~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/rcu/refscale.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0+
  2 //
  3 // Scalability test comparing RCU vs other mechanisms
  4 // for acquiring references on objects.
  5 //
  6 // Copyright (C) Google, 2020.
  7 //
  8 // Author: Joel Fernandes <joel@joelfernandes.org>
  9 
 10 #define pr_fmt(fmt) fmt
 11 
 12 #include <linux/atomic.h>
 13 #include <linux/bitops.h>
 14 #include <linux/completion.h>
 15 #include <linux/cpu.h>
 16 #include <linux/delay.h>
 17 #include <linux/err.h>
 18 #include <linux/init.h>
 19 #include <linux/interrupt.h>
 20 #include <linux/kthread.h>
 21 #include <linux/kernel.h>
 22 #include <linux/mm.h>
 23 #include <linux/module.h>
 24 #include <linux/moduleparam.h>
 25 #include <linux/notifier.h>
 26 #include <linux/percpu.h>
 27 #include <linux/rcupdate.h>
 28 #include <linux/rcupdate_trace.h>
 29 #include <linux/reboot.h>
 30 #include <linux/sched.h>
 31 #include <linux/spinlock.h>
 32 #include <linux/smp.h>
 33 #include <linux/stat.h>
 34 #include <linux/srcu.h>
 35 #include <linux/slab.h>
 36 #include <linux/torture.h>
 37 #include <linux/types.h>
 38 
 39 #include "rcu.h"
 40 
 41 #define SCALE_FLAG "-ref-scale: "
 42 
 43 #define SCALEOUT(s, x...) \
 44         pr_alert("%s" SCALE_FLAG s, scale_type, ## x)
 45 
 46 #define VERBOSE_SCALEOUT(s, x...) \
 47         do { \
 48                 if (verbose) \
 49                         pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \
 50         } while (0)
 51 
 52 static atomic_t verbose_batch_ctr;
 53 
 54 #define VERBOSE_SCALEOUT_BATCH(s, x...)                                                 \
 55 do {                                                                                    \
 56         if (verbose &&                                                                  \
 57             (verbose_batched <= 0 ||                                                    \
 58              !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) {             \
 59                 schedule_timeout_uninterruptible(1);                                    \
 60                 pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x);                     \
 61         }                                                                               \
 62 } while (0)
 63 
 64 #define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x)
 65 
 66 MODULE_DESCRIPTION("Scalability test for object reference mechanisms");
 67 MODULE_LICENSE("GPL");
 68 MODULE_AUTHOR("Joel Fernandes (Google) <joel@joelfernandes.org>");
 69 
 70 static char *scale_type = "rcu";
 71 module_param(scale_type, charp, 0444);
 72 MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
 73 
 74 torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
 75 torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s");
 76 
 77 // Wait until there are multiple CPUs before starting test.
 78 torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0,
 79               "Holdoff time before test start (s)");
 80 // Number of typesafe_lookup structures, that is, the degree of concurrency.
 81 torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures.");
 82 // Number of loops per experiment, all readers execute operations concurrently.
 83 torture_param(long, loops, 10000, "Number of loops per experiment.");
 84 // Number of readers, with -1 defaulting to about 75% of the CPUs.
 85 torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs.");
 86 // Number of runs.
 87 torture_param(int, nruns, 30, "Number of experiments to run.");
 88 // Reader delay in nanoseconds, 0 for no delay.
 89 torture_param(int, readdelay, 0, "Read-side delay in nanoseconds.");
 90 
 91 #ifdef MODULE
 92 # define REFSCALE_SHUTDOWN 0
 93 #else
 94 # define REFSCALE_SHUTDOWN 1
 95 #endif
 96 
 97 torture_param(bool, shutdown, REFSCALE_SHUTDOWN,
 98               "Shutdown at end of scalability tests.");
 99 
100 struct reader_task {
101         struct task_struct *task;
102         int start_reader;
103         wait_queue_head_t wq;
104         u64 last_duration_ns;
105 };
106 
107 static struct task_struct *shutdown_task;
108 static wait_queue_head_t shutdown_wq;
109 
110 static struct task_struct *main_task;
111 static wait_queue_head_t main_wq;
112 static int shutdown_start;
113 
114 static struct reader_task *reader_tasks;
115 
116 // Number of readers that are part of the current experiment.
117 static atomic_t nreaders_exp;
118 
119 // Use to wait for all threads to start.
