~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/rcu/rcuscale.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0+
  2 /*
  3  * Read-Copy Update module-based scalability-test facility
  4  *
  5  * Copyright (C) IBM Corporation, 2015
  6  *
  7  * Authors: Paul E. McKenney <paulmck@linux.ibm.com>
  8  */
  9 
 10 #define pr_fmt(fmt) fmt
 11 
 12 #include <linux/types.h>
 13 #include <linux/kernel.h>
 14 #include <linux/init.h>
 15 #include <linux/mm.h>
 16 #include <linux/module.h>
 17 #include <linux/kthread.h>
 18 #include <linux/err.h>
 19 #include <linux/spinlock.h>
 20 #include <linux/smp.h>
 21 #include <linux/rcupdate.h>
 22 #include <linux/interrupt.h>
 23 #include <linux/sched.h>
 24 #include <uapi/linux/sched/types.h>
 25 #include <linux/atomic.h>
 26 #include <linux/bitops.h>
 27 #include <linux/completion.h>
 28 #include <linux/moduleparam.h>
 29 #include <linux/percpu.h>
 30 #include <linux/notifier.h>
 31 #include <linux/reboot.h>
 32 #include <linux/freezer.h>
 33 #include <linux/cpu.h>
 34 #include <linux/delay.h>
 35 #include <linux/stat.h>
 36 #include <linux/srcu.h>
 37 #include <linux/slab.h>
 38 #include <asm/byteorder.h>
 39 #include <linux/torture.h>
 40 #include <linux/vmalloc.h>
 41 #include <linux/rcupdate_trace.h>
 42 
 43 #include "rcu.h"
 44 
 45 MODULE_DESCRIPTION("Read-Copy Update module-based scalability-test facility");
 46 MODULE_LICENSE("GPL");
 47 MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>");
 48 
 49 #define SCALE_FLAG "-scale:"
 50 #define SCALEOUT_STRING(s) \
 51         pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s)
 52 #define VERBOSE_SCALEOUT_STRING(s) \
 53         do { if (verbose) pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s); } while (0)
 54 #define SCALEOUT_ERRSTRING(s) \
 55         pr_alert("%s" SCALE_FLAG "!!! %s\n", scale_type, s)
 56 
 57 /*
 58  * The intended use cases for the nreaders and nwriters module parameters
 59  * are as follows:
 60  *
 61  * 1.   Specify only the nr_cpus kernel boot parameter.  This will
 62  *      set both nreaders and nwriters to the value specified by
 63  *      nr_cpus for a mixed reader/writer test.
 64  *
 65  * 2.   Specify the nr_cpus kernel boot parameter, but set
 66  *      rcuscale.nreaders to zero.  This will set nwriters to the
 67  *      value specified by nr_cpus for an update-only test.
 68  *
 69  * 3.   Specify the nr_cpus kernel boot parameter, but set
 70  *      rcuscale.nwriters to zero.  This will set nreaders to the
 71  *      value specified by nr_cpus for a read-only test.
 72  *
 73  * Various other use cases may of course be specified.
 74  *
 75  * Note that this test's readers are intended only as a test load for
 76  * the writers.  The reader scalability statistics will be overly
 77  * pessimistic due to the per-critical-section interrupt disabling,
 78  * test-end checks, and the pair of calls through pointers.
 79  */
 80 
 81 #ifdef MODULE
 82 # define RCUSCALE_SHUTDOWN 0
 83 #else
 84 # define RCUSCALE_SHUTDOWN 1
 85 #endif
 86 
 87 torture_param(bool, gp_async, false, "Use asynchronous GP wait primitives");
 88 torture_param(int, gp_async_max, 1000, "Max # outstanding waits per writer");
 89 torture_param(bool, gp_exp, false, "Use expedited GP wait primitives");
 90 torture_param(int, holdoff, 10, "Holdoff time before test start (s)");
 91 torture_param(int, minruntime, 0, "Minimum run time (s)");
 92 torture_param(int, nreaders, -1, "Number of RCU reader threads");
 93 torture_param(int, nwriters, -1, "Number of RCU updater threads");
 94 torture_param(bool, shutdown, RCUSCALE_SHUTDOWN,
 95               "Shutdown at end of scalability tests.");
 96 torture_param(int, verbose, 1, "Enable verbose debugging printk()s");
 97 torture_param(int, writer_holdoff, 0, "Holdoff (us) between GPs, zero to disable");
 98 torture_param(int, writer_holdoff_jiffies, 0, "Holdoff (jiffies) between GPs, zero to disable");
 99 torture_param(int, kfree_rcu_test, 0, "Do we run a kfree_rcu() scale test?");
100 torture_param(int, kfree_mult, 1, "Multiple of kfree_obj size to allocate.");
101 torture_param(int, kfree_by_call_rcu, 0, "Use call_rcu() to emulate kfree_rcu()?");
102 
103 static char *scale_type = "rcu";
104 module_param(scale_type, charp, 0444);
105 MODULE_PARM_DESC(scale_type, "Type of RCU to scalability-test (rcu, srcu, ...)");
106 
107 static int nrealreaders;
108 static int nrealwriters;
109 static struct task_struct **writer_tasks;
110 static struct task_struct **reader_tasks;
111 static struct task_struct *shutdown_task;
112 
113 static u64 **writer_durations;
114 static int *writer_n_durations;
115 static atomic_t n_rcu_scale_reader_started;
116 static atomic_t n_rcu_scale_writer_started;
117 static atomic_t n_rcu_scale_writer_finished;
118 static wait_queue_head_t shutdown_wq;
119 static u64 t_rcu_scale_writer_started;
120 static u64 t_rcu_scale_writer_finished;
121 static unsigned long b_rcu_gp_test_started;
122 static unsigned long b_rcu_gp_test_finished;
123 static DEFINE_PER_CPU(atomic_t, n_async_inflight);
124 
125 #define MAX_MEAS 10000
126 #define MIN_MEAS 100
127 
128 /*
129  * Operations vector for selecting different types of tests.
