1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update module-based scalability-test facility 4 * 5 * Copyright (C) IBM Corporation, 2015 6 * 7 * Authors: Paul E. McKenney <paulmck@linux.ibm.com> 8 */ 9 10 #define pr_fmt(fmt) fmt 11 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/mm.h> 16 #include <linux/module.h> 17 #include <linux/kthread.h> 18 #include <linux/err.h> 19 #include <linux/spinlock.h> 20 #include <linux/smp.h> 21 #include <linux/rcupdate.h> 22 #include <linux/interrupt.h> 23 #include <linux/sched.h> 24 #include <uapi/linux/sched/types.h> 25 #include <linux/atomic.h> 26 #include <linux/bitops.h> 27 #include <linux/completion.h> 28 #include <linux/moduleparam.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/reboot.h> 32 #include <linux/freezer.h> 33 #include <linux/cpu.h> 34 #include <linux/delay.h> 35 #include <linux/stat.h> 36 #include <linux/srcu.h> 37 #include <linux/slab.h> 38 #include <asm/byteorder.h> 39 #include <linux/torture.h> 40 #include <linux/vmalloc.h> 41 #include <linux/rcupdate_trace.h> 42 43 #include "rcu.h" 44 45 MODULE_DESCRIPTION("Read-Copy Update module-based scalability-test facility"); 46 MODULE_LICENSE("GPL"); 47 MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>"); 48 49 #define SCALE_FLAG "-scale:" 50 #define SCALEOUT_STRING(s) \ 51 pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s) 52 #define VERBOSE_SCALEOUT_STRING(s) \ 53 do { if (verbose) pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s); } while (0) 54 #define SCALEOUT_ERRSTRING(s) \ 55 pr_alert("%s" SCALE_FLAG "!!! %s\n", scale_type, s) 56 57 /* 58 * The intended use cases for the nreaders and nwriters module parameters 59 * are as follows: 60 * 61 * 1. Specify only the nr_cpus kernel boot parameter. This will 62 * set both nreaders and nwriters to the value specified by 63 * nr_cpus for a mixed reader/writer test. 64 * 65 * 2. Specify the nr_cpus kernel boot parameter, but set 66 * rcuscale.nreaders to zero. This will set nwriters to the 67 * value specified by nr_cpus for an update-only test. 68 * 69 * 3. Specify the nr_cpus kernel boot parameter, but set 70 * rcuscale.nwriters to zero. This will set nreaders to the 71 * value specified by nr_cpus for a read-only test. 72 * 73 * Various other use cases may of course be specified. 74 * 75 * Note that this test's readers are intended only as a test load for 76 * the writers. The reader scalability statistics will be overly 77 * pessimistic due to the per-critical-section interrupt disabling, 78 * test-end checks, and the pair of calls through pointers. 79 */ 80 81 #ifdef MODULE 82 # define RCUSCALE_SHUTDOWN 0 83 #else 84 # define RCUSCALE_SHUTDOWN 1 85 #endif 86 87 torture_param(bool, gp_async, false, "Use asynchronous GP wait primitives"); 88 torture_param(int, gp_async_max, 1000, "Max # outstanding waits per writer"); 89 torture_param(bool, gp_exp, false, "Use expedited GP wait primitives"); 90 torture_param(int, holdoff, 10, "Holdoff time before test start (s)"); 91 torture_param(int, minruntime, 0, "Minimum run time (s)"); 92 torture_param(int, nreaders, -1, "Number of RCU reader threads"); 93 torture_param(int, nwriters, -1, "Number of RCU updater threads"); 94 torture_param(bool, shutdown, RCUSCALE_SHUTDOWN, 95 "Shutdown at end of scalability tests."); 96 torture_param(int, verbose, 1, "Enable verbose debugging printk()s"); 97 torture_param(int, writer_holdoff, 0, "Holdoff (us) between GPs, zero to disable"); 98 torture_param(int, writer_holdoff_jiffies, 0, "Holdoff (jiffies) between GPs, zero to disable"); 99 torture_param(int, kfree_rcu_test, 0, "Do we run a kfree_rcu() scale test?"); 100 torture_param(int, kfree_mult, 1, "Multiple of kfree_obj size to allocate."); 101 torture_param(int, kfree_by_call_rcu, 0, "Use call_rcu() to emulate kfree_rcu()?"); 102 103 static char *scale_type = "rcu"; 104 module_param(scale_type, charp, 0444); 105 MODULE_PARM_DESC(scale_type, "Type