~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/printk/printk.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  linux/kernel/printk.c
  4  *
  5  *  Copyright (C) 1991, 1992  Linus Torvalds
  6  *
  7  * Modified to make sys_syslog() more flexible: added commands to
  8  * return the last 4k of kernel messages, regardless of whether
  9  * they've been read or not.  Added option to suppress kernel printk's
 10  * to the console.  Added hook for sending the console messages
 11  * elsewhere, in preparation for a serial line console (someday).
 12  * Ted Ts'o, 2/11/93.
 13  * Modified for sysctl support, 1/8/97, Chris Horn.
 14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
 15  *     manfred@colorfullife.com
 16  * Rewrote bits to get rid of console_lock
 17  *      01Mar01 Andrew Morton
 18  */
 19 
 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 21 
 22 #include <linux/kernel.h>
 23 #include <linux/mm.h>
 24 #include <linux/tty.h>
 25 #include <linux/tty_driver.h>
 26 #include <linux/console.h>
 27 #include <linux/init.h>
 28 #include <linux/jiffies.h>
 29 #include <linux/nmi.h>
 30 #include <linux/module.h>
 31 #include <linux/moduleparam.h>
 32 #include <linux/delay.h>
 33 #include <linux/smp.h>
 34 #include <linux/security.h>
 35 #include <linux/memblock.h>
 36 #include <linux/syscalls.h>
 37 #include <linux/vmcore_info.h>
 38 #include <linux/ratelimit.h>
 39 #include <linux/kmsg_dump.h>
 40 #include <linux/syslog.h>
 41 #include <linux/cpu.h>
 42 #include <linux/rculist.h>
 43 #include <linux/poll.h>
 44 #include <linux/irq_work.h>
 45 #include <linux/ctype.h>
 46 #include <linux/uio.h>
 47 #include <linux/sched/clock.h>
 48 #include <linux/sched/debug.h>
 49 #include <linux/sched/task_stack.h>
 50 
 51 #include <linux/uaccess.h>
 52 #include <asm/sections.h>
 53 
 54 #include <trace/events/initcall.h>
 55 #define CREATE_TRACE_POINTS
 56 #include <trace/events/printk.h>
 57 
 58 #include "printk_ringbuffer.h"
 59 #include "console_cmdline.h"
 60 #include "braille.h"
 61 #include "internal.h"
 62 
 63 int console_printk[4] = {
 64         CONSOLE_LOGLEVEL_DEFAULT,       /* console_loglevel */
 65         MESSAGE_LOGLEVEL_DEFAULT,       /* default_message_loglevel */
 66         CONSOLE_LOGLEVEL_MIN,           /* minimum_console_loglevel */
 67         CONSOLE_LOGLEVEL_DEFAULT,       /* default_console_loglevel */
 68 };
 69 EXPORT_SYMBOL_GPL(console_printk);
 70 
 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
 72 EXPORT_SYMBOL(ignore_console_lock_warning);
 73 
 74 EXPORT_TRACEPOINT_SYMBOL_GPL(console);
 75 
 76 /*
 77  * Low level drivers may need that to know if they can schedule in
 78  * their unblank() callback or not. So let's export it.
 79  */
 80 int oops_in_progress;
 81 EXPORT_SYMBOL(oops_in_progress);
 82 
 83 /*
 84  * console_mutex protects console_list updates and console->flags updates.
 85  * The flags are synchronized only for consoles that are registered, i.e.
 86  * accessible via the console list.
 87  */
 88 static DEFINE_MUTEX(console_mutex);
 89 
 90 /*
 91  * console_sem protects updates to console->seq
 92  * and also provides serialization for console printing.
 93  */
 94 static DEFINE_SEMAPHORE(console_sem, 1);
 95 HLIST_HEAD(console_list);
 96 EXPORT_SYMBOL_GPL(console_list);
 97 DEFINE_STATIC_SRCU(console_srcu);
 98 
 99 /*
100  * System may need to suppress printk message under certain
101  * circumstances, like after kernel panic happens.
102  */
103 int __read_mostly suppress_printk;
104 
105 #ifdef CONFIG_LOCKDEP
106 static struct lockdep_map console_lock_dep_map = {
107         .name = "console_lock"
108 };
109 
110 void lockdep_assert_console_list_lock_held(void)
111 {
112         lockdep_assert_held(&console_mutex);
113 }
114 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
115 #endif
116 
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 bool console_srcu_read_lock_is_held(void)
119 {
120         return srcu_read_lock_held(&console_srcu);
121 }
122 EXPORT_SYMBOL(console_srcu_read_lock_is_held);
123 #endif
124 
125 enum devkmsg_log_bits {
126         __DEVKMSG_LOG_BIT_ON = 0,
127         __DEVKMSG_LOG_BIT_OFF,
128         __DEVKMSG_LOG_BIT_LOCK,
129 };
130 
131 enum devkmsg_log_masks {
132         DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
133         DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
134         DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
135 };
136 
137 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
138 #define DEVKMSG_LOG_MASK_DEFAULT        0
139 
140 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
141 
142 static int __control_devkmsg(char *str)
143 {
144         size_t len;
145 
146         if (!str)
147                 return -EINVAL;
148 
149         len = str_has_prefix(str, "on");
150         if (len) {
151                 devkmsg_log = DEVKMSG_LOG_MASK_ON;
152                 return len;
153         }
154 
155         len = str_has_prefix(str, "off");
156         if (len) {
157                 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
158                 return len;
159         }
160 
161         len = str_has_prefix(str, "ratelimit");
162         if (len) {
163                 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
164                 return len;
165         }
166 
167         return -EINVAL;
168 }
169 
170 static int __init control_devkmsg(char *str)
171 {
172         if (__control_devkmsg(str) < 0) {
173                 pr_warn("printk.devkmsg: bad option string '%s'\n", str);
174                 return 1;
175         }
176 
177         /*
178          * Set sysctl string accordingly:
179          */
180         if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
181                 strscpy(devkmsg_log_str, "on");
182         else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
183                 strscpy(devkmsg_log_str, "off");
184         /* else "ratelimit" which is set by default. */
185 
186         /*
187          * Sysctl cannot change it anymore. The kernel command line setting of
188          * this parameter is to force the setting to be permanent throughout the
189          * runtime of the system. This is a precation measure against userspace
190          * trying to be a smarta** and attempting to change it up on us.
191          */
192         devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
193 
194         return 1;
195 }
196 __setup("printk.devkmsg=", control_devkmsg);
197 
198 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
199 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
200 int devkmsg_sysctl_set_loglvl(const struct ctl_table *table, int write,
201                               void *buffer, size_t *lenp, loff_t *ppos)
202 {
203         char old_str[DEVKMSG_STR_MAX_SIZE];
204         unsigned int old;
205         int err;
206 
207         if (write) {
208                 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
209                         return -EINVAL;
210 
211                 old = devkmsg_log;
212                 strscpy(old_str, devkmsg_log_str);
213         }
214 
215         err = proc_dostring(table, write, buffer, lenp, ppos);
216         if (err)
217                 return err;
218 
219         if (write) {
220                 err = __control_devkmsg(devkmsg_log_str);
221 
222                 /*
223                  * Do not accept an unknown string OR a known string with
224                  * trailing crap...
225                  */
226                 if (err < 0 || (err + 1 != *lenp)) {
227 
228                         /* ... and restore old setting. */
229                         devkmsg_log = old;
230                         strscpy(devkmsg_log_str, old_str);
231 
232                         return -EINVAL;
233                 }
234         }
235 
236         return 0;
237 }
238 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
239 
240 /**
241  * console_list_lock - Lock the console list
242  *
243  * For console list or console->flags updates
244  */
245 void console_list_lock(void)
246 {
247         /*
248          * In unregister_console() and console_force_preferred_locked(),
249          * synchronize_srcu() is called with the console_list_lock held.
250          * Therefore it is not allowed that the console_list_lock is taken
251          * with the srcu_lock held.
252          *
253          * Detecting if this context is really in the read-side critical
254          * section is only possible if the appropriate debug options are
255          * enabled.
256          */
257         WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
258                      srcu_read_lock_held(&console_srcu));
259 
260         mutex_lock(&console_mutex);
261 }
262 EXPORT_SYMBOL(console_list_lock);
263 
264 /**
265  * console_list_unlock - Unlock the console list
266  *
267  * Counterpart to console_list_lock()
268  */
269 void console_list_unlock(void)
270 {
271         mutex_unlock(&console_mutex);
272 }
273 EXPORT_SYMBOL(console_list_unlock);
274 
275 /**
276  * console_srcu_read_lock - Register a new reader for the
277  *      SRCU-protected console list
278  *
279  * Use for_each_console_srcu() to iterate the console list
280  *
281  * Context: Any context.
282  * Return: A cookie to pass to console_srcu_read_unlock().
283  */
284 int console_srcu_read_lock(void)
285 {
286         return srcu_read_lock_nmisafe(&console_srcu);
287 }
288 EXPORT_SYMBOL(console_srcu_read_lock);
289 
290 /**
291  * console_srcu_read_unlock - Unregister an old reader from
292  *      the SRCU-protected console list
293  * @cookie: cookie returned from console_srcu_read_lock()
294  *
295  * Counterpart to console_srcu_read_lock()
296  */
297 void console_srcu_read_unlock(int cookie)
298 {
299         srcu_read_unlock_nmisafe(&console_srcu, cookie);
300 }
301 EXPORT_SYMBOL(console_srcu_read_unlock);
302 
303 /*
304  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
305  * macros instead of functions so that _RET_IP_ contains useful information.
306  */
307 #define down_console_sem() do { \
308         down(&console_sem);\
309         mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
310 } while (0)
311 
312 static int __down_trylock_console_sem(unsigned long ip)
313 {
314         int lock_failed;
315         unsigned long flags;
316 
317         /*
318          * Here and in __up_console_sem() we need to be in safe mode,
319          * because spindump/WARN/etc from under console ->lock will
320          * deadlock in printk()->down_trylock_console_sem() otherwise.
321          */
322         printk_safe_enter_irqsave(flags);
323         lock_failed = down_trylock(&console_sem);
324         printk_safe_exit_irqrestore(flags);
325 
326         if (lock_failed)
327                 return 1;
328         mutex_acquire(&console_lock_dep_map, 0, 1, ip);
329         return 0;
330 }
331 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
332 
333 static void __up_console_sem(unsigned long ip)
334 {
335         unsigned long flags;
336 
337         mutex_release(&console_lock_dep_map, ip);
338 
339         printk_safe_enter_irqsave(flags);
340         up(&console_sem);
341         printk_safe_exit_irqrestore(flags);
342 }
343 #define up_console_sem() __up_console_sem(_RET_IP_)
344 
345 static bool panic_in_progress(void)
346 {
347         return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
348 }
349 
350 /* Return true if a panic is in progress on the current CPU. */
351 bool this_cpu_in_panic(void)
352 {
353         /*
354          * We can use raw_smp_processor_id() here because it is impossible for
355          * the task to be migrated to the panic_cpu, or away from it. If
356          * panic_cpu has already been set, and we're not currently executing on
357          * that CPU, then we never will be.
358          */
359         return unlikely(atomic_read(&panic_cpu) == raw_smp_processor_id());
360 }
361 
362 /*
363  * Return true if a panic is in progress on a remote CPU.
364  *
365  * On true, the local CPU should immediately release any printing resources
366  * that may be needed by the panic CPU.
367  */
368 bool other_cpu_in_panic(void)
369 {
370         return (panic_in_progress() && !this_cpu_in_panic());
371 }
372 
373 /*
374  * This is used for debugging the mess that is the VT code by
375  * keeping track if we have the console semaphore held. It's
376  * definitely not the perfect debug tool (we don't know if _WE_
377  * hold it and are racing, but it helps tracking those weird code
378  * paths in the console code where we end up in places I want
379  * locked without the console semaphore held).
380  */
381 static int console_locked;
382 
383 /*
384  *      Array of consoles built from command line options (console=)
385  */
386 
387 #define MAX_CMDLINECONSOLES 8
388 
389 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
390 
391 static int preferred_console = -1;
392 int console_set_on_cmdline;
393 EXPORT_SYMBOL(console_set_on_cmdline);
394 
395 /* Flag: console code may call schedule() */
396 static int console_may_schedule;
397 
398 enum con_msg_format_flags {
399         MSG_FORMAT_DEFAULT      = 0,
400         MSG_FORMAT_SYSLOG       = (1 << 0),
401 };
402 
403 static int console_msg_format = MSG_FORMAT_DEFAULT;
404 
405 /*
406  * The printk log buffer consists of a sequenced collection of records, each
407  * containing variable length message text. Every record also contains its
408  * own meta-data (@info).
409  *
410  * Every record meta-data carries the timestamp in microseconds, as well as
411  * the standard userspace syslog level and syslog facility. The usual kernel
412  * messages use LOG_KERN; userspace-injected messages always carry a matching
413  * syslog facility, by default LOG_USER. The origin of every message can be
414  * reliably determined that way.
415  *
416  * The human readable log message of a record is available in @text, the
417  * length of the message text in @text_len. The stored message is not
418  * terminated.
419  *
420  * Optionally, a record can carry a dictionary of properties (key/value
421  * pairs), to provide userspace with a machine-readable message context.
422  *
423  * Examples for well-defined, commonly used property names are:
424  *   DEVICE=b12:8               device identifier
425  *                                b12:8         block dev_t
426  *                                c127:3        char dev_t
427  *                                n8            netdev ifindex
428  *                                +sound:card0  subsystem:devname
429  *   SUBSYSTEM=pci              driver-core subsystem name
430  *
431  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
432  * and values are terminated by a '\0' character.
433  *
434  * Example of record values:
435  *   record.text_buf                = "it's a line" (unterminated)
436  *   record.info.seq                = 56
437  *   record.info.ts_nsec            = 36863
438  *   record.info.text_len           = 11
439  *   record.info.facility           = 0 (LOG_KERN)
440  *   record.info.flags              = 0
441  *   record.info.level              = 3 (LOG_ERR)
442  *   record.info.caller_id          = 299 (task 299)
443  *   record.info.dev_info.subsystem = "pci" (terminated)
444  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
445  *
446  * The 'struct printk_info' buffer must never be directly exported to
447  * userspace, it is a kernel-private implementation detail that might
448  * need to be changed in the future, when the requirements change.
449  *
450  * /dev/kmsg exports the structured data in the following line format:
451  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
452  *
453  * Users of the export format should ignore possible additional values
454  * separated by ',', and find the message after the ';' character.
455  *
456  * The optional key/value pairs are attached as continuation lines starting
457  * with a space character and terminated by a newline. All possible
458  * non-prinatable characters are escaped in the "\xff" notation.
459  */
460 
461 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
462 static DEFINE_MUTEX(syslog_lock);
463 
464 #ifdef CONFIG_PRINTK
465 DECLARE_WAIT_QUEUE_HEAD(log_wait);
466 /* All 3 protected by @syslog_lock. */
467 /* the next printk record to read by syslog(READ) or /proc/kmsg */
468 static u64 syslog_seq;
469 static size_t syslog_partial;
470 static bool syslog_time;
471 
472 struct latched_seq {
473         seqcount_latch_t        latch;
474         u64                     val[2];
475 };
476 
477 /*
478  * The next printk record to read after the last 'clear' command. There are
479  * two copies (updated with seqcount_latch) so that reads can locklessly
480  * access a valid value. Writers are synchronized by @syslog_lock.
481  */
482 static struct latched_seq clear_seq = {
483         .latch          = SEQCNT_LATCH_ZERO(clear_seq.latch),
484         .val[0]         = 0,
485         .val[1]         = 0,
486 };
487 
488 #define LOG_LEVEL(v)            ((v) & 0x07)
489 #define LOG_FACILITY(v)         ((v) >> 3 & 0xff)
490 
491 /* record buffer */
492 #define LOG_ALIGN __alignof__(unsigned long)
493 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
494 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
495 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
496 static char *log_buf = __log_buf;
497 static u32 log_buf_len = __LOG_BUF_LEN;
498 
499 /*
500  * Define the average message size. This only affects the number of
501  * descriptors that will be available. Underestimating is better than
502  * overestimating (too many available descriptors is better than not enough).
503  */
504 #define PRB_AVGBITS 5   /* 32 character average length */
505 
506 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
507 #error CONFIG_LOG_BUF_SHIFT value too small.
508 #endif
509 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
510                  PRB_AVGBITS, &__log_buf[0]);
511 
512 static struct printk_ringbuffer printk_rb_dynamic;
513 
514 struct printk_ringbuffer *prb = &printk_rb_static;
515 
516 /*
517  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
518  * per_cpu_areas are initialised. This variable is set to true when
519  * it's safe to access per-CPU data.
520  */
521 static bool __printk_percpu_data_ready __ro_after_init;
522 
523 bool printk_percpu_data_ready(void)
524 {
525         return __printk_percpu_data_ready;
526 }
527 
528 /* Must be called under syslog_lock. */
529 static void latched_seq_write(struct latched_seq *ls, u64 val)
530 {
531         raw_write_seqcount_latch(&ls->latch);
532         ls->val[0] = val;
533         raw_write_seqcount_latch(&ls->latch);
534         ls->val[1] = val;
535 }
536 
537 /* Can be called from any context. */
538 static u64 latched_seq_read_nolock(struct latched_seq *ls)
539 {
540         unsigned int seq;
541         unsigned int idx;
542         u64 val;
543 
544         do {
545                 seq = raw_read_seqcount_latch(&ls->latch);
546                 idx = seq & 0x1;
547                 val = ls->val[idx];
548         } while (raw_read_seqcount_latch_retry(&ls->latch, seq));
549 
550         return val;
551 }
552 
553 /* Return log buffer address */
554 char *log_buf_addr_get(void)
555 {
556         return log_buf;
557 }
558 
559 /* Return log buffer size */
560 u32 log_buf_len_get(void)
561 {
562         return log_buf_len;
563 }
564 
565 /*
566  * Define how much of the log buffer we could take at maximum. The value
567  * must be greater than two. Note that only half of the buffer is available
568  * when the index points to the middle.
