifying what those
2623  * pages will be used for just yet.  Instead, we mark them all as allocated and
2624  * create a lists of "safe" pages to be used later.  On systems with high
2625  * memory a list of "safe" highmem pages is created too.
2626  *
2627  * Because it was not known which pages were unsafe when @zero_bm was created,
2628  * make a copy of it and recreate it within safe pages.
2629  */
2630 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm,
2631                 struct memory_bitmap *zero_bm)
2632 {
2633         unsigned int nr_pages, nr_highmem;
2634         struct memory_bitmap tmp;
2635         struct linked_page *lp;
2636         int error;
2637 
2638         /* If there is no highmem, the buffer will not be necessary */
2639         free_image_page(buffer, PG_UNSAFE_CLEAR);
2640         buffer = NULL;
2641 
2642         nr_highmem = count_highmem_image_pages(bm);
2643         mark_unsafe_pages(bm);
2644 
2645         error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2646         if (error)
2647                 goto Free;
2648 
2649         duplicate_memory_bitmap(new_bm, bm);
2650         memory_bm_free(bm, PG_UNSAFE_KEEP);
2651 
2652         /* Make a copy of zero_bm so it can be created in safe pages */
2653         error = memory_bm_create(&tmp, GFP_ATOMIC, PG_SAFE);
2654         if (error)
2655                 goto Free;
2656 
2657         duplicate_memory_bitmap(&tmp, zero_bm);
2658         memory_bm_free(zero_bm, PG_UNSAFE_KEEP);
2659 
2660         /* Recreate zero_bm in safe pages */
2661         error = memory_bm_create(zero_bm, GFP_ATOMIC, PG_SAFE);
2662         if (error)
2663                 goto Free;
2664 
2665         duplicate_memory_bitmap(zero_bm, &tmp);
2666         memory_bm_free(&tmp, PG_UNSAFE_CLEAR);
2667         /* At this point zero_bm is in safe pages and it can be used for restoring. */
2668 
2669         if (nr_highmem > 0) {
2670                 error = prepare_highmem_image(bm, &nr_highmem);
2671                 if (error)
2672                         goto Free;
2673         }
2674         /*
2675          * Reserve some safe pages for potential later use.
2676          *
2677          * NOTE: This way we make sure there will be enough safe pages for the
2678          * chain_alloc() in get_buffer().  It is a bit wasteful, but
2679          * nr_copy_pages cannot be greater than 50% of the memory anyway.
2680          *
2681          * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2682          */
2683         nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages;
2684         nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2685         while (nr_pages > 0) {
2686                 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2687                 if (!lp) {
2688                         error = -ENOMEM;
2689                         goto Free;
2690                 }
2691                 lp->next = safe_pages_list;
2692                 safe_pages_list = lp;
2693                 nr_pages--;
2694         }
2695         /* Preallocate memory for the image */
2696         nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages;
2697         while (nr_pages > 0) {
2698                 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2699                 if (!lp) {
2700                         error = -ENOMEM;
2701                         goto Free;
2702                 }
2703                 if (!swsusp_page_is_free(virt_to_page(lp))) {
2704                         /* The page is "safe", add it to the list */
2705                         lp->next = safe_pages_list;
2706                         safe_pages_list = lp;
2707                 }
2708                 /* Mark the page as allocated */
2709                 swsusp_set_page_forbidden(virt_to_page(lp));
2710                 swsusp_set_page_free(virt_to_page(lp));
2711                 nr_pages--;
2712         }
2713         return 0;
2714 
2715  Free:
2716         swsusp_free();
2717         return error;
2718 }
2719 
2720 /**
2721  * get_buffer - Get the address to store the next image data page.
2722  *
2723  * Get the address that snapshot_write_next() should return to its caller to
2724  * write to.
2725  */
2726 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2727 {
2728         struct pbe *pbe;
2729         struct page *page;
2730         unsigned long pfn = memory_bm_next_pfn(bm);
2731 
2732         if (pfn == BM_END_OF_MAP)
2733                 return ERR_PTR(-EFAULT);
2734 
2735         page = pfn_to_page(pfn);
2736         if (PageHighMem(page))
2737                 return get_highmem_page_buffer(page, ca);
2738 
2739         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2740                 /*
2741                  * We have allocated the "original" page frame and we can
2742                  * use it directly to store the loaded page.
2743                  */
2744                 return page_address(page);
2745 
2746         /*
2747          * The "original" page frame has not been allocated and we have to
2748          * use a "safe" page frame to store the loaded page.
2749          */
2750         pbe = chain_alloc(ca, sizeof(struct pbe));
2751         if (!pbe) {
2752                 swsusp_free();
2753                 return ERR_PTR(-ENOMEM);
2754         }
2755         pbe->orig_address = page_address(page);
2756         pbe->address = __get_safe_page(ca->gfp_mask);
2757         if (!pbe->address)
2758                 return ERR_PTR(-ENOMEM);
2759         pbe->next = restore_pblist;
2760         restore_pblist = pbe;
2761         return pbe->address;
2762 }
2763 
2764 /**
2765  * snapshot_write_next - Get the address to store the next image page.
2766  * @handle: Snapshot handle structure to guide the writing.
2767  *
2768  * On the first call, @handle should point to a zeroed snapshot_handle
2769  * structure.  The structure gets populated then and a pointer to it should be
2770  * passed to this function every next time.
2771  *
2772  * On success, the function returns a positive number.  Then, the caller
2773  * is allowed to write up to the returned number of bytes to the memory
2774  * location computed by the data_of() macro.
