~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/power/swap.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * linux/kernel/power/swap.c
  4  *
  5  * This file provides functions for reading the suspend image from
  6  * and writing it to a swap partition.
  7  *
  8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
  9  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
 10  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
 11  */
 12 
 13 #define pr_fmt(fmt) "PM: " fmt
 14 
 15 #include <linux/module.h>
 16 #include <linux/file.h>
 17 #include <linux/delay.h>
 18 #include <linux/bitops.h>
 19 #include <linux/device.h>
 20 #include <linux/bio.h>
 21 #include <linux/blkdev.h>
 22 #include <linux/swap.h>
 23 #include <linux/swapops.h>
 24 #include <linux/pm.h>
 25 #include <linux/slab.h>
 26 #include <linux/vmalloc.h>
 27 #include <linux/cpumask.h>
 28 #include <linux/atomic.h>
 29 #include <linux/kthread.h>
 30 #include <linux/crc32.h>
 31 #include <linux/ktime.h>
 32 
 33 #include "power.h"
 34 
 35 #define HIBERNATE_SIG   "S1SUSPEND"
 36 
 37 u32 swsusp_hardware_signature;
 38 
 39 /*
 40  * When reading an {un,}compressed image, we may restore pages in place,
 41  * in which case some architectures need these pages cleaning before they
 42  * can be executed. We don't know which pages these may be, so clean the lot.
 43  */
 44 static bool clean_pages_on_read;
 45 static bool clean_pages_on_decompress;
 46 
 47 /*
 48  *      The swap map is a data structure used for keeping track of each page
 49  *      written to a swap partition.  It consists of many swap_map_page
 50  *      structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
 51  *      These structures are stored on the swap and linked together with the
 52  *      help of the .next_swap member.
 53  *
 54  *      The swap map is created during suspend.  The swap map pages are
 55  *      allocated and populated one at a time, so we only need one memory
 56  *      page to set up the entire structure.
 57  *
 58  *      During resume we pick up all swap_map_page structures into a list.
 59  */
 60 
 61 #define MAP_PAGE_ENTRIES        (PAGE_SIZE / sizeof(sector_t) - 1)
 62 
 63 /*
 64  * Number of free pages that are not high.
 65  */
 66 static inline unsigned long low_free_pages(void)
 67 {
 68         return nr_free_pages() - nr_free_highpages();
 69 }
 70 
 71 /*
 72  * Number of pages required to be kept free while writing the image. Always
 73  * half of all available low pages before the writing starts.
 74  */
 75 static inline unsigned long reqd_free_pages(void)
 76 {
 77         return low_free_pages() / 2;
 78 }
 79 
 80 struct swap_map_page {
 81         sector_t entries[MAP_PAGE_ENTRIES];
 82         sector_t next_swap;
 83 };
 84 
 85 struct swap_map_page_list {
 86         struct swap_map_page *map;
 87         struct swap_map_page_list *next;
 88 };
 89 
 90 /*
 91  *      The swap_map_handle structure is used for handling swap in
 92  *      a file-alike way
 93  */
 94 
 95 struct swap_map_handle {
 96         struct swap_map_page *cur;
 97         struct swap_map_page_list *maps;
 98         sector_t cur_swap;
 99         sector_t first_sector;
100         unsigned int k;
101         unsigned long reqd_free_pages;
102         u32 crc32;
103 };
104 
105 struct swsusp_header {
106         char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
107                       sizeof(u32) - sizeof(u32)];
108         u32     hw_sig;
109         u32     crc32;
110         sector_t image;
111         unsigned int flags;     /* Flags to pass to the "boot" kernel */
112         char    orig_sig[10];
113         char    sig[10];
114 } __packed;
115 
116 static struct swsusp_header *swsusp_header;
117 
118 /*
119  *      The following functions are used for tracing the allocated
120  *      swap pages, so that they can be freed in case of an error.
121  */
122 
123 struct swsusp_extent {
124         struct rb_node node;
125         unsigned long start;
126         unsigned long end;
127 };
128 
129 static struct rb_root swsusp_extents = RB_ROOT;
130 
131 static int swsusp_extents_insert(unsigned long swap_offset)
132 {
133         struct rb_node **new = &(swsusp_extents.rb_node);
134         struct rb_node *parent = NULL;
135         struct swsusp_extent *ext;
136 
137         /* Figure out where to put the new node */
138         while (*new) {
139                 ext = rb_entry(*new, struct swsusp_extent, node);
140                 parent = *new;
141                 if (swap_offset < ext->start) {
142                         /* Try to merge */
143                         if (swap_offset == ext->start - 1) {
144                                 ext->start--;
145                                 return 0;
146                         }
147                         new = &((*new)->rb_left);
148                 } else if (swap_offset > ext->end) {
149                         /* Try to merge */
150                         if (swap_offset == ext->end + 1) {
151                                 ext->end++;
152                                 return 0;
153                         }
154                         new = &((*new)->rb_right);
155                 } else {
156                         /* It already is in the tree */
157                         return -EINVAL;
158                 }
159         }
160         /* Add the new node and rebalance the tree. */
161         ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
162         if (!ext)
163                 return -ENOMEM;
164 
165         ext->start = swap_offset;
166         ext->end = swap_offset;
167         rb_link_node(&ext->node, parent, new);
168         rb_insert_color(&ext->node, &swsusp_extents);
169         return 0;
170 }
171 
172 /*
173  *      alloc_swapdev_block - allocate a swap page and register that it has
174  *      been allocated, so that it can be freed in case of an error.
175  */
176 
177 sector_t alloc_swapdev_block(int swap)
178 {
179         unsigned long offset;
180 
181         offset = swp_offset(get_swap_page_of_type(swap));
182         if (offset) {
183                 if (swsusp_extents_insert(offset))
184                         swap_free(swp_entry(swap, offset));
185                 else
186                         return swapdev_block(swap, offset);
187         }
188         return 0;
189 }
190 
191 /*
192  *      free_all_swap_pages - free swap pages allocated for saving image data.
193  *      It also frees the extents used to register which swap entries had been
194  *      allocated.
