1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/swap.c 4 * 5 * This file provides functions for reading the suspend image from 6 * and writing it to a swap partition. 7 * 8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz> 9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com> 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <linux/module.h> 16 #include <linux/file.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/device.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/pm.h> 25 #include <linux/slab.h> 26 #include <linux/vmalloc.h> 27 #include <linux/cpumask.h> 28 #include <linux/atomic.h> 29 #include <linux/kthread.h> 30 #include <linux/crc32.h> 31 #include <linux/ktime.h> 32 33 #include "power.h" 34 35 #define HIBERNATE_SIG "S1SUSPEND" 36 37 u32 swsusp_hardware_signature; 38 39 /* 40 * When reading an {un,}compressed image, we may restore pages in place, 41 * in which case some architectures need these pages cleaning before they 42 * can be executed. We don't know which pages these may be, so clean the lot. 43 */ 44 static bool clean_pages_on_read; 45 static bool clean_pages_on_decompress; 46 47 /* 48 * The swap map is a data structure used for keeping track of each page 49 * written to a swap partition. It consists of many swap_map_page 50 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries. 51 * These structures are stored on the swap and linked together with the 52 * help of the .next_swap member. 53 * 54 * The swap map is created during suspend. The swap map pages are 55 * allocated and populated one at a time, so we only need one memory 56 * page to set up the entire structure. 57 * 58 * During resume we pick up all swap_map_page structures into a list. 59 */ 60 61 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) 62 63 /* 64 * Number of free pages that are not high. 65 */ 66 static inline unsigned long low_free_pages(void) 67 { 68 return nr_free_pages() - nr_free_highpages(); 69 } 70 71 /* 72 * Number of pages required to be kept free while writing the image. Always 73 * half of all available low pages before the writing starts. 74 */ 75 static inline unsigned long reqd_free_pages(void) 76 { 77 return low_free_pages() / 2; 78 } 79 80 struct swap_map_page { 81 sector_t entries[MAP_PAGE_ENTRIES]; 82 sector_t next_swap; 83 }; 84 85 struct swap_map_page_list { 86 struct swap_map_page *map; 87 struct swap_map_page_list *next; 88 }; 89 90 /* 91 * The swap_map_handle structure is used for handling swap in 92 * a file-alike way 93 */ 94 95 struct swap_map_handle { 96 struct swap_map_page *cur; 97 struct swap_map_page_list *maps; 98 sector_t cur_swap; 99 sector_t first_sector; 100 unsigned int k; 101 unsigned long reqd_free_pages; 102 u32 crc32; 103 }; 104 105 struct swsusp_header { 106 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) - 107 sizeof(u32) - sizeof(u32)]; 108 u32 hw_sig; 109 u32 crc32; 110 sector_t image; 111 unsigned int flags; /* Flags to pass to the "boot" kernel */ 112 char orig_sig[10]; 113 char sig[10]; 114 } __packed; 115 116 static struct swsusp_header *swsusp_header; 117 118 /* 119 * The following functions are used for tracing the allocated 120 * swap pages, so that they can be freed in case of an error. 121 */ 122 123 struct swsusp_extent { 124 struct rb_node node; 125 unsigned long start; 126 unsigned long end; 127 }; 128 129 static struct rb_root swsusp_extents = RB_ROOT; 130 131 static int swsusp_extents_insert(unsigned long swap_offset) 132 { 133 struct rb_node **new = &(swsusp_extents.rb_node); 134 struct rb_node *parent = NULL; 135 struct swsusp_extent *ext; 136 137 /* Figure out where to put the new node */ 138 while (*new) { 139 ext = rb_entry(*new, struct swsusp_extent, node); 140 parent = *new; 141 if (swap_offset < ext->start) { 142 /* Try to merge */ 143 if (swap_offset == ext->start - 1) { 144 ext->start--; 145 return 0; 146 } 147 new = &((*new)->rb_left); 148 } else if (swap_offset > ext->end) { 149 /* Try to merge */ 150 if (swap_offset == ext->end + 1) { 151 ext->end++; 152 return 0; 153 } 154 new = &((*new)->rb_right); 155 } else { 156 /* It already is in the tree */ 157 return -EINVAL; 158 } 159 } 160 /* Add the new node and rebalance the tree. */ 161 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL); 162 if (!ext) 163 return -ENOMEM; 164 165 ext->start = swap_offset; 166 ext->end = swap_offset; 167 rb_link_node(&ext->node, parent, new); 168 rb_insert_color(&ext->node, &swsusp_extents); 169 return 0; 170 } 171 172 /* 173 * alloc_swapdev_block - allocate a swap page and register that it has 174 * been allocated, so that it can be freed in case of an error. 175 */ 176 177 sector_t alloc_swapdev_block(int swap) 178 { 179 unsigned long offset; 180 181 offset = swp_offset(get_swap_page_of_type(swap)); 182 if (offset) { 183 if (swsusp_extents_insert(offset)) 184 swap_free(swp_entry(swap, offset)); 185 else 186 return swapdev_block(swap, offset); 187 } 188 return 0; 189 } 190 191 /* 192 * free_all_swap_pages - free swap pages allocated for saving image data. 193 * It also frees the extents used to register which swap entries had been 194 * allocated. 