569  */
570 #define MAX_LOG_TAKE_PART 4
571 static const char trunc_msg[] = "<truncated>";
572 
573 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
574 {
575         /*
576          * The message should not take the whole buffer. Otherwise, it might
577          * get removed too soon.
578          */
579         u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
580 
581         if (*text_len > max_text_len)
582                 *text_len = max_text_len;
583 
584         /* enable the warning message (if there is room) */
585         *trunc_msg_len = strlen(trunc_msg);
586         if (*text_len >= *trunc_msg_len)
587                 *text_len -= *trunc_msg_len;
588         else
589                 *trunc_msg_len = 0;
590 }
591 
592 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
593 
594 static int syslog_action_restricted(int type)
595 {
596         if (dmesg_restrict)
597                 return 1;
598         /*
599          * Unless restricted, we allow "read all" and "get buffer size"
600          * for everybody.
601          */
602         return type != SYSLOG_ACTION_READ_ALL &&
603                type != SYSLOG_ACTION_SIZE_BUFFER;
604 }
605 
606 static int check_syslog_permissions(int type, int source)
607 {
608         /*
609          * If this is from /proc/kmsg and we've already opened it, then we've
610          * already done the capabilities checks at open time.
611          */
612         if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
613                 goto ok;
614 
615         if (syslog_action_restricted(type)) {
616                 if (capable(CAP_SYSLOG))
617                         goto ok;
618                 return -EPERM;
619         }
620 ok:
621         return security_syslog(type);
622 }
623 
624 static void append_char(char **pp, char *e, char c)
625 {
626         if (*pp < e)
627                 *(*pp)++ = c;
628 }
629 
630 static ssize_t info_print_ext_header(char *buf, size_t size,
631                                      struct printk_info *info)
632 {
633         u64 ts_usec = info->ts_nsec;
634         char caller[20];
635 #ifdef CONFIG_PRINTK_CALLER
636         u32 id = info->caller_id;
637 
638         snprintf(caller, sizeof(caller), ",caller=%c%u",
639                  id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
640 #else
641         caller[0] = '\0';
642 #endif
643 
644         do_div(ts_usec, 1000);
645 
646         return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
647                          (info->facility << 3) | info->level, info->seq,
648                          ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
649 }
650 
651 static ssize_t msg_add_ext_text(char *buf, size_t size,
652                                 const char *text, size_t text_len,
653                                 unsigned char endc)
654 {
655         char *p = buf, *e = buf + size;
656         size_t i;
657 
658         /* escape non-printable characters */
659         for (i = 0; i < text_len; i++) {
660                 unsigned char c = text[i];
661 
662                 if (c < ' ' || c >= 127 || c == '\\')
663                         p += scnprintf(p, e - p, "\\x%02x", c);
664                 else
665                         append_char(&p, e, c);
666         }
667         append_char(&p, e, endc);
668 
669         return p - buf;
670 }
671 
672 static ssize_t msg_add_dict_text(char *buf, size_t size,
673                                  const char *key, const char *val)
674 {
675         size_t val_len = strlen(val);
676         ssize_t len;
677 
678         if (!val_len)
679                 return 0;
680 
681         len = msg_add_ext_text(buf, size, "", 0, ' ');  /* dict prefix */
682         len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
683         len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
684 
685         return len;
686 }
687 
688 static ssize_t msg_print_ext_body(char *buf, size_t size,
689                                   char *text, size_t text_len,
690                                   struct dev_printk_info *dev_info)
691 {
692         ssize_t len;
693 
694         len = msg_add_ext_text(buf, size, text, text_len, '\n');
695 
696         if (!dev_info)
697                 goto out;
698 
699         len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
700                                  dev_info->subsystem);
701         len += msg_add_dict_text(buf + len, size - len, "DEVICE",
702                                  dev_info->device);
703 out:
704         return len;
705 }
706 
707 /* /dev/kmsg - userspace message inject/listen interface */
708 struct devkmsg_user {
709         atomic64_t seq;
710         struct ratelimit_state rs;
711         struct mutex lock;
712         struct printk_buffers pbufs;
713 };
714 
715 static __printf(3, 4) __cold
716 int devkmsg_emit(int facility, int level, const char *fmt, ...)
717 {
718         va_list args;
719         int r;
720 
721         va_start(args, fmt);
722         r = vprintk_emit(facility, level, NULL, fmt, args);
723         va_end(args);
724 
725         return r;
726 }
727 
728 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
729 {
730         char *buf, *line;
731         int level = default_message_loglevel;
732         int facility = 1;       /* LOG_USER */
733         struct file *file = iocb->ki_filp;
734         struct devkmsg_user *user = file->private_data;
735         size_t len = iov_iter_count(from);
736         ssize_t ret = len;
737 
738         if (len > PRINTKRB_RECORD_MAX)
739                 return -EINVAL;
740 
741         /* Ignore when user logging is disabled. */
742         if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
743                 return len;
744 
745         /* Ratelimit when not explicitly enabled. */
746         if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
747                 if (!___ratelimit(&user->rs, current->comm))
748                         return ret;
749         }
750 
751         buf = kmalloc(len+1, GFP_KERNEL);
752         if (buf == NULL)
753                 return -ENOMEM;
754 
755         buf[len] = '\0';
756         if (!copy_from_iter_full(buf, len, from)) {
757                 kfree(buf);
758                 return -EFAULT;
759         }
760 
761         /*
762          * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
763          * the decimal value represents 32bit, the lower 3 bit are the log
764          * level, the rest are the log facility.
765          *
766          * If no prefix or no userspace facility is specified, we
767          * enforce LOG_USER, to be able to reliably distinguish
768          * kernel-generated messages from userspace-injected ones.
769          */
770         line = buf;
771         if (line[0] == '<') {
772                 char *endp = NULL;
773                 unsigned int u;
774 
775                 u = simple_strtoul(line + 1, &endp, 10);
776                 if (endp && endp[0] == '>') {
777                         level = LOG_LEVEL(u);
778                         if (LOG_FACILITY(u) != 0)
779                                 facility = LOG_FACILITY(u);
780                         endp++;
781                         line = endp;
782                 }
783         }
784 
785         devkmsg_emit(facility, level, "%s", line);
786         kfree(buf);
787         return ret;
788 }
789 
790 static ssize_t devkmsg_read(struct file *file, char __user *buf,
791                             size_t count, loff_t *ppos)
792 {
793         struct devkmsg_user *user = file->private_data;
794         char *outbuf = &user->pbufs.outbuf[0];
795         struct printk_message pmsg = {
796                 .pbufs = &user->pbufs,
797         };
798         ssize_t ret;
799 
800         ret = mutex_lock_interruptible(&user->lock);
801         if (ret)
802                 return ret;
803 
804         if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
805                 if (file->f_flags & O_NONBLOCK) {
806                         ret = -EAGAIN;
807                         goto out;
808                 }
809 
810                 /*
811                  * Guarantee this task is visible on the waitqueue before
812                  * checking the wake condition.
813                  *
814                  * The full memory barrier within set_current_state() of
815                  * prepare_to_wait_event() pairs with the full memory barrier
816                  * within wq_has_sleeper().
817                  *
818                  * This pairs with __wake_up_klogd:A.
819                  */
820                 ret = wait_event_interruptible(log_wait,
821                                 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
822                                                         false)); /* LMM(devkmsg_read:A) */
823                 if (ret)
824                         goto out;
825         }
826 
827         if (pmsg.dropped) {
828                 /* our last seen message is gone, return error and reset */
829                 atomic64_set(&user->seq, pmsg.seq);
830                 ret = -EPIPE;
831                 goto out;
832         }
833 
834         atomic64_set(&user->seq, pmsg.seq + 1);
835 
836         if (pmsg.outbuf_len > count) {
837                 ret = -EINVAL;
838                 goto out;
839         }
840 
841         if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
842                 ret = -EFAULT;
843                 goto out;
844         }
845         ret = pmsg.outbuf_len;
846 out:
847         mutex_unlock(&user->lock);
848         return ret;
849 }
850 
851 /*
852  * Be careful when modifying this function!!!
853  *
854  * Only few operations are supported because the device works only with the
855  * entire variable length messages (records). Non-standard values are
856  * returned in the other cases and has been this way for quite some time.
857  * User space applications might depend on this behavior.
858  */
859 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
860 {
861         struct devkmsg_user *user = file->private_data;
862         loff_t ret = 0;
863 
864         if (offset)
865                 return -ESPIPE;
866 
867         switch (whence) {
868         case SEEK_SET:
869                 /* the first record */
870                 atomic64_set(&user->seq, prb_first_valid_seq(prb));
871                 break;
872         case SEEK_DATA:
873                 /*
874                  * The first record after the last SYSLOG_ACTION_CLEAR,
875                  * like issued by 'dmesg -c'. Reading /dev/kmsg itself
876                  * changes no global state, and does not clear anything.
877                  */
878                 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
879                 break;
880         case SEEK_END:
881                 /* after the last record */
882                 atomic64_set(&user->seq, prb_next_seq(prb));
883                 break;
884         default:
885                 ret = -EINVAL;
886         }
887         return ret;
888 }
889 
890 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
891 {
892         struct devkmsg_user *user = file->private_data;
893         struct printk_info info;
894         __poll_t ret = 0;
895 
896         poll_wait(file, &log_wait, wait);
897 
898         if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
899                 /* return error when data has vanished underneath us */
900                 if (info.seq != atomic64_read(&user->seq))
901                         ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
902                 else
903                         ret = EPOLLIN|EPOLLRDNORM;
904         }
905 
906         return ret;
907 }
908 
909 static int devkmsg_open(struct inode *inode, struct file *file)
910 {
911         struct devkmsg_user *user;
912         int err;
913 
914         if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
915                 return -EPERM;
916 
917         /* write-only does not need any file context */
918         if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
919                 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
920                                                SYSLOG_FROM_READER);
921                 if (err)
922                         return err;
923         }
924 
925         user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
926         if (!user)
927                 return -ENOMEM;
928 
929         ratelimit_default_init(&user->rs);
930         ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
931 
932         mutex_init(&user->lock);
933 
934         atomic64_set(&user->seq, prb_first_valid_seq(prb));
935 
936         file->private_data = user;
937         return 0;
938 }
939 
940 static int devkmsg_release(struct inode *inode, struct file *file)
941 {
942         struct devkmsg_user *user = file->private_data;
943 
944         ratelimit_state_exit(&user->rs);
945 
946         mutex_destroy(&user->lock);
947         kvfree(user);
948         return 0;
949 }
950 
951 const struct file_operations kmsg_fops = {
952         .open = devkmsg_open,
953         .read = devkmsg_read,
954         .write_iter = devkmsg_write,
955         .llseek = devkmsg_llseek,
956         .poll = devkmsg_poll,
957         .release = devkmsg_release,
958 };
959 
960 #ifdef CONFIG_VMCORE_INFO
961 /*
962  * This appends the listed symbols to /proc/vmcore
963  *
964  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
965  * obtain access to symbols that are otherwise very difficult to locate.  These
966  * symbols are specifically used so that utilities can access and extract the
967  * dmesg log from a vmcore file after a crash.
968  */
969 void log_buf_vmcoreinfo_setup(void)
970 {
971         struct dev_printk_info *dev_info = NULL;
972 
973         VMCOREINFO_SYMBOL(prb);
974         VMCOREINFO_SYMBOL(printk_rb_static);
975         VMCOREINFO_SYMBOL(clear_seq);
976 
977         /*
978          * Export struct size and field offsets. User space tools can
979          * parse it and detect any changes to structure down the line.
980          */
981 
982         VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
983         VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
984         VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
985         VMCOREINFO_OFFSET(printk_ringbuffer, fail);
986 
987         VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
988         VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
989         VMCOREINFO_OFFSET(prb_desc_ring, descs);
990         VMCOREINFO_OFFSET(prb_desc_ring, infos);
991         VMCOREINFO_OFFSET(prb_desc_ring, head_id);
992         VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
993 
994         VMCOREINFO_STRUCT_SIZE(prb_desc);
995         VMCOREINFO_OFFSET(prb_desc, state_var);
996         VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
997 
998         VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
999         VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
1000         VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
1001 
1002         VMCOREINFO_STRUCT_SIZE(printk_info);
1003         VMCOREINFO_OFFSET(printk_info, seq);
1004         VMCOREINFO_OFFSET(printk_info, ts_nsec);
1005         VMCOREINFO_OFFSET(printk_info, text_len);
1006         VMCOREINFO_OFFSET(printk_info, caller_id);
1007         VMCOREINFO_OFFSET(printk_info, dev_info);
1008 
1009         VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1010         VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1011         VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1012         VMCOREINFO_OFFSET(dev_printk_info, device);
1013         VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1014 
1015         VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1016         VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1017         VMCOREINFO_OFFSET(prb_data_ring, data);
1018         VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1019         VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1020 
1021         VMCOREINFO_SIZE(atomic_long_t);
1022         VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1023 
1024         VMCOREINFO_STRUCT_SIZE(latched_seq);
1025         VMCOREINFO_OFFSET(latched_seq, val);
1026 }
1027 #endif
1028 
1029 /* requested log_buf_len from kernel cmdline */
1030 static unsigned long __initdata new_log_buf_len;
1031 
1032 /* we practice scaling the ring buffer by powers of 2 */
1033 static void __init log_buf_len_update(u64 size)
1034 {
1035         if (size > (u64)LOG_BUF_LEN_MAX) {
1036                 size = (u64)LOG_BUF_LEN_MAX;
1037                 pr_err("log_buf over 2G is not supported.\n");
1038         }
1039 
1040         if (size)
1041                 size = roundup_pow_of_two(size);
1042         if (size > log_buf_len)
1043                 new_log_buf_len = (unsigned long)size;
1044 }
1045 
1046 /* save requested log_buf_len since it's too early to process it */
1047 static int __init log_buf_len_setup(char *str)
1048 {
1049         u64 size;
1050 
1051         if (!str)
1052                 return -EINVAL;
1053 
1054         size = memparse(str, &str);
1055 
1056         log_buf_len_update(size);
1057 
1058         return 0;
1059 }
1060 early_param("log_buf_len", log_buf_len_setup);
1061 
1062 #ifdef CONFIG_SMP
1063 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1064 
1065 static void __init log_buf_add_cpu(void)
1066 {
1067         unsigned int cpu_extra;
1068 
1069         /*
1070          * archs should set up cpu_possible_bits properly with
1071          * set_cpu_possible() after setup_arch() but just in
1072          * case lets ensure this is valid.
1073          */
1074         if (num_possible_cpus() == 1)
1075                 return;
1076 
1077         cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1078 
1079         /* by default this will only continue through for large > 64 CPUs */
1080         if (cpu_extra <= __LOG_BUF_LEN / 2)
1081                 return;
1082 
1083         pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1084                 __LOG_CPU_MAX_BUF_LEN);
1085         pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1086                 cpu_extra);
1087         pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1088 
1089         log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1090 }
1091 #else /* !CONFIG_SMP */
1092 static inline void log_buf_add_cpu(void) {}
1093 #endif /* CONFIG_SMP */
1094 
1095 static void __init set_percpu_data_ready(void)
1096 {
1097         __printk_percpu_data_ready = true;
1098 }
1099 
1100 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1101                                      struct printk_record *r)
1102 {
1103         struct prb_reserved_entry e;
1104         struct printk_record dest_r;
1105 
1106         prb_rec_init_wr(&dest_r, r->info->text_len);
1107 
1108         if (!prb_reserve(&e, rb, &dest_r))
1109                 return 0;
1110 
1111         memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1112         dest_r.info->text_len = r->info->text_len;
1113         dest_r.info->facility = r->info->facility;
1114         dest_r.info->level = r->info->level;
1115         dest_r.info->flags = r->info->flags;
1116         dest_r.info->ts_nsec = r->info->ts_nsec;
1117         dest_r.info->caller_id = r->info->caller_id;
1118         memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1119 
1120         prb_final_commit(&e);
1121 
1122         return prb_record_text_space(&e);
1123 }
1124 
1125 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1126 
1127 void __init setup_log_buf(int early)
1128 {
1129         struct printk_info *new_infos;
1130         unsigned int new_descs_count;
1131         struct prb_desc *new_descs;
1132         struct printk_info info;
1133         struct printk_record r;
1134         unsigned int text_size;
1135         size_t new_descs_size;
1136         size_t new_infos_size;
1137         unsigned long flags;
1138         char *new_log_buf;
1139         unsigned int free;
1140         u64 seq;
1141 
1142         /*
1143          * Some archs call setup_log_buf() multiple times - first is very
1144          * early, e.g. from setup_arch(), and second - when percpu_areas
1145          * are initialised.