195  */
196 
197 void free_all_swap_pages(int swap)
198 {
199         struct rb_node *node;
200 
201         while ((node = swsusp_extents.rb_node)) {
202                 struct swsusp_extent *ext;
203 
204                 ext = rb_entry(node, struct swsusp_extent, node);
205                 rb_erase(node, &swsusp_extents);
206                 swap_free_nr(swp_entry(swap, ext->start),
207                              ext->end - ext->start + 1);
208 
209                 kfree(ext);
210         }
211 }
212 
213 int swsusp_swap_in_use(void)
214 {
215         return (swsusp_extents.rb_node != NULL);
216 }
217 
218 /*
219  * General things
220  */
221 
222 static unsigned short root_swap = 0xffff;
223 static struct file *hib_resume_bdev_file;
224 
225 struct hib_bio_batch {
226         atomic_t                count;
227         wait_queue_head_t       wait;
228         blk_status_t            error;
229         struct blk_plug         plug;
230 };
231 
232 static void hib_init_batch(struct hib_bio_batch *hb)
233 {
234         atomic_set(&hb->count, 0);
235         init_waitqueue_head(&hb->wait);
236         hb->error = BLK_STS_OK;
237         blk_start_plug(&hb->plug);
238 }
239 
240 static void hib_finish_batch(struct hib_bio_batch *hb)
241 {
242         blk_finish_plug(&hb->plug);
243 }
244 
245 static void hib_end_io(struct bio *bio)
246 {
247         struct hib_bio_batch *hb = bio->bi_private;
248         struct page *page = bio_first_page_all(bio);
249 
250         if (bio->bi_status) {
251                 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
252                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
253                          (unsigned long long)bio->bi_iter.bi_sector);
254         }
255 
256         if (bio_data_dir(bio) == WRITE)
257                 put_page(page);
258         else if (clean_pages_on_read)
259                 flush_icache_range((unsigned long)page_address(page),
260                                    (unsigned long)page_address(page) + PAGE_SIZE);
261 
262         if (bio->bi_status && !hb->error)
263                 hb->error = bio->bi_status;
264         if (atomic_dec_and_test(&hb->count))
265                 wake_up(&hb->wait);
266 
267         bio_put(bio);
268 }
269 
270 static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
271                          struct hib_bio_batch *hb)
272 {
273         struct page *page = virt_to_page(addr);
274         struct bio *bio;
275         int error = 0;
276 
277         bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf,
278                         GFP_NOIO | __GFP_HIGH);
279         bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
280 
281         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
282                 pr_err("Adding page to bio failed at %llu\n",
283                        (unsigned long long)bio->bi_iter.bi_sector);
284                 bio_put(bio);
285                 return -EFAULT;
286         }
287 
288         if (hb) {
289                 bio->bi_end_io = hib_end_io;
290                 bio->bi_private = hb;
291                 atomic_inc(&hb->count);
292                 submit_bio(bio);
293         } else {
294                 error = submit_bio_wait(bio);
295                 bio_put(bio);
296         }
297 
298         return error;
299 }
300 
301 static int hib_wait_io(struct hib_bio_batch *hb)
302 {
303         /*
304          * We are relying on the behavior of blk_plug that a thread with
305          * a plug will flush the plug list before sleeping.
306          */
307         wait_event(hb->wait, atomic_read(&hb->count) == 0);
308         return blk_status_to_errno(hb->error);
309 }
310 
311 /*
312  * Saving part
313  */
314 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
315 {
316         int error;
317 
318         hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
319         if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
320             !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
321                 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
322                 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
323                 swsusp_header->image = handle->first_sector;
324                 if (swsusp_hardware_signature) {
325                         swsusp_header->hw_sig = swsusp_hardware_signature;
326                         flags |= SF_HW_SIG;
327                 }
328                 swsusp_header->flags = flags;
329                 if (flags & SF_CRC32_MODE)
330                         swsusp_header->crc32 = handle->crc32;
331                 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
332                                       swsusp_resume_block, swsusp_header, NULL);
333         } else {
334                 pr_err("Swap header not found!\n");
335                 error = -ENODEV;
336         }
337         return error;
338 }
339 
340 /*
341  * Hold the swsusp_header flag. This is used in software_resume() in
342  * 'kernel/power/hibernate' to check if the image is compressed and query
343  * for the compression algorithm support(if so).
344  */
345 unsigned int swsusp_header_flags;
346 
347 /**
348  *      swsusp_swap_check - check if the resume device is a swap device
349  *      and get its index (if so)
350  *
351  *      This is called before saving image
352  */
353 static int swsusp_swap_check(void)
354 {
355         int res;
356 
357         if (swsusp_resume_device)
358                 res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
359         else
360                 res = find_first_swap(&swsusp_resume_device);
361         if (res < 0)
362                 return res;
363         root_swap = res;
364 
365         hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
366                         BLK_OPEN_WRITE, NULL, NULL);
367         if (IS_ERR(hib_resume_bdev_file))
368                 return PTR_ERR(hib_resume_bdev_file);
369 
370         return 0;
371 }
372 
373 /**
374  *      write_page - Write one page to given swap location.
375  *      @buf:           Address we're writing.
376  *      @offset:        Offset of the swap page we're writing to.
377  *      @hb:            bio completion batch
378  */
379 
380 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
381 {
382         void *src;
383         int ret;
384 
385         if (!offset)
386                 return -ENOSPC;
387 
388         if (hb) {
389                 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
390                                               __GFP_NORETRY);
391                 if (src) {
392                         copy_page(src, buf);
393                 } else {
394                         ret = hib_wait_io(hb); /* Free pages */
395                         if (ret)
396                                 return ret;
397                         src = (void *)__get_free_page(GFP_NOIO |
398                                                       __GFP_NOWARN |
399                                                       __GFP_NORETRY);
400                         if (src) {
401                                 copy_page(src, buf);
402                         } else {
403                                 WARN_ON_ONCE(1);
404                                 hb = NULL;      /* Go synchronous */
405                                 src = buf;
406                         }
407                 }
408         } else {
409                 src = buf;
410         }
411         return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
412 }
413 
414 static void release_swap_writer(struct swap_map_handle *handle)
415 {
416         if (handle->cur)
417                 free_page((unsigned long)handle->cur);
418         handle->cur = NULL;
419 }
420 
421 static int get_swap_writer(struct swap_map_handle *handle)
422 {
423         int ret;
424 
425         ret = swsusp_swap_check();
426         if (ret) {
427                 if (ret != -ENOSPC)
428                         pr_err("Cannot find swap device, try swapon -a\n");
429                 return ret;
430         }
431         handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
432         if (!handle->cur) {
433                 ret = -ENOMEM;
434                 goto err_close;
435         }
436         handle->cur_swap = alloc_swapdev_block(root_swap);
437         if (!handle->cur_swap) {
438                 ret = -ENOSPC;
439                 goto err_rel;
440         }
441         handle->k = 0;
442         handle->reqd_free_pages = reqd_free_pages();
443         handle->first_sector = handle->cur_swap;
444         return 0;
445 err_rel:
446         release_swap_writer(handle);
447 err_close:
448         swsusp_close();
449         return ret;
450 }
451 
452 static int swap_write_page(struct swap_map_handle *handle, void *buf,
453                 struct hib_bio_batch *hb)
454 {
455         int error;
456         sector_t offset;
457 
458         if (!handle->cur)
459                 return -EINVAL;
460         offset = alloc_swapdev_block(root_swap);
461         error = write_page(buf, offset, hb);
462         if (error)
463                 return error;
464         handle->cur->entries[handle->k++] = offset;
465         if (handle->k >= MAP_PAGE_ENTRIES) {
466                 offset = alloc_swapdev_block(root_swap);
467                 if (!offset)
468                         return -ENOSPC;
469                 handle->cur->next_swap = offset;
470                 error = write_page(handle->cur, handle->cur_swap, hb);
471                 if (error)
472                         goto out;
473                 clear_page(handle->cur);
474                 handle->cur_swap = offset;
475                 handle->k = 0;
476 
477                 if (hb && low_free_pages() <= handle->reqd_free_pages) {
478                         error = hib_wait_io(hb);
479                         if (error)
480                                 goto out;
481                         /*
482                          * Recalculate the number of required free pages, to
483                          * make sure we never take more than half.