of RCU to scalability-test (rcu, srcu, ...)"); 106 107 static int nrealreaders; 108 static int nrealwriters; 109 static struct task_struct **writer_tasks; 110 static struct task_struct **reader_tasks; 111 static struct task_struct *shutdown_task; 112 113 static u64 **writer_durations; 114 static int *writer_n_durations; 115 static atomic_t n_rcu_scale_reader_started; 116 static atomic_t n_rcu_scale_writer_started; 117 static atomic_t n_rcu_scale_writer_finished; 118 static wait_queue_head_t shutdown_wq; 119 static u64 t_rcu_scale_writer_started; 120 static u64 t_rcu_scale_writer_finished; 121 static unsigned long b_rcu_gp_test_started; 122 static unsigned long b_rcu_gp_test_finished; 123 static DEFINE_PER_CPU(atomic_t, n_async_inflight); 124 125 #define MAX_MEAS 10000 126 #define MIN_MEAS 100 127 128 /* 129 * Operations vector for selecting different types of tests. 130 */ 131 132 struct rcu_scale_ops { 133 int ptype; 134 void (*init)(void); 135 void (*cleanup)(void); 136 int (*readlock)(void); 137 void (*readunlock)(int idx); 138 unsigned long (*get_gp_seq)(void); 139 unsigned long (*gp_diff)(unsigned long new, unsigned long old); 140 unsigned long (*exp_completed)(void); 141 void (*async)(struct rcu_head *head, rcu_callback_t func); 142 void (*gp_barrier)(void); 143 void (*sync)(void); 144 void (*exp_sync)(void); 145 struct task_struct *(*rso_gp_kthread)(void); 146 const char *name; 147 }; 148 149 static struct rcu_scale_ops *cur_ops; 150 151 /* 152 * Definitions for rcu scalability testing. 153 */ 154 155 static int rcu_scale_read_lock(void) __acquires(RCU) 156 { 157 rcu_read_lock(); 158 return 0; 159 } 160 161 static void rcu_scale_read_unlock(int idx) __releases(RCU) 162 { 163 rcu_read_unlock(); 164 } 165 166 static unsigned long __maybe_unused rcu_no_completed(void) 167 { 168 return 0; 169 } 170 171 static void rcu_sync_scale_init(void) 172 { 173 } 174 175 static struct rcu_scale_ops rcu_ops = { 176 .ptype = RCU_FLAVOR, 177 .init = rcu_sync_scale_init, 178 .readlock = rcu_scale_read_lock, 179 .readunlock = rcu_scale_read_unlock, 180 .get_gp_seq = rcu_get_gp_seq, 181 .gp_diff = rcu_seq_diff, 182 .exp_completed = rcu_exp_batches_completed, 183 .async = call_rcu_hurry, 184 .gp_barrier = rcu_barrier, 185 .sync = synchronize_rcu, 186 .exp_sync = synchronize_rcu_expedited, 187 .name = "rcu" 188 }; 189 190 /* 191 * Definitions for srcu scalability testing. 192 */ 193 194 DEFINE_STATIC_SRCU(srcu_ctl_scale); 195 static struct srcu_struct *srcu_ctlp = &srcu_ctl_scale; 196 197 static int srcu_scale_read_lock(void) __acquires(srcu_ctlp) 198 { 199 return srcu_read_lock(srcu_ctlp); 200 } 201 202 static void srcu_scale_read_unlock(int idx) __releases(srcu_ctlp) 203 { 204 srcu_read_unlock(srcu_ctlp, idx); 205 } 206 207 static unsigned long srcu_scale_completed(void) 208 { 209 return srcu_batches_completed(srcu_ctlp); 210 } 211 212 static void srcu_call_rcu(struct rcu_head *head, rcu_callback_t func) 213 { 214 call_srcu(srcu_ctlp, head, func); 215 } 216 217 static void srcu_rcu_barrier(void) 218 { 219 srcu_barrier(srcu_ctlp); 220 } 221 222 static void srcu_scale_synchronize(void) 223 { 224 synchronize_srcu(srcu_ctlp); 225 } 226 227 static void srcu_scale_synchronize_expedited(void) 228 { 229 synchronize_srcu_expedited(srcu_ctlp); 230 } 231 232 static struct rcu_scale_ops srcu_ops = { 233 .ptype = SRCU_FLAVOR, 234 .init = rcu_sync_scale_init, 235 .readlock = srcu_scale_read_lock, 236 .readunlock = srcu_scale_read_unlock, 237 .get_gp_seq = srcu_scale_completed, 238 .gp_diff = rcu_seq_diff, 239 .exp_completed = srcu_scale_completed, 240 .async = srcu_call_rcu, 241 .gp_barrier = srcu_rcu_barrier, 242 .sync = srcu_scale_synchronize, 243 .exp_sync = srcu_scale_synchronize_expedited, 244 .name = "srcu" 245 }; 246 247 static struct srcu_struct srcud; 248 249 static void srcu_sync_scale_init(void) 250 { 251 srcu_ctlp = &srcud; 252 init_srcu_struct(srcu_ctlp); 