1146          */
1147         if (!early)
1148                 set_percpu_data_ready();
1149 
1150         if (log_buf != __log_buf)
1151                 return;
1152 
1153         if (!early && !new_log_buf_len)
1154                 log_buf_add_cpu();
1155 
1156         if (!new_log_buf_len)
1157                 return;
1158 
1159         new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1160         if (new_descs_count == 0) {
1161                 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1162                 return;
1163         }
1164 
1165         new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1166         if (unlikely(!new_log_buf)) {
1167                 pr_err("log_buf_len: %lu text bytes not available\n",
1168                        new_log_buf_len);
1169                 return;
1170         }
1171 
1172         new_descs_size = new_descs_count * sizeof(struct prb_desc);
1173         new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1174         if (unlikely(!new_descs)) {
1175                 pr_err("log_buf_len: %zu desc bytes not available\n",
1176                        new_descs_size);
1177                 goto err_free_log_buf;
1178         }
1179 
1180         new_infos_size = new_descs_count * sizeof(struct printk_info);
1181         new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1182         if (unlikely(!new_infos)) {
1183                 pr_err("log_buf_len: %zu info bytes not available\n",
1184                        new_infos_size);
1185                 goto err_free_descs;
1186         }
1187 
1188         prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1189 
1190         prb_init(&printk_rb_dynamic,
1191                  new_log_buf, ilog2(new_log_buf_len),
1192                  new_descs, ilog2(new_descs_count),
1193                  new_infos);
1194 
1195         local_irq_save(flags);
1196 
1197         log_buf_len = new_log_buf_len;
1198         log_buf = new_log_buf;
1199         new_log_buf_len = 0;
1200 
1201         free = __LOG_BUF_LEN;
1202         prb_for_each_record(0, &printk_rb_static, seq, &r) {
1203                 text_size = add_to_rb(&printk_rb_dynamic, &r);
1204                 if (text_size > free)
1205                         free = 0;
1206                 else
1207                         free -= text_size;
1208         }
1209 
1210         prb = &printk_rb_dynamic;
1211 
1212         local_irq_restore(flags);
1213 
1214         /*
1215          * Copy any remaining messages that might have appeared from
1216          * NMI context after copying but before switching to the
1217          * dynamic buffer.
1218          */
1219         prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1220                 text_size = add_to_rb(&printk_rb_dynamic, &r);
1221                 if (text_size > free)
1222                         free = 0;
1223                 else
1224                         free -= text_size;
1225         }
1226 
1227         if (seq != prb_next_seq(&printk_rb_static)) {
1228                 pr_err("dropped %llu messages\n",
1229                        prb_next_seq(&printk_rb_static) - seq);
1230         }
1231 
1232         pr_info("log_buf_len: %u bytes\n", log_buf_len);
1233         pr_info("early log buf free: %u(%u%%)\n",
1234                 free, (free * 100) / __LOG_BUF_LEN);
1235         return;
1236 
1237 err_free_descs:
1238         memblock_free(new_descs, new_descs_size);
1239 err_free_log_buf:
1240         memblock_free(new_log_buf, new_log_buf_len);
1241 }
1242 
1243 static bool __read_mostly ignore_loglevel;
1244 
1245 static int __init ignore_loglevel_setup(char *str)
1246 {
1247         ignore_loglevel = true;
1248         pr_info("debug: ignoring loglevel setting.\n");
1249 
1250         return 0;
1251 }
1252 
1253 early_param("ignore_loglevel", ignore_loglevel_setup);
1254 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1255 MODULE_PARM_DESC(ignore_loglevel,
1256                  "ignore loglevel setting (prints all kernel messages to the console)");
1257 
1258 static bool suppress_message_printing(int level)
1259 {
1260         return (level >= console_loglevel && !ignore_loglevel);
1261 }
1262 
1263 #ifdef CONFIG_BOOT_PRINTK_DELAY
1264 
1265 static int boot_delay; /* msecs delay after each printk during bootup */
1266 static unsigned long long loops_per_msec;       /* based on boot_delay */
1267 
1268 static int __init boot_delay_setup(char *str)
1269 {
1270         unsigned long lpj;
1271 
1272         lpj = preset_lpj ? preset_lpj : 1000000;        /* some guess */
1273         loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1274 
1275         get_option(&str, &boot_delay);
1276         if (boot_delay > 10 * 1000)
1277                 boot_delay = 0;
1278 
1279         pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1280                 "HZ: %d, loops_per_msec: %llu\n",
1281                 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1282         return 0;
1283 }
1284 early_param("boot_delay", boot_delay_setup);
1285 
1286 static void boot_delay_msec(int level)
1287 {
1288         unsigned long long k;
1289         unsigned long timeout;
1290 
1291         if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1292                 || suppress_message_printing(level)) {
1293                 return;
1294         }
1295 
1296         k = (unsigned long long)loops_per_msec * boot_delay;
1297 
1298         timeout = jiffies + msecs_to_jiffies(boot_delay);
1299         while (k) {
1300                 k--;
1301                 cpu_relax();
1302                 /*
1303                  * use (volatile) jiffies to prevent
1304                  * compiler reduction; loop termination via jiffies
1305                  * is secondary and may or may not happen.
1306                  */
1307                 if (time_after(jiffies, timeout))
1308                         break;
1309                 touch_nmi_watchdog();
1310         }
1311 }
1312 #else
1313 static inline void boot_delay_msec(int level)
1314 {
1315 }
1316 #endif
1317 
1318 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1319 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1320 
1321 static size_t print_syslog(unsigned int level, char *buf)
1322 {
1323         return sprintf(buf, "<%u>", level);
1324 }
1325 
1326 static size_t print_time(u64 ts, char *buf)
1327 {
1328         unsigned long rem_nsec = do_div(ts, 1000000000);
1329 
1330         return sprintf(buf, "[%5lu.%06lu]",
1331                        (unsigned long)ts, rem_nsec / 1000);
1332 }
1333 
1334 #ifdef CONFIG_PRINTK_CALLER
1335 static size_t print_caller(u32 id, char *buf)
1336 {
1337         char caller[12];
1338 
1339         snprintf(caller, sizeof(caller), "%c%u",
1340                  id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1341         return sprintf(buf, "[%6s]", caller);
1342 }
1343 #else
1344 #define print_caller(id, buf) 0
1345 #endif
1346 
1347 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1348                                 bool time, char *buf)
1349 {
1350         size_t len = 0;
1351 
1352         if (syslog)
1353                 len = print_syslog((info->facility << 3) | info->level, buf);
1354 
1355         if (time)
1356                 len += print_time(info->ts_nsec, buf + len);
1357 
1358         len += print_caller(info->caller_id, buf + len);
1359 
1360         if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1361                 buf[len++] = ' ';
1362                 buf[len] = '\0';
1363         }
1364 
1365         return len;
1366 }
1367 
1368 /*
1369  * Prepare the record for printing. The text is shifted within the given
1370  * buffer to avoid a need for another one. The following operations are
1371  * done:
1372  *
1373  *   - Add prefix for each line.
1374  *   - Drop truncated lines that no longer fit into the buffer.
1375  *   - Add the trailing newline that has been removed in vprintk_store().
1376  *   - Add a string terminator.
1377  *
1378  * Since the produced string is always terminated, the maximum possible
1379  * return value is @r->text_buf_size - 1;
1380  *
1381  * Return: The length of the updated/prepared text, including the added
1382  * prefixes and the newline. The terminator is not counted. The dropped
1383  * line(s) are not counted.
1384  */
1385 static size_t record_print_text(struct printk_record *r, bool syslog,
1386                                 bool time)
1387 {
1388         size_t text_len = r->info->text_len;
1389         size_t buf_size = r->text_buf_size;
1390         char *text = r->text_buf;
1391         char prefix[PRINTK_PREFIX_MAX];
1392         bool truncated = false;
1393         size_t prefix_len;
1394         size_t line_len;
1395         size_t len = 0;
1396         char *next;
1397 
1398         /*
1399          * If the message was truncated because the buffer was not large
1400          * enough, treat the available text as if it were the full text.
1401          */
1402         if (text_len > buf_size)
1403                 text_len = buf_size;
1404 
1405         prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1406 
1407         /*
1408          * @text_len: bytes of unprocessed text
1409          * @line_len: bytes of current line _without_ newline
1410          * @text:     pointer to beginning of current line
1411          * @len:      number of bytes prepared in r->text_buf
1412          */
1413         for (;;) {
1414                 next = memchr(text, '\n', text_len);
1415                 if (next) {
1416                         line_len = next - text;
1417                 } else {
1418                         /* Drop truncated line(s). */
1419                         if (truncated)
1420                                 break;
1421                         line_len = text_len;
1422                 }
1423 
1424                 /*
1425                  * Truncate the text if there is not enough space to add the
1426                  * prefix and a trailing newline and a terminator.
1427                  */
1428                 if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1429                         /* Drop even the current line if no space. */
1430                         if (len + prefix_len + line_len + 1 + 1 > buf_size)
1431                                 break;
1432 
1433                         text_len = buf_size - len - prefix_len - 1 - 1;
1434                         truncated = true;
1435                 }
1436 
1437                 memmove(text + prefix_len, text, text_len);
1438                 memcpy(text, prefix, prefix_len);
1439 
1440                 /*
1441                  * Increment the prepared length to include the text and
1442                  * prefix that were just moved+copied. Also increment for the
1443                  * newline at the end of this line. If this is the last line,
1444                  * there is no newline, but it will be added immediately below.
1445                  */
1446                 len += prefix_len + line_len + 1;
1447                 if (text_len == line_len) {
1448                         /*
1449                          * This is the last line. Add the trailing newline
1450                          * removed in vprintk_store().
1451                          */
1452                         text[prefix_len + line_len] = '\n';
1453                         break;
1454                 }
1455 
1456                 /*
1457                  * Advance beyond the added prefix and the related line with
1458                  * its newline.
1459                  */
1460                 text += prefix_len + line_len + 1;
1461 
1462                 /*
1463                  * The remaining text has only decreased by the line with its
1464                  * newline.
1465                  *
1466                  * Note that @text_len can become zero. It happens when @text
1467                  * ended with a newline (either due to truncation or the
1468                  * original string ending with "\n\n"). The loop is correctly
1469                  * repeated and (if not truncated) an empty line with a prefix
1470                  * will be prepared.
1471                  */
1472                 text_len -= line_len + 1;
1473         }
1474 
1475         /*
1476          * If a buffer was provided, it will be terminated. Space for the
1477          * string terminator is guaranteed to be available. The terminator is
1478          * not counted in the return value.
1479          */
1480         if (buf_size > 0)
1481                 r->text_buf[len] = 0;
1482 
1483         return len;
1484 }
1485 
1486 static size_t get_record_print_text_size(struct printk_info *info,
1487                                          unsigned int line_count,
1488                                          bool syslog, bool time)
1489 {
1490         char prefix[PRINTK_PREFIX_MAX];
1491         size_t prefix_len;
1492 
1493         prefix_len = info_print_prefix(info, syslog, time, prefix);
1494 
1495         /*
1496          * Each line will be preceded with a prefix. The intermediate
1497          * newlines are already within the text, but a final trailing
1498          * newline will be added.
1499          */
1500         return ((prefix_len * line_count) + info->text_len + 1);
1501 }
1502 
1503 /*
1504  * Beginning with @start_seq, find the first record where it and all following
1505  * records up to (but not including) @max_seq fit into @size.
1506  *
1507  * @max_seq is simply an upper bound and does not need to exist. If the caller
1508  * does not require an upper bound, -1 can be used for @max_seq.
1509  */
1510 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1511                                   bool syslog, bool time)
1512 {
1513         struct printk_info info;
1514         unsigned int line_count;
1515         size_t len = 0;
1516         u64 seq;
1517 
1518         /* Determine the size of the records up to @max_seq. */
1519         prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1520                 if (info.seq >= max_seq)
1521                         break;
1522                 len += get_record_print_text_size(&info, line_count, syslog, time);
1523         }
1524 
1525         /*
1526          * Adjust the upper bound for the next loop to avoid subtracting
1527          * lengths that were never added.
1528          */
1529         if (seq < max_seq)
1530                 max_seq = seq;
1531 
1532         /*
1533          * Move first record forward until length fits into the buffer. Ignore
1534          * newest messages that were not counted in the above cycle. Messages
1535          * might appear and get lost in the meantime. This is a best effort
1536          * that prevents an infinite loop that could occur with a retry.
1537          */
1538         prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1539                 if (len <= size || info.seq >= max_seq)
1540                         break;
1541                 len -= get_record_print_text_size(&info, line_count, syslog, time);
1542         }
1543 
1544         return seq;
1545 }
1546 
1547 /* The caller is responsible for making sure @size is greater than 0. */
1548 static int syslog_print(char __user *buf, int size)
1549 {
1550         struct printk_info info;
1551         struct printk_record r;
1552         char *text;
1553         int len = 0;
1554         u64 seq;
1555 
1556         text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1557         if (!text)
1558                 return -ENOMEM;
1559 
1560         prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1561 
1562         mutex_lock(&syslog_lock);
1563 
1564         /*
1565          * Wait for the @syslog_seq record to be available. @syslog_seq may
1566          * change while waiting.
1567          */
1568         do {
1569                 seq = syslog_seq;
1570 
1571                 mutex_unlock(&syslog_lock);
1572                 /*
1573                  * Guarantee this task is visible on the waitqueue before
1574                  * checking the wake condition.
1575                  *
1576                  * The full memory barrier within set_current_state() of
1577                  * prepare_to_wait_event() pairs with the full memory barrier
1578                  * within wq_has_sleeper().
1579                  *
1580                  * This pairs with __wake_up_klogd:A.
1581                  */
1582                 len = wait_event_interruptible(log_wait,
1583                                 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1584                 mutex_lock(&syslog_lock);
1585 
1586                 if (len)
1587                         goto out;
1588         } while (syslog_seq != seq);
1589 
1590         /*
1591          * Copy records that fit into the buffer. The above cycle makes sure
1592          * that the first record is always available.
1593          */
1594         do {
1595                 size_t n;
1596                 size_t skip;
1597                 int err;
1598 
1599                 if (!prb_read_valid(prb, syslog_seq, &r))
1600                         break;
1601 
1602                 if (r.info->seq != syslog_seq) {
1603                         /* message is gone, move to next valid one */
1604                         syslog_seq = r.info->seq;
1605                         syslog_partial = 0;
1606                 }
1607 
1608                 /*
1609                  * To keep reading/counting partial line consistent,
1610                  * use printk_time value as of the beginning of a line.
1611                  */
1612                 if (!syslog_partial)
1613                         syslog_time = printk_time;
1614 
1615                 skip = syslog_partial;
1616                 n = record_print_text(&r, true, syslog_time);
1617                 if (n - syslog_partial <= size) {
1618                         /* message fits into buffer, move forward */
1619                         syslog_seq = r.info->seq + 1;
1620                         n -= syslog_partial;
1621                         syslog_partial = 0;
1622                 } else if (!len){
1623                         /* partial read(), remember position */
1624                         n = size;
1625                         syslog_partial += n;
1626                 } else
1627                         n = 0;
1628 
1629                 if (!n)
1630                         break;
1631 
1632                 mutex_unlock(&syslog_lock);
1633                 err = copy_to_user(buf, text + skip, n);
1634                 mutex_lock(&syslog_lock);
1635 
1636                 if (err) {
1637                         if (!len)
1638                                 len = -EFAULT;
1639                         break;
1640                 }
1641 
1642                 len += n;
1643                 size -= n;
1644                 buf += n;
1645         } while (size);
1646 out:
1647         mutex_unlock(&syslog_lock);
1648         kfree(text);
1649         return len;
1650 }
1651 
1652 static int syslog_print_all(char __user *buf, int size, bool clear)
1653 {
1654         struct printk_info info;
1655         struct printk_record r;
1656         char *text;
1657         int len = 0;
1658         u64 seq;
1659         bool time;
1660 
1661         text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1662         if (!text)
1663                 return -ENOMEM;
1664 
1665         time = printk_time;
1666         /*
1667          * Find first record that fits, including all following records,
1668          * into the user-provided buffer for this dump.
1669          */
1670         seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1671                                      size, true, time);
1672 
1673         prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1674 
1675         prb_for_each_record(seq, prb, seq, &r) {
1676                 int textlen;
1677 
1678                 textlen = record_print_text(&r, true, time);
1679 
1680                 if (len + textlen > size) {
1681                         seq--;
1682                         break;
1683                 }
1684 
1685                 if (copy_to_user(buf + len, text, textlen))
1686                         len = -EFAULT;
1687                 else
1688                         len += textlen;
1689 
1690                 if (len < 0)
1691                         break;
1692         }
1693 
1694         if (clear) {
1695                 mutex_lock(&syslog_lock);
1696                 latched_seq_write(&clear_seq, seq);
1697                 mutex_unlock(&syslog_lock);
1698         }
1699 
1700         kfree(text);
1701         return len;
1702 }
1703 
1704 static void syslog_clear(void)
1705 {
1706         mutex_lock(&syslog_lock);
1707         latched_seq_write(&clear_seq, prb_next_seq(prb));
1708         mutex_unlock(&syslog_lock);
1709 }
1710 
1711 int do_syslog(int type, char __user *buf, int len, int source)
1712 {
1713         struct printk_info info;
1714         bool clear = false;
1715         static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1716         int error;
1717 
1718         error = check_syslog_permissions(type, source);
1719         if (error)
1720                 return error;
1721 
1722         switch (type) {
1723         case SYSLOG_ACTION_CLOSE:       /* Close log */
1724                 break;
1725         case SYSLOG_ACTION_OPEN:        /* Open log */
1726                 break;
1727         case SYSLOG_ACTION_READ:        /* Read from log */
1728                 if (!buf || len < 0)
1729                         return -EINVAL;
1730                 if (!len)
1731                         return 0;
1732                 if (!access_ok(buf, len))
1733                         return -EFAULT;
1734                 error = syslog_print(buf, len);
1735                 break;
1736         /* Read/clear last kernel messages */
1737         case SYSLOG_ACTION_READ_CLEAR:
1738                 clear = true;
1739                 fallthrough;
1740         /* Read last kernel messages */
1741         case SYSLOG_ACTION_READ_ALL:
1742                 if (!buf || len < 0)
1743                         return -EINVAL;
1744                 if (!len)
1745                         return 0;
1746                 if (!access_ok(buf, len))
1747                         return -EFAULT;
1748                 error = syslog_print_all(buf, len, clear);
1749                 break;
1750         /* Clear ring buffer */
1751         case SYSLOG_ACTION_CLEAR:
1752                 syslog_clear();
1753                 break;
1754         /* Disable logging to console */
1755         case SYSLOG_ACTION_CONSOLE_OFF:
1756                 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1757                         saved_console_loglevel = console_loglevel;
1758                 console_loglevel = minimum_console_loglevel;
1759                 break;
1760         /* Enable logging to console */
1761         case SYSLOG_ACTION_CONSOLE_ON:
1762                 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1763                         console_loglevel = saved_console_loglevel;
1764                         saved_console_loglevel = LOGLEVEL_DEFAULT;
1765                 }
1766                 break;
1767         /* Set level of messages printed to console */
1768         case SYSLOG_ACTION_CONSOLE_LEVEL:
1769                 if (len < 1 || len > 8)
1770                         return -EINVAL;
1771                 if (len < minimum_console_loglevel)
1772                         len = minimum_console_loglevel;
1773                 console_loglevel = len;
1774                 /* Implicitly re-enable logging to console */
1775                 saved_console_loglevel = LOGLEVEL_DEFAULT;
1776                 break;
1777         /* Number of chars in the log buffer */
1778         case SYSLOG_ACTION_SIZE_UNREAD:
1779                 mutex_lock(&syslog_lock);
1780                 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1781                         /* No unread messages. */
1782                         mutex_unlock(&syslog_lock);
1783                         return 0;
1784                 }
1785                 if (info.seq != syslog_seq) {
1786                         /* messages are gone, move to first one */
1787                         syslog_seq = info.seq;
1788                         syslog_partial = 0;
1789                 }
1790                 if (source == SYSLOG_FROM_PROC) {
1791                         /*
1792                          * Short-cut for poll(/"proc/kmsg") which simply checks
1793                          * for pending data, not the size; return the count of
1794                          * records, not the length.