195 */ 196 197 void free_all_swap_pages(int swap) 198 { 199 struct rb_node *node; 200 201 while ((node = swsusp_extents.rb_node)) { 202 struct swsusp_extent *ext; 203 204 ext = rb_entry(node, struct swsusp_extent, node); 205 rb_erase(node, &swsusp_extents); 206 swap_free_nr(swp_entry(swap, ext->start), 207 ext->end - ext->start + 1); 208 209 kfree(ext); 210 } 211 } 212 213 int swsusp_swap_in_use(void) 214 { 215 return (swsusp_extents.rb_node != NULL); 216 } 217 218 /* 219 * General things 220 */ 221 222 static unsigned short root_swap = 0xffff; 223 static struct file *hib_resume_bdev_file; 224 225 struct hib_bio_batch { 226 atomic_t count; 227 wait_queue_head_t wait; 228 blk_status_t error; 229 struct blk_plug plug; 230 }; 231 232 static void hib_init_batch(struct hib_bio_batch *hb) 233 { 234 atomic_set(&hb->count, 0); 235 init_waitqueue_head(&hb->wait); 236 hb->error = BLK_STS_OK; 237 blk_start_plug(&hb->plug); 238 } 239 240 static void hib_finish_batch(struct hib_bio_batch *hb) 241 { 242 blk_finish_plug(&hb->plug); 243 } 244 245 static void hib_end_io(struct bio *bio) 246 { 247 struct hib_bio_batch *hb = bio->bi_private; 248 struct page *page = bio_first_page_all(bio); 249 250 if (bio->bi_status) { 251 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n", 252 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 253 (unsigned long long)bio->bi_iter.bi_sector); 254 } 255 256 if (bio_data_dir(bio) == WRITE) 257 put_page(page); 258 else if (clean_pages_on_read) 259 flush_icache_range((unsigned long)page_address(page), 260 (unsigned long)page_address(page) + PAGE_SIZE); 261 262 if (bio->bi_status && !hb->error) 263 hb->error = bio->bi_status; 264 if (atomic_dec_and_test(&hb->count)) 265 wake_up(&hb->wait); 266 267 bio_put(bio); 268 } 269 270 static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr, 271 struct hib_bio_batch *hb) 272 { 273 struct page *page = virt_to_page(addr); 274 struct bio *bio; 275 int error = 0; 276 277 bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf, 278 GFP_NOIO | __GFP_HIGH); 279 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9); 280 281 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 282 pr_err("Adding page to bio failed at %llu\n", 283 (unsigned long long)bio->bi_iter.bi_sector); 284 bio_put(bio); 285 return -EFAULT; 286 } 287 288 if (hb) { 289 bio->bi_end_io = hib_end_io; 290 bio->bi_private = hb; 291 atomic_inc(&hb->count); 292 submit_bio(bio); 293 } else { 294 error = submit_bio_wait(bio); 295 bio_put(bio); 296 } 297 298 return error; 299 } 300 301 static int hib_wait_io(struct hib_bio_batch *hb) 302 { 303 /* 304 * We are relying on the behavior of blk_plug that a thread with 305 * a plug will flush the plug list before sleeping. 306 */ 307 wait_event(hb->wait, atomic_read(&hb->count) == 0); 308 return blk_status_to_errno(hb->error); 309 } 310 311 /* 312 * Saving part 313 */ 314 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) 315 { 316 int error; 317 318 hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL); 319 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || 320 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { 321 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); 322 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10); 323 swsusp_header->image = handle->first_sector; 324 if (swsusp_hardware_signature) { 325 swsusp_header->hw_sig = swsusp_hardware_signature; 326 flags |= SF_HW_SIG; 327 } 328 swsusp_header->flags = flags; 329 if (flags & SF_CRC32_MODE) 330 swsusp_header->crc32 = handle->crc32; 331 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC, 332 swsusp_resume_block, swsusp_header, NULL); 333 } else { 334 pr_err("Swap header not found!\n"); 335 error = -ENODEV; 336 } 337 return error; 338 } 339 340 /* 341 * Hold the swsusp_header flag. This is used in software_resume() in 342 * 'kernel/power/hibernate' to check if the image is compressed and query 343 * for the compression algorithm support(if so). 344 */ 345 unsigned int swsusp_header_flags; 346 347 /** 348 * swsusp_swap_check - check if the resume device is a swap device 349 * and get its index (if so) 350 * 351 * This is called before saving image 352 */ 353 static int swsusp_swap_check(void) 354 { 355 int res; 356 357 if (swsusp_resume_device) 358 res = swap_type_of(swsusp_resume_device, swsusp_resume_block); 359 else 360 res = find_first_swap(&swsusp_resume_device); 361 if (res < 0) 362 return res; 363 root_swap = res; 364 365 hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device, 366 BLK_OPEN_WRITE, NULL, NULL); 367 if (IS_ERR(hib_resume_bdev_file)) 368 return PTR_ERR(hib_resume_bdev_file); 369 370 return 0; 371 } 372 373 /** 374 * write_page - Write one page to given swap location. 375 * @buf: Address we're writing. 376 * @offset: Offset of the swap page we're writing to. 377 * @hb: bio completion batch 378 */ 379 380 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb) 381 { 382 void *src; 383 int ret; 384 385 if (!offset) 386 return -ENOSPC; 387 388 if (hb) { 389 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN | 390 __GFP_NORETRY); 391 if (src) { 392 copy_page(src, buf); 393 } else { 394 ret = hib_wait_io(hb); /* Free pages */ 395 if (ret) 396 return ret; 397 src = (void *)__get_free_page(GFP_NOIO | 398 __GFP_NOWARN | 399 __GFP_NORETRY); 400 if (src) { 401 copy_page(src, buf); 402 } else { 403 WARN_ON_ONCE(1); 404 hb = NULL; /* Go synchronous */ 405 src = buf; 406 } 407 } 408 } else { 409 src = buf; 410 } 411 return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb); 412 } 413 414 static void release_swap_writer(struct swap_map_handle *handle) 415 { 416 if (handle->cur) 417 free_page((unsigned long)handle->cur); 418 handle->cur = NULL; 419 } 420 421 static