130  */
131 
132 struct rcu_scale_ops {
133         int ptype;
134         void (*init)(void);
135         void (*cleanup)(void);
136         int (*readlock)(void);
137         void (*readunlock)(int idx);
138         unsigned long (*get_gp_seq)(void);
139         unsigned long (*gp_diff)(unsigned long new, unsigned long old);
140         unsigned long (*exp_completed)(void);
141         void (*async)(struct rcu_head *head, rcu_callback_t func);
142         void (*gp_barrier)(void);
143         void (*sync)(void);
144         void (*exp_sync)(void);
145         struct task_struct *(*rso_gp_kthread)(void);
146         const char *name;
147 };
148 
149 static struct rcu_scale_ops *cur_ops;
150 
151 /*
152  * Definitions for rcu scalability testing.
153  */
154 
155 static int rcu_scale_read_lock(void) __acquires(RCU)
156 {
157         rcu_read_lock();
158         return 0;
159 }
160 
161 static void rcu_scale_read_unlock(int idx) __releases(RCU)
162 {
163         rcu_read_unlock();
164 }
165 
166 static unsigned long __maybe_unused rcu_no_completed(void)
167 {
168         return 0;
169 }
170 
171 static void rcu_sync_scale_init(void)
172 {
173 }
174 
175 static struct rcu_scale_ops rcu_ops = {
176         .ptype          = RCU_FLAVOR,
177         .init           = rcu_sync_scale_init,
178         .readlock       = rcu_scale_read_lock,
179         .readunlock     = rcu_scale_read_unlock,
180         .get_gp_seq     = rcu_get_gp_seq,
181         .gp_diff        = rcu_seq_diff,
182         .exp_completed  = rcu_exp_batches_completed,
183         .async          = call_rcu_hurry,
184         .gp_barrier     = rcu_barrier,
185         .sync           = synchronize_rcu,
186         .exp_sync       = synchronize_rcu_expedited,
187         .name           = "rcu"
188 };
189 
190 /*
191  * Definitions for srcu scalability testing.
192  */
193 
194 DEFINE_STATIC_SRCU(srcu_ctl_scale);
195 static struct srcu_struct *srcu_ctlp = &srcu_ctl_scale;
196 
197 static int srcu_scale_read_lock(void) __acquires(srcu_ctlp)
198 {
199         return srcu_read_lock(srcu_ctlp);
200 }
201 
202 static void srcu_scale_read_unlock(int idx) __releases(srcu_ctlp)
203 {
204         srcu_read_unlock(srcu_ctlp, idx);
205 }
206 
207 static unsigned long srcu_scale_completed(void)
208 {
209         return srcu_batches_completed(srcu_ctlp);
210 }
211 
212 static void srcu_call_rcu(struct rcu_head *head, rcu_callback_t func)
213 {
214         call_srcu(srcu_ctlp, head, func);
215 }
216 
217 static void srcu_rcu_barrier(void)
218 {
219         srcu_barrier(srcu_ctlp);
220 }
221 
222 static void srcu_scale_synchronize(void)
223 {
224         synchronize_srcu(srcu_ctlp);
225 }
226 
227 static void srcu_scale_synchronize_expedited(void)
228 {
229         synchronize_srcu_expedited(srcu_ctlp);
230 }
231 
232 static struct rcu_scale_ops srcu_ops = {
233         .ptype          = SRCU_FLAVOR,
234         .init           = rcu_sync_scale_init,
235         .readlock       = srcu_scale_read_lock,
236         .readunlock     = srcu_scale_read_unlock,
237         .get_gp_seq     = srcu_scale_completed,
238         .gp_diff        = rcu_seq_diff,
239         .exp_completed  = srcu_scale_completed,
240         .async          = srcu_call_rcu,
241         .gp_barrier     = srcu_rcu_barrier,
242         .sync           = srcu_scale_synchronize,
243         .exp_sync       = srcu_scale_synchronize_expedited,
244         .name           = "srcu"
245 };
246 
247 static struct srcu_struct srcud;
248 
249 static void srcu_sync_scale_init(void)
250 {
251         srcu_ctlp = &srcud;
252         init_srcu_struct(srcu_ctlp);
253 }
254 
255 static void srcu_sync_scale_cleanup(void)
256 {
257         cleanup_srcu_struct(srcu_ctlp);
258 }
259 
260 static struct rcu_scale_ops srcud_ops = {
261         .ptype          = SRCU_FLAVOR,
262         .init           = srcu_sync_scale_init,
263         .cleanup        = srcu_sync_scale_cleanup,
264         .readlock       = srcu_scale_read_lock,
265         .readunlock     = srcu_scale_read_unlock,
266         .get_gp_seq     = srcu_scale_completed,
267         .gp_diff        = rcu_seq_diff,
268         .exp_completed  = srcu_scale_completed,
269         .async          = srcu_call_rcu,
270         .gp_barrier     = srcu_rcu_barrier,
271         .sync           = srcu_scale_synchronize,
272         .exp_sync       = srcu_scale_synchronize_expedited,
273         .name           = "srcud"
274 };
275 
276 #ifdef CONFIG_TASKS_RCU
277 
278 /*
279  * Definitions for RCU-tasks scalability testing.