484                          */
485                         handle->reqd_free_pages = reqd_free_pages();
486                 }
487         }
488  out:
489         return error;
490 }
491 
492 static int flush_swap_writer(struct swap_map_handle *handle)
493 {
494         if (handle->cur && handle->cur_swap)
495                 return write_page(handle->cur, handle->cur_swap, NULL);
496         else
497                 return -EINVAL;
498 }
499 
500 static int swap_writer_finish(struct swap_map_handle *handle,
501                 unsigned int flags, int error)
502 {
503         if (!error) {
504                 pr_info("S");
505                 error = mark_swapfiles(handle, flags);
506                 pr_cont("|\n");
507                 flush_swap_writer(handle);
508         }
509 
510         if (error)
511                 free_all_swap_pages(root_swap);
512         release_swap_writer(handle);
513         swsusp_close();
514 
515         return error;
516 }
517 
518 /*
519  * Bytes we need for compressed data in worst case. We assume(limitation)
520  * this is the worst of all the compression algorithms.
521  */
522 #define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2)
523 
524 /* We need to remember how much compressed data we need to read. */
525 #define CMP_HEADER      sizeof(size_t)
526 
527 /* Number of pages/bytes we'll compress at one time. */
528 #define UNC_PAGES       32
529 #define UNC_SIZE        (UNC_PAGES * PAGE_SIZE)
530 
531 /* Number of pages we need for compressed data (worst case). */
532 #define CMP_PAGES       DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \
533                                 CMP_HEADER, PAGE_SIZE)
534 #define CMP_SIZE        (CMP_PAGES * PAGE_SIZE)
535 
536 /* Maximum number of threads for compression/decompression. */
537 #define CMP_THREADS     3
538 
539 /* Minimum/maximum number of pages for read buffering. */
540 #define CMP_MIN_RD_PAGES        1024
541 #define CMP_MAX_RD_PAGES        8192
542 
543 /**
544  *      save_image - save the suspend image data
545  */
546 
547 static int save_image(struct swap_map_handle *handle,
548                       struct snapshot_handle *snapshot,
549                       unsigned int nr_to_write)
550 {
551         unsigned int m;
552         int ret;
553         int nr_pages;
554         int err2;
555         struct hib_bio_batch hb;
556         ktime_t start;
557         ktime_t stop;
558 
559         hib_init_batch(&hb);
560 
561         pr_info("Saving image data pages (%u pages)...\n",
562                 nr_to_write);
563         m = nr_to_write / 10;
564         if (!m)
565                 m = 1;
566         nr_pages = 0;
567         start = ktime_get();
568         while (1) {
569                 ret = snapshot_read_next(snapshot);
570                 if (ret <= 0)
571                         break;
572                 ret = swap_write_page(handle, data_of(*snapshot), &hb);
573                 if (ret)
574                         break;
575                 if (!(nr_pages % m))
576                         pr_info("Image saving progress: %3d%%\n",
577                                 nr_pages / m * 10);
578                 nr_pages++;
579         }
580         err2 = hib_wait_io(&hb);
581         hib_finish_batch(&hb);
582         stop = ktime_get();
583         if (!ret)
584                 ret = err2;
585         if (!ret)
586                 pr_info("Image saving done\n");
587         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
588         return ret;
589 }
590 
591 /*
592  * Structure used for CRC32.
593  */
594 struct crc_data {
595         struct task_struct *thr;                  /* thread */
596         atomic_t ready;                           /* ready to start flag */
597         atomic_t stop;                            /* ready to stop flag */
598         unsigned run_threads;                     /* nr current threads */
599         wait_queue_head_t go;                     /* start crc update */
600         wait_queue_head_t done;                   /* crc update done */
601         u32 *crc32;                               /* points to handle's crc32 */
602         size_t *unc_len[CMP_THREADS];             /* uncompressed lengths */
603         unsigned char *unc[CMP_THREADS];          /* uncompressed data */
604 };
605 
606 /*
607  * CRC32 update function that runs in its own thread.
608  */
609 static int crc32_threadfn(void *data)
610 {
611         struct crc_data *d = data;
612         unsigned i;
613 
614         while (1) {
615                 wait_event(d->go, atomic_read_acquire(&d->ready) ||
616                                   kthread_should_stop());
617                 if (kthread_should_stop()) {
618                         d->thr = NULL;
619                         atomic_set_release(&d->stop, 1);
620                         wake_up(&d->done);
621                         break;
622                 }
623                 atomic_set(&d->ready, 0);
624 
625                 for (i = 0; i < d->run_threads; i++)
626                         *d->crc32 = crc32_le(*d->crc32,
627                                              d->unc[i], *d->unc_len[i]);
628                 atomic_set_release(&d->stop, 1);
629                 wake_up(&d->done);
630         }
631         return 0;
632 }
633 /*
634  * Structure used for data compression.
635  */
636 struct cmp_data {
637         struct task_struct *thr;                  /* thread */
638         struct crypto_comp *cc;                   /* crypto compressor stream */
639         atomic_t ready;                           /* ready to start flag */
640         atomic_t stop;                            /* ready to stop flag */
641         int ret;                                  /* return code */
642         wait_queue_head_t go;                     /* start compression */
643         wait_queue_head_t done;                   /* compression done */
644         size_t unc_len;                           /* uncompressed length */
645         size_t cmp_len;                           /* compressed length */
646         unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
647         unsigned char cmp[CMP_SIZE];              /* compressed buffer */
648 };
649 
650 /* Indicates the image size after compression */
651 static atomic_t compressed_size = ATOMIC_INIT(0);
652 
653 /*
654  * Compression function that runs in its own thread.