int get_swap_writer(struct swap_map_handle *handle) 422 { 423 int ret; 424 425 ret = swsusp_swap_check(); 426 if (ret) { 427 if (ret != -ENOSPC) 428 pr_err("Cannot find swap device, try swapon -a\n"); 429 return ret; 430 } 431 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); 432 if (!handle->cur) { 433 ret = -ENOMEM; 434 goto err_close; 435 } 436 handle->cur_swap = alloc_swapdev_block(root_swap); 437 if (!handle->cur_swap) { 438 ret = -ENOSPC; 439 goto err_rel; 440 } 441 handle->k = 0; 442 handle->reqd_free_pages = reqd_free_pages(); 443 handle->first_sector = handle->cur_swap; 444 return 0; 445 err_rel: 446 release_swap_writer(handle); 447 err_close: 448 swsusp_close(); 449 return ret; 450 } 451 452 static int swap_write_page(struct swap_map_handle *handle, void *buf, 453 struct hib_bio_batch *hb) 454 { 455 int error; 456 sector_t offset; 457 458 if (!handle->cur) 459 return -EINVAL; 460 offset = alloc_swapdev_block(root_swap); 461 error = write_page(buf, offset, hb); 462 if (error) 463 return error; 464 handle->cur->entries[handle->k++] = offset; 465 if (handle->k >= MAP_PAGE_ENTRIES) { 466 offset = alloc_swapdev_block(root_swap); 467 if (!offset) 468 return -ENOSPC; 469 handle->cur->next_swap = offset; 470 error = write_page(handle->cur, handle->cur_swap, hb); 471 if (error) 472 goto out; 473 clear_page(handle->cur); 474 handle->cur_swap = offset; 475 handle->k = 0; 476 477 if (hb && low_free_pages() <= handle->reqd_free_pages) { 478 error = hib_wait_io(hb); 479 if (error) 480 goto out; 481 /* 482 * Recalculate the number of required free pages, to 483 * make sure we never take more than half. 484 */ 485 handle->reqd_free_pages = reqd_free_pages(); 486 } 487 } 488 out: 489 return error; 490 } 491 492 static int flush_swap_writer(struct swap_map_handle *handle) 493 { 494 if (handle->cur && handle->cur_swap) 495 return write_page(handle->cur, handle->cur_swap, NULL); 496 else 497 return -EINVAL; 498 } 499 500 static int swap_writer_finish(struct swap_map_handle *handle, 501 unsigned int flags, int error) 502 { 503 if (!error) { 504 pr_info("S"); 505 error = mark_swapfiles(handle, flags); 506 pr_cont("|\n"); 507 flush_swap_writer(handle); 508 } 509 510 if (error) 511 free_all_swap_pages(root_swap); 512 release_swap_writer(handle); 513 swsusp_close(); 514 515 return error; 516 } 517 518 /* 519 * Bytes we need for compressed data in worst case. We assume(limitation) 520 * this is the worst of all the compression algorithms. 521 */ 522 #define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2) 523 524 /* We need to remember how much compressed data we need to read. */ 525 #define CMP_HEADER sizeof(size_t) 526 527 /* Number of pages/bytes we'll compress at one time. */ 528 #define UNC_PAGES 32 529 #define UNC_SIZE (UNC_PAGES * PAGE_SIZE) 530 531 /* Number of pages we need for compressed data (worst case). */ 532 #define CMP_PAGES DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \ 533 CMP_HEADER, PAGE_SIZE) 534 #define CMP_SIZE (CMP_PAGES * PAGE_SIZE) 535 536 /* Maximum number of threads for compression/decompression. */ 537 #define CMP_THREADS 3 538 539 /* Minimum/maximum number of pages for read buffering. */ 540 #define CMP_MIN_RD_PAGES 1024 541 #define CMP_MAX_RD_PAGES 8192 542 543 /** 544 * save_image - save the suspend image data 545 */ 546 547 static int save_image(struct swap_map_handle *handle, 548 struct snapshot_handle *snapshot, 549 unsigned int nr_to_write) 550 { 551 unsigned int m; 552 int ret; 553 int nr_pages; 554 int err2; 555 struct hib_bio_batch hb; 556 ktime_t start; 557 ktime_t stop; 558 559 hib_init_batch(&hb); 560 561 pr_info("Saving image data pages (%u pages)...\n", 562 nr_to_write); 563 m = nr_to_write / 10; 564 if (!m) 565 m = 1; 566 nr_pages = 0; 567 start = ktime_get(); 568 while (1) { 569 ret = snapshot_read_next(snapshot); 570 if (ret <= 0) 571 break; 572 ret = swap_write_page(handle, data_of(*snapshot), &hb); 573 if (ret) 574 break; 575 if (!(nr_pages % m)) 576 pr_info("Image saving progress: %3d%%\n", 577 nr_pages / m * 10); 578 nr_pages++; 579 } 580 err2 = hib_wait_io(&hb); 581 hib_finish_batch(&hb); 582 stop = ktime_get(); 583 if (!ret) 584 ret = err2; 585 if (!ret) 586 pr_info("Image saving done\n"); 587 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 588 return ret; 589 } 590 591 /* 592 * Structure used for CRC32. 593 */ 594 struct crc_data { 595 struct task_struct *thr; /* thread */ 596 atomic_t ready; /* ready to start flag */ 597 atomic_t stop; /* ready to stop flag */ 598 unsigned run_threads; /* nr current threads */ 599 wait_queue_head_t go; /* start crc update */ 600 wait_queue_head_t done; /* crc update done */ 601 u32 *crc32; /* points to handle's crc32 */ 602 size_t *unc_len[CMP_THREADS]; /* uncompressed lengths */ 603 unsigned char *unc[CMP_THREADS]; /* uncompressed data */ 604 }; 605 606 /* 607 * CRC32 update function that runs in its own thread. 608 */ 609 static int crc32_threadfn(void *data) 610 { 611 struct crc_data *d = data; 612 unsigned i; 613 614 while (1) { 615 wait_event(d->go, atomic_read_acquire(&d->ready) || 616 kthread_should_stop()); 617 if (kthread_should_stop()) { 618 d->thr = NULL; 619 atomic_set_release(&d->stop, 1); 620 wake_up(&d->done); 621 break; 622 } 623 atomic_set(&d->ready, 0); 624 625 for (i = 0; i < d->run_threads; i++) 626 *d->crc32 = crc32_le(*d->crc32, 627 d->unc[i], *d->unc_len[i]); 628 atomic_set_release(&d->stop, 1); 629 wake_up(&d->done); 630 } 631 return 0; 632 } 633 /* 634 * Structure used for data compression. 