280  */
281 
282 static int tasks_scale_read_lock(void)
283 {
284         return 0;
285 }
286 
287 static void tasks_scale_read_unlock(int idx)
288 {
289 }
290 
291 static struct rcu_scale_ops tasks_ops = {
292         .ptype          = RCU_TASKS_FLAVOR,
293         .init           = rcu_sync_scale_init,
294         .readlock       = tasks_scale_read_lock,
295         .readunlock     = tasks_scale_read_unlock,
296         .get_gp_seq     = rcu_no_completed,
297         .gp_diff        = rcu_seq_diff,
298         .async          = call_rcu_tasks,
299         .gp_barrier     = rcu_barrier_tasks,
300         .sync           = synchronize_rcu_tasks,
301         .exp_sync       = synchronize_rcu_tasks,
302         .rso_gp_kthread = get_rcu_tasks_gp_kthread,
303         .name           = "tasks"
304 };
305 
306 #define TASKS_OPS &tasks_ops,
307 
308 #else // #ifdef CONFIG_TASKS_RCU
309 
310 #define TASKS_OPS
311 
312 #endif // #else // #ifdef CONFIG_TASKS_RCU
313 
314 #ifdef CONFIG_TASKS_RUDE_RCU
315 
316 /*
317  * Definitions for RCU-tasks-rude scalability testing.
318  */
319 
320 static int tasks_rude_scale_read_lock(void)
321 {
322         return 0;
323 }
324 
325 static void tasks_rude_scale_read_unlock(int idx)
326 {
327 }
328 
329 static struct rcu_scale_ops tasks_rude_ops = {
330         .ptype          = RCU_TASKS_RUDE_FLAVOR,
331         .init           = rcu_sync_scale_init,
332         .readlock       = tasks_rude_scale_read_lock,
333         .readunlock     = tasks_rude_scale_read_unlock,
334         .get_gp_seq     = rcu_no_completed,
335         .gp_diff        = rcu_seq_diff,
336         .async          = call_rcu_tasks_rude,
337         .gp_barrier     = rcu_barrier_tasks_rude,
338         .sync           = synchronize_rcu_tasks_rude,
339         .exp_sync       = synchronize_rcu_tasks_rude,
340         .rso_gp_kthread = get_rcu_tasks_rude_gp_kthread,
341         .name           = "tasks-rude"
342 };
343 
344 #define TASKS_RUDE_OPS &tasks_rude_ops,
345 
346 #else // #ifdef CONFIG_TASKS_RUDE_RCU
347 
348 #define TASKS_RUDE_OPS
349 
350 #endif // #else // #ifdef CONFIG_TASKS_RUDE_RCU
351 
352 #ifdef CONFIG_TASKS_TRACE_RCU
353 
354 /*
355  * Definitions for RCU-tasks-trace scalability testing.
356  */
357 
358 static int tasks_trace_scale_read_lock(void)
359 {
360         rcu_read_lock_trace();
361         return 0;
362 }
363 
364 static void tasks_trace_scale_read_unlock(int idx)
365 {
366         rcu_read_unlock_trace();
367 }
368 
369 static struct rcu_scale_ops tasks_tracing_ops = {
370         .ptype          = RCU_TASKS_FLAVOR,
371         .init           = rcu_sync_scale_init,
372         .readlock       = tasks_trace_scale_read_lock,
373         .readunlock     = tasks_trace_scale_read_unlock,
374         .get_gp_seq     = rcu_no_completed,
375         .gp_diff        = rcu_seq_diff,
376         .async          = call_rcu_tasks_trace,
377         .gp_barrier     = rcu_barrier_tasks_trace,
378         .sync           = synchronize_rcu_tasks_trace,
379         .exp_sync       = synchronize_rcu_tasks_trace,
380         .rso_gp_kthread = get_rcu_tasks_trace_gp_kthread,
381         .name           = "tasks-tracing"
382 };
383 
384 #define TASKS_TRACING_OPS &tasks_tracing_ops,
385 
386 #else // #ifdef CONFIG_TASKS_TRACE_RCU
387 
388 #define TASKS_TRACING_OPS
389 
390 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
391 
392 static unsigned long rcuscale_seq_diff(unsigned long new, unsigned long old)
393 {
394         if (!cur_ops->gp_diff)
395                 return new - old;
396         return cur_ops->gp_diff(new, old);
397 }
398 
399 /*
400  * If scalability tests complete, wait for shutdown to commence.