120 static atomic_t n_init;
121 static atomic_t n_started;
122 static atomic_t n_warmedup;
123 static atomic_t n_cooleddown;
124 
125 // Track which experiment is currently running.
126 static int exp_idx;
127 
128 // Operations vector for selecting different types of tests.
129 struct ref_scale_ops {
130         bool (*init)(void);
131         void (*cleanup)(void);
132         void (*readsection)(const int nloops);
133         void (*delaysection)(const int nloops, const int udl, const int ndl);
134         const char *name;
135 };
136 
137 static struct ref_scale_ops *cur_ops;
138 
139 static void un_delay(const int udl, const int ndl)
140 {
141         if (udl)
142                 udelay(udl);
143         if (ndl)
144                 ndelay(ndl);
145 }
146 
147 static void ref_rcu_read_section(const int nloops)
148 {
149         int i;
150 
151         for (i = nloops; i >= 0; i--) {
152                 rcu_read_lock();
153                 rcu_read_unlock();
154         }
155 }
156 
157 static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl)
158 {
159         int i;
160 
161         for (i = nloops; i >= 0; i--) {
162                 rcu_read_lock();
163                 un_delay(udl, ndl);
164                 rcu_read_unlock();
165         }
166 }
167 
168 static bool rcu_sync_scale_init(void)
169 {
170         return true;
171 }
172 
173 static struct ref_scale_ops rcu_ops = {
174         .init           = rcu_sync_scale_init,
175         .readsection    = ref_rcu_read_section,
176         .delaysection   = ref_rcu_delay_section,
177         .name           = "rcu"
178 };
179 
180 // Definitions for SRCU ref scale testing.
181 DEFINE_STATIC_SRCU(srcu_refctl_scale);
182 static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale;
183 
184 static void srcu_ref_scale_read_section(const int nloops)
185 {
186         int i;
187         int idx;
188 
189         for (i = nloops; i >= 0; i--) {
190                 idx = srcu_read_lock(srcu_ctlp);
191                 srcu_read_unlock(srcu_ctlp, idx);
192         }
193 }
194 
195 static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
196 {
197         int i;
198         int idx;
199 
200         for (i = nloops; i >= 0; i--) {
201                 idx = srcu_read_lock(srcu_ctlp);
202                 un_delay(udl, ndl);
203                 srcu_read_unlock(srcu_ctlp, idx);
204         }
205 }
206 
207 static struct ref_scale_ops srcu_ops = {
208         .init           = rcu_sync_scale_init,
209         .readsection    = srcu_ref_scale_read_section,
210         .delaysection   = srcu_ref_scale_delay_section,
211         .name           = "srcu"
212 };
213 
214 #ifdef CONFIG_TASKS_RCU
215 
216 // Definitions for RCU Tasks ref scale testing: Empty read markers.
217 // These definitions also work for RCU Rude readers.
218 static void rcu_tasks_ref_scale_read_section(const int nloops)
219 {
220         int i;
221 
222         for (i = nloops; i >= 0; i--)
223                 continue;
224 }
225 
226 static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
227 {
228         int i;
229 
230         for (i = nloops; i >= 0; i--)
231                 un_delay(udl, ndl);
232 }
233 
234 static struct ref_scale_ops rcu_tasks_ops = {
235         .init           = rcu_sync_scale_init,
236         .readsection    = rcu_tasks_ref_scale_read_section,
237         .delaysection   = rcu_tasks_ref_scale_delay_section,
238         .name           = "rcu-tasks"
239 };
240 
241 #define RCU_TASKS_OPS &rcu_tasks_ops,
242 
243 #else // #ifdef CONFIG_TASKS_RCU
244 
245 #define RCU_TASKS_OPS
246 
247 #endif // #else // #ifdef CONFIG_TASKS_RCU
248 
249 #ifdef CONFIG_TASKS_TRACE_RCU
250 
251 // Definitions for RCU Tasks Trace ref scale testing.