635 */ 636 struct cmp_data { 637 struct task_struct *thr; /* thread */ 638 struct crypto_comp *cc; /* crypto compressor stream */ 639 atomic_t ready; /* ready to start flag */ 640 atomic_t stop; /* ready to stop flag */ 641 int ret; /* return code */ 642 wait_queue_head_t go; /* start compression */ 643 wait_queue_head_t done; /* compression done */ 644 size_t unc_len; /* uncompressed length */ 645 size_t cmp_len; /* compressed length */ 646 unsigned char unc[UNC_SIZE]; /* uncompressed buffer */ 647 unsigned char cmp[CMP_SIZE]; /* compressed buffer */ 648 }; 649 650 /* Indicates the image size after compression */ 651 static atomic_t compressed_size = ATOMIC_INIT(0); 652 653 /* 654 * Compression function that runs in its own thread. 655 */ 656 static int compress_threadfn(void *data) 657 { 658 struct cmp_data *d = data; 659 unsigned int cmp_len = 0; 660 661 while (1) { 662 wait_event(d->go, atomic_read_acquire(&d->ready) || 663 kthread_should_stop()); 664 if (kthread_should_stop()) { 665 d->thr = NULL; 666 d->ret = -1; 667 atomic_set_release(&d->stop, 1); 668 wake_up(&d->done); 669 break; 670 } 671 atomic_set(&d->ready, 0); 672 673 cmp_len = CMP_SIZE - CMP_HEADER; 674 d->ret = crypto_comp_compress(d->cc, d->unc, d->unc_len, 675 d->cmp + CMP_HEADER, 676 &cmp_len); 677 d->cmp_len = cmp_len; 678 679 atomic_set(&compressed_size, atomic_read(&compressed_size) + d->cmp_len); 680 atomic_set_release(&d->stop, 1); 681 wake_up(&d->done); 682 } 683 return 0; 684 } 685 686 /** 687 * save_compressed_image - Save the suspend image data after compression. 688 * @handle: Swap map handle to use for saving the image. 689 * @snapshot: Image to read data from. 690 * @nr_to_write: Number of pages to save. 691 */ 692 static int save_compressed_image(struct swap_map_handle *handle, 693 struct snapshot_handle *snapshot, 694 unsigned int nr_to_write) 695 { 696 unsigned int m; 697 int ret = 0; 698 int nr_pages; 699 int err2; 700 struct hib_bio_batch hb; 701 ktime_t start; 702 ktime_t stop; 703 size_t off; 704 unsigned thr, run_threads, nr_threads; 705 unsigned char *page = NULL; 706 struct cmp_data *data = NULL; 707 struct crc_data *crc = NULL; 708 709 hib_init_batch(&hb); 710 711 atomic_set(&compressed_size, 0); 712 713 /* 714 * We'll limit the number of threads for compression to limit memory 715 * footprint. 716 */ 717 nr_threads = num_online_cpus() - 1; 718 nr_threads = clamp_val(nr_threads, 1, CMP_THREADS); 719 720 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH); 721 if (!page) { 722 pr_err("Failed to allocate %s page\n", hib_comp_algo); 723 ret = -ENOMEM; 724 goto out_clean; 725 } 726 727 data = vzalloc(array_size(nr_threads, sizeof(*data))); 728 if (!data) { 729 pr_err("Failed to allocate %s data\n", hib_comp_algo); 730 ret = -ENOMEM; 731 goto out_clean; 732 } 733 734 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 735 if (!crc) { 736 pr_err("Failed to allocate crc\n"); 737 ret = -ENOMEM; 738 goto out_clean; 739 } 740 741 /* 742 * Start the compression threads. 743 */ 744 for (thr = 0; thr < nr_threads; thr++) { 745 init_waitqueue_head(&data[thr].go); 746 init_waitqueue_head(&data[thr].done); 747 748 data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0); 749 if (IS_ERR_OR_NULL(data[thr].cc)) { 750 pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc)); 751 ret = -EFAULT; 752 goto out_clean; 753 } 754 755 data[thr].thr = kthread_run(compress_threadfn, 756 &data[thr], 757 "image_compress/%u", thr); 758 if (IS_ERR(data[thr].thr)) { 759 data[thr].thr = NULL; 760 pr_err("Cannot start compression threads\n"); 761 ret = -ENOMEM; 762 goto out_clean; 763 } 764 } 765 766 /* 767 * Start the CRC32 thread. 768 */ 769 init_waitqueue_head(&crc->go); 770 init_waitqueue_head(&crc->done); 771 772 handle->crc32 = 0; 773 crc->crc32 = &handle->crc32; 774 for (thr = 0; thr < nr_threads; thr++) { 775 crc->unc[thr] = data[thr].unc; 776 crc->unc_len[thr] = &data[thr].unc_len; 777 } 778 779 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 780 if (IS_ERR(crc->thr)) { 781 crc->thr = NULL; 782 pr_err("Cannot start CRC32 thread\n"); 783 ret = -ENOMEM; 784 goto out_clean; 785 } 786 787 /* 788 * Adjust the number of required free pages after all allocations have 789 * been done. We don't want to run out of pages when writing. 790 */ 791 handle->reqd_free_pages = reqd_free_pages(); 792 793 pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo); 794 pr_info("Compressing and saving image data (%u pages)...\n", 795 nr_to_write); 796 m = nr_to_write / 10; 797 if (!m) 798 m = 1; 799 nr_pages = 0; 800 start = ktime_get(); 801 for (;;) { 802 for (thr = 0; thr < nr_threads; thr++) { 803 for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) { 804 ret = snapshot_read_next(snapshot); 805 if (ret < 0) 806 goto out_finish; 807 808 if (!ret) 809 break; 810 811 memcpy(data[thr].unc + off, 812 data_of(*snapshot), PAGE_SIZE); 813 814 if (!