2775  *
2776  * The function returns 0 to indicate the "end of file" condition.  Negative
2777  * numbers are returned on errors, in which cases the structure pointed to by
2778  * @handle is not updated and should not be used any more.
2779  */
2780 int snapshot_write_next(struct snapshot_handle *handle)
2781 {
2782         static struct chain_allocator ca;
2783         int error;
2784 
2785 next:
2786         /* Check if we have already loaded the entire image */
2787         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages)
2788                 return 0;
2789 
2790         if (!handle->cur) {
2791                 if (!buffer)
2792                         /* This makes the buffer be freed by swsusp_free() */
2793                         buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2794 
2795                 if (!buffer)
2796                         return -ENOMEM;
2797 
2798                 handle->buffer = buffer;
2799         } else if (handle->cur == 1) {
2800                 error = load_header(buffer);
2801                 if (error)
2802                         return error;
2803 
2804                 safe_pages_list = NULL;
2805 
2806                 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2807                 if (error)
2808                         return error;
2809 
2810                 error = memory_bm_create(&zero_bm, GFP_ATOMIC, PG_ANY);
2811                 if (error)
2812                         return error;
2813 
2814                 nr_zero_pages = 0;
2815 
2816                 hibernate_restore_protection_begin();
2817         } else if (handle->cur <= nr_meta_pages + 1) {
2818                 error = unpack_orig_pfns(buffer, &copy_bm, &zero_bm);
2819                 if (error)
2820                         return error;
2821 
2822                 if (handle->cur == nr_meta_pages + 1) {
2823                         error = prepare_image(&orig_bm, &copy_bm, &zero_bm);
2824                         if (error)
2825                                 return error;
2826 
2827                         chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2828                         memory_bm_position_reset(&orig_bm);
2829                         memory_bm_position_reset(&zero_bm);
2830                         restore_pblist = NULL;
2831                         handle->buffer = get_buffer(&orig_bm, &ca);
2832                         if (IS_ERR(handle->buffer))
2833                                 return PTR_ERR(handle->buffer);
2834                 }
2835         } else {
2836                 copy_last_highmem_page();
2837                 error = hibernate_restore_protect_page(handle->buffer);
2838                 if (error)
2839                         return error;
2840                 handle->buffer = get_buffer(&orig_bm, &ca);
2841                 if (IS_ERR(handle->buffer))
2842                         return PTR_ERR(handle->buffer);
2843         }
2844         handle->sync_read = (handle->buffer == buffer);
2845         handle->cur++;
2846 
2847         /* Zero pages were not included in the image, memset it and move on. */
2848         if (handle->cur > nr_meta_pages + 1 &&
2849             memory_bm_test_bit(&zero_bm, memory_bm_get_current(&orig_bm))) {
2850                 memset(handle->buffer, 0, PAGE_SIZE);
2851                 goto next;
2852         }
2853 
2854         return PAGE_SIZE;
2855 }
2856 
2857 /**
2858  * snapshot_write_finalize - Complete the loading of a hibernation image.
2859  *
2860  * Must be called after the last call to snapshot_write_next() in case the last
2861  * page in the image happens to be a highmem page and its contents should be
2862  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2863  * necessary any more.
2864  */
2865 int snapshot_write_finalize(struct snapshot_handle *handle)
2866 {
2867         int error;
2868 
2869         copy_last_highmem_page();
2870         error = hibernate_restore_protect_page(handle->buffer);
2871         /* Do that only if we have loaded the image entirely */
2872         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages) {
2873                 memory_bm_recycle(&orig_bm);
2874                 free_highmem_data();
2875         }
2876         return error;
2877 }
2878 
2879 int snapshot_image_loaded(struct snapshot_handle *handle)
2880 {
2881         return !(!nr_copy_pages || !last_highmem_page_copied() ||
2882                         handle->cur <= nr_meta_pages + nr_copy_pages + nr_zero_pages);
2883 }
2884 
2885 #ifdef CONFIG_HIGHMEM
2886 /* Assumes that @buf is ready and points to a "safe" page */
2887 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2888                                        void *buf)
2889 {
2890         void *kaddr1, *kaddr2;
2891 
2892         kaddr1 = kmap_atomic(p1);
2893         kaddr2 = kmap_atomic(p2);
2894         copy_page(buf, kaddr1);
2895         copy_page(kaddr1, kaddr2);
2896         copy_page(kaddr2, buf);
2897         kunmap_atomic(kaddr2);
2898         kunmap_atomic(kaddr1);
2899 }
2900 
2901 /**
2902  * restore_highmem - Put highmem image pages into their original locations.
2903  *
2904  * For each highmem page that was in use before hibernation and is included in
2905  * the image, and also has been allocated by the "restore" kernel, swap its
2906  * current contents with the previous (ie. "before hibernation") ones.
2907  *
2908  * If the restore eventually fails, we can call this function once again and
2909  * restore the highmem state as seen by the restore kernel.
2910  */
2911 int restore_highmem(void)
2912 {
2913         struct highmem_pbe *pbe = highmem_pblist;
2914         void *buf;
2915 
2916         if (!pbe)
2917                 return 0;
2918 
2919         buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2920         if (!buf)
2921                 return -ENOMEM;
2922 
2923         while (pbe) {
2924                 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2925                 pbe = pbe->next;
2926         }
2927         free_image_page(buf, PG_UNSAFE_CLEAR);
2928         return 0;
2929 }
2930 #endif /* CONFIG_HIGHMEM */
2931 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php