655  */
656 static int compress_threadfn(void *data)
657 {
658         struct cmp_data *d = data;
659         unsigned int cmp_len = 0;
660 
661         while (1) {
662                 wait_event(d->go, atomic_read_acquire(&d->ready) ||
663                                   kthread_should_stop());
664                 if (kthread_should_stop()) {
665                         d->thr = NULL;
666                         d->ret = -1;
667                         atomic_set_release(&d->stop, 1);
668                         wake_up(&d->done);
669                         break;
670                 }
671                 atomic_set(&d->ready, 0);
672 
673                 cmp_len = CMP_SIZE - CMP_HEADER;
674                 d->ret = crypto_comp_compress(d->cc, d->unc, d->unc_len,
675                                               d->cmp + CMP_HEADER,
676                                               &cmp_len);
677                 d->cmp_len = cmp_len;
678 
679                 atomic_set(&compressed_size, atomic_read(&compressed_size) + d->cmp_len);
680                 atomic_set_release(&d->stop, 1);
681                 wake_up(&d->done);
682         }
683         return 0;
684 }
685 
686 /**
687  * save_compressed_image - Save the suspend image data after compression.
688  * @handle: Swap map handle to use for saving the image.
689  * @snapshot: Image to read data from.
690  * @nr_to_write: Number of pages to save.
691  */
692 static int save_compressed_image(struct swap_map_handle *handle,
693                                  struct snapshot_handle *snapshot,
694                                  unsigned int nr_to_write)
695 {
696         unsigned int m;
697         int ret = 0;
698         int nr_pages;
699         int err2;
700         struct hib_bio_batch hb;
701         ktime_t start;
702         ktime_t stop;
703         size_t off;
704         unsigned thr, run_threads, nr_threads;
705         unsigned char *page = NULL;
706         struct cmp_data *data = NULL;
707         struct crc_data *crc = NULL;
708 
709         hib_init_batch(&hb);
710 
711         atomic_set(&compressed_size, 0);
712 
713         /*
714          * We'll limit the number of threads for compression to limit memory
715          * footprint.
716          */
717         nr_threads = num_online_cpus() - 1;
718         nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
719 
720         page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
721         if (!page) {
722                 pr_err("Failed to allocate %s page\n", hib_comp_algo);
723                 ret = -ENOMEM;
724                 goto out_clean;
725         }
726 
727         data = vzalloc(array_size(nr_threads, sizeof(*data)));
728         if (!data) {
729                 pr_err("Failed to allocate %s data\n", hib_comp_algo);
730                 ret = -ENOMEM;
731                 goto out_clean;
732         }
733 
734         crc = kzalloc(sizeof(*crc), GFP_KERNEL);
735         if (!crc) {
736                 pr_err("Failed to allocate crc\n");
737                 ret = -ENOMEM;
738                 goto out_clean;
739         }
740 
741         /*
742          * Start the compression threads.
743          */
744         for (thr = 0; thr < nr_threads; thr++) {
745                 init_waitqueue_head(&data[thr].go);
746                 init_waitqueue_head(&data[thr].done);
747 
748                 data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
749                 if (IS_ERR_OR_NULL(data[thr].cc)) {
750                         pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
751                         ret = -EFAULT;
752                         goto out_clean;
753                 }
754 
755                 data[thr].thr = kthread_run(compress_threadfn,
756                                             &data[thr],
757                                             "image_compress/%u", thr);
758                 if (IS_ERR(data[thr].thr)) {
759                         data[thr].thr = NULL;
760                         pr_err("Cannot start compression threads\n");
761                         ret = -ENOMEM;
762                         goto out_clean;
763                 }
764         }
765 
766         /*
767          * Start the CRC32 thread.
768          */
769         init_waitqueue_head(&crc->go);
770         init_waitqueue_head(&crc->done);
771 
772         handle->crc32 = 0;
773         crc->crc32 = &handle->crc32;
774         for (thr = 0; thr < nr_threads; thr++) {
775                 crc->unc[thr] = data[thr].unc;
776                 crc->unc_len[thr] = &data[thr].unc_len;
777         }
778 
779         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
780         if (IS_ERR(crc->thr)) {
781                 crc->thr = NULL;
782                 pr_err("Cannot start CRC32 thread\n");
783                 ret = -ENOMEM;
784                 goto out_clean;
785         }
786 
787         /*
788          * Adjust the number of required free pages after all allocations have
789          * been done. We don't want to run out of pages when writing.
790          */
791         handle->reqd_free_pages = reqd_free_pages();
792 
793         pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo);
794         pr_info("Compressing and saving image data (%u pages)...\n",
795                 nr_to_write);
796         m = nr_to_write / 10;
797         if (!m)
798                 m = 1;
799         nr_pages = 0;
800         start = ktime_get();
801         for (;;) {
802                 for (thr = 0; thr < nr_threads; thr++) {
803                         for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) {
804                                 ret = snapshot_read_next(snapshot);
805                                 if (ret < 0)
806                                         goto out_finish;
807 
808                                 if (!ret)
809                                         break;
810 
811                                 memcpy(data[thr].unc + off,
812                                        data_of(*snapshot), PAGE_SIZE);
813 
814                                 if (!(nr_pages % m))
815                                         pr_info("Image saving progress: %3d%%\n",
816                                                 nr_pages / m * 10);
817                                 nr_pages++;
818                         }
819                         if (!off)
820                                 break;
821 
822                         data[thr].unc_len = off;
823 
824                         atomic_set_release(&data[thr].ready, 1);
825                         wake_up(&data[thr].go);
826                 }
827 
828                 if (!thr)
829                         break;
830 
831                 crc->run_threads = thr;
832                 atomic_set_release(&crc->ready, 1);
833                 wake_up(&crc->go);
834 
835                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
836                         wait_event(data[thr].done,
837                                 atomic_read_acquire(&data[thr].stop));
838                         atomic_set(&data[thr].stop, 0);
839 
840                         ret = data[thr].ret;
841 
842                         if (ret < 0) {
843                                 pr_err("%s compression failed\n", hib_comp_algo);
844                                 goto out_finish;
845                         }
846 
847                         if (unlikely(!data[thr].cmp_len ||
848                                      data[thr].cmp_len >
849                                      bytes_worst_compress(data[thr].unc_len))) {
850                                 pr_err("Invalid %s compressed length\n", hib_comp_algo);
851                                 ret = -1;
852                                 goto out_finish;
853                         }
854 
855                         *(size_t *)data[thr].cmp = data[thr].cmp_len;
856 
857                         /*
858                          * Given we are writing one page at a time to disk, we
859                          * copy that much from the buffer, although the last
860                          * bit will likely be smaller than full page. This is
861                          * OK - we saved the length of the compressed data, so
862                          * any garbage at the end will be discarded when we
863                          * read it.