(nr_pages % m)) 815 pr_info("Image saving progress: %3d%%\n", 816 nr_pages / m * 10); 817 nr_pages++; 818 } 819 if (!off) 820 break; 821 822 data[thr].unc_len = off; 823 824 atomic_set_release(&data[thr].ready, 1); 825 wake_up(&data[thr].go); 826 } 827 828 if (!thr) 829 break; 830 831 crc->run_threads = thr; 832 atomic_set_release(&crc->ready, 1); 833 wake_up(&crc->go); 834 835 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 836 wait_event(data[thr].done, 837 atomic_read_acquire(&data[thr].stop)); 838 atomic_set(&data[thr].stop, 0); 839 840 ret = data[thr].ret; 841 842 if (ret < 0) { 843 pr_err("%s compression failed\n", hib_comp_algo); 844 goto out_finish; 845 } 846 847 if (unlikely(!data[thr].cmp_len || 848 data[thr].cmp_len > 849 bytes_worst_compress(data[thr].unc_len))) { 850 pr_err("Invalid %s compressed length\n", hib_comp_algo); 851 ret = -1; 852 goto out_finish; 853 } 854 855 *(size_t *)data[thr].cmp = data[thr].cmp_len; 856 857 /* 858 * Given we are writing one page at a time to disk, we 859 * copy that much from the buffer, although the last 860 * bit will likely be smaller than full page. This is 861 * OK - we saved the length of the compressed data, so 862 * any garbage at the end will be discarded when we 863 * read it. 864 */ 865 for (off = 0; 866 off < CMP_HEADER + data[thr].cmp_len; 867 off += PAGE_SIZE) { 868 memcpy(page, data[thr].cmp + off, PAGE_SIZE); 869 870 ret = swap_write_page(handle, page, &hb); 871 if (ret) 872 goto out_finish; 873 } 874 } 875 876 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 877 atomic_set(&crc->stop, 0); 878 } 879 880 out_finish: 881 err2 = hib_wait_io(&hb); 882 stop = ktime_get(); 883 if (!ret) 884 ret = err2; 885 if (!ret) 886 pr_info("Image saving done\n"); 887 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 888 pr_info("Image size after compression: %d kbytes\n", 889 (atomic_read(&compressed_size) / 1024)); 890 891 out_clean: 892 hib_finish_batch(&hb); 893 if (crc) { 894 if (crc->thr) 895 kthread_stop(crc->thr); 896 kfree(crc); 897 } 898 if (data) { 899 for (thr = 0; thr < nr_threads; thr++) { 900 if (data[thr].thr) 901 kthread_stop(data[thr].thr); 902 if (data[thr].cc) 903 crypto_free_comp(data[thr].cc); 904 } 905 vfree(data); 906 } 907 if (page) free_page((unsigned long)page); 908 909 return ret; 910 } 911 912 /** 913 * enough_swap - Make sure we have enough swap to save the image. 914 * 915 * Returns TRUE or FALSE after checking the total amount of swap 916 * space available from the resume partition. 917 */ 918 919 static int enough_swap(unsigned int nr_pages) 920 { 921 unsigned int free_swap = count_swap_pages(root_swap, 1); 922 unsigned int required; 923 924 pr_debug("Free swap pages: %u\n", free_swap); 925 926 required = PAGES_FOR_IO + nr_pages; 927 return free_swap > required; 928 } 929 930 /** 931 * swsusp_write - Write entire image and metadata. 932 * @flags: flags to pass to the "boot" kernel in the image header 933 * 934 * It is important _NOT_ to umount filesystems at this point. We want 935 * them synced (in case something goes wrong) but we DO not want to mark 936 * filesystem clean: it is not. (And it does not matter, if we resume 937 * correctly, we'll mark system clean, anyway.) 938 */ 939 940 int swsusp_write(unsigned int flags) 941 { 942 struct swap_map_handle handle; 943 struct snapshot_handle snapshot; 944 struct swsusp_info *header; 945 unsigned long pages; 946 int error; 947 948 pages = snapshot_get_image_size(); 949 error = get_swap_writer(&handle); 950 if (error) { 951 pr_err("Cannot get swap writer\n"); 952 return error; 953 } 954 if (flags & SF_NOCOMPRESS_MODE) { 955 if (!enough_swap(pages)) { 956 pr_err("Not enough free swap\n"); 957 error = -ENOSPC; 958 goto out_finish; 959 } 960 } 961 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 962 error = snapshot_read_next(&snapshot); 963 if (error < (int)PAGE_SIZE) { 964 if (error >= 0) 965 error = -EFAULT; 966 967 goto out_finish; 968 } 969 header = (struct swsusp_info *)data_of(snapshot); 970 error = swap_write_page(&handle, header, NULL); 971 if (!error) { 972 error = (flags & SF_NOCOMPRESS_MODE) ? 973 save_image(&handle, &snapshot, pages - 1) : 974 save_compressed_image(&handle, &snapshot, pages - 1); 975 } 976 out_finish: 977 error = swap_writer_finish(&handle, flags, error); 978 return error; 979 } 980 981 /* 982 * The following functions allow us to read data using a swap map 983 * in a file-like way. 984 */ 985 986 static void release_swap_reader(struct swap_map_handle *handle) 987 { 988 struct swap_map_page_list *tmp; 989 990 while (handle->maps) { 991 if (handle->maps->map) 992 free_page((unsigned long)handle->maps->map); 993 tmp = handle->maps; 994 handle->maps = handle->maps->next; 995 kfree(tmp); 996 } 997 handle->cur = NULL; 998 } 999 1000 static int get_swap_reader(struct swap_map_handle *handle, 1001 unsigned int *flags_p) 1002 { 1003 int error; 1004 struct swap_map_page_list *tmp, *last; 1005 sector_t offset; 1006 1007 *flags_p = swsusp_header->flags; 1008 1009 if (!swsusp_header->image) /* how can this happen? */ 1010 return -EINVAL; 1011 1012 handle->cur = NULL; 1013 last = handle->maps = NULL; 1014 offset = swsusp_header->image; 1015 while (offset) { 1016 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL); 1017 if (!tmp) { 1018 release_swap_reader(handle); 1019 return -ENOMEM; 1020 } 1021 if (!handle->maps) 1022 handle->maps = tmp; 1023 if (last) 1024 last->next = tmp; 1025 last = tmp; 1026 1027 tmp->map = (struct swap_map_page *) 1028 __get_free_page(GFP_NOIO | __GFP_HIGH); 1029 if (!tmp->map) { 1030 release_swap_reader(handle); 1031 return -ENOMEM; 1032 } 1033 1034 error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL); 1035 if (error) { 1036 release_swap_reader(handle); 1037 return error; 1038 } 1039 offset = tmp->map->next_swap; 1040 } 1041 handle->k = 0; 1042 handle->cur = handle->maps->map; 1043 return 0; 