401  */
402 static void rcu_scale_wait_shutdown(void)
403 {
404         cond_resched_tasks_rcu_qs();
405         if (atomic_read(&n_rcu_scale_writer_finished) < nrealwriters)
406                 return;
407         while (!torture_must_stop())
408                 schedule_timeout_uninterruptible(1);
409 }
410 
411 /*
412  * RCU scalability reader kthread.  Repeatedly does empty RCU read-side
413  * critical section, minimizing update-side interference.  However, the
414  * point of this test is not to evaluate reader scalability, but instead
415  * to serve as a test load for update-side scalability testing.
416  */
417 static int
418 rcu_scale_reader(void *arg)
419 {
420         unsigned long flags;
421         int idx;
422         long me = (long)arg;
423 
424         VERBOSE_SCALEOUT_STRING("rcu_scale_reader task started");
425         set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
426         set_user_nice(current, MAX_NICE);
427         atomic_inc(&n_rcu_scale_reader_started);
428 
429         do {
430                 local_irq_save(flags);
431                 idx = cur_ops->readlock();
432                 cur_ops->readunlock(idx);
433                 local_irq_restore(flags);
434                 rcu_scale_wait_shutdown();
435         } while (!torture_must_stop());
436         torture_kthread_stopping("rcu_scale_reader");
437         return 0;
438 }
439 
440 /*
441  * Callback function for asynchronous grace periods from rcu_scale_writer().
442  */
443 static void rcu_scale_async_cb(struct rcu_head *rhp)
444 {
445         atomic_dec(this_cpu_ptr(&n_async_inflight));
446         kfree(rhp);
447 }
448 
449 /*
450  * RCU scale writer kthread.  Repeatedly does a grace period.
451  */
452 static int
453 rcu_scale_writer(void *arg)
454 {
455         int i = 0;
456         int i_max;
457         unsigned long jdone;
458         long me = (long)arg;
459         struct rcu_head *rhp = NULL;
460         bool started = false, done = false, alldone = false;
461         u64 t;
462         DEFINE_TORTURE_RANDOM(tr);
463         u64 *wdp;
464         u64 *wdpp = writer_durations[me];
465 
466         VERBOSE_SCALEOUT_STRING("rcu_scale_writer task started");
467         WARN_ON(!wdpp);
468         set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
469         current->flags |= PF_NO_SETAFFINITY;
470         sched_set_fifo_low(current);
471 
472         if (holdoff)
473                 schedule_timeout_idle(holdoff * HZ);
474 
475         /*
476          * Wait until rcu_end_inkernel_boot() is called for normal GP tests
477          * so that RCU is not always expedited for normal GP tests.
478          * The system_state test is approximate, but works well in practice.
479          */
480         while (!gp_exp && system_state != SYSTEM_RUNNING)
481                 schedule_timeout_uninterruptible(1);
482 
483         t = ktime_get_mono_fast_ns();
484         if (atomic_inc_return(&n_rcu_scale_writer_started) >= nrealwriters) {
485                 t_rcu_scale_writer_started = t;
486                 if (gp_exp) {
487                         b_rcu_gp_test_started =
488                                 cur_ops->exp_completed() / 2;
489                 } else {
490                         b_rcu_gp_test_started = cur_ops->get_gp_seq();
491                 }
492         }
493 
494         jdone = jiffies + minruntime * HZ;
495         do {
496                 if (writer_holdoff)
497                         udelay(writer_holdoff);
498                 if (writer_holdoff_jiffies)
499                         schedule_timeout_idle(torture_random(&tr) % writer_holdoff_jiffies + 1);
500                 wdp = &wdpp[i];
501                 *wdp = ktime_get_mono_fast_ns();
502                 if (gp_async && !WARN_ON_ONCE(!cur_ops->async)) {
503 retry:
504                         if (!rhp)
505                                 rhp = kmalloc(sizeof(*rhp), GFP_KERNEL);
506                         if (rhp && atomic_read(this_cpu_ptr(&n_async_inflight)) < gp_async_max) {
507                                 atomic_inc(this_cpu_ptr(&n_async_inflight));
508                                 cur_ops->async(rhp, rcu_scale_async_cb);
509                                 rhp = NULL;
510                         } else if (!kthread_should_stop()) {
511                                 cur_ops->gp_barrier();
512                                 goto retry;
513                         } else {
514                                 kfree(rhp); /* Because we are stopping. */
515                         }
516                 } else if (gp_exp) {
517                         cur_ops->exp_sync();
518                 } else {
519                         cur_ops->sync();
520                 }
521                 t = ktime_get_mono_fast_ns();
522                 *wdp = t - *wdp;
523                 i_max = i;
524                 if (!started &&
525                     atomic_read(&n_rcu_scale_writer_started) >= nrealwriters)
526                         started = true;
527                 if (!done && i >= MIN_MEAS && time_after(jiffies, jdone)) {
528                         done = true;
529                         sched_set_normal(current, 0);
530                         pr_alert("%s%s rcu_scale_writer %ld has %d measurements\n",
531                                  scale_type, SCALE_FLAG, me, MIN_MEAS);
532                         if (atomic_inc_return(&n_rcu_scale_writer_finished) >=
533                             nrealwriters) {
534                                 schedule_timeout_interruptible(10);
535                                 rcu_ftrace_dump(DUMP_ALL);
536                                 SCALEOUT_STRING("Test complete");
537                                 t_rcu_scale_writer_finished = t;