253 } 254 255 static void srcu_sync_scale_cleanup(void) 256 { 257 cleanup_srcu_struct(srcu_ctlp); 258 } 259 260 static struct rcu_scale_ops srcud_ops = { 261 .ptype = SRCU_FLAVOR, 262 .init = srcu_sync_scale_init, 263 .cleanup = srcu_sync_scale_cleanup, 264 .readlock = srcu_scale_read_lock, 265 .readunlock = srcu_scale_read_unlock, 266 .get_gp_seq = srcu_scale_completed, 267 .gp_diff = rcu_seq_diff, 268 .exp_completed = srcu_scale_completed, 269 .async = srcu_call_rcu, 270 .gp_barrier = srcu_rcu_barrier, 271 .sync = srcu_scale_synchronize, 272 .exp_sync = srcu_scale_synchronize_expedited, 273 .name = "srcud" 274 }; 275 276 #ifdef CONFIG_TASKS_RCU 277 278 /* 279 * Definitions for RCU-tasks scalability testing. 280 */ 281 282 static int tasks_scale_read_lock(void) 283 { 284 return 0; 285 } 286 287 static void tasks_scale_read_unlock(int idx) 288 { 289 } 290 291 static struct rcu_scale_ops tasks_ops = { 292 .ptype = RCU_TASKS_FLAVOR, 293 .init = rcu_sync_scale_init, 294 .readlock = tasks_scale_read_lock, 295 .readunlock = tasks_scale_read_unlock, 296 .get_gp_seq = rcu_no_completed, 297 .gp_diff = rcu_seq_diff, 298 .async = call_rcu_tasks, 299 .gp_barrier = rcu_barrier_tasks, 300 .sync = synchronize_rcu_tasks, 301 .exp_sync = synchronize_rcu_tasks, 302 .rso_gp_kthread = get_rcu_tasks_gp_kthread, 303 .name = "tasks" 304 }; 305 306 #define TASKS_OPS &tasks_ops, 307 308 #else // #ifdef CONFIG_TASKS_RCU 309 310 #define TASKS_OPS 311 312 #endif // #else // #ifdef CONFIG_TASKS_RCU 313 314 #ifdef CONFIG_TASKS_RUDE_RCU 315 316 /* 317 * Definitions for RCU-tasks-rude scalability testing. 318 */ 319 320 static int tasks_rude_scale_read_lock(void) 321 { 322 return 0; 323 } 324 325 static void tasks_rude_scale_read_unlock(int idx) 326 { 327 } 328 329 static struct rcu_scale_ops tasks_rude_ops = { 330 .ptype = RCU_TASKS_RUDE_FLAVOR, 331 .init = rcu_sync_scale_init, 332 .readlock = tasks_rude_scale_read_lock, 333 .readunlock = tasks_rude_scale_read_unlock, 334 .get_gp_seq = rcu_no_completed, 335 .gp_diff = rcu_seq_diff, 336 .async = call_rcu_tasks_rude, 337 .gp_barrier = rcu_barrier_tasks_rude, 338 .sync = synchronize_rcu_tasks_rude, 339 .exp_sync = synchronize_rcu_tasks_rude, 340 .rso_gp_kthread = get_rcu_tasks_rude_gp_kthread, 341 .name = "tasks-rude" 342 }; 343 344 #define TASKS_RUDE_OPS &tasks_rude_ops, 345 346 #else // #ifdef CONFIG_TASKS_RUDE_RCU 347 348 #define TASKS_RUDE_OPS 349 350 #endif // #else // #ifdef CONFIG_TASKS_RUDE_RCU 351 352 #ifdef CONFIG_TASKS_TRACE_RCU 353 354 /* 355 * Definitions for RCU-tasks-trace scalability testing. 356 */ 357 358 static int tasks_trace_scale_read_lock(void) 359 { 360 rcu_read_lock_trace(); 361 return 0; 362 } 363 364 static void tasks_trace_scale_read_unlock(int idx) 365 { 366 rcu_read_unlock_trace(); 367 } 368 369 static struct rcu_scale_ops tasks_tracing_ops = { 370 .ptype = RCU_TASKS_FLAVOR, 371 .init = rcu_sync_scale_init, 372 .readlock = tasks_trace_scale_read_lock, 373 .readunlock = tasks_trace_scale_read_unlock, 374 .get_gp_seq = rcu_no_completed, 375 .gp_diff = rcu_seq_diff, 376 .async = call_rcu_tasks_trace, 377 .gp_barrier = rcu_barrier_tasks_trace, 378 .sync = synchronize_rcu_tasks_trace, 379 .exp_sync = synchronize_rcu_tasks_trace, 380 .rso_gp_kthread = get_rcu_tasks_trace_gp_kthread, 381 .name = "tasks-tracing" 382 }; 383 384 #define TASKS_TRACING_OPS &tasks_tracing_ops, 385 386 #else // #ifdef CONFIG_TASKS_TRACE_RCU 387 388 #define TASKS_TRACING_OPS 389 390 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU 391 392 static unsigned long rcuscale_seq_diff(unsigned long new, unsigned long old) 393 { 394 if (!cur_ops->gp_diff) 395 return new - old; 396 return cur_ops->gp_diff(new, old); 397 } 398 399 /* 400 * If scalability tests complete, wait for shutdown to commence. 