1044 } 1045 1046 static int swap_read_page(struct swap_map_handle *handle, void *buf, 1047 struct hib_bio_batch *hb) 1048 { 1049 sector_t offset; 1050 int error; 1051 struct swap_map_page_list *tmp; 1052 1053 if (!handle->cur) 1054 return -EINVAL; 1055 offset = handle->cur->entries[handle->k]; 1056 if (!offset) 1057 return -EFAULT; 1058 error = hib_submit_io(REQ_OP_READ, offset, buf, hb); 1059 if (error) 1060 return error; 1061 if (++handle->k >= MAP_PAGE_ENTRIES) { 1062 handle->k = 0; 1063 free_page((unsigned long)handle->maps->map); 1064 tmp = handle->maps; 1065 handle->maps = handle->maps->next; 1066 kfree(tmp); 1067 if (!handle->maps) 1068 release_swap_reader(handle); 1069 else 1070 handle->cur = handle->maps->map; 1071 } 1072 return error; 1073 } 1074 1075 static int swap_reader_finish(struct swap_map_handle *handle) 1076 { 1077 release_swap_reader(handle); 1078 1079 return 0; 1080 } 1081 1082 /** 1083 * load_image - load the image using the swap map handle 1084 * @handle and the snapshot handle @snapshot 1085 * (assume there are @nr_pages pages to load) 1086 */ 1087 1088 static int load_image(struct swap_map_handle *handle, 1089 struct snapshot_handle *snapshot, 1090 unsigned int nr_to_read) 1091 { 1092 unsigned int m; 1093 int ret = 0; 1094 ktime_t start; 1095 ktime_t stop; 1096 struct hib_bio_batch hb; 1097 int err2; 1098 unsigned nr_pages; 1099 1100 hib_init_batch(&hb); 1101 1102 clean_pages_on_read = true; 1103 pr_info("Loading image data pages (%u pages)...\n", nr_to_read); 1104 m = nr_to_read / 10; 1105 if (!m) 1106 m = 1; 1107 nr_pages = 0; 1108 start = ktime_get(); 1109 for ( ; ; ) { 1110 ret = snapshot_write_next(snapshot); 1111 if (ret <= 0) 1112 break; 1113 ret = swap_read_page(handle, data_of(*snapshot), &hb); 1114 if (ret) 1115 break; 1116 if (snapshot->sync_read) 1117 ret = hib_wait_io(&hb); 1118 if (ret) 1119 break; 1120 if (!(nr_pages % m)) 1121 pr_info("Image loading progress: %3d%%\n", 1122 nr_pages / m * 10); 1123 nr_pages++; 1124 } 1125 err2 = hib_wait_io(&hb); 1126 hib_finish_batch(&hb); 1127 stop = ktime_get(); 1128 if (!ret) 1129 ret = err2; 1130 if (!ret) { 1131 pr_info("Image loading done\n"); 1132 ret = snapshot_write_finalize(snapshot); 1133 if (!ret && !snapshot_image_loaded(snapshot)) 1134 ret = -ENODATA; 1135 } 1136 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1137 return ret; 1138 } 1139 1140 /* 1141 * Structure used for data decompression. 1142 */ 1143 struct dec_data { 1144 struct task_struct *thr; /* thread */ 1145 struct crypto_comp *cc; /* crypto compressor stream */ 1146 atomic_t ready; /* ready to start flag */ 1147 atomic_t stop; /* ready to stop flag */ 1148 int ret; /* return code */ 1149 wait_queue_head_t go; /* start decompression */ 1150 wait_queue_head_t done; /* decompression done */ 1151 size_t unc_len; /* uncompressed length */ 1152 size_t cmp_len; /* compressed length */ 1153 unsigned char unc[UNC_SIZE]; /* uncompressed buffer */ 1154 unsigned char cmp[CMP_SIZE]; /* compressed buffer */ 1155 }; 1156 1157 /* 1158 * Decompression function that runs in its own thread. 1159 */ 1160 static int decompress_threadfn(void *data) 1161 { 1162 struct dec_data *d = data; 1163 unsigned int unc_len = 0; 1164 1165 while (1) { 1166 wait_event(d->go, atomic_read_acquire(&d->ready) || 1167 kthread_should_stop()); 1168 if (kthread_should_stop()) { 1169 d->thr = NULL; 1170 d->ret = -1; 1171 atomic_set_release(&d->stop, 1); 1172 wake_up(&d->done); 1173 break; 1174 } 1175 atomic_set(&d->ready, 0); 1176 1177 unc_len = UNC_SIZE; 1178 d->ret = crypto_comp_decompress(d->cc, d->cmp + CMP_HEADER, d->cmp_len, 1179 d->unc, &unc_len); 1180 d->unc_len = unc_len; 1181 1182 if (clean_pages_on_decompress) 1183 flush_icache_range((unsigned long)d->unc, 1184 (unsigned long)d->unc + d->unc_len); 1185 1186 atomic_set_release(&d->stop, 1); 1187 wake_up(&d->done); 1188 } 1189 return 0; 1190 } 1191 1192 /** 1193 * load_compressed_image - Load compressed image data and decompress it. 1194 * @handle: Swap map handle to use for loading data. 1195 * @snapshot: Image to copy uncompressed data into. 1196 * @nr_to_read: Number of pages to load. 1197 */ 1198 static int load_compressed_image(struct swap_map_handle *handle, 1199 struct snapshot_handle *snapshot, 1200 unsigned int nr_to_read) 1201 { 1202 unsigned int m; 1203 int ret = 0; 1204 int eof = 0; 1205 struct hib_bio_batch hb; 1206 ktime_t start; 1207 ktime_t stop; 1208 unsigned nr_pages; 1209 size_t off; 1210 unsigned i, thr, run_threads, nr_threads; 1211 unsigned ring = 0, pg = 0, ring_size = 0, 1212 have = 0, want, need, asked = 0; 1213 unsigned long read_pages = 0; 1214 unsigned char **page = NULL; 1215 struct dec_data *data = NULL; 1216 struct crc_data *crc = NULL; 1217 1218 hib_init_batch(&hb); 1219 1220 /* 1221 * We'll limit the number of threads for decompression to limit memory 1222 * footprint. 1223 */ 1224 nr_threads = num_online_cpus() - 1; 1225 nr_threads = clamp_val(nr_threads, 1, CMP_THREADS); 1226 1227 page = vmalloc(array_size(CMP_MAX_RD_PAGES, sizeof(*page))); 1228 if (!page) { 1229 pr_err("Failed to allocate %s page\n", hib_comp_algo); 1230 ret = -ENOMEM; 1231 goto out_clean; 1232 } 1233 1234 data = vzalloc(array_size(nr_threads, sizeof(*data))); 1235 if (!data) { 1236 pr_err("Failed to allocate %s data\n", hib_comp_algo); 1237 ret = -ENOMEM; 1238 goto out_clean; 1239 } 1240 1241 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 1242 if (!crc) { 1243 pr_err("Failed to allocate crc\n"); 1244 ret = -ENOMEM; 1245 goto out_clean; 1246 } 1247 1248 clean_pages_on_decompress = true; 1249 1250 /* 1251 * Start the decompression threads. 