252 static void rcu_trace_ref_scale_read_section(const int nloops)
253 {
254         int i;
255 
256         for (i = nloops; i >= 0; i--) {
257                 rcu_read_lock_trace();
258                 rcu_read_unlock_trace();
259         }
260 }
261 
262 static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
263 {
264         int i;
265 
266         for (i = nloops; i >= 0; i--) {
267                 rcu_read_lock_trace();
268                 un_delay(udl, ndl);
269                 rcu_read_unlock_trace();
270         }
271 }
272 
273 static struct ref_scale_ops rcu_trace_ops = {
274         .init           = rcu_sync_scale_init,
275         .readsection    = rcu_trace_ref_scale_read_section,
276         .delaysection   = rcu_trace_ref_scale_delay_section,
277         .name           = "rcu-trace"
278 };
279 
280 #define RCU_TRACE_OPS &rcu_trace_ops,
281 
282 #else // #ifdef CONFIG_TASKS_TRACE_RCU
283 
284 #define RCU_TRACE_OPS
285 
286 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
287 
288 // Definitions for reference count
289 static atomic_t refcnt;
290 
291 static void ref_refcnt_section(const int nloops)
292 {
293         int i;
294 
295         for (i = nloops; i >= 0; i--) {
296                 atomic_inc(&refcnt);
297                 atomic_dec(&refcnt);
298         }
299 }
300 
301 static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl)
302 {
303         int i;
304 
305         for (i = nloops; i >= 0; i--) {
306                 atomic_inc(&refcnt);
307                 un_delay(udl, ndl);
308                 atomic_dec(&refcnt);
309         }
310 }
311 
312 static struct ref_scale_ops refcnt_ops = {
313         .init           = rcu_sync_scale_init,
314         .readsection    = ref_refcnt_section,
315         .delaysection   = ref_refcnt_delay_section,
316         .name           = "refcnt"
317 };
318 
319 // Definitions for rwlock
320 static rwlock_t test_rwlock;
321 
322 static bool ref_rwlock_init(void)
323 {
324         rwlock_init(&test_rwlock);
325         return true;
326 }
327 
328 static void ref_rwlock_section(const int nloops)
329 {
330         int i;
331 
332         for (i = nloops; i >= 0; i--) {
333                 read_lock(&test_rwlock);
334                 read_unlock(&test_rwlock);
335         }
336 }
337 
338 static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl)
339 {
340         int i;
341 
342         for (i = nloops; i >= 0; i--) {
343                 read_lock(&test_rwlock);
344                 un_delay(udl, ndl);
345                 read_unlock(&test_rwlock);
346         }
347 }
348 
349 static struct ref_scale_ops rwlock_ops = {
350         .init           = ref_rwlock_init,
351         .readsection    = ref_rwlock_section,
352         .delaysection   = ref_rwlock_delay_section,
353         .name           = "rwlock"
354 };
355 
356 // Definitions for rwsem
357 static struct rw_semaphore test_rwsem;
358 
359 static bool ref_rwsem_init(void)
360 {
361         init_rwsem(&test_rwsem);
362         return true;
363 }
364 
365 static void ref_rwsem_section(const int nloops)
366 {
367         int i;
368 
369         for (i = nloops; i >= 0; i--) {
370                 down_read(&test_rwsem);
371                 up_read(&test_rwsem);
372         }
373 }
374 
375 static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl)
376 {
377         int i;
378 
379         for (i = nloops; i >= 0; i--) {
380                 down_read(&test_rwsem);
381                 un_delay(udl, ndl);
382                 up_read(&test_rwsem);
383         }
384 }
385 
386 static struct ref_scale_ops rwsem_ops = {
387         .init           = ref_rwsem_init,
388         .readsection    = ref_rwsem_section,
389         .delaysection   = ref_rwsem_delay_section,
390         .name           = "rwsem"
391 };
392 
393 // Definitions for global spinlock
394 static DEFINE_RAW_SPINLOCK(test_lock);
395 
396 static void ref_lock_section(const int nloops)
397 {
398         int i;
399 
400         preempt_disable();
401         for (i = nloops; i >= 0; i--) {
402                 raw_spin_lock(&test_lock);
403                 raw_spin_unlock(&test_lock);
404         }
405         preempt_enable();
406 }
407 
408 static void ref_lock_delay_section(const int nloops, const int udl, const int ndl)
409 {
410         int i;
411 
412         preempt_disable();
413         for (i = nloops; i >= 0; i--) {
414                 raw_spin_lock(&test_lock);
415                 un_delay(udl, ndl);
416                 raw_spin_unlock(&test_lock);
417         }
418         preempt_enable();
419 }
420 
421 static struct ref_scale_ops lock_ops = {
422         .readsection    = ref_lock_section,
423         .delaysection   = ref_lock_delay_section,
424         .name           = "lock"
425 };
426 
427 // Definitions for global irq-save spinlock
428 
429 static void ref_lock_irq_section(const int nloops)
430 {
431         unsigned long flags;
432         int i;
433 
434         preempt_disable();
435         for (i = nloops; i >= 0; i--) {
436                 raw_spin_lock_irqsave(&test_lock, flags);
437                 raw_spin_unlock_irqrestore(&test_lock, flags);
438         }
439         preempt_enable();
440 }
441 
442 static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl)
443 {
444         unsigned long flags;
445         int i;
446 
447         preempt_disable();
448         for (i = nloops; i >= 0; i--) {
449                 raw_spin_lock_irqsave(&test_lock, flags);
450                 un_delay(udl, ndl);
451                 raw_spin_unlock_irqrestore(&test_lock, flags);
452         }
453         preempt_enable();
454 }
455 
456 static struct ref_scale_ops lock_irq_ops = {
457         .readsection    = ref_lock_irq_section,
458         .delaysection   = ref_lock_irq_delay_section,
459         .name           = "lock-irq"
460 };
461 
462 // Definitions acquire-release.