864                          */
865                         for (off = 0;
866                              off < CMP_HEADER + data[thr].cmp_len;
867                              off += PAGE_SIZE) {
868                                 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
869 
870                                 ret = swap_write_page(handle, page, &hb);
871                                 if (ret)
872                                         goto out_finish;
873                         }
874                 }
875 
876                 wait_event(crc->done, atomic_read_acquire(&crc->stop));
877                 atomic_set(&crc->stop, 0);
878         }
879 
880 out_finish:
881         err2 = hib_wait_io(&hb);
882         stop = ktime_get();
883         if (!ret)
884                 ret = err2;
885         if (!ret)
886                 pr_info("Image saving done\n");
887         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
888         pr_info("Image size after compression: %d kbytes\n",
889                 (atomic_read(&compressed_size) / 1024));
890 
891 out_clean:
892         hib_finish_batch(&hb);
893         if (crc) {
894                 if (crc->thr)
895                         kthread_stop(crc->thr);
896                 kfree(crc);
897         }
898         if (data) {
899                 for (thr = 0; thr < nr_threads; thr++) {
900                         if (data[thr].thr)
901                                 kthread_stop(data[thr].thr);
902                         if (data[thr].cc)
903                                 crypto_free_comp(data[thr].cc);
904                 }
905                 vfree(data);
906         }
907         if (page) free_page((unsigned long)page);
908 
909         return ret;
910 }
911 
912 /**
913  *      enough_swap - Make sure we have enough swap to save the image.
914  *
915  *      Returns TRUE or FALSE after checking the total amount of swap
916  *      space available from the resume partition.
917  */
918 
919 static int enough_swap(unsigned int nr_pages)
920 {
921         unsigned int free_swap = count_swap_pages(root_swap, 1);
922         unsigned int required;
923 
924         pr_debug("Free swap pages: %u\n", free_swap);
925 
926         required = PAGES_FOR_IO + nr_pages;
927         return free_swap > required;
928 }
929 
930 /**
931  *      swsusp_write - Write entire image and metadata.
932  *      @flags: flags to pass to the "boot" kernel in the image header
933  *
934  *      It is important _NOT_ to umount filesystems at this point. We want
935  *      them synced (in case something goes wrong) but we DO not want to mark
936  *      filesystem clean: it is not. (And it does not matter, if we resume
937  *      correctly, we'll mark system clean, anyway.)
938  */
939 
940 int swsusp_write(unsigned int flags)
941 {
942         struct swap_map_handle handle;
943         struct snapshot_handle snapshot;
944         struct swsusp_info *header;
945         unsigned long pages;
946         int error;
947 
948         pages = snapshot_get_image_size();
949         error = get_swap_writer(&handle);
950         if (error) {
951                 pr_err("Cannot get swap writer\n");
952                 return error;
953         }
954         if (flags & SF_NOCOMPRESS_MODE) {
955                 if (!enough_swap(pages)) {
956                         pr_err("Not enough free swap\n");
957                         error = -ENOSPC;
958                         goto out_finish;
959                 }
960         }
961         memset(&snapshot, 0, sizeof(struct snapshot_handle));
962         error = snapshot_read_next(&snapshot);
963         if (error < (int)PAGE_SIZE) {
964                 if (error >= 0)
965                         error = -EFAULT;
966 
967                 goto out_finish;
968         }
969         header = (struct swsusp_info *)data_of(snapshot);
970         error = swap_write_page(&handle, header, NULL);
971         if (!error) {
972                 error = (flags & SF_NOCOMPRESS_MODE) ?
973                         save_image(&handle, &snapshot, pages - 1) :
974                         save_compressed_image(&handle, &snapshot, pages - 1);
975         }
976 out_finish:
977         error = swap_writer_finish(&handle, flags, error);
978         return error;
979 }
980 
981 /*
982  *      The following functions allow us to read data using a swap map
983  *      in a file-like way.
984  */
985 
986 static void release_swap_reader(struct swap_map_handle *handle)
987 {
988         struct swap_map_page_list *tmp;
989 
990         while (handle->maps) {
991                 if (handle->maps->map)
992                         free_page((unsigned long)handle->maps->map);
993                 tmp = handle->maps;
994                 handle->maps = handle->maps->next;
995                 kfree(tmp);
996         }
997         handle->cur = NULL;
998 }
999 
1000 static int get_swap_reader(struct swap_map_handle *handle,
1001                 unsigned int *flags_p)
1002 {
1003         int error;
1004         struct swap_map_page_list *tmp, *last;
1005         sector_t offset;
1006 
1007         *flags_p = swsusp_header->flags;
1008 
1009         if (!swsusp_header->image) /* how can this happen? */
1010                 return -EINVAL;
1011 
1012         handle->cur = NULL;
1013         last = handle->maps = NULL;
1014         offset = swsusp_header->image;
1015         while (offset) {
1016                 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
1017                 if (!tmp) {
1018                         release_swap_reader(handle);
1019                         return -ENOMEM;
1020                 }
1021                 if (!handle->maps)
1022                         handle->maps = tmp;
1023                 if (last)
1024                         last->next = tmp;
1025                 last = tmp;
1026 
1027                 tmp->map = (struct swap_map_page *)
1028                            __get_free_page(GFP_NOIO | __GFP_HIGH);
1029                 if (!tmp->map) {
1030                         release_swap_reader(handle);
1031                         return -ENOMEM;
1032                 }
1033 
1034                 error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1035                 if (error) {
1036                         release_swap_reader(handle);
1037                         return error;
1038                 }
1039                 offset = tmp->map->next_swap;
1040         }
1041         handle->k = 0;
1042         handle->cur = handle->maps->map;
1043         return 0;
1044 }
1045 
1046 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1047                 struct hib_bio_batch *hb)
1048 {
1049         sector_t offset;
1050         int error;
1051         struct swap_map_page_list *tmp;
1052 
1053         if (!handle->cur)
1054                 return -EINVAL;
1055         offset = handle->cur->entries[handle->k];
1056         if (!offset)
1057                 return -EFAULT;
1058         error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1059         if (error)
1060                 return error;
1061         if (++handle->k >= MAP_PAGE_ENTRIES) {
1062                 handle->k = 0;
1063                 free_page((unsigned long)handle->maps->map);
1064                 tmp = handle->maps;
1065                 handle->maps = handle->maps->next;
1066                 kfree(tmp);
1067                 if (!handle->maps)
1068                         release_swap_reader(handle);
1069                 else
1070                         handle->cur = handle->maps->map;
1071         }
1072         return error;
1073 }
1074 
1075 static int swap_reader_finish(struct swap_map_handle *handle)
1076 {
1077         release_swap_reader(handle);
1078 
1079         return 0;