1252 */ 1253 for (thr = 0; thr < nr_threads; thr++) { 1254 init_waitqueue_head(&data[thr].go); 1255 init_waitqueue_head(&data[thr].done); 1256 1257 data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0); 1258 if (IS_ERR_OR_NULL(data[thr].cc)) { 1259 pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc)); 1260 ret = -EFAULT; 1261 goto out_clean; 1262 } 1263 1264 data[thr].thr = kthread_run(decompress_threadfn, 1265 &data[thr], 1266 "image_decompress/%u", thr); 1267 if (IS_ERR(data[thr].thr)) { 1268 data[thr].thr = NULL; 1269 pr_err("Cannot start decompression threads\n"); 1270 ret = -ENOMEM; 1271 goto out_clean; 1272 } 1273 } 1274 1275 /* 1276 * Start the CRC32 thread. 1277 */ 1278 init_waitqueue_head(&crc->go); 1279 init_waitqueue_head(&crc->done); 1280 1281 handle->crc32 = 0; 1282 crc->crc32 = &handle->crc32; 1283 for (thr = 0; thr < nr_threads; thr++) { 1284 crc->unc[thr] = data[thr].unc; 1285 crc->unc_len[thr] = &data[thr].unc_len; 1286 } 1287 1288 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 1289 if (IS_ERR(crc->thr)) { 1290 crc->thr = NULL; 1291 pr_err("Cannot start CRC32 thread\n"); 1292 ret = -ENOMEM; 1293 goto out_clean; 1294 } 1295 1296 /* 1297 * Set the number of pages for read buffering. 1298 * This is complete guesswork, because we'll only know the real 1299 * picture once prepare_image() is called, which is much later on 1300 * during the image load phase. We'll assume the worst case and 1301 * say that none of the image pages are from high memory. 1302 */ 1303 if (low_free_pages() > snapshot_get_image_size()) 1304 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2; 1305 read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES); 1306 1307 for (i = 0; i < read_pages; i++) { 1308 page[i] = (void *)__get_free_page(i < CMP_PAGES ? 1309 GFP_NOIO | __GFP_HIGH : 1310 GFP_NOIO | __GFP_NOWARN | 1311 __GFP_NORETRY); 1312 1313 if (!page[i]) { 1314 if (i < CMP_PAGES) { 1315 ring_size = i; 1316 pr_err("Failed to allocate %s pages\n", hib_comp_algo); 1317 ret = -ENOMEM; 1318 goto out_clean; 1319 } else { 1320 break; 1321 } 1322 } 1323 } 1324 want = ring_size = i; 1325 1326 pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo); 1327 pr_info("Loading and decompressing image data (%u pages)...\n", 1328 nr_to_read); 1329 m = nr_to_read / 10; 1330 if (!m) 1331 m = 1; 1332 nr_pages = 0; 1333 start = ktime_get(); 1334 1335 ret = snapshot_write_next(snapshot); 1336 if (ret <= 0) 1337 goto out_finish; 1338 1339 for(;;) { 1340 for (i = 0; !eof && i < want; i++) { 1341 ret = swap_read_page(handle, page[ring], &hb); 1342 if (ret) { 1343 /* 1344 * On real read error, finish. On end of data, 1345 * set EOF flag and just exit the read loop. 1346 */ 1347 if (handle->cur && 1348 handle->cur->entries[handle->k]) { 1349 goto out_finish; 1350 } else { 1351 eof = 1; 1352 break; 1353 } 1354 } 1355 if (++ring >= ring_size) 1356 ring = 0; 1357 } 1358 asked += i; 1359 want -= i; 1360 1361 /* 1362 * We are out of data, wait for some more. 1363 */ 1364 if (!have) { 1365 if (!asked) 1366 break; 1367 1368 ret = hib_wait_io(&hb); 1369 if (ret) 1370 goto out_finish; 1371 have += asked; 1372 asked = 0; 1373 if (eof) 1374 eof = 2; 1375 } 1376 1377 if (crc->run_threads) { 1378 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 1379 atomic_set(&crc->stop, 0); 1380 crc->run_threads = 0; 1381 } 1382 1383 for (thr = 0; have && thr < nr_threads; thr++) { 1384 data[thr].cmp_len = *(size_t *)page[pg]; 1385 if (unlikely(!data[thr].cmp_len || 1386 data[thr].cmp_len > 1387 bytes_worst_compress(UNC_SIZE))) { 1388 pr_err("Invalid %s compressed length\n", hib_comp_algo); 1389 ret = -1; 1390 goto out_finish; 1391 } 1392 1393 need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER, 1394 PAGE_SIZE); 1395 if (need > have) { 1396 if (eof > 1) { 1397 ret = -1; 1398 goto out_finish; 1399 } 1400 break; 1401 } 1402 1403 for (off = 0; 1404 off < CMP_HEADER + data[thr].cmp_len; 1405 off += PAGE_SIZE) { 1406 memcpy(data[thr].cmp + off, 1407 page[pg], PAGE_SIZE); 1408 have--; 1409 want++; 1410 if (++pg >= ring_size) 1411 pg = 0; 1412 } 1413 1414 atomic_set_release(&data[thr].ready, 1); 1415 wake_up(&data[thr].go); 1416 } 1417 1418 /* 1419 * Wait for more data while we are decompressing. 1420 */ 1421 if (have < CMP_PAGES && asked) { 1422 ret = hib_wait_io(&hb); 1423 if (ret) 1424 goto out_finish; 1425 have += asked; 1426 asked = 0; 1427 if (eof) 1428 eof = 2; 1429 } 1430 1431 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 1432 wait_event(data[thr].done, 1433 atomic_read_acquire(&data[thr].stop)); 1434 atomic_set(&data[thr].stop, 0); 1435 1436 ret = data[thr].ret; 1437 1438 if (ret < 0) { 1439 pr_err("%s decompression failed\n", hib_comp_algo); 1440 goto out_finish; 1441 } 1442 1443 if (unlikely(!data[thr].unc_len || 1444 data[thr].unc_len > UNC_SIZE || 1445 data[thr].unc_len & (PAGE_SIZE - 1))) { 1446 pr_err("Invalid %s uncompressed length\n", hib_comp_algo); 1447 ret = -1; 1448 goto out_finish; 1449 } 1450 1451 for (off = 0; 1452 off < data[thr].unc_len; off += PAGE_SIZE) { 1453 memcpy(data_of(*snapshot), 1454 data[thr].unc + off, PAGE_SIZE); 1455 1456 if (!