538                                 if (gp_exp) {
539                                         b_rcu_gp_test_finished =
540                                                 cur_ops->exp_completed() / 2;
541                                 } else {
542                                         b_rcu_gp_test_finished =
543                                                 cur_ops->get_gp_seq();
544                                 }
545                                 if (shutdown) {
546                                         smp_mb(); /* Assign before wake. */
547                                         wake_up(&shutdown_wq);
548                                 }
549                         }
550                 }
551                 if (done && !alldone &&
552                     atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters)
553                         alldone = true;
554                 if (started && !alldone && i < MAX_MEAS - 1)
555                         i++;
556                 rcu_scale_wait_shutdown();
557         } while (!torture_must_stop());
558         if (gp_async && cur_ops->async) {
559                 cur_ops->gp_barrier();
560         }
561         writer_n_durations[me] = i_max + 1;
562         torture_kthread_stopping("rcu_scale_writer");
563         return 0;
564 }
565 
566 static void
567 rcu_scale_print_module_parms(struct rcu_scale_ops *cur_ops, const char *tag)
568 {
569         pr_alert("%s" SCALE_FLAG
570                  "--- %s: gp_async=%d gp_async_max=%d gp_exp=%d holdoff=%d minruntime=%d nreaders=%d nwriters=%d writer_holdoff=%d writer_holdoff_jiffies=%d verbose=%d shutdown=%d\n",
571                  scale_type, tag, gp_async, gp_async_max, gp_exp, holdoff, minruntime, nrealreaders, nrealwriters, writer_holdoff, writer_holdoff_jiffies, verbose, shutdown);
572 }
573 
574 /*
575  * Return the number if non-negative.  If -1, the number of CPUs.
576  * If less than -1, that much less than the number of CPUs, but
577  * at least one.
578  */
579 static int compute_real(int n)
580 {
581         int nr;
582 
583         if (n >= 0) {
584                 nr = n;
585         } else {
586                 nr = num_online_cpus() + 1 + n;
587                 if (nr <= 0)
588                         nr = 1;
589         }
590         return nr;
591 }
592 
593 /*
594  * kfree_rcu() scalability tests: Start a kfree_rcu() loop on all CPUs for number
595  * of iterations and measure total time and number of GP for all iterations to complete.
596  */
597 
598 torture_param(int, kfree_nthreads, -1, "Number of threads running loops of kfree_rcu().");
599 torture_param(int, kfree_alloc_num, 8000, "Number of allocations and frees done in an iteration.");
600 torture_param(int, kfree_loops, 10, "Number of loops doing kfree_alloc_num allocations and frees.");
601 torture_param(bool, kfree_rcu_test_double, false, "Do we run a kfree_rcu() double-argument scale test?");
602 torture_param(bool, kfree_rcu_test_single, false, "Do we run a kfree_rcu() single-argument scale test?");
603 
604 static struct task_struct **kfree_reader_tasks;
605 static int kfree_nrealthreads;
606 static atomic_t n_kfree_scale_thread_started;
607 static atomic_t n_kfree_scale_thread_ended;
608 static struct task_struct *kthread_tp;
609 static u64 kthread_stime;
610 
611 struct kfree_obj {
612         char kfree_obj[8];
613         struct rcu_head rh;
614 };
615 
616 /* Used if doing RCU-kfree'ing via call_rcu(). */
617 static void kfree_call_rcu(struct rcu_head *rh)
618 {
619         struct kfree_obj *obj = container_of(rh, struct kfree_obj, rh);
620 
621         kfree(obj);
622 }
623 
624 static int
625 kfree_scale_thread(void *arg)
626 {
627         int i, loop = 0;
628         long me = (long)arg;
629         struct kfree_obj *alloc_ptr;
630         u64 start_time, end_time;
631         long long mem_begin, mem_during = 0;
632         bool kfree_rcu_test_both;
633         DEFINE_TORTURE_RANDOM(tr);
634 
635         VERBOSE_SCALEOUT_STRING("kfree_scale_thread task started");
636         set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
637         set_user_nice(current, MAX_NICE);
638         kfree_rcu_test_both = (kfree_rcu_test_single == kfree_rcu_test_double);
639 
640         start_time = ktime_get_mono_fast_ns();
641 
642         if (atomic_inc_return(&n_kfree_scale_thread_started) >= kfree_nrealthreads) {
643                 if (gp_exp)
644                         b_rcu_gp_test_started = cur_ops->exp_completed() / 2;
645                 else
646                         b_rcu_gp_test_started = cur_ops->get_gp_seq();
647         }
648 
649         do {
650                 if (!mem_during) {
651                         mem_during = mem_begin = si_mem_available();
652                 } else if (loop % (kfree_loops / 4) == 0) {
653                         mem_during = (mem_during + si_mem_available()) / 2;
654                 }
655 
656                 for (i = 0; i < kfree_alloc_num; i++) {
657                         alloc_ptr = kmalloc(kfree_mult * sizeof(struct kfree_obj), GFP_KERNEL);
658                         if (!alloc_ptr)
659                                 return -ENOMEM;
660 
661                         if (kfree_by_call_rcu) {
662                                 call_rcu(&(alloc_ptr->rh), kfree_call_rcu);
663                                 continue;
664                         }
665 
666                         // By default kfree_rcu_test_single and kfree_rcu_test_double are
667                         // initialized to false. If both have the same value (false or true)
668                         // both are randomly tested, otherwise only the one with value true
669                         // is tested.