463 static DEFINE_PER_CPU(unsigned long, test_acqrel);
464 
465 static void ref_acqrel_section(const int nloops)
466 {
467         unsigned long x;
468         int i;
469 
470         preempt_disable();
471         for (i = nloops; i >= 0; i--) {
472                 x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
473                 smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
474         }
475         preempt_enable();
476 }
477 
478 static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl)
479 {
480         unsigned long x;
481         int i;
482 
483         preempt_disable();
484         for (i = nloops; i >= 0; i--) {
485                 x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
486                 un_delay(udl, ndl);
487                 smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
488         }
489         preempt_enable();
490 }
491 
492 static struct ref_scale_ops acqrel_ops = {
493         .readsection    = ref_acqrel_section,
494         .delaysection   = ref_acqrel_delay_section,
495         .name           = "acqrel"
496 };
497 
498 static volatile u64 stopopts;
499 
500 static void ref_clock_section(const int nloops)
501 {
502         u64 x = 0;
503         int i;
504 
505         preempt_disable();
506         for (i = nloops; i >= 0; i--)
507                 x += ktime_get_real_fast_ns();
508         preempt_enable();
509         stopopts = x;
510 }
511 
512 static void ref_clock_delay_section(const int nloops, const int udl, const int ndl)
513 {
514         u64 x = 0;
515         int i;
516 
517         preempt_disable();
518         for (i = nloops; i >= 0; i--) {
519                 x += ktime_get_real_fast_ns();
520                 un_delay(udl, ndl);
521         }
522         preempt_enable();
523         stopopts = x;
524 }
525 
526 static struct ref_scale_ops clock_ops = {
527         .readsection    = ref_clock_section,
528         .delaysection   = ref_clock_delay_section,
529         .name           = "clock"
530 };
531 
532 static void ref_jiffies_section(const int nloops)
533 {
534         u64 x = 0;
535         int i;
536 
537         preempt_disable();
538         for (i = nloops; i >= 0; i--)
539                 x += jiffies;
540         preempt_enable();
541         stopopts = x;
542 }
543 
544 static void ref_jiffies_delay_section(const int nloops, const int udl, const int ndl)
545 {
546         u64 x = 0;
547         int i;
548 
549         preempt_disable();
550         for (i = nloops; i >= 0; i--) {
551                 x += jiffies;
552                 un_delay(udl, ndl);
553         }
554         preempt_enable();
555         stopopts = x;
556 }
557 
558 static struct ref_scale_ops jiffies_ops = {
559         .readsection    = ref_jiffies_section,
560         .delaysection   = ref_jiffies_delay_section,
561         .name           = "jiffies"
562 };
563 
564 ////////////////////////////////////////////////////////////////////////
565 //
566 // Methods leveraging SLAB_TYPESAFE_BY_RCU.
567 //
568 
569 // Item to look up in a typesafe manner.  Array of pointers to these.
570 struct refscale_typesafe {
571         atomic_t rts_refctr;  // Used by all flavors
572         spinlock_t rts_lock;
573         seqlock_t rts_seqlock;
574         unsigned int a;
575         unsigned int b;
576 };
577 
578 static struct kmem_cache *typesafe_kmem_cachep;
579 static struct refscale_typesafe **rtsarray;
580 static long rtsarray_size;
581 static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand);
582 static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start);
583 static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start);
584 
585 // Conditionally acquire an explicit in-structure reference count.
586 static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
587 {
588         return atomic_inc_not_zero(&rtsp->rts_refctr);
589 }
590 
591 // Unconditionally release an explicit in-structure reference count.