1080 }
1081 
1082 /**
1083  *      load_image - load the image using the swap map handle
1084  *      @handle and the snapshot handle @snapshot
1085  *      (assume there are @nr_pages pages to load)
1086  */
1087 
1088 static int load_image(struct swap_map_handle *handle,
1089                       struct snapshot_handle *snapshot,
1090                       unsigned int nr_to_read)
1091 {
1092         unsigned int m;
1093         int ret = 0;
1094         ktime_t start;
1095         ktime_t stop;
1096         struct hib_bio_batch hb;
1097         int err2;
1098         unsigned nr_pages;
1099 
1100         hib_init_batch(&hb);
1101 
1102         clean_pages_on_read = true;
1103         pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1104         m = nr_to_read / 10;
1105         if (!m)
1106                 m = 1;
1107         nr_pages = 0;
1108         start = ktime_get();
1109         for ( ; ; ) {
1110                 ret = snapshot_write_next(snapshot);
1111                 if (ret <= 0)
1112                         break;
1113                 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1114                 if (ret)
1115                         break;
1116                 if (snapshot->sync_read)
1117                         ret = hib_wait_io(&hb);
1118                 if (ret)
1119                         break;
1120                 if (!(nr_pages % m))
1121                         pr_info("Image loading progress: %3d%%\n",
1122                                 nr_pages / m * 10);
1123                 nr_pages++;
1124         }
1125         err2 = hib_wait_io(&hb);
1126         hib_finish_batch(&hb);
1127         stop = ktime_get();
1128         if (!ret)
1129                 ret = err2;
1130         if (!ret) {
1131                 pr_info("Image loading done\n");
1132                 ret = snapshot_write_finalize(snapshot);
1133                 if (!ret && !snapshot_image_loaded(snapshot))
1134                         ret = -ENODATA;
1135         }
1136         swsusp_show_speed(start, stop, nr_to_read, "Read");
1137         return ret;
1138 }
1139 
1140 /*
1141  * Structure used for data decompression.
1142  */
1143 struct dec_data {
1144         struct task_struct *thr;                  /* thread */
1145         struct crypto_comp *cc;                   /* crypto compressor stream */
1146         atomic_t ready;                           /* ready to start flag */
1147         atomic_t stop;                            /* ready to stop flag */
1148         int ret;                                  /* return code */
1149         wait_queue_head_t go;                     /* start decompression */
1150         wait_queue_head_t done;                   /* decompression done */
1151         size_t unc_len;                           /* uncompressed length */
1152         size_t cmp_len;                           /* compressed length */
1153         unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
1154         unsigned char cmp[CMP_SIZE];              /* compressed buffer */
1155 };
1156 
1157 /*
1158  * Decompression function that runs in its own thread.
1159  */
1160 static int decompress_threadfn(void *data)
1161 {
1162         struct dec_data *d = data;
1163         unsigned int unc_len = 0;
1164 
1165         while (1) {
1166                 wait_event(d->go, atomic_read_acquire(&d->ready) ||
1167                                   kthread_should_stop());
1168                 if (kthread_should_stop()) {
1169                         d->thr = NULL;
1170                         d->ret = -1;
1171                         atomic_set_release(&d->stop, 1);
1172                         wake_up(&d->done);
1173                         break;
1174                 }
1175                 atomic_set(&d->ready, 0);
1176 
1177                 unc_len = UNC_SIZE;
1178                 d->ret = crypto_comp_decompress(d->cc, d->cmp + CMP_HEADER, d->cmp_len,
1179                                                 d->unc, &unc_len);
1180                 d->unc_len = unc_len;
1181 
1182                 if (clean_pages_on_decompress)
1183                         flush_icache_range((unsigned long)d->unc,
1184                                            (unsigned long)d->unc + d->unc_len);
1185 
1186                 atomic_set_release(&d->stop, 1);
1187                 wake_up(&d->done);
1188         }
1189         return 0;
1190 }
1191 
1192 /**
1193  * load_compressed_image - Load compressed image data and decompress it.
1194  * @handle: Swap map handle to use for loading data.
1195  * @snapshot: Image to copy uncompressed data into.
1196  * @nr_to_read: Number of pages to load.
1197  */
1198 static int load_compressed_image(struct swap_map_handle *handle,
1199                                  struct snapshot_handle *snapshot,
1200                                  unsigned int nr_to_read)
1201 {
1202         unsigned int m;
1203         int ret = 0;
1204         int eof = 0;
1205         struct hib_bio_batch hb;
1206         ktime_t start;
1207         ktime_t stop;
1208         unsigned nr_pages;
1209         size_t off;
1210         unsigned i, thr, run_threads, nr_threads;
1211         unsigned ring = 0, pg = 0, ring_size = 0,
1212                  have = 0, want, need, asked = 0;
1213         unsigned long read_pages = 0;
1214         unsigned char **page = NULL;
1215         struct dec_data *data = NULL;
1216         struct crc_data *crc = NULL;
1217 
1218         hib_init_batch(&hb);
1219 
1220         /*
1221          * We'll limit the number of threads for decompression to limit memory
1222          * footprint.
1223          */
1224         nr_threads = num_online_cpus() - 1;
1225         nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
1226 
1227         page = vmalloc(array_size(CMP_MAX_RD_PAGES, sizeof(*page)));
1228         if (!page) {
1229                 pr_err("Failed to allocate %s page\n", hib_comp_algo);
1230                 ret = -ENOMEM;
1231                 goto out_clean;
1232         }
1233 
1234         data = vzalloc(array_size(nr_threads, sizeof(*data)));
1235         if (!data) {
1236                 pr_err("Failed to allocate %s data\n", hib_comp_algo);
1237                 ret = -ENOMEM;
1238                 goto out_clean;
1239         }
1240 
1241         crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1242         if (!crc) {
1243                 pr_err("Failed to allocate crc\n");
1244                 ret = -ENOMEM;
1245                 goto out_clean;
1246         }
1247 
1248         clean_pages_on_decompress = true;
1249 
1250         /*
1251          * Start the decompression threads.
1252          */
1253         for (thr = 0; thr < nr_threads; thr++) {
1254                 init_waitqueue_head(&data[thr].go);
1255                 init_waitqueue_head(&data[thr].done);
1256 
1257                 data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
1258                 if (IS_ERR_OR_NULL(data[thr].cc)) {
1259                         pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
1260                         ret = -EFAULT;
1261                         goto out_clean;
1262                 }
1263 
1264                 data[thr].thr = kthread_run(decompress_threadfn,
1265                                             &data[thr],
1266                                             "image_decompress/%u", thr);
1267                 if (IS_ERR(data[thr].thr)) {
1268                         data[thr].thr = NULL;
1269                         pr_err("Cannot start decompression threads\n");
1270                         ret = -ENOMEM;
1271                         goto out_clean;
1272                 }
1273         }
1274 
1275         /*
1276          * Start the CRC32 thread.