670                         if ((kfree_rcu_test_single && !kfree_rcu_test_double) ||
671                                         (kfree_rcu_test_both && torture_random(&tr) & 0x800))
672                                 kfree_rcu_mightsleep(alloc_ptr);
673                         else
674                                 kfree_rcu(alloc_ptr, rh);
675                 }
676 
677                 cond_resched();
678         } while (!torture_must_stop() && ++loop < kfree_loops);
679 
680         if (atomic_inc_return(&n_kfree_scale_thread_ended) >= kfree_nrealthreads) {
681                 end_time = ktime_get_mono_fast_ns();
682 
683                 if (gp_exp)
684                         b_rcu_gp_test_finished = cur_ops->exp_completed() / 2;
685                 else
686                         b_rcu_gp_test_finished = cur_ops->get_gp_seq();
687 
688                 pr_alert("Total time taken by all kfree'ers: %llu ns, loops: %d, batches: %ld, memory footprint: %lldMB\n",
689                        (unsigned long long)(end_time - start_time), kfree_loops,
690                        rcuscale_seq_diff(b_rcu_gp_test_finished, b_rcu_gp_test_started),
691                        (mem_begin - mem_during) >> (20 - PAGE_SHIFT));
692 
693                 if (shutdown) {
694                         smp_mb(); /* Assign before wake. */
695                         wake_up(&shutdown_wq);
696                 }
697         }
698 
699         torture_kthread_stopping("kfree_scale_thread");
700         return 0;
701 }
702 
703 static void
704 kfree_scale_cleanup(void)
705 {
706         int i;
707 
708         if (torture_cleanup_begin())
709                 return;
710 
711         if (kfree_reader_tasks) {
712                 for (i = 0; i < kfree_nrealthreads; i++)
713                         torture_stop_kthread(kfree_scale_thread,
714                                              kfree_reader_tasks[i]);
715                 kfree(kfree_reader_tasks);
716         }
717 
718         torture_cleanup_end();
719 }
720 
721 /*
722  * shutdown kthread.  Just waits to be awakened, then shuts down system.
723  */
724 static int
725 kfree_scale_shutdown(void *arg)
726 {
727         wait_event_idle(shutdown_wq,
728                         atomic_read(&n_kfree_scale_thread_ended) >= kfree_nrealthreads);
729 
730         smp_mb(); /* Wake before output. */
731 
732         kfree_scale_cleanup();
733         kernel_power_off();
734         return -EINVAL;
735 }
736 
737 // Used if doing RCU-kfree'ing via call_rcu().
738 static unsigned long jiffies_at_lazy_cb;
739 static struct rcu_head lazy_test1_rh;
740 static int rcu_lazy_test1_cb_called;
741 static void call_rcu_lazy_test1(struct rcu_head *rh)
742 {
743         jiffies_at_lazy_cb = jiffies;
744         WRITE_ONCE(rcu_lazy_test1_cb_called, 1);
745 }
746 
747 static int __init
748 kfree_scale_init(void)
749 {
750         int firsterr = 0;
751         long i;
752         unsigned long jif_start;
753         unsigned long orig_jif;
754 
755         pr_alert("%s" SCALE_FLAG
756                  "--- kfree_rcu_test: kfree_mult=%d kfree_by_call_rcu=%d kfree_nthreads=%d kfree_alloc_num=%d kfree_loops=%d kfree_rcu_test_double=%d kfree_rcu_test_single=%d\n",
757                  scale_type, kfree_mult, kfree_by_call_rcu, kfree_nthreads, kfree_alloc_num, kfree_loops, kfree_rcu_test_double, kfree_rcu_test_single);
758 
759         // Also, do a quick self-test to ensure laziness is as much as
760         // expected.