1795                          */
1796                         error = prb_next_seq(prb) - syslog_seq;
1797                 } else {
1798                         bool time = syslog_partial ? syslog_time : printk_time;
1799                         unsigned int line_count;
1800                         u64 seq;
1801 
1802                         prb_for_each_info(syslog_seq, prb, seq, &info,
1803                                           &line_count) {
1804                                 error += get_record_print_text_size(&info, line_count,
1805                                                                     true, time);
1806                                 time = printk_time;
1807                         }
1808                         error -= syslog_partial;
1809                 }
1810                 mutex_unlock(&syslog_lock);
1811                 break;
1812         /* Size of the log buffer */
1813         case SYSLOG_ACTION_SIZE_BUFFER:
1814                 error = log_buf_len;
1815                 break;
1816         default:
1817                 error = -EINVAL;
1818                 break;
1819         }
1820 
1821         return error;
1822 }
1823 
1824 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1825 {
1826         return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1827 }
1828 
1829 /*
1830  * Special console_lock variants that help to reduce the risk of soft-lockups.
1831  * They allow to pass console_lock to another printk() call using a busy wait.
1832  */
1833 
1834 #ifdef CONFIG_LOCKDEP
1835 static struct lockdep_map console_owner_dep_map = {
1836         .name = "console_owner"
1837 };
1838 #endif
1839 
1840 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1841 static struct task_struct *console_owner;
1842 static bool console_waiter;
1843 
1844 /**
1845  * console_lock_spinning_enable - mark beginning of code where another
1846  *      thread might safely busy wait
1847  *
1848  * This basically converts console_lock into a spinlock. This marks
1849  * the section where the console_lock owner can not sleep, because
1850  * there may be a waiter spinning (like a spinlock). Also it must be
1851  * ready to hand over the lock at the end of the section.
1852  */
1853 static void console_lock_spinning_enable(void)
1854 {
1855         /*
1856          * Do not use spinning in panic(). The panic CPU wants to keep the lock.
1857          * Non-panic CPUs abandon the flush anyway.
1858          *
1859          * Just keep the lockdep annotation. The panic-CPU should avoid
1860          * taking console_owner_lock because it might cause a deadlock.
1861          * This looks like the easiest way how to prevent false lockdep
1862          * reports without handling races a lockless way.
1863          */
1864         if (panic_in_progress())
1865                 goto lockdep;
1866 
1867         raw_spin_lock(&console_owner_lock);
1868         console_owner = current;
1869         raw_spin_unlock(&console_owner_lock);
1870 
1871 lockdep:
1872         /* The waiter may spin on us after setting console_owner */
1873         spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1874 }
1875 
1876 /**
1877  * console_lock_spinning_disable_and_check - mark end of code where another
1878  *      thread was able to busy wait and check if there is a waiter
1879  * @cookie: cookie returned from console_srcu_read_lock()
1880  *
1881  * This is called at the end of the section where spinning is allowed.
1882  * It has two functions. First, it is a signal that it is no longer
1883  * safe to start busy waiting for the lock. Second, it checks if
1884  * there is a busy waiter and passes the lock rights to her.
1885  *
1886  * Important: Callers lose both the console_lock and the SRCU read lock if
1887  *      there was a busy waiter. They must not touch items synchronized by
1888  *      console_lock or SRCU read lock in this case.
1889  *
1890  * Return: 1 if the lock rights were passed, 0 otherwise.
1891  */
1892 static int console_lock_spinning_disable_and_check(int cookie)
1893 {
1894         int waiter;
1895 
1896         /*
1897          * Ignore spinning waiters during panic() because they might get stopped
1898          * or blocked at any time,
1899          *
1900          * It is safe because nobody is allowed to start spinning during panic
1901          * in the first place. If there has been a waiter then non panic CPUs
1902          * might stay spinning. They would get stopped anyway. The panic context
1903          * will never start spinning and an interrupted spin on panic CPU will
1904          * never continue.
1905          */
1906         if (panic_in_progress()) {
1907                 /* Keep lockdep happy. */
1908                 spin_release(&console_owner_dep_map, _THIS_IP_);
1909                 return 0;
1910         }
1911 
1912         raw_spin_lock(&console_owner_lock);
1913         waiter = READ_ONCE(console_waiter);
1914         console_owner = NULL;
1915         raw_spin_unlock(&console_owner_lock);
1916 
1917         if (!waiter) {
1918                 spin_release(&console_owner_dep_map, _THIS_IP_);
1919                 return 0;
1920         }
1921 
1922         /* The waiter is now free to continue */
1923         WRITE_ONCE(console_waiter, false);
1924 
1925         spin_release(&console_owner_dep_map, _THIS_IP_);
1926 
1927         /*
1928          * Preserve lockdep lock ordering. Release the SRCU read lock before
1929          * releasing the console_lock.
1930          */
1931         console_srcu_read_unlock(cookie);
1932 
1933         /*
1934          * Hand off console_lock to waiter. The waiter will perform
1935          * the up(). After this, the waiter is the console_lock owner.
1936          */
1937         mutex_release(&console_lock_dep_map, _THIS_IP_);
1938         return 1;
1939 }
1940 
1941 /**
1942  * console_trylock_spinning - try to get console_lock by busy waiting
1943  *
1944  * This allows to busy wait for the console_lock when the current
1945  * owner is running in specially marked sections. It means that
1946  * the current owner is running and cannot reschedule until it
1947  * is ready to lose the lock.
1948  *
1949  * Return: 1 if we got the lock, 0 othrewise
1950  */
1951 static int console_trylock_spinning(void)
1952 {
1953         struct task_struct *owner = NULL;
1954         bool waiter;
1955         bool spin = false;
1956         unsigned long flags;
1957 
1958         if (console_trylock())
1959                 return 1;
1960 
1961         /*
1962          * It's unsafe to spin once a panic has begun. If we are the
1963          * panic CPU, we may have already halted the owner of the
1964          * console_sem. If we are not the panic CPU, then we should
1965          * avoid taking console_sem, so the panic CPU has a better
1966          * chance of cleanly acquiring it later.
1967          */
1968         if (panic_in_progress())
1969                 return 0;
1970 
1971         printk_safe_enter_irqsave(flags);
1972 
1973         raw_spin_lock(&console_owner_lock);
1974         owner = READ_ONCE(console_owner);
1975         waiter = READ_ONCE(console_waiter);
1976         if (!waiter && owner && owner != current) {
1977                 WRITE_ONCE(console_waiter, true);
1978                 spin = true;
1979         }
1980         raw_spin_unlock(&console_owner_lock);
1981 
1982         /*
1983          * If there is an active printk() writing to the
1984          * consoles, instead of having it write our data too,
1985          * see if we can offload that load from the active
1986          * printer, and do some printing ourselves.
1987          * Go into a spin only if there isn't already a waiter
1988          * spinning, and there is an active printer, and
1989          * that active printer isn't us (recursive printk?).
1990          */
1991         if (!spin) {
1992                 printk_safe_exit_irqrestore(flags);
1993                 return 0;
1994         }
1995 
1996         /* We spin waiting for the owner to release us */
1997         spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1998         /* Owner will clear console_waiter on hand off */
1999         while (READ_ONCE(console_waiter))
2000                 cpu_relax();
2001         spin_release(&console_owner_dep_map, _THIS_IP_);
2002 
2003         printk_safe_exit_irqrestore(flags);
2004         /*
2005          * The owner passed the console lock to us.
2006          * Since we did not spin on console lock, annotate
2007          * this as a trylock. Otherwise lockdep will
2008          * complain.
2009          */
2010         mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
2011 
2012         /*
2013          * Update @console_may_schedule for trylock because the previous
2014          * owner may have been schedulable.
2015          */
2016         console_may_schedule = 0;
2017 
2018         return 1;
2019 }
2020 
2021 /*
2022  * Recursion is tracked separately on each CPU. If NMIs are supported, an
2023  * additional NMI context per CPU is also separately tracked. Until per-CPU
2024  * is available, a separate "early tracking" is performed.
2025  */
2026 static DEFINE_PER_CPU(u8, printk_count);
2027 static u8 printk_count_early;
2028 #ifdef CONFIG_HAVE_NMI
2029 static DEFINE_PER_CPU(u8, printk_count_nmi);
2030 static u8 printk_count_nmi_early;
2031 #endif
2032 
2033 /*
2034  * Recursion is limited to keep the output sane. printk() should not require
2035  * more than 1 level of recursion (allowing, for example, printk() to trigger
2036  * a WARN), but a higher value is used in case some printk-internal errors
2037  * exist, such as the ringbuffer validation checks failing.
2038  */
2039 #define PRINTK_MAX_RECURSION 3
2040 
2041 /*
2042  * Return a pointer to the dedicated counter for the CPU+context of the
2043  * caller.
2044  */
2045 static u8 *__printk_recursion_counter(void)
2046 {
2047 #ifdef CONFIG_HAVE_NMI
2048         if (in_nmi()) {
2049                 if (printk_percpu_data_ready())
2050                         return this_cpu_ptr(&printk_count_nmi);
2051                 return &printk_count_nmi_early;
2052         }
2053 #endif
2054         if (printk_percpu_data_ready())
2055                 return this_cpu_ptr(&printk_count);
2056         return &printk_count_early;
2057 }
2058 
2059 /*
2060  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2061  * The caller must check the boolean return value to see if the recursion is
2062  * allowed. On failure, interrupts are not disabled.
2063  *
2064  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2065  * that is passed to printk_exit_irqrestore().
2066  */
2067 #define printk_enter_irqsave(recursion_ptr, flags)      \
2068 ({                                                      \
2069         bool success = true;                            \
2070                                                         \
2071         typecheck(u8 *, recursion_ptr);                 \
2072         local_irq_save(flags);                          \
2073         (recursion_ptr) = __printk_recursion_counter(); \
2074         if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {  \
2075                 local_irq_restore(flags);               \
2076                 success = false;                        \
2077         } else {                                        \
2078                 (*(recursion_ptr))++;                   \
2079         }                                               \
2080         success;                                        \
2081 })
2082 
2083 /* Exit recursion tracking, restoring interrupts. */
2084 #define printk_exit_irqrestore(recursion_ptr, flags)    \
2085         do {                                            \
2086                 typecheck(u8 *, recursion_ptr);         \
2087                 (*(recursion_ptr))--;                   \
2088                 local_irq_restore(flags);               \
2089         } while (0)
2090 
2091 int printk_delay_msec __read_mostly;
2092 
2093 static inline void printk_delay(int level)
2094 {
2095         boot_delay_msec(level);
2096 
2097         if (unlikely(printk_delay_msec)) {
2098                 int m = printk_delay_msec;
2099 
2100                 while (m--) {
2101                         mdelay(1);
2102                         touch_nmi_watchdog();
2103                 }
2104         }
2105 }
2106 
2107 static inline u32 printk_caller_id(void)
2108 {
2109         return in_task() ? task_pid_nr(current) :
2110                 0x80000000 + smp_processor_id();
2111 }
2112 
2113 /**
2114  * printk_parse_prefix - Parse level and control flags.
2115  *
2116  * @text:     The terminated text message.
2117  * @level:    A pointer to the current level value, will be updated.
2118  * @flags:    A pointer to the current printk_info flags, will be updated.
2119  *
2120  * @level may be NULL if the caller is not interested in the parsed value.
2121  * Otherwise the variable pointed to by @level must be set to
2122  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2123  *
2124  * @flags may be NULL if the caller is not interested in the parsed value.
2125  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2126  * value.
2127  *
2128  * Return: The length of the parsed level and control flags.
2129  */
2130 u16 printk_parse_prefix(const char *text, int *level,
2131                         enum printk_info_flags *flags)
2132 {
2133         u16 prefix_len = 0;
2134         int kern_level;
2135 
2136         while (*text) {
2137                 kern_level = printk_get_level(text);
2138                 if (!kern_level)
2139                         break;
2140 
2141                 switch (kern_level) {
2142                 case '' ... '7':
2143                         if (level && *level == LOGLEVEL_DEFAULT)
2144                                 *level = kern_level - '';
2145                         break;
2146                 case 'c':       /* KERN_CONT */
2147                         if (flags)
2148                                 *flags |= LOG_CONT;
2149                 }
2150 
2151                 prefix_len += 2;
2152                 text += 2;
2153         }
2154 
2155         return prefix_len;
2156 }
2157 
2158 __printf(5, 0)
2159 static u16 printk_sprint(char *text, u16 size, int facility,
2160                          enum printk_info_flags *flags, const char *fmt,
2161                          va_list args)
2162 {
2163         u16 text_len;
2164 
2165         text_len = vscnprintf(text, size, fmt, args);
2166 
2167         /* Mark and strip a trailing newline. */
2168         if (text_len && text[text_len - 1] == '\n') {
2169                 text_len--;
2170                 *flags |= LOG_NEWLINE;
2171         }
2172 
2173         /* Strip log level and control flags. */
2174         if (facility == 0) {
2175                 u16 prefix_len;
2176 
2177                 prefix_len = printk_parse_prefix(text, NULL, NULL);
2178                 if (prefix_len) {
2179                         text_len -= prefix_len;
2180                         memmove(text, text + prefix_len, text_len);
2181                 }
2182         }
2183 
2184         trace_console(text, text_len);
2185 
2186         return text_len;
2187 }
2188 
2189 __printf(4, 0)
2190 int vprintk_store(int facility, int level,
2191                   const struct dev_printk_info *dev_info,
2192                   const char *fmt, va_list args)
2193 {
2194         struct prb_reserved_entry e;
2195         enum printk_info_flags flags = 0;
2196         struct printk_record r;
2197         unsigned long irqflags;
2198         u16 trunc_msg_len = 0;
2199         char prefix_buf[8];
2200         u8 *recursion_ptr;
2201         u16 reserve_size;
2202         va_list args2;
2203         u32 caller_id;
2204         u16 text_len;
2205         int ret = 0;
2206         u64 ts_nsec;
2207 
2208         if (!printk_enter_irqsave(recursion_ptr, irqflags))
2209                 return 0;
2210 
2211         /*
2212          * Since the duration of printk() can vary depending on the message
2213          * and state of the ringbuffer, grab the timestamp now so that it is
2214          * close to the call of printk(). This provides a more deterministic
2215          * timestamp with respect to the caller.
2216          */
2217         ts_nsec = local_clock();
2218 
2219         caller_id = printk_caller_id();
2220 
2221         /*
2222          * The sprintf needs to come first since the syslog prefix might be
2223          * passed in as a parameter. An extra byte must be reserved so that
2224          * later the vscnprintf() into the reserved buffer has room for the
2225          * terminating '\0', which is not counted by vsnprintf().
2226          */
2227         va_copy(args2, args);
2228         reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2229         va_end(args2);
2230 
2231         if (reserve_size > PRINTKRB_RECORD_MAX)
2232                 reserve_size = PRINTKRB_RECORD_MAX;
2233 
2234         /* Extract log level or control flags. */
2235         if (facility == 0)
2236                 printk_parse_prefix(&prefix_buf[0], &level, &flags);
2237 
2238         if (level == LOGLEVEL_DEFAULT)
2239                 level = default_message_loglevel;
2240 
2241         if (dev_info)
2242                 flags |= LOG_NEWLINE;
2243 
2244         if (flags & LOG_CONT) {
2245                 prb_rec_init_wr(&r, reserve_size);
2246                 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2247                         text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2248                                                  facility, &flags, fmt, args);
2249                         r.info->text_len += text_len;
2250 
2251                         if (flags & LOG_NEWLINE) {
2252                                 r.info->flags |= LOG_NEWLINE;
2253                                 prb_final_commit(&e);
2254                         } else {
2255                                 prb_commit(&e);
2256                         }
2257 
2258                         ret = text_len;
2259                         goto out;
2260                 }
2261         }
2262 
2263         /*
2264          * Explicitly initialize the record before every prb_reserve() call.