1277          */
1278         init_waitqueue_head(&crc->go);
1279         init_waitqueue_head(&crc->done);
1280 
1281         handle->crc32 = 0;
1282         crc->crc32 = &handle->crc32;
1283         for (thr = 0; thr < nr_threads; thr++) {
1284                 crc->unc[thr] = data[thr].unc;
1285                 crc->unc_len[thr] = &data[thr].unc_len;
1286         }
1287 
1288         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1289         if (IS_ERR(crc->thr)) {
1290                 crc->thr = NULL;
1291                 pr_err("Cannot start CRC32 thread\n");
1292                 ret = -ENOMEM;
1293                 goto out_clean;
1294         }
1295 
1296         /*
1297          * Set the number of pages for read buffering.
1298          * This is complete guesswork, because we'll only know the real
1299          * picture once prepare_image() is called, which is much later on
1300          * during the image load phase. We'll assume the worst case and
1301          * say that none of the image pages are from high memory.
1302          */
1303         if (low_free_pages() > snapshot_get_image_size())
1304                 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1305         read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES);
1306 
1307         for (i = 0; i < read_pages; i++) {
1308                 page[i] = (void *)__get_free_page(i < CMP_PAGES ?
1309                                                   GFP_NOIO | __GFP_HIGH :
1310                                                   GFP_NOIO | __GFP_NOWARN |
1311                                                   __GFP_NORETRY);
1312 
1313                 if (!page[i]) {
1314                         if (i < CMP_PAGES) {
1315                                 ring_size = i;
1316                                 pr_err("Failed to allocate %s pages\n", hib_comp_algo);
1317                                 ret = -ENOMEM;
1318                                 goto out_clean;
1319                         } else {
1320                                 break;
1321                         }
1322                 }
1323         }
1324         want = ring_size = i;
1325 
1326         pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo);
1327         pr_info("Loading and decompressing image data (%u pages)...\n",
1328                 nr_to_read);
1329         m = nr_to_read / 10;
1330         if (!m)
1331                 m = 1;
1332         nr_pages = 0;
1333         start = ktime_get();
1334 
1335         ret = snapshot_write_next(snapshot);
1336         if (ret <= 0)
1337                 goto out_finish;
1338 
1339         for(;;) {
1340                 for (i = 0; !eof && i < want; i++) {
1341                         ret = swap_read_page(handle, page[ring], &hb);
1342                         if (ret) {
1343                                 /*
1344                                  * On real read error, finish. On end of data,
1345                                  * set EOF flag and just exit the read loop.
1346                                  */
1347                                 if (handle->cur &&
1348                                     handle->cur->entries[handle->k]) {
1349                                         goto out_finish;
1350                                 } else {
1351                                         eof = 1;
1352                                         break;
1353                                 }
1354                         }
1355                         if (++ring >= ring_size)
1356                                 ring = 0;
1357                 }
1358                 asked += i;
1359                 want -= i;
1360 
1361                 /*
1362                  * We are out of data, wait for some more.
1363                  */
1364                 if (!have) {
1365                         if (!asked)
1366                                 break;
1367 
1368                         ret = hib_wait_io(&hb);
1369                         if (ret)
1370                                 goto out_finish;
1371                         have += asked;
1372                         asked = 0;
1373                         if (eof)
1374                                 eof = 2;
1375                 }
1376 
1377                 if (crc->run_threads) {
1378                         wait_event(crc->done, atomic_read_acquire(&crc->stop));
1379                         atomic_set(&crc->stop, 0);
1380                         crc->run_threads = 0;
1381                 }
1382 
1383                 for (thr = 0; have && thr < nr_threads; thr++) {
1384                         data[thr].cmp_len = *(size_t *)page[pg];
1385                         if (unlikely(!data[thr].cmp_len ||
1386                                      data[thr].cmp_len >
1387                                         bytes_worst_compress(UNC_SIZE))) {
1388                                 pr_err("Invalid %s compressed length\n", hib_comp_algo);
1389                                 ret = -1;
1390                                 goto out_finish;
1391                         }
1392 
1393                         need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER,
1394                                             PAGE_SIZE);
1395                         if (need > have) {
1396                                 if (eof > 1) {
1397                                         ret = -1;
1398                                         goto out_finish;
1399                                 }
1400                                 break;
1401                         }
1402 
1403                         for (off = 0;
1404                              off < CMP_HEADER + data[thr].cmp_len;
1405                              off += PAGE_SIZE) {
1406                                 memcpy(data[thr].cmp + off,
1407                                        page[pg], PAGE_SIZE);
1408                                 have--;
1409                                 want++;
1410                                 if (++pg >= ring_size)
1411                                         pg = 0;
1412                         }
1413 
1414                         atomic_set_release(&data[thr].ready, 1);
1415                         wake_up(&data[thr].go);
1416                 }
1417 
1418                 /*
1419                  * Wait for more data while we are decompressing.