401 */ 402 static void rcu_scale_wait_shutdown(void) 403 { 404 cond_resched_tasks_rcu_qs(); 405 if (atomic_read(&n_rcu_scale_writer_finished) < nrealwriters) 406 return; 407 while (!torture_must_stop()) 408 schedule_timeout_uninterruptible(1); 409 } 410 411 /* 412 * RCU scalability reader kthread. Repeatedly does empty RCU read-side 413 * critical section, minimizing update-side interference. However, the 414 * point of this test is not to evaluate reader scalability, but instead 415 * to serve as a test load for update-side scalability testing. 416 */ 417 static int 418 rcu_scale_reader(void *arg) 419 { 420 unsigned long flags; 421 int idx; 422 long me = (long)arg; 423 424 VERBOSE_SCALEOUT_STRING("rcu_scale_reader task started"); 425 set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)); 426 set_user_nice(current, MAX_NICE); 427 atomic_inc(&n_rcu_scale_reader_started); 428 429 do { 430 local_irq_save(flags); 431 idx = cur_ops->readlock(); 432 cur_ops->readunlock(idx); 433 local_irq_restore(flags); 434 rcu_scale_wait_shutdown(); 435 } while (!torture_must_stop()); 436 torture_kthread_stopping("rcu_scale_reader"); 437 return 0; 438 } 439 440 /* 441 * Callback function for asynchronous grace periods from rcu_scale_writer(). 442 */ 443 static void rcu_scale_async_cb(struct rcu_head *rhp) 444 { 445 atomic_dec(this_cpu_ptr(&n_async_inflight)); 446 kfree(rhp); 447 } 448 449 /* 450 * RCU scale writer kthread. Repeatedly does a grace period. 451 */ 452 static int 453 rcu_scale_writer(void *arg) 454 { 455 int i = 0; 456 int i_max; 457 unsigned long jdone; 458 long me = (long)arg; 459 struct rcu_head *rhp = NULL; 460 bool started = false, done = false, alldone = false; 461 u64 t; 462 DEFINE_TORTURE_RANDOM(tr); 463 u64 *wdp; 464 u64 *wdpp = writer_durations[me]; 465 466 VERBOSE_SCALEOUT_STRING("rcu_scale_writer task started"); 467 WARN_ON(!wdpp); 468 set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)); 469 current->flags |= PF_NO_SETAFFINITY; 470 sched_set_fifo_low(current); 471 472 if (holdoff) 473 schedule_timeout_idle(holdoff * HZ); 474 475 /* 476 * Wait until rcu_end_inkernel_boot() is called for normal GP tests 477 * so that RCU is not always expedited for normal GP tests. 478 * The system_state test is approximate, but works well in practice. 479 */ 480 while (!gp_exp && system_state != SYSTEM_RUNNING) 481 schedule_timeout_uninterruptible(1); 482 483 t = ktime_get_mono_fast_ns(); 484 if (atomic_inc_return(&n_rcu_scale_writer_started) >= nrealwriters) { 485 t_rcu_scale_writer_started = t; 486 if (gp_exp) { 487 b_rcu_gp_test_started = 488 cur_ops->exp_completed() / 2; 489 } else { 490 b_rcu_gp_test_started = cur_ops->get_gp_seq(); 491 } 492 } 493 494 jdone = jiffies + minruntime * HZ; 495 do { 496 if (writer_holdoff) 497 udelay(writer_holdoff); 498 if (writer_holdoff_jiffies) 499 schedule_timeout_idle(torture_random(&tr) % writer_holdoff_jiffies + 1); 500 wdp = &wdpp[i]; 501 *wdp = ktime_get_mono_fast_ns(); 502 if (gp_async && !WARN_ON_ONCE(!cur_ops->async)) { 503 retry: 504 if (!rhp) 505 rhp = kmalloc(sizeof(*rhp), GFP_KERNEL); 506 if (rhp && atomic_read(this_cpu_ptr(&n_async_inflight)) < gp_async_max) { 507 atomic_inc(this_cpu_ptr(&n_async_inflight)); 508 cur_ops->async(rhp, rcu_scale_async_cb); 509 rhp = NULL; 510 } else if (!kthread_should_stop()) { 511 cur_ops->gp_barrier(); 512 goto retry; 513 } else { 514 kfree(rhp); /* Because we are stopping. */ 515 } 516 } else if (gp_exp) { 517 cur_ops->exp_sync(); 518 } else { 519 cur_ops->sync(); 520 } 521 t = ktime_get_mono_fast_ns(); 522 *wdp = t - *wdp; 523 i_max = i; 524 if (!started && 525 atomic_read(&n_rcu_scale_writer_started) >= nrealwriters) 526 started = true; 527 if (!done && i >= MIN_MEAS && time_after(jiffies, jdone)) { 528 done = true; 529 sched_set_normal(current, 0); 530 pr_alert("%s%s rcu_scale_writer %ld has %d measurements\n", 531 scale_type, SCALE_FLAG, me, MIN_MEAS); 532 if (atomic_inc_return(&n_rcu_scale_writer_finished) >= 533 nrealwriters) { 534 schedule_timeout_interruptible(10); 535 rcu_ftrace_dump(DUMP_ALL); 