2265          * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2266          * structure when they fail.
2267          */
2268         prb_rec_init_wr(&r, reserve_size);
2269         if (!prb_reserve(&e, prb, &r)) {
2270                 /* truncate the message if it is too long for empty buffer */
2271                 truncate_msg(&reserve_size, &trunc_msg_len);
2272 
2273                 prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2274                 if (!prb_reserve(&e, prb, &r))
2275                         goto out;
2276         }
2277 
2278         /* fill message */
2279         text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2280         if (trunc_msg_len)
2281                 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2282         r.info->text_len = text_len + trunc_msg_len;
2283         r.info->facility = facility;
2284         r.info->level = level & 7;
2285         r.info->flags = flags & 0x1f;
2286         r.info->ts_nsec = ts_nsec;
2287         r.info->caller_id = caller_id;
2288         if (dev_info)
2289                 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2290 
2291         /* A message without a trailing newline can be continued. */
2292         if (!(flags & LOG_NEWLINE))
2293                 prb_commit(&e);
2294         else
2295                 prb_final_commit(&e);
2296 
2297         ret = text_len + trunc_msg_len;
2298 out:
2299         printk_exit_irqrestore(recursion_ptr, irqflags);
2300         return ret;
2301 }
2302 
2303 asmlinkage int vprintk_emit(int facility, int level,
2304                             const struct dev_printk_info *dev_info,
2305                             const char *fmt, va_list args)
2306 {
2307         int printed_len;
2308         bool in_sched = false;
2309 
2310         /* Suppress unimportant messages after panic happens */
2311         if (unlikely(suppress_printk))
2312                 return 0;
2313 
2314         /*
2315          * The messages on the panic CPU are the most important. If
2316          * non-panic CPUs are generating any messages, they will be
2317          * silently dropped.
2318          */
2319         if (other_cpu_in_panic() && !panic_triggering_all_cpu_backtrace)
2320                 return 0;
2321 
2322         if (level == LOGLEVEL_SCHED) {
2323                 level = LOGLEVEL_DEFAULT;
2324                 in_sched = true;
2325         }
2326 
2327         printk_delay(level);
2328 
2329         printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2330 
2331         /* If called from the scheduler, we can not call up(). */
2332         if (!in_sched) {
2333                 /*
2334                  * The caller may be holding system-critical or
2335                  * timing-sensitive locks. Disable preemption during
2336                  * printing of all remaining records to all consoles so that
2337                  * this context can return as soon as possible. Hopefully
2338                  * another printk() caller will take over the printing.
2339                  */
2340                 preempt_disable();
2341                 /*
2342                  * Try to acquire and then immediately release the console
2343                  * semaphore. The release will print out buffers. With the
2344                  * spinning variant, this context tries to take over the
2345                  * printing from another printing context.
2346                  */
2347                 if (console_trylock_spinning())
2348                         console_unlock();
2349                 preempt_enable();
2350         }
2351 
2352         if (in_sched)
2353                 defer_console_output();
2354         else
2355                 wake_up_klogd();
2356 
2357         return printed_len;
2358 }
2359 EXPORT_SYMBOL(vprintk_emit);
2360 
2361 int vprintk_default(const char *fmt, va_list args)
2362 {
2363         return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2364 }
2365 EXPORT_SYMBOL_GPL(vprintk_default);
2366 
2367 asmlinkage __visible int _printk(const char *fmt, ...)
2368 {
2369         va_list args;
2370         int r;
2371 
2372         va_start(args, fmt);
2373         r = vprintk(fmt, args);
2374         va_end(args);
2375 
2376         return r;
2377 }
2378 EXPORT_SYMBOL(_printk);
2379 
2380 static bool pr_flush(int timeout_ms, bool reset_on_progress);
2381 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2382 
2383 #else /* CONFIG_PRINTK */
2384 
2385 #define printk_time             false
2386 
2387 #define prb_read_valid(rb, seq, r)      false
2388 #define prb_first_valid_seq(rb)         0
2389 #define prb_next_seq(rb)                0
2390 
2391 static u64 syslog_seq;
2392 
2393 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2394 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2395 
2396 #endif /* CONFIG_PRINTK */
2397 
2398 #ifdef CONFIG_EARLY_PRINTK
2399 struct console *early_console;
2400 
2401 asmlinkage __visible void early_printk(const char *fmt, ...)
2402 {
2403         va_list ap;
2404         char buf[512];
2405         int n;
2406 
2407         if (!early_console)
2408                 return;
2409 
2410         va_start(ap, fmt);
2411         n = vscnprintf(buf, sizeof(buf), fmt, ap);
2412         va_end(ap);
2413 
2414         early_console->write(early_console, buf, n);
2415 }
2416 #endif
2417 
2418 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2419 {
2420         if (!user_specified)
2421                 return;
2422 
2423         /*
2424          * @c console was defined by the user on the command line.
2425          * Do not clear when added twice also by SPCR or the device tree.
2426          */
2427         c->user_specified = true;
2428         /* At least one console defined by the user on the command line. */
2429         console_set_on_cmdline = 1;
2430 }
2431 
2432 static int __add_preferred_console(const char *name, const short idx,
2433                                    const char *devname, char *options,
2434                                    char *brl_options, bool user_specified)
2435 {
2436         struct console_cmdline *c;
2437         int i;
2438 
2439         if (!name && !devname)
2440                 return -EINVAL;
2441 
2442         /*
2443          * We use a signed short index for struct console for device drivers to
2444          * indicate a not yet assigned index or port. However, a negative index
2445          * value is not valid when the console name and index are defined on
2446          * the command line.
2447          */
2448         if (name && idx < 0)
2449                 return -EINVAL;
2450 
2451         /*
2452          *      See if this tty is not yet registered, and
2453          *      if we have a slot free.
2454          */
2455         for (i = 0, c = console_cmdline;
2456              i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
2457              i++, c++) {
2458                 if ((name && strcmp(c->name, name) == 0 && c->index == idx) ||
2459                     (devname && strcmp(c->devname, devname) == 0)) {
2460                         if (!brl_options)
2461                                 preferred_console = i;
2462                         set_user_specified(c, user_specified);
2463                         return 0;
2464                 }
2465         }
2466         if (i == MAX_CMDLINECONSOLES)
2467                 return -E2BIG;
2468         if (!brl_options)
2469                 preferred_console = i;
2470         if (name)
2471                 strscpy(c->name, name);
2472         if (devname)
2473                 strscpy(c->devname, devname);
2474         c->options = options;
2475         set_user_specified(c, user_specified);
2476         braille_set_options(c, brl_options);
2477 
2478         c->index = idx;
2479         return 0;
2480 }
2481 
2482 static int __init console_msg_format_setup(char *str)
2483 {
2484         if (!strcmp(str, "syslog"))
2485                 console_msg_format = MSG_FORMAT_SYSLOG;
2486         if (!strcmp(str, "default"))
2487                 console_msg_format = MSG_FORMAT_DEFAULT;
2488         return 1;
2489 }
2490 __setup("console_msg_format=", console_msg_format_setup);
2491 
2492 /*
2493  * Set up a console.  Called via do_early_param() in init/main.c
2494  * for each "console=" parameter in the boot command line.
2495  */
2496 static int __init console_setup(char *str)
2497 {
2498         static_assert(sizeof(console_cmdline[0].devname) >= sizeof(console_cmdline[0].name) + 4);
2499         char buf[sizeof(console_cmdline[0].devname)];
2500         char *brl_options = NULL;
2501         char *ttyname = NULL;
2502         char *devname = NULL;
2503         char *options;
2504         char *s;
2505         int idx;
2506 
2507         /*
2508          * console="" or console=null have been suggested as a way to
2509          * disable console output. Use ttynull that has been created
2510          * for exactly this purpose.
2511          */
2512         if (str[0] == 0 || strcmp(str, "null") == 0) {
2513                 __add_preferred_console("ttynull", 0, NULL, NULL, NULL, true);
2514                 return 1;
2515         }
2516 
2517         if (_braille_console_setup(&str, &brl_options))
2518                 return 1;
2519 
2520         /* For a DEVNAME:0.0 style console the character device is unknown early */
2521         if (strchr(str, ':'))
2522                 devname = buf;
2523         else
2524                 ttyname = buf;
2525 
2526         /*
2527          * Decode str into name, index, options.
2528          */
2529         if (ttyname && isdigit(str[0]))
2530                 scnprintf(buf, sizeof(buf), "ttyS%s", str);
2531         else
2532                 strscpy(buf, str);
2533 
2534         options = strchr(str, ',');
2535         if (options)
2536                 *(options++) = 0;
2537 
2538 #ifdef __sparc__
2539         if (!strcmp(str, "ttya"))
2540                 strscpy(buf, "ttyS0");
2541         if (!strcmp(str, "ttyb"))
2542                 strscpy(buf, "ttyS1");
2543 #endif
2544 
2545         for (s = buf; *s; s++)
2546                 if ((ttyname && isdigit(*s)) || *s == ',')
2547                         break;
2548 
2549         /* @idx will get defined when devname matches. */
2550         if (devname)
2551                 idx = -1;
2552         else
2553                 idx = simple_strtoul(s, NULL, 10);
2554 
2555         *s = 0;
2556 
2557         __add_preferred_console(ttyname, idx, devname, options, brl_options, true);
2558         return 1;
2559 }
2560 __setup("console=", console_setup);
2561 
2562 /**
2563  * add_preferred_console - add a device to the list of preferred consoles.
2564  * @name: device name
2565  * @idx: device index
2566  * @options: options for this console
2567  *
2568  * The last preferred console added will be used for kernel messages
2569  * and stdin/out/err for init.  Normally this is used by console_setup
2570  * above to handle user-supplied console arguments; however it can also
2571  * be used by arch-specific code either to override the user or more
2572  * commonly to provide a default console (ie from PROM variables) when
2573  * the user has not supplied one.
2574  */
2575 int add_preferred_console(const char *name, const short idx, char *options)
2576 {
2577         return __add_preferred_console(name, idx, NULL, options, NULL, false);
2578 }
2579 
2580 /**
2581  * match_devname_and_update_preferred_console - Update a preferred console
2582  *      when matching devname is found.
2583  * @devname: DEVNAME:0.0 style device name
2584  * @name: Name of the corresponding console driver, e.g. "ttyS"
2585  * @idx: Console index, e.g. port number.
2586  *
2587  * The function checks whether a device with the given @devname is
2588  * preferred via the console=DEVNAME:0.0 command line option.
2589  * It fills the missing console driver name and console index
2590  * so that a later register_console() call could find (match)
2591  * and enable this device.
2592  *
2593  * It might be used when a driver subsystem initializes particular
2594  * devices with already known DEVNAME:0.0 style names. And it
2595  * could predict which console driver name and index this device
2596  * would later get associated with.
2597  *
2598  * Return: 0 on success, negative error code on failure.
2599  */
2600 int match_devname_and_update_preferred_console(const char *devname,
2601                                                const char *name,
2602                                                const short idx)
2603 {
2604         struct console_cmdline *c = console_cmdline;
2605         int i;
2606 
2607         if (!devname || !strlen(devname) || !name || !strlen(name) || idx < 0)
2608                 return -EINVAL;
2609 
2610         for (i = 0; i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
2611              i++, c++) {
2612                 if (!strcmp(devname, c->devname)) {
2613                         pr_info("associate the preferred console \"%s\" with \"%s%d\"\n",
2614                                 devname, name, idx);
2615                         strscpy(c->name, name);
2616                         c->index = idx;
2617                         return 0;
2618                 }
2619         }
2620 
2621         return -ENOENT;
2622 }
2623 EXPORT_SYMBOL_GPL(match_devname_and_update_preferred_console);
2624 
2625 bool console_suspend_enabled = true;
2626 EXPORT_SYMBOL(console_suspend_enabled);
2627 
2628 static int __init console_suspend_disable(char *str)
2629 {
2630         console_suspend_enabled = false;
2631         return 1;
2632 }
2633 __setup("no_console_suspend", console_suspend_disable);
2634 module_param_named(console_suspend, console_suspend_enabled,
2635                 bool, S_IRUGO | S_IWUSR);
2636 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2637         " and hibernate operations");
2638 
2639 static bool printk_console_no_auto_verbose;
2640 
2641 void console_verbose(void)
2642 {
2643         if (console_loglevel && !printk_console_no_auto_verbose)
2644                 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2645 }
2646 EXPORT_SYMBOL_GPL(console_verbose);
2647 
2648 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2649 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2650 
2651 /**
2652  * suspend_console - suspend the console subsystem
2653  *
2654  * This disables printk() while we go into suspend states
2655  */
2656 void suspend_console(void)
2657 {
2658         struct console *con;
2659 
2660         if (!console_suspend_enabled)
2661                 return;
2662         pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2663         pr_flush(1000, true);
2664 
2665         console_list_lock();
2666         for_each_console(con)
2667                 console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
2668         console_list_unlock();
2669 
2670         /*
2671          * Ensure that all SRCU list walks have completed. All printing
2672          * contexts must be able to see that they are suspended so that it
2673          * is guaranteed that all printing has stopped when this function
2674          * completes.
2675          */
2676         synchronize_srcu(&console_srcu);
2677 }
2678 
2679 void resume_console(void)
2680 {
2681         struct console *con;
2682 
2683         if (!console_suspend_enabled)
2684                 return;
2685 
2686         console_list_lock();
2687         for_each_console(con)
2688                 console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
2689         console_list_unlock();
2690 
2691         /*
2692          * Ensure that all SRCU list walks have completed. All printing
2693          * contexts must be able to see they are no longer suspended so
2694          * that they are guaranteed to wake up and resume printing.
2695          */
2696         synchronize_srcu(&console_srcu);
2697 
2698         pr_flush(1000, true);
2699 }
2700 
2701 /**
2702  * console_cpu_notify - print deferred console messages after CPU hotplug
2703  * @cpu: unused
2704  *
2705  * If printk() is called from a CPU that is not online yet, the messages
2706  * will be printed on the console only if there are CON_ANYTIME consoles.
2707  * This function is called when a new CPU comes online (or fails to come
2708  * up) or goes offline.
2709  */
2710 static int console_cpu_notify(unsigned int cpu)
2711 {
2712         if (!cpuhp_tasks_frozen) {
2713                 /* If trylock fails, someone else is doing the printing */
2714                 if (console_trylock())
2715                         console_unlock();
2716         }
2717         return 0;
2718 }
2719 
2720 /**
2721  * console_lock - block the console subsystem from printing
2722  *
2723  * Acquires a lock which guarantees that no consoles will
2724  * be in or enter their write() callback.
2725  *
2726  * Can sleep, returns nothing.
2727  */
2728 void console_lock(void)
2729 {
2730         might_sleep();
2731 
2732         /* On panic, the console_lock must be left to the panic cpu. */
2733         while (other_cpu_in_panic())
2734                 msleep(1000);
2735 
2736         down_console_sem();
2737         console_locked = 1;
2738         console_may_schedule = 1;
2739 }
2740 EXPORT_SYMBOL(console_lock);
2741 
2742 /**
2743  * console_trylock - try to block the console subsystem from printing
2744  *
2745  * Try to acquire a lock which guarantees that no consoles will
2746  * be in or enter their write() callback.
2747  *
2748  * returns 1 on success, and 0 on failure to acquire the lock.
2749  */
2750 int console_trylock(void)
2751 {
2752         /* On panic, the console_lock must be left to the panic cpu. */
2753         if (other_cpu_in_panic())
2754                 return 0;
2755         if (down_trylock_console_sem())
2756                 return 0;
2757         console_locked = 1;
2758         console_may_schedule = 0;
2759         return 1;
2760 }
2761 EXPORT_SYMBOL(console_trylock);
2762 
2763 int is_console_locked(void)
2764 {
2765         return console_locked;
2766 }
2767 EXPORT_SYMBOL(is_console_locked);
2768 
2769 /*
2770  * Check if the given console is currently capable and allowed to print
2771  * records.
2772  *
2773  * Requires the console_srcu_read_lock.
2774  */
2775 static inline bool console_is_usable(struct console *con)
2776 {
2777         short flags = console_srcu_read_flags(con);
2778 
2779         if (!(flags & CON_ENABLED))
2780                 return false;
2781 
2782         if ((flags & CON_SUSPENDED))
2783                 return false;
2784 
2785         if (!con->write)
2786                 return false;
2787 
2788         /*
2789          * Console drivers may assume that per-cpu resources have been
2790          * allocated. So unless they're explicitly marked as being able to
2791          * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2792          */
2793         if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2794                 return false;
2795 
2796         return true;
2797 }
2798 
2799 static void __console_unlock(void)
2800 {
2801         console_locked = 0;
2802         up_console_sem();
2803 }
2804 
2805 #ifdef CONFIG_PRINTK
2806 
2807 /*
2808  * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This
2809  * is achieved by shifting the existing message over and inserting the dropped
2810  * message.
2811  *
2812  * @pmsg is the printk message to prepend.
2813  *
2814  * @dropped is the dropped count to report in the dropped message.
2815  *
2816  * If the message text in @pmsg->pbufs->outbuf does not have enough space for
2817  * the dropped message, the message text will be sufficiently truncated.