(nr_pages % m)) 1457 pr_info("Image loading progress: %3d%%\n", 1458 nr_pages / m * 10); 1459 nr_pages++; 1460 1461 ret = snapshot_write_next(snapshot); 1462 if (ret <= 0) { 1463 crc->run_threads = thr + 1; 1464 atomic_set_release(&crc->ready, 1); 1465 wake_up(&crc->go); 1466 goto out_finish; 1467 } 1468 } 1469 } 1470 1471 crc->run_threads = thr; 1472 atomic_set_release(&crc->ready, 1); 1473 wake_up(&crc->go); 1474 } 1475 1476 out_finish: 1477 if (crc->run_threads) { 1478 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 1479 atomic_set(&crc->stop, 0); 1480 } 1481 stop = ktime_get(); 1482 if (!ret) { 1483 pr_info("Image loading done\n"); 1484 ret = snapshot_write_finalize(snapshot); 1485 if (!ret && !snapshot_image_loaded(snapshot)) 1486 ret = -ENODATA; 1487 if (!ret) { 1488 if (swsusp_header->flags & SF_CRC32_MODE) { 1489 if(handle->crc32 != swsusp_header->crc32) { 1490 pr_err("Invalid image CRC32!\n"); 1491 ret = -ENODATA; 1492 } 1493 } 1494 } 1495 } 1496 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1497 out_clean: 1498 hib_finish_batch(&hb); 1499 for (i = 0; i < ring_size; i++) 1500 free_page((unsigned long)page[i]); 1501 if (crc) { 1502 if (crc->thr) 1503 kthread_stop(crc->thr); 1504 kfree(crc); 1505 } 1506 if (data) { 1507 for (thr = 0; thr < nr_threads; thr++) { 1508 if (data[thr].thr) 1509 kthread_stop(data[thr].thr); 1510 if (data[thr].cc) 1511 crypto_free_comp(data[thr].cc); 1512 } 1513 vfree(data); 1514 } 1515 vfree(page); 1516 1517 return ret; 1518 } 1519 1520 /** 1521 * swsusp_read - read the hibernation image. 1522 * @flags_p: flags passed by the "frozen" kernel in the image header should 1523 * be written into this memory location 1524 */ 1525 1526 int swsusp_read(unsigned int *flags_p) 1527 { 1528 int error; 1529 struct swap_map_handle handle; 1530 struct snapshot_handle snapshot; 1531 struct swsusp_info *header; 1532 1533 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 1534 error = snapshot_write_next(&snapshot); 1535 if (error < (int)PAGE_SIZE) 1536 return error < 0 ? error : -EFAULT; 1537 header = (struct swsusp_info *)data_of(snapshot); 1538 error = get_swap_reader(&handle, flags_p); 1539 if (error) 1540 goto end; 1541 if (!error) 1542 error = swap_read_page(&handle, header, NULL); 1543 if (!error) { 1544 error = (*flags_p & SF_NOCOMPRESS_MODE) ? 1545 load_image(&handle, &snapshot, header->pages - 1) : 1546 load_compressed_image(&handle, &snapshot, header->pages - 1); 1547 } 1548 swap_reader_finish(&handle); 1549 end: 1550 if (!error) 1551 pr_debug("Image successfully loaded\n"); 1552 else 1553 pr_debug("Error %d resuming\n", error); 1554 return error; 1555 } 1556 1557 static void *swsusp_holder; 1558 1559 /** 1560 * swsusp_check - Open the resume device and check for the swsusp signature. 1561 * @exclusive: Open the resume device exclusively. 1562 */ 1563 1564 int swsusp_check(bool exclusive) 1565 { 1566 void *holder = exclusive ? &swsusp_holder : NULL; 1567 int error; 1568 1569 hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device, 1570 BLK_OPEN_READ, holder, NULL); 1571 if (!IS_ERR(hib_resume_bdev_file)) { 1572 clear_page(swsusp_header); 1573 error = hib_submit_io(REQ_OP_READ, swsusp_resume_block, 1574 swsusp_header, NULL); 1575 if (error) 1576 goto put; 1577 1578 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) { 1579 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); 1580 swsusp_header_flags = swsusp_header->flags; 1581 /* Reset swap signature now */ 1582 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC, 1583 swsusp_resume_block, 1584 swsusp_header, NULL); 1585 } else { 1586 error = -EINVAL; 1587 } 1588 if (!error && swsusp_header->flags & SF_HW_SIG && 1589 swsusp_header->hw_sig != swsusp_hardware_signature) { 1590 pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n", 1591 swsusp_header->hw_sig, swsusp_hardware_signature); 1592 error = -EINVAL; 1593 } 1594 1595 put: 1596 if (error) 1597 bdev_fput(hib_resume_bdev_file); 1598 else 1599 pr_debug("Image signature found, resuming\n"); 1600 } else { 1601 error = PTR_ERR(hib_resume_bdev_file); 1602 } 1603 1604 if (error) 1605 pr_debug("Image not found (code %d)\n", error); 1606 1607 return error; 1608 } 1609 1610 /** 1611 * swsusp_close - close resume device. 1612 */ 1613 1614 void swsusp_close(void) 1615 { 1616 if (IS_ERR(hib_resume_bdev_file)) { 1617 pr_debug("Image device not initialised\n"); 1618 return; 1619 } 1620 1621 fput(hib_resume_bdev_file); 1622 } 1623 1624 /** 1625 * swsusp_unmark - Unmark swsusp signature in the resume device 1626 */ 1627 1628 #ifdef CONFIG_SUSPEND 1629 int swsusp_unmark(void) 1630 { 1631 int error; 1632 1633 hib_submit_io(REQ_OP_READ, swsusp_resume_block, 1634 swsusp_header, NULL); 1635 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) { 1636 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10); 1637 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC, 1638 swsusp_resume_block, 1639 swsusp_header, NULL); 1640 } else { 1641 pr_err("Cannot find swsusp signature!\n"); 1642 error = -ENODEV; 1643 } 1644 1645 /* 1646 * We just returned from suspend, we don't need the image any more. 1647 */ 1648 free_all_swap_pages(root_swap); 1649 1650 return error; 1651 } 1652 #endif 1653 1654 static int __init swsusp_header_init(void) 1655 { 1656 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL); 1657 if (!swsusp_header) 1658 panic("Could not allocate memory for swsusp_header\n"); 1659 return 0; 1660 } 1661 1662 core_initcall(swsusp_header_init); 1663
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.