536 SCALEOUT_STRING("Test complete"); 537 t_rcu_scale_writer_finished = t; 538 if (gp_exp) { 539 b_rcu_gp_test_finished = 540 cur_ops->exp_completed() / 2; 541 } else { 542 b_rcu_gp_test_finished = 543 cur_ops->get_gp_seq(); 544 } 545 if (shutdown) { 546 smp_mb(); /* Assign before wake. */ 547 wake_up(&shutdown_wq); 548 } 549 } 550 } 551 if (done && !alldone && 552 atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters) 553 alldone = true; 554 if (started && !alldone && i < MAX_MEAS - 1) 555 i++; 556 rcu_scale_wait_shutdown(); 557 } while (!torture_must_stop()); 558 if (gp_async && cur_ops->async) { 559 cur_ops->gp_barrier(); 560 } 561 writer_n_durations[me] = i_max + 1; 562 torture_kthread_stopping("rcu_scale_writer"); 563 return 0; 564 } 565 566 static void 567 rcu_scale_print_module_parms(struct rcu_scale_ops *cur_ops, const char *tag) 568 { 569 pr_alert("%s" SCALE_FLAG 570 "--- %s: gp_async=%d gp_async_max=%d gp_exp=%d holdoff=%d minruntime=%d nreaders=%d nwriters=%d writer_holdoff=%d writer_holdoff_jiffies=%d verbose=%d shutdown=%d\n", 571 scale_type, tag, gp_async, gp_async_max, gp_exp, holdoff, minruntime, nrealreaders, nrealwriters, writer_holdoff, writer_holdoff_jiffies, verbose, shutdown); 572 } 573 574 /* 575 * Return the number if non-negative. If -1, the number of CPUs. 576 * If less than -1, that much less than the number of CPUs, but 577 * at least one. 578 */ 579 static int compute_real(int n) 580 { 581 int nr; 582 583 if (n >= 0) { 584 nr = n; 585 } else { 586 nr = num_online_cpus() + 1 + n; 587 if (nr <= 0) 588 nr = 1; 589 } 590 return nr; 591 } 592 593 /* 594 * kfree_rcu() scalability tests: Start a kfree_rcu() loop on all CPUs for number 595 * of iterations and measure total time and number of GP for all iterations to complete. 596 */ 597 598 torture_param(int, kfree_nthreads, -1, "Number of threads running loops of kfree_rcu()."); 599 torture_param(int, kfree_alloc_num, 8000, "Number of allocations and frees done in an iteration."); 600 torture_param(int, kfree_loops, 10, "Number of loops doing kfree_alloc_num allocations and frees."); 601 torture_param(bool, kfree_rcu_test_double, false, "Do we run a kfree_rcu() double-argument scale test?"); 602 torture_param(bool, kfree_rcu_test_single, false, "Do we run a kfree_rcu() single-argument scale test?"); 603 604 static struct task_struct **kfree_reader_tasks; 605 static int kfree_nrealthreads; 606 static atomic_t n_kfree_scale_thread_started; 607 static atomic_t n_kfree_scale_thread_ended; 608 static struct task_struct *kthread_tp; 609 static u64 kthread_stime; 610 611 struct kfree_obj { 612 char kfree_obj[8]; 613 struct rcu_head rh; 614 }; 615 616 /* Used if doing RCU-kfree'ing via call_rcu(). */ 617 static void kfree_call_rcu(struct rcu_head *rh) 618 { 619 struct kfree_obj *obj = container_of(rh, struct kfree_obj, rh); 620 621 kfree(obj); 622 } 623 624 static int 625 kfree_scale_thread(void *arg) 626 { 627 int i, loop = 0; 628 long me = (long)arg; 629 struct kfree_obj *alloc_ptr; 630 u64 start_time, end_time; 631 long long mem_begin, mem_during = 0; 632 bool kfree_rcu_test_both; 633 DEFINE_TORTURE_RANDOM(tr); 634 635 VERBOSE_SCALEOUT_STRING("kfree_scale_thread task started"); 636 set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)); 637 set_user_nice(current, MAX_NICE); 638 kfree_rcu_test_both = (kfree_rcu_test_single == kfree_rcu_test_double); 639 640 start_time = ktime_get_mono_fast_ns(); 641 642 if (atomic_inc_return(&n_kfree_scale_thread_started) >= kfree_nrealthreads) { 643 if (gp_exp) 644 b_rcu_gp_test_started = cur_ops->exp_completed() / 2; 645 else 646 b_rcu_gp_test_started = cur_ops->get_gp_seq(); 647 } 648 649 do { 650 if (!mem_during) { 651 mem_during = mem_begin = si_mem_available(); 652 } else if (loop % (kfree_loops / 4) == 0) { 653 mem_during = (mem_during + si_mem_available()) / 2; 654 } 655 656 for (i = 0; i < kfree_alloc_num; i++) { 657 alloc_ptr = kmalloc(kfree_mult * sizeof(struct kfree_obj), GFP_KERNEL); 658 if (!alloc_ptr) 659 return -ENOMEM; 660 661 if (kfree_by_call_rcu) { 662 call_rcu(&(alloc_ptr->rh), kfree_call_rcu); 663 continue; 664 } 665 666 // By default kfree_rcu_test_single and kfree_rcu_test_double are 667 // initialized to false. If both have the same value (false or true) 668 // both are randomly tested, otherwise only the one with value true 669 // is tested. 