761         if (kfree_by_call_rcu && !IS_ENABLED(CONFIG_RCU_LAZY)) {
762                 pr_alert("CONFIG_RCU_LAZY is disabled, falling back to kfree_rcu() for delayed RCU kfree'ing\n");
763                 kfree_by_call_rcu = 0;
764         }
765 
766         if (kfree_by_call_rcu) {
767                 /* do a test to check the timeout. */
768                 orig_jif = rcu_get_jiffies_lazy_flush();
769 
770                 rcu_set_jiffies_lazy_flush(2 * HZ);
771                 rcu_barrier();
772 
773                 jif_start = jiffies;
774                 jiffies_at_lazy_cb = 0;
775                 call_rcu(&lazy_test1_rh, call_rcu_lazy_test1);
776 
777                 smp_cond_load_relaxed(&rcu_lazy_test1_cb_called, VAL == 1);
778 
779                 rcu_set_jiffies_lazy_flush(orig_jif);
780 
781                 if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start < 2 * HZ)) {
782                         pr_alert("ERROR: call_rcu() CBs are not being lazy as expected!\n");
783                         WARN_ON_ONCE(1);
784                         return -1;
785                 }
786 
787                 if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start > 3 * HZ)) {
788                         pr_alert("ERROR: call_rcu() CBs are being too lazy!\n");
789                         WARN_ON_ONCE(1);
790                         return -1;
791                 }
792         }
793 
794         kfree_nrealthreads = compute_real(kfree_nthreads);
795         /* Start up the kthreads. */
796         if (shutdown) {
797                 init_waitqueue_head(&shutdown_wq);
798                 firsterr = torture_create_kthread(kfree_scale_shutdown, NULL,
799                                                   shutdown_task);
800                 if (torture_init_error(firsterr))
801                         goto unwind;
802                 schedule_timeout_uninterruptible(1);
803         }
804 
805         pr_alert("kfree object size=%zu, kfree_by_call_rcu=%d\n",
806                         kfree_mult * sizeof(struct kfree_obj),
807                         kfree_by_call_rcu);
808 
809         kfree_reader_tasks = kcalloc(kfree_nrealthreads, sizeof(kfree_reader_tasks[0]),
810                                GFP_KERNEL);
811         if (kfree_reader_tasks == NULL) {
812                 firsterr = -ENOMEM;
813                 goto unwind;
814         }
815 
816         for (i = 0; i < kfree_nrealthreads; i++) {
817                 firsterr = torture_create_kthread(kfree_scale_thread, (void *)i,
818                                                   kfree_reader_tasks[i]);
819                 if (torture_init_error(firsterr))
820                         goto unwind;
821         }
822 
823         while (atomic_read(&n_kfree_scale_thread_started) < kfree_nrealthreads)
824                 schedule_timeout_uninterruptible(1);
825 
826         torture_init_end();
827         return 0;
828 
829 unwind:
830         torture_init_end();
831         kfree_scale_cleanup();
832         return firsterr;
833 }
834 
835 static void
836 rcu_scale_cleanup(void)
837 {
838         int i;
839         int j;
840         int ngps = 0;
841         u64 *wdp;
842         u64 *wdpp;
843 
844         /*
845          * Would like warning at start, but everything is expedited
846          * during the mid-boot phase, so have to wait till the end.
847          */
848         if (rcu_gp_is_expedited() && !rcu_gp_is_normal() && !gp_exp)
849                 SCALEOUT_ERRSTRING("All grace periods expedited, no normal ones to measure!");
850         if (rcu_gp_is_normal() && gp_exp)
851                 SCALEOUT_ERRSTRING("All grace periods normal, no expedited ones to measure!");
852         if (gp_exp && gp_async)
853                 SCALEOUT_ERRSTRING("No expedited async GPs, so went with async!");
854 
855         // If built-in, just report all of the GP kthread's CPU time.
856         if (IS_BUILTIN(CONFIG_RCU_SCALE_TEST) && !kthread_tp && cur_ops->rso_gp_kthread)
857                 kthread_tp = cur_ops->rso_gp_kthread();
858         if (kthread_tp) {
859                 u32 ns;
860                 u64 us;
861 
862                 kthread_stime = kthread_tp->stime - kthread_stime;
863                 us = div_u64_rem(kthread_stime, 1000, &ns);
864                 pr_info("rcu_scale: Grace-period kthread CPU time: %llu.%03u us\n", us, ns);
865                 show_rcu_gp_kthreads();
866         }
867         if (kfree_rcu_test) {
868                 kfree_scale_cleanup();
869                 return;
870         }
871 
872         if (torture_cleanup_begin())
873                 return;
874         if (!cur_ops) {
875                 torture_cleanup_end();
876                 return;
877         }
878 
879         if (reader_tasks) {
880                 for (i = 0; i < nrealreaders; i++)
881                         torture_stop_kthread(rcu_scale_reader,
882                                              reader_tasks[i]);
883                 kfree(reader_tasks);
884         }
885 
886         if (writer_tasks) {
887                 for (i = 0; i < nrealwriters; i++) {
888                         torture_stop_kthread(rcu_scale_writer,
889                                              writer_tasks[i]);
890                         if (!writer_n_durations)
891                                 continue;
892                         j = writer_n_durations[i];
893                         pr_alert("%s%s writer %d gps: %d\n",
894                                  scale_type, SCALE_FLAG, i, j);
895                         ngps += j;
896                 }
897                 pr_alert("%s%s start: %llu end: %llu duration: %llu gps: %d batches: %ld\n",
898                          scale_type, SCALE_FLAG,
899                          t_rcu_scale_writer_started, t_rcu_scale_writer_finished,
900                          t_rcu_scale_writer_finished -
901                          t_rcu_scale_writer_started,
902                          ngps,
903                          rcuscale_seq_diff(b_rcu_gp_test_finished,
904                                            b_rcu_gp_test_started));
905                 for (i = 0; i < nrealwriters; i++) {
906                         if (!writer_durations)
907                                 break;
908                         if (!writer_n_durations)
909                                 continue;
910                         wdpp = writer_durations[i];
911                         if (!wdpp)
912                                 continue;
913                         for (j = 0; j < writer_n_durations[i]; j++) {
914                                 wdp = &wdpp[j];
915                                 pr_alert("%s%s %4d writer-duration: %5d %llu\n",
916                                         scale_type, SCALE_FLAG,
917                                         i, j, *wdp);
918                                 if (j % 100 == 0)
919                                         schedule_timeout_uninterruptible(1);
920                         }
921                         kfree(writer_durations[i]);
922                 }
923                 kfree(writer_tasks);
924                 kfree(writer_durations);
925                 kfree(writer_n_durations);
926         }
927 
928         /* Do torture-type-specific cleanup operations.  */
929         if (cur_ops->cleanup != NULL)
930                 cur_ops->cleanup();
931 
932         torture_cleanup_end();
933 }
934 
935 /*
936  * RCU scalability shutdown kthread.  Just waits to be awakened, then shuts
937  * down system.