2818  *
2819  * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2820  */
2821 void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2822 {
2823         struct printk_buffers *pbufs = pmsg->pbufs;
2824         const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2825         const size_t outbuf_sz = sizeof(pbufs->outbuf);
2826         char *scratchbuf = &pbufs->scratchbuf[0];
2827         char *outbuf = &pbufs->outbuf[0];
2828         size_t len;
2829 
2830         len = scnprintf(scratchbuf, scratchbuf_sz,
2831                        "** %lu printk messages dropped **\n", dropped);
2832 
2833         /*
2834          * Make sure outbuf is sufficiently large before prepending.
2835          * Keep at least the prefix when the message must be truncated.
2836          * It is a rather theoretical problem when someone tries to
2837          * use a minimalist buffer.
2838          */
2839         if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2840                 return;
2841 
2842         if (pmsg->outbuf_len + len >= outbuf_sz) {
2843                 /* Truncate the message, but keep it terminated. */
2844                 pmsg->outbuf_len = outbuf_sz - (len + 1);
2845                 outbuf[pmsg->outbuf_len] = 0;
2846         }
2847 
2848         memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2849         memcpy(outbuf, scratchbuf, len);
2850         pmsg->outbuf_len += len;
2851 }
2852 
2853 /*
2854  * Read and format the specified record (or a later record if the specified
2855  * record is not available).
2856  *
2857  * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2858  * struct printk_buffers.
2859  *
2860  * @seq is the record to read and format. If it is not available, the next
2861  * valid record is read.
2862  *
2863  * @is_extended specifies if the message should be formatted for extended
2864  * console output.
2865  *
2866  * @may_supress specifies if records may be skipped based on loglevel.
2867  *
2868  * Returns false if no record is available. Otherwise true and all fields
2869  * of @pmsg are valid. (See the documentation of struct printk_message
2870  * for information about the @pmsg fields.)
2871  */
2872 bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2873                              bool is_extended, bool may_suppress)
2874 {
2875         struct printk_buffers *pbufs = pmsg->pbufs;
2876         const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2877         const size_t outbuf_sz = sizeof(pbufs->outbuf);
2878         char *scratchbuf = &pbufs->scratchbuf[0];
2879         char *outbuf = &pbufs->outbuf[0];
2880         struct printk_info info;
2881         struct printk_record r;
2882         size_t len = 0;
2883 
2884         /*
2885          * Formatting extended messages requires a separate buffer, so use the
2886          * scratch buffer to read in the ringbuffer text.
2887          *
2888          * Formatting normal messages is done in-place, so read the ringbuffer
2889          * text directly into the output buffer.
2890          */
2891         if (is_extended)
2892                 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2893         else
2894                 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2895 
2896         if (!prb_read_valid(prb, seq, &r))
2897                 return false;
2898 
2899         pmsg->seq = r.info->seq;
2900         pmsg->dropped = r.info->seq - seq;
2901 
2902         /* Skip record that has level above the console loglevel. */
2903         if (may_suppress && suppress_message_printing(r.info->level))
2904                 goto out;
2905 
2906         if (is_extended) {
2907                 len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2908                 len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2909                                           &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2910         } else {
2911                 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2912         }
2913 out:
2914         pmsg->outbuf_len = len;
2915         return true;
2916 }
2917 
2918 /*
2919  * Used as the printk buffers for non-panic, serialized console printing.
2920  * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles.
2921  * Its usage requires the console_lock held.
2922  */
2923 struct printk_buffers printk_shared_pbufs;
2924 
2925 /*
2926  * Print one record for the given console. The record printed is whatever
2927  * record is the next available record for the given console.
2928  *
2929  * @handover will be set to true if a printk waiter has taken over the
2930  * console_lock, in which case the caller is no longer holding both the
2931  * console_lock and the SRCU read lock. Otherwise it is set to false.
2932  *
2933  * @cookie is the cookie from the SRCU read lock.
2934  *
2935  * Returns false if the given console has no next record to print, otherwise
2936  * true.
2937  *
2938  * Requires the console_lock and the SRCU read lock.
2939  */
2940 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2941 {
2942         bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
2943         char *outbuf = &printk_shared_pbufs.outbuf[0];
2944         struct printk_message pmsg = {
2945                 .pbufs = &printk_shared_pbufs,
2946         };
2947         unsigned long flags;
2948 
2949         *handover = false;
2950 
2951         if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
2952                 return false;
2953 
2954         con->dropped += pmsg.dropped;
2955 
2956         /* Skip messages of formatted length 0. */
2957         if (pmsg.outbuf_len == 0) {
2958                 con->seq = pmsg.seq + 1;
2959                 goto skip;
2960         }
2961 
2962         if (con->dropped && !is_extended) {
2963                 console_prepend_dropped(&pmsg, con->dropped);
2964                 con->dropped = 0;
2965         }
2966 
2967         /*
2968          * While actively printing out messages, if another printk()
2969          * were to occur on another CPU, it may wait for this one to
2970          * finish. This task can not be preempted if there is a
2971          * waiter waiting to take over.
2972          *
2973          * Interrupts are disabled because the hand over to a waiter
2974          * must not be interrupted until the hand over is completed
2975          * (@console_waiter is cleared).
2976          */
2977         printk_safe_enter_irqsave(flags);
2978         console_lock_spinning_enable();
2979 
2980         /* Do not trace print latency. */
2981         stop_critical_timings();
2982 
2983         /* Write everything out to the hardware. */
2984         con->write(con, outbuf, pmsg.outbuf_len);
2985 
2986         start_critical_timings();
2987 
2988         con->seq = pmsg.seq + 1;
2989 
2990         *handover = console_lock_spinning_disable_and_check(cookie);
2991         printk_safe_exit_irqrestore(flags);
2992 skip:
2993         return true;
2994 }
2995 
2996 #else
2997 
2998 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2999 {
3000         *handover = false;
3001         return false;
3002 }
3003 
3004 #endif /* CONFIG_PRINTK */
3005 
3006 /*
3007  * Print out all remaining records to all consoles.
3008  *
3009  * @do_cond_resched is set by the caller. It can be true only in schedulable
3010  * context.
3011  *
3012  * @next_seq is set to the sequence number after the last available record.
3013  * The value is valid only when this function returns true. It means that all
3014  * usable consoles are completely flushed.
3015  *
3016  * @handover will be set to true if a printk waiter has taken over the
3017  * console_lock, in which case the caller is no longer holding the
3018  * console_lock. Otherwise it is set to false.
3019  *
3020  * Returns true when there was at least one usable console and all messages
3021  * were flushed to all usable consoles. A returned false informs the caller
3022  * that everything was not flushed (either there were no usable consoles or
3023  * another context has taken over printing or it is a panic situation and this
3024  * is not the panic CPU). Regardless the reason, the caller should assume it
3025  * is not useful to immediately try again.
3026  *
3027  * Requires the console_lock.
3028  */
3029 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
3030 {
3031         bool any_usable = false;
3032         struct console *con;
3033         bool any_progress;
3034         int cookie;
3035 
3036         *next_seq = 0;
3037         *handover = false;
3038 
3039         do {
3040                 any_progress = false;
3041 
3042                 cookie = console_srcu_read_lock();
3043                 for_each_console_srcu(con) {
3044                         bool progress;
3045 
3046                         if (!console_is_usable(con))
3047                                 continue;
3048                         any_usable = true;
3049 
3050                         progress = console_emit_next_record(con, handover, cookie);
3051 
3052                         /*
3053                          * If a handover has occurred, the SRCU read lock
3054                          * is already released.
3055                          */
3056                         if (*handover)
3057                                 return false;
3058 
3059                         /* Track the next of the highest seq flushed. */
3060                         if (con->seq > *next_seq)
3061                                 *next_seq = con->seq;
3062 
3063                         if (!progress)
3064                                 continue;
3065                         any_progress = true;
3066 
3067                         /* Allow panic_cpu to take over the consoles safely. */
3068                         if (other_cpu_in_panic())
3069                                 goto abandon;
3070 
3071                         if (do_cond_resched)
3072                                 cond_resched();
3073                 }
3074                 console_srcu_read_unlock(cookie);
3075         } while (any_progress);
3076 
3077         return any_usable;
3078 
3079 abandon:
3080         console_srcu_read_unlock(cookie);
3081         return false;
3082 }
3083 
3084 /**
3085  * console_unlock - unblock the console subsystem from printing
3086  *
3087  * Releases the console_lock which the caller holds to block printing of
3088  * the console subsystem.
3089  *
3090  * While the console_lock was held, console output may have been buffered
3091  * by printk().  If this is the case, console_unlock(); emits
3092  * the output prior to releasing the lock.
3093  *
3094  * console_unlock(); may be called from any context.
3095  */
3096 void console_unlock(void)
3097 {
3098         bool do_cond_resched;
3099         bool handover;
3100         bool flushed;
3101         u64 next_seq;
3102 
3103         /*
3104          * Console drivers are called with interrupts disabled, so
3105          * @console_may_schedule should be cleared before; however, we may
3106          * end up dumping a lot of lines, for example, if called from
3107          * console registration path, and should invoke cond_resched()
3108          * between lines if allowable.  Not doing so can cause a very long
3109          * scheduling stall on a slow console leading to RCU stall and
3110          * softlockup warnings which exacerbate the issue with more
3111          * messages practically incapacitating the system. Therefore, create
3112          * a local to use for the printing loop.
3113          */
3114         do_cond_resched = console_may_schedule;
3115 
3116         do {
3117                 console_may_schedule = 0;
3118 
3119                 flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3120                 if (!handover)
3121                         __console_unlock();
3122 
3123                 /*
3124                  * Abort if there was a failure to flush all messages to all
3125                  * usable consoles. Either it is not possible to flush (in
3126                  * which case it would be an infinite loop of retrying) or
3127                  * another context has taken over printing.
3128                  */
3129                 if (!flushed)
3130                         break;
3131 
3132                 /*
3133                  * Some context may have added new records after
3134                  * console_flush_all() but before unlocking the console.
3135                  * Re-check if there is a new record to flush. If the trylock
3136                  * fails, another context is already handling the printing.
3137                  */
3138         } while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3139 }
3140 EXPORT_SYMBOL(console_unlock);
3141 
3142 /**
3143  * console_conditional_schedule - yield the CPU if required
3144  *
3145  * If the console code is currently allowed to sleep, and
3146  * if this CPU should yield the CPU to another task, do
3147  * so here.
3148  *
3149  * Must be called within console_lock();.
3150  */
3151 void __sched console_conditional_schedule(void)
3152 {
3153         if (console_may_schedule)
3154                 cond_resched();
3155 }
3156 EXPORT_SYMBOL(console_conditional_schedule);
3157 
3158 void console_unblank(void)
3159 {
3160         bool found_unblank = false;
3161         struct console *c;
3162         int cookie;
3163 
3164         /*
3165          * First check if there are any consoles implementing the unblank()
3166          * callback. If not, there is no reason to continue and take the
3167          * console lock, which in particular can be dangerous if
3168          * @oops_in_progress is set.
3169          */
3170         cookie = console_srcu_read_lock();
3171         for_each_console_srcu(c) {
3172                 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) {
3173                         found_unblank = true;
3174                         break;
3175                 }
3176         }
3177         console_srcu_read_unlock(cookie);
3178         if (!found_unblank)
3179                 return;
3180 
3181         /*
3182          * Stop console printing because the unblank() callback may
3183          * assume the console is not within its write() callback.
3184          *
3185          * If @oops_in_progress is set, this may be an atomic context.
3186          * In that case, attempt a trylock as best-effort.
3187          */
3188         if (oops_in_progress) {
3189                 /* Semaphores are not NMI-safe. */
3190                 if (in_nmi())
3191                         return;
3192 
3193                 /*
3194                  * Attempting to trylock the console lock can deadlock
3195                  * if another CPU was stopped while modifying the
3196                  * semaphore. "Hope and pray" that this is not the
3197                  * current situation.
3198                  */
3199                 if (down_trylock_console_sem() != 0)
3200                         return;
3201         } else
3202                 console_lock();
3203 
3204         console_locked = 1;
3205         console_may_schedule = 0;
3206 
3207         cookie = console_srcu_read_lock();
3208         for_each_console_srcu(c) {
3209                 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3210                         c->unblank();
3211         }
3212         console_srcu_read_unlock(cookie);
3213 
3214         console_unlock();
3215 
3216         if (!oops_in_progress)
3217                 pr_flush(1000, true);
3218 }
3219 
3220 /*
3221  * Rewind all consoles to the oldest available record.
3222  *
3223  * IMPORTANT: The function is safe only when called under
3224  *            console_lock(). It is not enforced because
3225  *            it is used as a best effort in panic().
3226  */
3227 static void __console_rewind_all(void)
3228 {
3229         struct console *c;
3230         short flags;
3231         int cookie;
3232         u64 seq;
3233 
3234         seq = prb_first_valid_seq(prb);
3235 
3236         cookie = console_srcu_read_lock();
3237         for_each_console_srcu(c) {
3238                 flags = console_srcu_read_flags(c);
3239 
3240                 if (flags & CON_NBCON) {
3241                         nbcon_seq_force(c, seq);
3242                 } else {
3243                         /*
3244                          * This assignment is safe only when called under
3245                          * console_lock(). On panic, legacy consoles are
3246                          * only best effort.
3247                          */
3248                         c->seq = seq;
3249                 }
3250         }
3251         console_srcu_read_unlock(cookie);
3252 }
3253 
3254 /**
3255  * console_flush_on_panic - flush console content on panic
3256  * @mode: flush all messages in buffer or just the pending ones
3257  *
3258  * Immediately output all pending messages no matter what.
3259  */
3260 void console_flush_on_panic(enum con_flush_mode mode)
3261 {
3262         bool handover;
3263         u64 next_seq;
3264 
3265         /*
3266          * Ignore the console lock and flush out the messages. Attempting a
3267          * trylock would not be useful because:
3268          *
3269          *   - if it is contended, it must be ignored anyway
3270          *   - console_lock() and console_trylock() block and fail
3271          *     respectively in panic for non-panic CPUs
3272          *   - semaphores are not NMI-safe
3273          */
3274 
3275         /*
3276          * If another context is holding the console lock,
3277          * @console_may_schedule might be set. Clear it so that
3278          * this context does not call cond_resched() while flushing.
3279          */
3280         console_may_schedule = 0;
3281 
3282         if (mode == CONSOLE_REPLAY_ALL)
3283                 __console_rewind_all();
3284 
3285         console_flush_all(false, &next_seq, &handover);
3286 }
3287 
3288 /*
3289  * Return the console tty driver structure and its associated index
3290  */
3291 struct tty_driver *console_device(int *index)
3292 {
3293         struct console *c;
3294         struct tty_driver *driver = NULL;
3295         int cookie;
3296 
3297         /*
3298          * Take console_lock to serialize device() callback with
3299          * other console operations. For example, fg_console is
3300          * modified under console_lock when switching vt.
3301          */
3302         console_lock();
3303 
3304         cookie = console_srcu_read_lock();
3305         for_each_console_srcu(c) {
3306                 if (!c->device)
3307                         continue;
3308                 driver = c->device(c, index);
3309                 if (driver)
3310                         break;
3311         }
3312         console_srcu_read_unlock(cookie);
3313 
3314         console_unlock();
3315         return driver;
3316 }
3317 
3318 /*
3319  * Prevent further output on the passed console device so that (for example)
3320  * serial drivers can disable console output before suspending a port, and can
3321  * re-enable output afterwards.
3322  */
3323 void console_stop(struct console *console)
3324 {
3325         __pr_flush(console, 1000, true);
3326         console_list_lock();
3327         console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3328         console_list_unlock();
3329 
3330         /*
3331          * Ensure that all SRCU list walks have completed. All contexts must
3332          * be able to see that this console is disabled so that (for example)
3333          * the caller can suspend the port without risk of another context
3334          * using the port.
3335          */
3336         synchronize_srcu(&console_srcu);
3337 }
3338 EXPORT_SYMBOL(console_stop);
3339 
3340 void console_start(struct console *console)
3341 {
3342         console_list_lock();
3343         console_srcu_write_flags(console, console->flags | CON_ENABLED);
3344         console_list_unlock();
3345         __pr_flush(console, 1000, true);
3346 }
3347 EXPORT_SYMBOL(console_start);
3348 
3349 static int __read_mostly keep_bootcon;
3350 
3351 static int __init keep_bootcon_setup(char *str)
3352 {
3353         keep_bootcon = 1;
3354         pr_info("debug: skip boot console de-registration.\n");
3355 
3356         return 0;
3357 }
3358 
3359 early_param("keep_bootcon", keep_bootcon_setup);
3360 
3361 static int console_call_setup(struct console *newcon, char *options)
3362 {
3363         int err;
3364 
3365         if (!newcon->setup)
3366                 return 0;
3367 
3368         /* Synchronize with possible boot console. */
3369         console_lock();
3370         err = newcon->setup(newcon, options);
3371         console_unlock();
3372 
3373         return err;
3374 }
3375 
3376 /*
3377  * This is called by register_console() to try to match
3378  * the newly registered console with any of the ones selected
3379  * by either the command line or add_preferred_console() and
3380  * setup/enable it.