670 if ((kfree_rcu_test_single && !kfree_rcu_test_double) || 671 (kfree_rcu_test_both && torture_random(&tr) & 0x800)) 672 kfree_rcu_mightsleep(alloc_ptr); 673 else 674 kfree_rcu(alloc_ptr, rh); 675 } 676 677 cond_resched(); 678 } while (!torture_must_stop() && ++loop < kfree_loops); 679 680 if (atomic_inc_return(&n_kfree_scale_thread_ended) >= kfree_nrealthreads) { 681 end_time = ktime_get_mono_fast_ns(); 682 683 if (gp_exp) 684 b_rcu_gp_test_finished = cur_ops->exp_completed() / 2; 685 else 686 b_rcu_gp_test_finished = cur_ops->get_gp_seq(); 687 688 pr_alert("Total time taken by all kfree'ers: %llu ns, loops: %d, batches: %ld, memory footprint: %lldMB\n", 689 (unsigned long long)(end_time - start_time), kfree_loops, 690 rcuscale_seq_diff(b_rcu_gp_test_finished, b_rcu_gp_test_started), 691 (mem_begin - mem_during) >> (20 - PAGE_SHIFT)); 692 693 if (shutdown) { 694 smp_mb(); /* Assign before wake. */ 695 wake_up(&shutdown_wq); 696 } 697 } 698 699 torture_kthread_stopping("kfree_scale_thread"); 700 return 0; 701 } 702 703 static void 704 kfree_scale_cleanup(void) 705 { 706 int i; 707 708 if (torture_cleanup_begin()) 709 return; 710 711 if (kfree_reader_tasks) { 712 for (i = 0; i < kfree_nrealthreads; i++) 713 torture_stop_kthread(kfree_scale_thread, 714 kfree_reader_tasks[i]); 715 kfree(kfree_reader_tasks); 716 } 717 718 torture_cleanup_end(); 719 } 720 721 /* 722 * shutdown kthread. Just waits to be awakened, then shuts down system. 723 */ 724 static int 725 kfree_scale_shutdown(void *arg) 726 { 727 wait_event_idle(shutdown_wq, 728 atomic_read(&n_kfree_scale_thread_ended) >= kfree_nrealthreads); 729 730 smp_mb(); /* Wake before output. */ 731 732 kfree_scale_cleanup(); 733 kernel_power_off(); 734 return -EINVAL; 735 } 736 737 // Used if doing RCU-kfree'ing via call_rcu(). 738 static unsigned long jiffies_at_lazy_cb; 739 static struct rcu_head lazy_test1_rh; 740 static int rcu_lazy_test1_cb_called; 741 static void call_rcu_lazy_test1(struct rcu_head *rh) 742 { 743 jiffies_at_lazy_cb = jiffies; 744 WRITE_ONCE(rcu_lazy_test1_cb_called, 1); 745 } 746 747 static int __init 748 kfree_scale_init(void) 749 { 750 int firsterr = 0; 751 long i; 752 unsigned long jif_start; 753 unsigned long orig_jif; 754 755 pr_alert("%s" SCALE_FLAG 756 "--- kfree_rcu_test: kfree_mult=%d kfree_by_call_rcu=%d kfree_nthreads=%d kfree_alloc_num=%d kfree_loops=%d kfree_rcu_test_double=%d kfree_rcu_test_single=%d\n", 757 scale_type, kfree_mult, kfree_by_call_rcu, kfree_nthreads, kfree_alloc_num, kfree_loops, kfree_rcu_test_double, kfree_rcu_test_single); 758 759 // Also, do a quick self-test to ensure laziness is as much as 760 // expected. 761 if (kfree_by_call_rcu && !IS_ENABLED(CONFIG_RCU_LAZY)) { 762 pr_alert("CONFIG_RCU_LAZY is disabled, falling back to kfree_rcu() for delayed RCU kfree'ing\n"); 763 kfree_by_call_rcu = 0; 764 } 765 766 if (kfree_by_call_rcu) { 767 /* do a test to check the timeout. */ 768 orig_jif = rcu_get_jiffies_lazy_flush(); 769 770 rcu_set_jiffies_lazy_flush(2 * HZ); 771 rcu_barrier(); 772 773 jif_start = jiffies; 774 jiffies_at_lazy_cb = 0; 775 call_rcu(&lazy_test1_rh, call_rcu_lazy_test1); 776 777 smp_cond_load_relaxed(&rcu_lazy_test1_cb_called, VAL == 1); 778 779 rcu_set_jiffies_lazy_flush(orig_jif); 780 781 if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start < 2 * HZ)) { 782 pr_alert("ERROR: call_rcu() CBs are not being lazy as expected!