1420                  */
1421                 if (have < CMP_PAGES && asked) {
1422                         ret = hib_wait_io(&hb);
1423                         if (ret)
1424                                 goto out_finish;
1425                         have += asked;
1426                         asked = 0;
1427                         if (eof)
1428                                 eof = 2;
1429                 }
1430 
1431                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1432                         wait_event(data[thr].done,
1433                                 atomic_read_acquire(&data[thr].stop));
1434                         atomic_set(&data[thr].stop, 0);
1435 
1436                         ret = data[thr].ret;
1437 
1438                         if (ret < 0) {
1439                                 pr_err("%s decompression failed\n", hib_comp_algo);
1440                                 goto out_finish;
1441                         }
1442 
1443                         if (unlikely(!data[thr].unc_len ||
1444                                 data[thr].unc_len > UNC_SIZE ||
1445                                 data[thr].unc_len & (PAGE_SIZE - 1))) {
1446                                 pr_err("Invalid %s uncompressed length\n", hib_comp_algo);
1447                                 ret = -1;
1448                                 goto out_finish;
1449                         }
1450 
1451                         for (off = 0;
1452                              off < data[thr].unc_len; off += PAGE_SIZE) {
1453                                 memcpy(data_of(*snapshot),
1454                                        data[thr].unc + off, PAGE_SIZE);
1455 
1456                                 if (!(nr_pages % m))
1457                                         pr_info("Image loading progress: %3d%%\n",
1458                                                 nr_pages / m * 10);
1459                                 nr_pages++;
1460 
1461                                 ret = snapshot_write_next(snapshot);
1462                                 if (ret <= 0) {
1463                                         crc->run_threads = thr + 1;
1464                                         atomic_set_release(&crc->ready, 1);
1465                                         wake_up(&crc->go);
1466                                         goto out_finish;
1467                                 }
1468                         }
1469                 }
1470 
1471                 crc->run_threads = thr;
1472                 atomic_set_release(&crc->ready, 1);
1473                 wake_up(&crc->go);
1474         }
1475 
1476 out_finish:
1477         if (crc->run_threads) {
1478                 wait_event(crc->done, atomic_read_acquire(&crc->stop));
1479                 atomic_set(&crc->stop, 0);
1480         }
1481         stop = ktime_get();
1482         if (!ret) {
1483                 pr_info("Image loading done\n");
1484                 ret = snapshot_write_finalize(snapshot);
1485                 if (!ret && !snapshot_image_loaded(snapshot))
1486                         ret = -ENODATA;
1487                 if (!ret) {
1488                         if (swsusp_header->flags & SF_CRC32_MODE) {
1489                                 if(handle->crc32 != swsusp_header->crc32) {
1490                                         pr_err("Invalid image CRC32!\n");
1491                                         ret = -ENODATA;
1492                                 }
1493                         }
1494                 }
1495         }
1496         swsusp_show_speed(start, stop, nr_to_read, "Read");
1497 out_clean:
1498         hib_finish_batch(&hb);
1499         for (i = 0; i < ring_size; i++)
1500                 free_page((unsigned long)page[i]);
1501         if (crc) {
1502                 if (crc->thr)
1503                         kthread_stop(crc->thr);
1504                 kfree(crc);
1505         }
1506         if (data) {
1507                 for (thr = 0; thr < nr_threads; thr++) {
1508                         if (data[thr].thr)
1509                                 kthread_stop(data[thr].thr);
1510                         if (data[thr].cc)
1511                                 crypto_free_comp(data[thr].cc);
1512                 }
1513                 vfree(data);
1514         }
1515         vfree(page);
1516 
1517         return ret;
1518 }
1519 
1520 /**
1521  *      swsusp_read - read the hibernation image.
1522  *      @flags_p: flags passed by the "frozen" kernel in the image header should
1523  *                be written into this memory location
1524  */
1525 
1526 int swsusp_read(unsigned int *flags_p)
1527 {
1528         int error;
1529         struct swap_map_handle handle;
1530         struct snapshot_handle snapshot;
1531         struct swsusp_info *header;
1532 
1533         memset(&snapshot, 0, sizeof(struct snapshot_handle));
1534         error = snapshot_write_next(&snapshot);
1535         if (error < (int)PAGE_SIZE)
1536                 return error < 0 ? error : -EFAULT;
1537         header = (struct swsusp_info *)data_of(snapshot);
1538         error = get_swap_reader(&handle, flags_p);
1539         if (error)
1540                 goto end;
1541         if (!error)
1542                 error = swap_read_page(&handle, header, NULL);
1543         if (!error) {
1544                 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1545                         load_image(&handle, &snapshot, header->pages - 1) :
1546                         load_compressed_image(&handle, &snapshot, header->pages - 1);
1547         }
1548         swap_reader_finish(&handle);
1549 end:
1550         if (!error)
1551                 pr_debug("Image successfully loaded\n");
1552         else
1553                 pr_debug("Error %d resuming\n", error);
1554         return error;
1555 }
1556 
1557 static void *swsusp_holder;
1558 
1559 /**
1560  * swsusp_check - Open the resume device and check for the swsusp signature.
1561  * @exclusive: Open the resume device exclusively.
1562  */
1563 
1564 int swsusp_check(bool exclusive)
1565 {
1566         void *holder = exclusive ? &swsusp_holder : NULL;
1567         int error;
1568 
1569         hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
1570                                 BLK_OPEN_READ, holder, NULL);
1571         if (!IS_ERR(hib_resume_bdev_file)) {
1572                 clear_page(swsusp_header);
1573                 error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1574                                         swsusp_header, NULL);
1575                 if (error)
1576                         goto put;
1577 
1578                 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1579                         memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1580                         swsusp_header_flags = swsusp_header->flags;
1581                         /* Reset swap signature now */
1582                         error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1583                                                 swsusp_resume_block,
1584                                                 swsusp_header, NULL);
1585                 } else {
1586                         error = -EINVAL;
1587                 }
1588                 if (!error && swsusp_header->flags & SF_HW_SIG &&
1589                     swsusp_header->hw_sig != swsusp_hardware_signature) {
1590                         pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1591                                 swsusp_header->hw_sig, swsusp_hardware_signature);
1592                         error = -EINVAL;
1593                 }
1594 
1595 put:
1596                 if (error)
1597                         bdev_fput(hib_resume_bdev_file);
1598                 else
1599                         pr_debug("Image signature found, resuming\n");
1600         } else {
1601                 error = PTR_ERR(hib_resume_bdev_file);
1602         }
1603 
1604         if (error)
1605                 pr_debug("Image not found (code %d)\n", error);
1606 
1607         return error;
1608 }
1609 
1610 /**
1611  * swsusp_close - close resume device.
1612  */
1613 
1614 void swsusp_close(void)
1615 {
1616         if (IS_ERR(hib_resume_bdev_file)) {
1617                 pr_debug("Image device not initialised\n");
1618                 return;
1619         }
1620 
1621         fput(hib_resume_bdev_file);
1622 }
1623 
1624 /**
1625  *      swsusp_unmark - Unmark swsusp signature in the resume device
1626  */
1627 
1628 #ifdef CONFIG_SUSPEND
1629 int swsusp_unmark(void)
1630 {
1631         int error;
1632 
1633         hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1634                         swsusp_header, NULL);
1635         if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1636                 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1637                 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1638                                         swsusp_resume_block,
1639                                         swsusp_header, NULL);
1640         } else {
1641                 pr_err("Cannot find swsusp signature!\n");
1642                 error = -ENODEV;
1643         }
1644 
1645         /*
1646          * We just returned from suspend, we don't need the image any more.
1647          */
1648         free_all_swap_pages(root_swap);
1649 
1650         return error;
1651 }
1652 #endif
1653 
1654 static int __init swsusp_header_init(void)
1655 {
1656         swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1657         if (!swsusp_header)
1658                 panic("Could not allocate memory for swsusp_header\n");
1659         return 0;
1660 }
1661 
1662 core_initcall(swsusp_header_init);
1663 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php