938  */
939 static int
940 rcu_scale_shutdown(void *arg)
941 {
942         wait_event_idle(shutdown_wq, atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters);
943         smp_mb(); /* Wake before output. */
944         rcu_scale_cleanup();
945         kernel_power_off();
946         return -EINVAL;
947 }
948 
949 static int __init
950 rcu_scale_init(void)
951 {
952         long i;
953         int firsterr = 0;
954         static struct rcu_scale_ops *scale_ops[] = {
955                 &rcu_ops, &srcu_ops, &srcud_ops, TASKS_OPS TASKS_RUDE_OPS TASKS_TRACING_OPS
956         };
957 
958         if (!torture_init_begin(scale_type, verbose))
959                 return -EBUSY;
960 
961         /* Process args and announce that the scalability'er is on the job. */
962         for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
963                 cur_ops = scale_ops[i];
964                 if (strcmp(scale_type, cur_ops->name) == 0)
965                         break;
966         }
967         if (i == ARRAY_SIZE(scale_ops)) {
968                 pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
969                 pr_alert("rcu-scale types:");
970                 for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
971                         pr_cont(" %s", scale_ops[i]->name);
972                 pr_cont("\n");
973                 firsterr = -EINVAL;
974                 cur_ops = NULL;
975                 goto unwind;
976         }
977         if (cur_ops->init)
978                 cur_ops->init();
979 
980         if (cur_ops->rso_gp_kthread) {
981                 kthread_tp = cur_ops->rso_gp_kthread();
982                 if (kthread_tp)
983                         kthread_stime = kthread_tp->stime;
984         }
985         if (kfree_rcu_test)
986                 return kfree_scale_init();
987 
988         nrealwriters = compute_real(nwriters);
989         nrealreaders = compute_real(nreaders);
990         atomic_set(&n_rcu_scale_reader_started, 0);
991         atomic_set(&n_rcu_scale_writer_started, 0);
992         atomic_set(&n_rcu_scale_writer_finished, 0);
993         rcu_scale_print_module_parms(cur_ops, "Start of test");
994 
995         /* Start up the kthreads. */
996 
997         if (shutdown) {
998                 init_waitqueue_head(&shutdown_wq);
999                 firsterr = torture_create_kthread(rcu_scale_shutdown, NULL,
1000                                                   shutdown_task);
1001                 if (torture_init_error(firsterr))
1002                         goto unwind;
1003                 schedule_timeout_uninterruptible(1);
1004         }
1005         reader_tasks = kcalloc(nrealreaders, sizeof(reader_tasks[0]),
1006                                GFP_KERNEL);
1007         if (reader_tasks == NULL) {
1008                 SCALEOUT_ERRSTRING("out of memory");
1009                 firsterr = -ENOMEM;
1010                 goto unwind;
1011         }
1012         for (i = 0; i < nrealreaders; i++) {
1013                 firsterr = torture_create_kthread(rcu_scale_reader, (void *)i,
1014                                                   reader_tasks[i]);
1015                 if (torture_init_error(firsterr))
1016                         goto unwind;
1017         }
1018         while (atomic_read(&n_rcu_scale_reader_started) < nrealreaders)
1019                 schedule_timeout_uninterruptible(1);
1020         writer_tasks = kcalloc(nrealwriters, sizeof(reader_tasks[0]),
1021                                GFP_KERNEL);
1022         writer_durations = kcalloc(nrealwriters, sizeof(*writer_durations),
1023                                    GFP_KERNEL);
1024         writer_n_durations =
1025                 kcalloc(nrealwriters, sizeof(*writer_n_durations),
1026                         GFP_KERNEL);
1027         if (!writer_tasks || !writer_durations || !writer_n_durations) {
1028                 SCALEOUT_ERRSTRING("out of memory");
1029                 firsterr = -ENOMEM;
1030                 goto unwind;
1031         }
1032         for (i = 0; i < nrealwriters; i++) {
1033                 writer_durations[i] =
1034                         kcalloc(MAX_MEAS, sizeof(*writer_durations[i]),
1035                                 GFP_KERNEL);
1036                 if (!writer_durations[i]) {
1037                         firsterr = -ENOMEM;
1038                         goto unwind;
1039                 }
1040                 firsterr = torture_create_kthread(rcu_scale_writer, (void *)i,
1041                                                   writer_tasks[i]);
1042                 if (torture_init_error(firsterr))
1043                         goto unwind;
1044         }
1045         torture_init_end();
1046         return 0;
1047 
1048 unwind:
1049         torture_init_end();
1050         rcu_scale_cleanup();
1051         if (shutdown) {
1052                 WARN_ON(!IS_MODULE(CONFIG_RCU_SCALE_TEST));
1053                 kernel_power_off();
1054         }
1055         return firsterr;
1056 }
1057 
1058 module_init(rcu_scale_init);
1059 module_exit(rcu_scale_cleanup);
1060 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php