\n"); 783 WARN_ON_ONCE(1); 784 return -1; 785 } 786 787 if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start > 3 * HZ)) { 788 pr_alert("ERROR: call_rcu() CBs are being too lazy!\n"); 789 WARN_ON_ONCE(1); 790 return -1; 791 } 792 } 793 794 kfree_nrealthreads = compute_real(kfree_nthreads); 795 /* Start up the kthreads. */ 796 if (shutdown) { 797 init_waitqueue_head(&shutdown_wq); 798 firsterr = torture_create_kthread(kfree_scale_shutdown, NULL, 799 shutdown_task); 800 if (torture_init_error(firsterr)) 801 goto unwind; 802 schedule_timeout_uninterruptible(1); 803 } 804 805 pr_alert("kfree object size=%zu, kfree_by_call_rcu=%d\n", 806 kfree_mult * sizeof(struct kfree_obj), 807 kfree_by_call_rcu); 808 809 kfree_reader_tasks = kcalloc(kfree_nrealthreads, sizeof(kfree_reader_tasks[0]), 810 GFP_KERNEL); 811 if (kfree_reader_tasks == NULL) { 812 firsterr = -ENOMEM; 813 goto unwind; 814 } 815 816 for (i = 0; i < kfree_nrealthreads; i++) { 817 firsterr = torture_create_kthread(kfree_scale_thread, (void *)i, 818 kfree_reader_tasks[i]); 819 if (torture_init_error(firsterr)) 820 goto unwind; 821 } 822 823 while (atomic_read(&n_kfree_scale_thread_started) < kfree_nrealthreads) 824 schedule_timeout_uninterruptible(1); 825 826 torture_init_end(); 827 return 0; 828 829 unwind: 830 torture_init_end(); 831 kfree_scale_cleanup(); 832 return firsterr; 833 } 834 835 static void 836 rcu_scale_cleanup(void) 837 { 838 int i; 839 int j; 840 int ngps = 0; 841 u64 *wdp; 842 u64 *wdpp; 843 844 /* 845 * Would like warning at start, but everything is expedited 846 * during the mid-boot phase, so have to wait till the end. 847 */ 848 if (rcu_gp_is_expedited() && !rcu_gp_is_normal() && !gp_exp) 849 SCALEOUT_ERRSTRING("All grace periods expedited, no normal ones to measure!"); 850 if (rcu_gp_is_normal() && gp_exp) 851 SCALEOUT_ERRSTRING("All grace periods normal, no expedited ones to measure!"); 852 if (gp_exp && gp_async) 853 SCALEOUT_ERRSTRING("No expedited async GPs, so went with async!"); 854 855 // If built-in, just report all of the GP kthread's CPU time. 856 if (IS_BUILTIN(CONFIG_RCU_SCALE_TEST) && !kthread_tp && cur_ops->rso_gp_kthread) 857 kthread_tp = cur_ops->rso_gp_kthread(); 858 if (kthread_tp) { 859 u32 ns; 860 u64 us; 861 862 kthread_stime = kthread_tp->stime - kthread_stime; 863 us = div_u64_rem(kthread_stime, 1000, &ns); 864 pr_info("rcu_scale: Grace-period kthread CPU time: %llu.%03u us\n", us, ns); 865 show_rcu_gp_kthreads(); 866 } 867 if (kfree_rcu_test) { 868 kfree_scale_cleanup(); 869 return; 870 } 871 872 if (torture_cleanup_begin()) 873 return; 874 if (!cur_ops) { 875 torture_cleanup_end(); 876 return; 877 } 878 879 if (reader_tasks) { 880 for (i = 0; i < nrealreaders; i++) 881 torture_stop_kthread(rcu_scale_reader, 882 reader_tasks[i]); 883 kfree(reader_tasks); 884 } 885 886 if (writer_tasks) { 887 for (i = 0; i < nrealwriters; i++) { 888 torture_stop_kthread(rcu_scale_writer, 889 writer_tasks[i]); 890 if (!writer_n_durations) 891 continue; 892 j = writer_n_durations[i]; 893 pr_alert("%s%s writer %d gps: %d\n", 894 scale_type, SCALE_FLAG, i, j); 895 ngps += j; 896 } 897 pr_alert("%s%s start: %llu end: %llu duration: %llu gps: %d batches: %ld\n", 898 scale_type, SCALE_FLAG, 899 t_rcu_scale_writer_started, t_rcu_scale_writer_finished, 900 t_rcu_scale_writer_finished - 901 t_rcu_scale_writer_started, 902 ngps, 903 rcuscale_seq_diff(b_rcu_gp_test_finished, 904 b_rcu_gp_test_started)); 905 for (i = 0; i < nrealwriters; i++) { 906 if (!writer_durations) 907 break; 908 if (!writer_n_durations) 909 continue; 910 wdpp = writer_durations[i]; 911 if (!wdpp) 912 continue; 913 for (j = 0; j < writer_n_durations[i]; j++) { 914 wdp = &wdpp[j]; 915 pr_alert("%s%s %4d writer-duration: %5d %llu\n", 916 scale_type, SCALE_FLAG, 917 i, j, *wdp); 918 if (j % 100 == 0) 919 schedule_timeout_uninterruptible(1); 920 } 921 kfree(writer_durations[i]); 922 } 923 kfree(writer_tasks); 924 kfree(writer_durations); 925 kfree(writer_n_durations); 926 } 927 928 /* Do torture-type-specific cleanup operations. */ 929 if (cur_ops->cleanup != NULL) 930 cur_ops->cleanup(); 931 932 torture_cleanup_end(); 933 } 934 935 /* 936 * RCU scalability shutdown kthread. Just waits to be awakened, then shuts 937 * down system. 