3381  *
3382  * Care need to be taken with consoles that are statically
3383  * enabled such as netconsole
3384  */
3385 static int try_enable_preferred_console(struct console *newcon,
3386                                         bool user_specified)
3387 {
3388         struct console_cmdline *c;
3389         int i, err;
3390 
3391         for (i = 0, c = console_cmdline;
3392              i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
3393              i++, c++) {
3394                 /* Console not yet initialized? */
3395                 if (!c->name[0])
3396                         continue;
3397                 if (c->user_specified != user_specified)
3398                         continue;
3399                 if (!newcon->match ||
3400                     newcon->match(newcon, c->name, c->index, c->options) != 0) {
3401                         /* default matching */
3402                         BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3403                         if (strcmp(c->name, newcon->name) != 0)
3404                                 continue;
3405                         if (newcon->index >= 0 &&
3406                             newcon->index != c->index)
3407                                 continue;
3408                         if (newcon->index < 0)
3409                                 newcon->index = c->index;
3410 
3411                         if (_braille_register_console(newcon, c))
3412                                 return 0;
3413 
3414                         err = console_call_setup(newcon, c->options);
3415                         if (err)
3416                                 return err;
3417                 }
3418                 newcon->flags |= CON_ENABLED;
3419                 if (i == preferred_console)
3420                         newcon->flags |= CON_CONSDEV;
3421                 return 0;
3422         }
3423 
3424         /*
3425          * Some consoles, such as pstore and netconsole, can be enabled even
3426          * without matching. Accept the pre-enabled consoles only when match()
3427          * and setup() had a chance to be called.
3428          */
3429         if (newcon->flags & CON_ENABLED && c->user_specified == user_specified)
3430                 return 0;
3431 
3432         return -ENOENT;
3433 }
3434 
3435 /* Try to enable the console unconditionally */
3436 static void try_enable_default_console(struct console *newcon)
3437 {
3438         if (newcon->index < 0)
3439                 newcon->index = 0;
3440 
3441         if (console_call_setup(newcon, NULL) != 0)
3442                 return;
3443 
3444         newcon->flags |= CON_ENABLED;
3445 
3446         if (newcon->device)
3447                 newcon->flags |= CON_CONSDEV;
3448 }
3449 
3450 static void console_init_seq(struct console *newcon, bool bootcon_registered)
3451 {
3452         struct console *con;
3453         bool handover;
3454 
3455         if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3456                 /* Get a consistent copy of @syslog_seq. */
3457                 mutex_lock(&syslog_lock);
3458                 newcon->seq = syslog_seq;
3459                 mutex_unlock(&syslog_lock);
3460         } else {
3461                 /* Begin with next message added to ringbuffer. */
3462                 newcon->seq = prb_next_seq(prb);
3463 
3464                 /*
3465                  * If any enabled boot consoles are due to be unregistered
3466                  * shortly, some may not be caught up and may be the same
3467                  * device as @newcon. Since it is not known which boot console
3468                  * is the same device, flush all consoles and, if necessary,
3469                  * start with the message of the enabled boot console that is
3470                  * the furthest behind.
3471                  */
3472                 if (bootcon_registered && !keep_bootcon) {
3473                         /*
3474                          * Hold the console_lock to stop console printing and
3475                          * guarantee safe access to console->seq.
3476                          */
3477                         console_lock();
3478 
3479                         /*
3480                          * Flush all consoles and set the console to start at
3481                          * the next unprinted sequence number.
3482                          */
3483                         if (!console_flush_all(true, &newcon->seq, &handover)) {
3484                                 /*
3485                                  * Flushing failed. Just choose the lowest
3486                                  * sequence of the enabled boot consoles.
3487                                  */
3488 
3489                                 /*
3490                                  * If there was a handover, this context no
3491                                  * longer holds the console_lock.
3492                                  */
3493                                 if (handover)
3494                                         console_lock();
3495 
3496                                 newcon->seq = prb_next_seq(prb);
3497                                 for_each_console(con) {
3498                                         if ((con->flags & CON_BOOT) &&
3499                                             (con->flags & CON_ENABLED) &&
3500                                             con->seq < newcon->seq) {
3501                                                 newcon->seq = con->seq;
3502                                         }
3503                                 }
3504                         }
3505 
3506                         console_unlock();
3507                 }
3508         }
3509 }
3510 
3511 #define console_first()                         \
3512         hlist_entry(console_list.first, struct console, node)
3513 
3514 static int unregister_console_locked(struct console *console);
3515 
3516 /*
3517  * The console driver calls this routine during kernel initialization
3518  * to register the console printing procedure with printk() and to
3519  * print any messages that were printed by the kernel before the
3520  * console driver was initialized.
3521  *
3522  * This can happen pretty early during the boot process (because of
3523  * early_printk) - sometimes before setup_arch() completes - be careful
3524  * of what kernel features are used - they may not be initialised yet.
3525  *
3526  * There are two types of consoles - bootconsoles (early_printk) and
3527  * "real" consoles (everything which is not a bootconsole) which are
3528  * handled differently.
3529  *  - Any number of bootconsoles can be registered at any time.
3530  *  - As soon as a "real" console is registered, all bootconsoles
3531  *    will be unregistered automatically.
3532  *  - Once a "real" console is registered, any attempt to register a
3533  *    bootconsoles will be rejected
3534  */
3535 void register_console(struct console *newcon)
3536 {
3537         struct console *con;
3538         bool bootcon_registered = false;
3539         bool realcon_registered = false;
3540         int err;
3541 
3542         console_list_lock();
3543 
3544         for_each_console(con) {
3545                 if (WARN(con == newcon, "console '%s%d' already registered\n",
3546                                          con->name, con->index)) {
3547                         goto unlock;
3548                 }
3549 
3550                 if (con->flags & CON_BOOT)
3551                         bootcon_registered = true;
3552                 else
3553                         realcon_registered = true;
3554         }
3555 
3556         /* Do not register boot consoles when there already is a real one. */
3557         if ((newcon->flags & CON_BOOT) && realcon_registered) {
3558                 pr_info("Too late to register bootconsole %s%d\n",
3559                         newcon->name, newcon->index);
3560                 goto unlock;
3561         }
3562 
3563         if (newcon->flags & CON_NBCON) {
3564                 /*
3565                  * Ensure the nbcon console buffers can be allocated
3566                  * before modifying any global data.
3567                  */
3568                 if (!nbcon_alloc(newcon))
3569                         goto unlock;
3570         }
3571 
3572         /*
3573          * See if we want to enable this console driver by default.
3574          *
3575          * Nope when a console is preferred by the command line, device
3576          * tree, or SPCR.
3577          *
3578          * The first real console with tty binding (driver) wins. More
3579          * consoles might get enabled before the right one is found.
3580          *
3581          * Note that a console with tty binding will have CON_CONSDEV
3582          * flag set and will be first in the list.
3583          */
3584         if (preferred_console < 0) {
3585                 if (hlist_empty(&console_list) || !console_first()->device ||
3586                     console_first()->flags & CON_BOOT) {
3587                         try_enable_default_console(newcon);
3588                 }
3589         }
3590 
3591         /* See if this console matches one we selected on the command line */
3592         err = try_enable_preferred_console(newcon, true);
3593 
3594         /* If not, try to match against the platform default(s) */
3595         if (err == -ENOENT)
3596                 err = try_enable_preferred_console(newcon, false);
3597 
3598         /* printk() messages are not printed to the Braille console. */
3599         if (err || newcon->flags & CON_BRL) {
3600                 if (newcon->flags & CON_NBCON)
3601                         nbcon_free(newcon);
3602                 goto unlock;
3603         }
3604 
3605         /*
3606          * If we have a bootconsole, and are switching to a real console,
3607          * don't print everything out again, since when the boot console, and
3608          * the real console are the same physical device, it's annoying to
3609          * see the beginning boot messages twice
3610          */
3611         if (bootcon_registered &&
3612             ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3613                 newcon->flags &= ~CON_PRINTBUFFER;
3614         }
3615 
3616         newcon->dropped = 0;
3617         console_init_seq(newcon, bootcon_registered);
3618 
3619         if (newcon->flags & CON_NBCON)
3620                 nbcon_init(newcon);
3621 
3622         /*
3623          * Put this console in the list - keep the
3624          * preferred driver at the head of the list.
3625          */
3626         if (hlist_empty(&console_list)) {
3627                 /* Ensure CON_CONSDEV is always set for the head. */
3628                 newcon->flags |= CON_CONSDEV;
3629                 hlist_add_head_rcu(&newcon->node, &console_list);
3630 
3631         } else if (newcon->flags & CON_CONSDEV) {
3632                 /* Only the new head can have CON_CONSDEV set. */
3633                 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3634                 hlist_add_head_rcu(&newcon->node, &console_list);
3635 
3636         } else {
3637                 hlist_add_behind_rcu(&newcon->node, console_list.first);
3638         }
3639 
3640         /*
3641          * No need to synchronize SRCU here! The caller does not rely
3642          * on all contexts being able to see the new console before
3643          * register_console() completes.
3644          */
3645 
3646         console_sysfs_notify();
3647 
3648         /*
3649          * By unregistering the bootconsoles after we enable the real console
3650          * we get the "console xxx enabled" message on all the consoles -
3651          * boot consoles, real consoles, etc - this is to ensure that end
3652          * users know there might be something in the kernel's log buffer that
3653          * went to the bootconsole (that they do not see on the real console)
3654          */
3655         con_printk(KERN_INFO, newcon, "enabled\n");
3656         if (bootcon_registered &&
3657             ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3658             !keep_bootcon) {
3659                 struct hlist_node *tmp;
3660 
3661                 hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3662                         if (con->flags & CON_BOOT)
3663                                 unregister_console_locked(con);
3664                 }
3665         }
3666 unlock:
3667         console_list_unlock();
3668 }
3669 EXPORT_SYMBOL(register_console);
3670 
3671 /* Must be called under console_list_lock(). */
3672 static int unregister_console_locked(struct console *console)
3673 {
3674         int res;
3675 
3676         lockdep_assert_console_list_lock_held();
3677 
3678         con_printk(KERN_INFO, console, "disabled\n");
3679 
3680         res = _braille_unregister_console(console);
3681         if (res < 0)
3682                 return res;
3683         if (res > 0)
3684                 return 0;
3685 
3686         /* Disable it unconditionally */
3687         console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3688 
3689         if (!console_is_registered_locked(console))
3690                 return -ENODEV;
3691 
3692         hlist_del_init_rcu(&console->node);
3693 
3694         /*
3695          * <HISTORICAL>
3696          * If this isn't the last console and it has CON_CONSDEV set, we
3697          * need to set it on the next preferred console.
3698          * </HISTORICAL>
3699          *
3700          * The above makes no sense as there is no guarantee that the next
3701          * console has any device attached. Oh well....
3702          */
3703         if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3704                 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3705 
3706         /*
3707          * Ensure that all SRCU list walks have completed. All contexts
3708          * must not be able to see this console in the list so that any
3709          * exit/cleanup routines can be performed safely.
3710          */
3711         synchronize_srcu(&console_srcu);
3712 
3713         if (console->flags & CON_NBCON)
3714                 nbcon_free(console);
3715 
3716         console_sysfs_notify();
3717 
3718         if (console->exit)
3719                 res = console->exit(console);
3720 
3721         return res;
3722 }
3723 
3724 int unregister_console(struct console *console)
3725 {
3726         int res;
3727 
3728         console_list_lock();
3729         res = unregister_console_locked(console);
3730         console_list_unlock();
3731         return res;
3732 }
3733 EXPORT_SYMBOL(unregister_console);
3734 
3735 /**
3736  * console_force_preferred_locked - force a registered console preferred
3737  * @con: The registered console to force preferred.
3738  *
3739  * Must be called under console_list_lock().
3740  */
3741 void console_force_preferred_locked(struct console *con)
3742 {
3743         struct console *cur_pref_con;
3744 
3745         if (!console_is_registered_locked(con))
3746                 return;
3747 
3748         cur_pref_con = console_first();
3749 
3750         /* Already preferred? */
3751         if (cur_pref_con == con)
3752                 return;
3753 
3754         /*
3755          * Delete, but do not re-initialize the entry. This allows the console
3756          * to continue to appear registered (via any hlist_unhashed_lockless()
3757          * checks), even though it was briefly removed from the console list.
3758          */
3759         hlist_del_rcu(&con->node);
3760 
3761         /*
3762          * Ensure that all SRCU list walks have completed so that the console
3763          * can be added to the beginning of the console list and its forward
3764          * list pointer can be re-initialized.
3765          */
3766         synchronize_srcu(&console_srcu);
3767 
3768         con->flags |= CON_CONSDEV;
3769         WARN_ON(!con->device);
3770 
3771         /* Only the new head can have CON_CONSDEV set. */
3772         console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3773         hlist_add_head_rcu(&con->node, &console_list);
3774 }
3775 EXPORT_SYMBOL(console_force_preferred_locked);
3776 
3777 /*
3778  * Initialize the console device. This is called *early*, so
3779  * we can't necessarily depend on lots of kernel help here.
3780  * Just do some early initializations, and do the complex setup
3781  * later.
3782  */
3783 void __init console_init(void)
3784 {
3785         int ret;
3786         initcall_t call;
3787         initcall_entry_t *ce;
3788 
3789         /* Setup the default TTY line discipline. */
3790         n_tty_init();
3791 
3792         /*
3793          * set up the console device so that later boot sequences can
3794          * inform about problems etc..
3795          */
3796         ce = __con_initcall_start;
3797         trace_initcall_level("console");
3798         while (ce < __con_initcall_end) {
3799                 call = initcall_from_entry(ce);
3800                 trace_initcall_start(call);
3801                 ret = call();
3802                 trace_initcall_finish(call, ret);
3803                 ce++;
3804         }
3805 }
3806 
3807 /*
3808  * Some boot consoles access data that is in the init section and which will
3809  * be discarded after the initcalls have been run. To make sure that no code
3810  * will access this data, unregister the boot consoles in a late initcall.
3811  *
3812  * If for some reason, such as deferred probe or the driver being a loadable
3813  * module, the real console hasn't registered yet at this point, there will
3814  * be a brief interval in which no messages are logged to the console, which
3815  * makes it difficult to diagnose problems that occur during this time.
3816  *
3817  * To mitigate this problem somewhat, only unregister consoles whose memory
3818  * intersects with the init section. Note that all other boot consoles will
3819  * get unregistered when the real preferred console is registered.
3820  */
3821 static int __init printk_late_init(void)
3822 {
3823         struct hlist_node *tmp;
3824         struct console *con;
3825         int ret;
3826 
3827         console_list_lock();
3828         hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3829                 if (!(con->flags & CON_BOOT))
3830                         continue;
3831 
3832                 /* Check addresses that might be used for enabled consoles. */
3833                 if (init_section_intersects(con, sizeof(*con)) ||
3834                     init_section_contains(con->write, 0) ||
3835                     init_section_contains(con->read, 0) ||
3836                     init_section_contains(con->device, 0) ||
3837                     init_section_contains(con->unblank, 0) ||
3838                     init_section_contains(con->data, 0)) {
3839                         /*
3840                          * Please, consider moving the reported consoles out
3841                          * of the init section.
3842                          */
3843                         pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3844                                 con->name, con->index);
3845                         unregister_console_locked(con);
3846                 }
3847         }
3848         console_list_unlock();
3849 
3850         ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3851                                         console_cpu_notify);
3852         WARN_ON(ret < 0);
3853         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3854                                         console_cpu_notify, NULL);
3855         WARN_ON(ret < 0);
3856         printk_sysctl_init();
3857         return 0;
3858 }
3859 late_initcall(printk_late_init);
3860 
3861 #if defined CONFIG_PRINTK
3862 /* If @con is specified, only wait for that console. Otherwise wait for all. */
3863 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3864 {
3865         unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms);
3866         unsigned long remaining_jiffies = timeout_jiffies;
3867         struct console *c;
3868         u64 last_diff = 0;
3869         u64 printk_seq;
3870         short flags;
3871         int cookie;
3872         u64 diff;
3873         u64 seq;
3874 
3875         might_sleep();
3876 
3877         seq = prb_next_reserve_seq(prb);
3878 
3879         /* Flush the consoles so that records up to @seq are printed. */
3880         console_lock();
3881         console_unlock();
3882 
3883         for (;;) {
3884                 unsigned long begin_jiffies;
3885                 unsigned long slept_jiffies;
3886 
3887                 diff = 0;
3888 
3889                 /*
3890                  * Hold the console_lock to guarantee safe access to
3891                  * console->seq. Releasing console_lock flushes more
3892                  * records in case @seq is still not printed on all
3893                  * usable consoles.
3894                  */
3895                 console_lock();
3896 
3897                 cookie = console_srcu_read_lock();
3898                 for_each_console_srcu(c) {
3899                         if (con && con != c)
3900                                 continue;
3901 
3902                         flags = console_srcu_read_flags(c);
3903 
3904                         /*
3905                          * If consoles are not usable, it cannot be expected
3906                          * that they make forward progress, so only increment
3907                          * @diff for usable consoles.
3908                          */
3909                         if (!console_is_usable(c))
3910                                 continue;
3911 
3912                         if (flags & CON_NBCON) {
3913                                 printk_seq = nbcon_seq_read(c);
3914                         } else {
3915                                 printk_seq = c->seq;
3916                         }
3917 
3918                         if (printk_seq < seq)
3919                                 diff += seq - printk_seq;
3920                 }
3921                 console_srcu_read_unlock(cookie);
3922 
3923                 if (diff != last_diff && reset_on_progress)
3924                         remaining_jiffies = timeout_jiffies;
3925 
3926                 console_unlock();
3927 
3928                 /* Note: @diff is 0 if there are no usable consoles. */
3929                 if (diff == 0 || remaining_jiffies == 0)
3930                         break;
3931 
3932                 /* msleep(1) might sleep much longer. Check time by jiffies. */
3933                 begin_jiffies = jiffies;
3934                 msleep(1);
3935                 slept_jiffies = jiffies - begin_jiffies;
3936 
3937                 remaining_jiffies -= min(slept_jiffies, remaining_jiffies);
3938 
3939                 last_diff = diff;
3940         }
3941 
3942         return (diff == 0);
3943 }
3944 
3945 /**
3946  * pr_flush() - Wait for printing threads to catch up.
3947  *
3948  * @timeout_ms:        The maximum time (in ms) to wait.