938 */ 939 static int 940 rcu_scale_shutdown(void *arg) 941 { 942 wait_event_idle(shutdown_wq, atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters); 943 smp_mb(); /* Wake before output. */ 944 rcu_scale_cleanup(); 945 kernel_power_off(); 946 return -EINVAL; 947 } 948 949 static int __init 950 rcu_scale_init(void) 951 { 952 long i; 953 int firsterr = 0; 954 static struct rcu_scale_ops *scale_ops[] = { 955 &rcu_ops, &srcu_ops, &srcud_ops, TASKS_OPS TASKS_RUDE_OPS TASKS_TRACING_OPS 956 }; 957 958 if (!torture_init_begin(scale_type, verbose)) 959 return -EBUSY; 960 961 /* Process args and announce that the scalability'er is on the job. */ 962 for (i = 0; i < ARRAY_SIZE(scale_ops); i++) { 963 cur_ops = scale_ops[i]; 964 if (strcmp(scale_type, cur_ops->name) == 0) 965 break; 966 } 967 if (i == ARRAY_SIZE(scale_ops)) { 968 pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type); 969 pr_alert("rcu-scale types:"); 970 for (i = 0; i < ARRAY_SIZE(scale_ops); i++) 971 pr_cont(" %s", scale_ops[i]->name); 972 pr_cont("\n"); 973 firsterr = -EINVAL; 974 cur_ops = NULL; 975 goto unwind; 976 } 977 if (cur_ops->init) 978 cur_ops->init(); 979 980 if (cur_ops->rso_gp_kthread) { 981 kthread_tp = cur_ops->rso_gp_kthread(); 982 if (kthread_tp) 983 kthread_stime = kthread_tp->stime; 984 } 985 if (kfree_rcu_test) 986 return kfree_scale_init(); 987 988 nrealwriters = compute_real(nwriters); 989 nrealreaders = compute_real(nreaders); 990 atomic_set(&n_rcu_scale_reader_started, 0); 991 atomic_set(&n_rcu_scale_writer_started, 0); 992 atomic_set(&n_rcu_scale_writer_finished, 0); 993 rcu_scale_print_module_parms(cur_ops, "Start of test"); 994 995 /* Start up the kthreads. */ 996 997 if (shutdown) { 998 init_waitqueue_head(&shutdown_wq); 999 firsterr = torture_create_kthread(rcu_scale_shutdown, NULL, 1000 shutdown_task); 1001 if (torture_init_error(firsterr)) 1002 goto unwind; 1003 schedule_timeout_uninterruptible(1); 1004 } 1005 reader_tasks = kcalloc(nrealreaders, sizeof(reader_tasks[0]), 1006 GFP_KERNEL); 1007 if (reader_tasks == NULL) { 1008 SCALEOUT_ERRSTRING("out of memory"); 1009 firsterr = -ENOMEM; 1010 goto unwind; 1011 } 1012 for (i = 0; i < nrealreaders; i++) { 1013 firsterr = torture_create_kthread(rcu_scale_reader, (void *)i, 1014 reader_tasks[i]); 1015 if (torture_init_error(firsterr)) 1016 goto unwind; 1017 } 1018 while (atomic_read(&n_rcu_scale_reader_started) < nrealreaders) 1019 schedule_timeout_uninterruptible(1); 1020 writer_tasks = kcalloc(nrealwriters, sizeof(reader_tasks[0]), 1021 GFP_KERNEL); 1022 writer_durations = kcalloc(nrealwriters, sizeof(*writer_durations), 1023 GFP_KERNEL); 1024 writer_n_durations = 1025 kcalloc(nrealwriters, sizeof(*writer_n_durations), 1026 GFP_KERNEL); 1027 if (!writer_tasks || !writer_durations || !writer_n_durations) { 1028 SCALEOUT_ERRSTRING("out of memory"); 1029 firsterr = -ENOMEM; 1030 goto unwind; 1031 } 1032 for (i = 0; i < nrealwriters; i++) { 1033 writer_durations[i] = 1034 kcalloc(MAX_MEAS, sizeof(*writer_durations[i]), 1035 GFP_KERNEL); 1036 if (!writer_durations[i]) { 1037 firsterr = -ENOMEM; 1038 goto unwind; 1039 } 1040 firsterr = torture_create_kthread(rcu_scale_writer, (void *)i, 1041 writer_tasks[i]); 1042 if (torture_init_error(firsterr)) 1043 goto unwind; 1044 } 1045 torture_init_end(); 1046 return 0; 1047 1048 unwind: 1049 torture_init_end(); 1050 rcu_scale_cleanup(); 1051 if (shutdown) { 1052 WARN_ON(!IS_MODULE(CONFIG_RCU_SCALE_TEST)); 1053 kernel_power_off(); 1054 } 1055 return firsterr; 1056 } 1057 1058 module_init(rcu_scale_init); 1059 module_exit(rcu_scale_cleanup); 1060
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.