3949  * @reset_on_progress: Reset the timeout if forward progress is seen.
3950  *
3951  * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3952  * represents infinite waiting.
3953  *
3954  * If @reset_on_progress is true, the timeout will be reset whenever any
3955  * printer has been seen to make some forward progress.
3956  *
3957  * Context: Process context. May sleep while acquiring console lock.
3958  * Return: true if all usable printers are caught up.
3959  */
3960 static bool pr_flush(int timeout_ms, bool reset_on_progress)
3961 {
3962         return __pr_flush(NULL, timeout_ms, reset_on_progress);
3963 }
3964 
3965 /*
3966  * Delayed printk version, for scheduler-internal messages:
3967  */
3968 #define PRINTK_PENDING_WAKEUP   0x01
3969 #define PRINTK_PENDING_OUTPUT   0x02
3970 
3971 static DEFINE_PER_CPU(int, printk_pending);
3972 
3973 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3974 {
3975         int pending = this_cpu_xchg(printk_pending, 0);
3976 
3977         if (pending & PRINTK_PENDING_OUTPUT) {
3978                 /* If trylock fails, someone else is doing the printing */
3979                 if (console_trylock())
3980                         console_unlock();
3981         }
3982 
3983         if (pending & PRINTK_PENDING_WAKEUP)
3984                 wake_up_interruptible(&log_wait);
3985 }
3986 
3987 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3988         IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3989 
3990 static void __wake_up_klogd(int val)
3991 {
3992         if (!printk_percpu_data_ready())
3993                 return;
3994 
3995         preempt_disable();
3996         /*
3997          * Guarantee any new records can be seen by tasks preparing to wait
3998          * before this context checks if the wait queue is empty.
3999          *
4000          * The full memory barrier within wq_has_sleeper() pairs with the full
4001          * memory barrier within set_current_state() of
4002          * prepare_to_wait_event(), which is called after ___wait_event() adds
4003          * the waiter but before it has checked the wait condition.
4004          *
4005          * This pairs with devkmsg_read:A and syslog_print:A.
4006          */
4007         if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
4008             (val & PRINTK_PENDING_OUTPUT)) {
4009                 this_cpu_or(printk_pending, val);
4010                 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
4011         }
4012         preempt_enable();
4013 }
4014 
4015 /**
4016  * wake_up_klogd - Wake kernel logging daemon
4017  *
4018  * Use this function when new records have been added to the ringbuffer
4019  * and the console printing of those records has already occurred or is
4020  * known to be handled by some other context. This function will only
4021  * wake the logging daemon.
4022  *
4023  * Context: Any context.
4024  */
4025 void wake_up_klogd(void)
4026 {
4027         __wake_up_klogd(PRINTK_PENDING_WAKEUP);
4028 }
4029 
4030 /**
4031  * defer_console_output - Wake kernel logging daemon and trigger
4032  *      console printing in a deferred context
4033  *
4034  * Use this function when new records have been added to the ringbuffer,
4035  * this context is responsible for console printing those records, but
4036  * the current context is not allowed to perform the console printing.
4037  * Trigger an irq_work context to perform the console printing. This
4038  * function also wakes the logging daemon.
4039  *
4040  * Context: Any context.
4041  */
4042 void defer_console_output(void)
4043 {
4044         /*
4045          * New messages may have been added directly to the ringbuffer
4046          * using vprintk_store(), so wake any waiters as well.
4047          */
4048         __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
4049 }
4050 
4051 void printk_trigger_flush(void)
4052 {
4053         defer_console_output();
4054 }
4055 
4056 int vprintk_deferred(const char *fmt, va_list args)
4057 {
4058         return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
4059 }
4060 
4061 int _printk_deferred(const char *fmt, ...)
4062 {
4063         va_list args;
4064         int r;
4065 
4066         va_start(args, fmt);
4067         r = vprintk_deferred(fmt, args);
4068         va_end(args);
4069 
4070         return r;
4071 }
4072 
4073 /*
4074  * printk rate limiting, lifted from the networking subsystem.
4075  *
4076  * This enforces a rate limit: not more than 10 kernel messages
4077  * every 5s to make a denial-of-service attack impossible.
4078  */
4079 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
4080 
4081 int __printk_ratelimit(const char *func)
4082 {
4083         return ___ratelimit(&printk_ratelimit_state, func);
4084 }
4085 EXPORT_SYMBOL(__printk_ratelimit);
4086 
4087 /**
4088  * printk_timed_ratelimit - caller-controlled printk ratelimiting
4089  * @caller_jiffies: pointer to caller's state
4090  * @interval_msecs: minimum interval between prints
4091  *
4092  * printk_timed_ratelimit() returns true if more than @interval_msecs
4093  * milliseconds have elapsed since the last time printk_timed_ratelimit()
4094  * returned true.
4095  */
4096 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
4097                         unsigned int interval_msecs)
4098 {
4099         unsigned long elapsed = jiffies - *caller_jiffies;
4100 
4101         if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
4102                 return false;
4103 
4104         *caller_jiffies = jiffies;
4105         return true;
4106 }
4107 EXPORT_SYMBOL(printk_timed_ratelimit);
4108 
4109 static DEFINE_SPINLOCK(dump_list_lock);
4110 static LIST_HEAD(dump_list);
4111 
4112 /**
4113  * kmsg_dump_register - register a kernel log dumper.
4114  * @dumper: pointer to the kmsg_dumper structure
4115  *
4116  * Adds a kernel log dumper to the system. The dump callback in the
4117  * structure will be called when the kernel oopses or panics and must be
4118  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
4119  */
4120 int kmsg_dump_register(struct kmsg_dumper *dumper)
4121 {
4122         unsigned long flags;
4123         int err = -EBUSY;
4124 
4125         /* The dump callback needs to be set */
4126         if (!dumper->dump)
4127                 return -EINVAL;
4128 
4129         spin_lock_irqsave(&dump_list_lock, flags);
4130         /* Don't allow registering multiple times */
4131         if (!dumper->registered) {
4132                 dumper->registered = 1;
4133                 list_add_tail_rcu(&dumper->list, &dump_list);
4134                 err = 0;
4135         }
4136         spin_unlock_irqrestore(&dump_list_lock, flags);
4137 
4138         return err;
4139 }
4140 EXPORT_SYMBOL_GPL(kmsg_dump_register);
4141 
4142 /**
4143  * kmsg_dump_unregister - unregister a kmsg dumper.
4144  * @dumper: pointer to the kmsg_dumper structure
4145  *
4146  * Removes a dump device from the system. Returns zero on success and
4147  * %-EINVAL otherwise.
4148  */
4149 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
4150 {
4151         unsigned long flags;
4152         int err = -EINVAL;
4153 
4154         spin_lock_irqsave(&dump_list_lock, flags);
4155         if (dumper->registered) {
4156                 dumper->registered = 0;
4157                 list_del_rcu(&dumper->list);
4158                 err = 0;
4159         }
4160         spin_unlock_irqrestore(&dump_list_lock, flags);
4161         synchronize_rcu();
4162 
4163         return err;
4164 }
4165 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
4166 
4167 static bool always_kmsg_dump;
4168 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
4169 
4170 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
4171 {
4172         switch (reason) {
4173         case KMSG_DUMP_PANIC:
4174                 return "Panic";
4175         case KMSG_DUMP_OOPS:
4176                 return "Oops";
4177         case KMSG_DUMP_EMERG:
4178                 return "Emergency";
4179         case KMSG_DUMP_SHUTDOWN:
4180                 return "Shutdown";
4181         default:
4182                 return "Unknown";
4183         }
4184 }
4185 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
4186 
4187 /**
4188  * kmsg_dump - dump kernel log to kernel message dumpers.
4189  * @reason: the reason (oops, panic etc) for dumping
4190  *
4191  * Call each of the registered dumper's dump() callback, which can
4192  * retrieve the kmsg records with kmsg_dump_get_line() or
4193  * kmsg_dump_get_buffer().
4194  */
4195 void kmsg_dump(enum kmsg_dump_reason reason)
4196 {
4197         struct kmsg_dumper *dumper;
4198 
4199         rcu_read_lock();
4200         list_for_each_entry_rcu(dumper, &dump_list, list) {
4201                 enum kmsg_dump_reason max_reason = dumper->max_reason;
4202 
4203                 /*
4204                  * If client has not provided a specific max_reason, default
4205                  * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
4206                  */
4207                 if (max_reason == KMSG_DUMP_UNDEF) {
4208                         max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
4209                                                         KMSG_DUMP_OOPS;
4210                 }
4211                 if (reason > max_reason)
4212                         continue;
4213 
4214                 /* invoke dumper which will iterate over records */
4215                 dumper->dump(dumper, reason);
4216         }
4217         rcu_read_unlock();
4218 }
4219 
4220 /**
4221  * kmsg_dump_get_line - retrieve one kmsg log line
4222  * @iter: kmsg dump iterator
4223  * @syslog: include the "<4>" prefixes
4224  * @line: buffer to copy the line to
4225  * @size: maximum size of the buffer
4226  * @len: length of line placed into buffer
4227  *
4228  * Start at the beginning of the kmsg buffer, with the oldest kmsg
4229  * record, and copy one record into the provided buffer.
4230  *
4231  * Consecutive calls will return the next available record moving
4232  * towards the end of the buffer with the youngest messages.
4233  *
4234  * A return value of FALSE indicates that there are no more records to
4235  * read.
4236  */
4237 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4238                         char *line, size_t size, size_t *len)
4239 {
4240         u64 min_seq = latched_seq_read_nolock(&clear_seq);
4241         struct printk_info info;
4242         unsigned int line_count;
4243         struct printk_record r;
4244         size_t l = 0;
4245         bool ret = false;
4246 
4247         if (iter->cur_seq < min_seq)
4248                 iter->cur_seq = min_seq;
4249 
4250         prb_rec_init_rd(&r, &info, line, size);
4251 
4252         /* Read text or count text lines? */
4253         if (line) {
4254                 if (!prb_read_valid(prb, iter->cur_seq, &r))
4255                         goto out;
4256                 l = record_print_text(&r, syslog, printk_time);
4257         } else {
4258                 if (!prb_read_valid_info(prb, iter->cur_seq,
4259                                          &info, &line_count)) {
4260                         goto out;
4261                 }
4262                 l = get_record_print_text_size(&info, line_count, syslog,
4263                                                printk_time);
4264 
4265         }
4266 
4267         iter->cur_seq = r.info->seq + 1;
4268         ret = true;
4269 out:
4270         if (len)
4271                 *len = l;
4272         return ret;
4273 }
4274 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4275 
4276 /**
4277  * kmsg_dump_get_buffer - copy kmsg log lines
4278  * @iter: kmsg dump iterator
4279  * @syslog: include the "<4>" prefixes
4280  * @buf: buffer to copy the line to
4281  * @size: maximum size of the buffer
4282  * @len_out: length of line placed into buffer
4283  *
4284  * Start at the end of the kmsg buffer and fill the provided buffer
4285  * with as many of the *youngest* kmsg records that fit into it.
4286  * If the buffer is large enough, all available kmsg records will be
4287  * copied with a single call.
4288  *
4289  * Consecutive calls will fill the buffer with the next block of
4290  * available older records, not including the earlier retrieved ones.
4291  *
4292  * A return value of FALSE indicates that there are no more records to
4293  * read.
4294  */
4295 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4296                           char *buf, size_t size, size_t *len_out)
4297 {
4298         u64 min_seq = latched_seq_read_nolock(&clear_seq);
4299         struct printk_info info;
4300         struct printk_record r;
4301         u64 seq;
4302         u64 next_seq;
4303         size_t len = 0;
4304         bool ret = false;
4305         bool time = printk_time;
4306 
4307         if (!buf || !size)
4308                 goto out;
4309 
4310         if (iter->cur_seq < min_seq)
4311                 iter->cur_seq = min_seq;
4312 
4313         if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4314                 if (info.seq != iter->cur_seq) {
4315                         /* messages are gone, move to first available one */
4316                         iter->cur_seq = info.seq;
4317                 }
4318         }
4319 
4320         /* last entry */
4321         if (iter->cur_seq >= iter->next_seq)
4322                 goto out;
4323 
4324         /*
4325          * Find first record that fits, including all following records,
4326          * into the user-provided buffer for this dump. Pass in size-1
4327          * because this function (by way of record_print_text()) will
4328          * not write more than size-1 bytes of text into @buf.
4329          */
4330         seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4331                                      size - 1, syslog, time);
4332 
4333         /*
4334          * Next kmsg_dump_get_buffer() invocation will dump block of
4335          * older records stored right before this one.
4336          */
4337         next_seq = seq;
4338 
4339         prb_rec_init_rd(&r, &info, buf, size);
4340 
4341         prb_for_each_record(seq, prb, seq, &r) {
4342                 if (r.info->seq >= iter->next_seq)
4343                         break;
4344 
4345                 len += record_print_text(&r, syslog, time);
4346 
4347                 /* Adjust record to store to remaining buffer space. */
4348                 prb_rec_init_rd(&r, &info, buf + len, size - len);
4349         }
4350 
4351         iter->next_seq = next_seq;
4352         ret = true;
4353 out:
4354         if (len_out)
4355                 *len_out = len;
4356         return ret;
4357 }
4358 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4359 
4360 /**
4361  * kmsg_dump_rewind - reset the iterator
4362  * @iter: kmsg dump iterator
4363  *
4364  * Reset the dumper's iterator so that kmsg_dump_get_line() and
4365  * kmsg_dump_get_buffer() can be called again and used multiple
4366  * times within the same dumper.dump() callback.
4367  */
4368 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4369 {
4370         iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4371         iter->next_seq = prb_next_seq(prb);
4372 }
4373 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4374 
4375 /**
4376  * console_try_replay_all - try to replay kernel log on consoles
4377  *
4378  * Try to obtain lock on console subsystem and replay all
4379  * available records in printk buffer on the consoles.
4380  * Does nothing if lock is not obtained.
4381  *
4382  * Context: Any, except for NMI.
4383  */
4384 void console_try_replay_all(void)
4385 {
4386         if (console_trylock()) {
4387                 __console_rewind_all();
4388                 /* Consoles are flushed as part of console_unlock(). */
4389                 console_unlock();
4390         }
4391 }
4392 #endif
4393 
4394 #ifdef CONFIG_SMP
4395 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4396 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4397 
4398 /**
4399  * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4400  *                            spinning lock is not owned by any CPU.
4401  *
4402  * Context: Any context.
4403  */
4404 void __printk_cpu_sync_wait(void)
4405 {
4406         do {
4407                 cpu_relax();
4408         } while (atomic_read(&printk_cpu_sync_owner) != -1);
4409 }
4410 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4411 
4412 /**
4413  * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4414  *                               spinning lock.
4415  *
4416  * If no processor has the lock, the calling processor takes the lock and
4417  * becomes the owner. If the calling processor is already the owner of the
4418  * lock, this function succeeds immediately.
4419  *
4420  * Context: Any context. Expects interrupts to be disabled.
4421  * Return: 1 on success, otherwise 0.
4422  */
4423 int __printk_cpu_sync_try_get(void)
4424 {
4425         int cpu;
4426         int old;
4427 
4428         cpu = smp_processor_id();
4429 
4430         /*
4431          * Guarantee loads and stores from this CPU when it is the lock owner
4432          * are _not_ visible to the previous lock owner. This pairs with
4433          * __printk_cpu_sync_put:B.
4434          *
4435          * Memory barrier involvement:
4436          *
4437          * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4438          * then __printk_cpu_sync_put:A can never read from
4439          * __printk_cpu_sync_try_get:B.
4440          *
4441          * Relies on:
4442          *
4443          * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4444          * of the previous CPU
4445          *    matching
4446          * ACQUIRE from __printk_cpu_sync_try_get:A to
4447          * __printk_cpu_sync_try_get:B of this CPU
4448          */
4449         old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4450                                      cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4451         if (old == -1) {
4452                 /*
4453                  * This CPU is now the owner and begins loading/storing
4454                  * data: LMM(__printk_cpu_sync_try_get:B)
4455                  */
4456                 return 1;
4457 
4458         } else if (old == cpu) {
4459                 /* This CPU is already the owner. */
4460                 atomic_inc(&printk_cpu_sync_nested);
4461                 return 1;
4462         }
4463 
4464         return 0;
4465 }
4466 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4467 
4468 /**
4469  * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4470  *
4471  * The calling processor must be the owner of the lock.
4472  *
4473  * Context: Any context. Expects interrupts to be disabled.
4474  */
4475 void __printk_cpu_sync_put(void)
4476 {
4477         if (atomic_read(&printk_cpu_sync_nested)) {
4478                 atomic_dec(&printk_cpu_sync_nested);
4479                 return;
4480         }
4481 
4482         /*
4483          * This CPU is finished loading/storing data:
4484          * LMM(__printk_cpu_sync_put:A)
4485          */
4486 
4487         /*
4488          * Guarantee loads and stores from this CPU when it was the
4489          * lock owner are visible to the next lock owner. This pairs
4490          * with __printk_cpu_sync_try_get:A.
4491          *
4492          * Memory barrier involvement:
4493          *
4494          * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4495          * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4496          *
4497          * Relies on:
4498          *
4499          * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4500          * of this CPU
4501          *    matching
4502          * ACQUIRE from __printk_cpu_sync_try_get:A to
4503          * __printk_cpu_sync_try_get:B of the next CPU
4504          */
4505         atomic_set_release(&printk_cpu_sync_owner,
4506                            -1); /* LMM(__printk_cpu_sync_put:B) */
4507 }
4508 EXPORT_SYMBOL(__printk_cpu_sync_put);
4509 #endif /* CONFIG_SMP */
4510 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php