592 static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start)
593 {
594         if (!atomic_dec_return(&rtsp->rts_refctr)) {
595                 WRITE_ONCE(rtsp->a, rtsp->a + 1);
596                 kmem_cache_free(typesafe_kmem_cachep, rtsp);
597         }
598         return true;
599 }
600 
601 // Unconditionally acquire an explicit in-structure spinlock.
602 static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
603 {
604         spin_lock(&rtsp->rts_lock);
605         return true;
606 }
607 
608 // Unconditionally release an explicit in-structure spinlock.
609 static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start)
610 {
611         spin_unlock(&rtsp->rts_lock);
612         return true;
613 }
614 
615 // Unconditionally acquire an explicit in-structure sequence lock.
616 static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
617 {
618         *start = read_seqbegin(&rtsp->rts_seqlock);
619         return true;
620 }
621 
622 // Conditionally release an explicit in-structure sequence lock.  Return
623 // true if this release was successful, that is, if no retry is required.
624 static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start)
625 {
626         return !read_seqretry(&rtsp->rts_seqlock, start);
627 }
628 
629 // Do a read-side critical section with the specified delay in
630 // microseconds and nanoseconds inserted so as to increase probability
631 // of failure.
632 static void typesafe_delay_section(const int nloops, const int udl, const int ndl)
633 {
634         unsigned int a;
635         unsigned int b;
636         int i;
637         long idx;
638         struct refscale_typesafe *rtsp;
639         unsigned int start;
640 
641         for (i = nloops; i >= 0; i--) {
642                 preempt_disable();
643                 idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size;
644                 preempt_enable();
645 retry:
646                 rcu_read_lock();
647                 rtsp = rcu_dereference(rtsarray[idx]);
648                 a = READ_ONCE(rtsp->a);
649                 if (!rts_acquire(rtsp, &start)) {
650                         rcu_read_unlock();
651                         goto retry;
652                 }
653                 if (a != READ_ONCE(rtsp->a)) {
654                         (void)rts_release(rtsp, start);
655                         rcu_read_unlock();
656                         goto retry;
657                 }
658                 un_delay(udl, ndl);
659                 b = READ_ONCE(rtsp->a);
660                 // Remember, seqlock read-side release can fail.
661                 if (!rts_release(rtsp, start)) {
662                         rcu_read_unlock();
663                         goto retry;
664                 }
665                 WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b);
666                 b = rtsp->b;
667                 rcu_read_unlock();
668                 WARN_ON_ONCE(a * a != b);
669         }
670 }
671 
672 // Because the acquisition and release methods are expensive, there
673 // is no point in optimizing away the un_delay() function's two checks.
674 // Thus simply define typesafe_read_section() as a simple wrapper around
675 // typesafe_delay_section().
676 static void typesafe_read_section(const int nloops)
677 {
678         typesafe_delay_section(nloops, 0, 0);
679 }
680 
681 // Allocate and initialize one refscale_typesafe structure.
682 static struct refscale_typesafe *typesafe_alloc_one(void)
683 {
684         struct refscale_typesafe *rtsp;
685 
686         rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL);
687         if (!rtsp)
688                 return NULL;
689         atomic_set(&rtsp->rts_refctr, 1);
690         WRITE_ONCE(rtsp->a, rtsp->a + 1);
691         WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a);
692         return rtsp;
693 }
694 
695 // Slab-allocator constructor for refscale_typesafe structures created
696 // out of a new slab of system memory.
697 static void refscale_typesafe_ctor(void *rtsp_in)
698 {
699         struct refscale_typesafe *rtsp = rtsp_in;
700 
701         spin_lock_init(&rtsp->rts_lock);
702         seqlock_init(&rtsp->rts_seqlock);
703         preempt_disable();
704         rtsp->a = torture_random(this_cpu_ptr(&refscale_rand));
705         preempt_enable();
706 }
707 
708 static struct ref_scale_ops typesafe_ref_ops;
709 static struct ref_scale_ops typesafe_lock_ops;
710 static struct ref_scale_ops typesafe_seqlock_ops;
711 
712 // Initialize for a typesafe test.
713 static bool typesafe_init(void)
714 {
715         long idx;
716         long si = lookup_instances;
717 
718         typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe",
719                                                  sizeof(struct refscale_typesafe), sizeof(void *),
720                                                  SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor);
721         if (!typesafe_kmem_cachep)
722                 return false;
723         if (si < 0)
724                 si = -si * nr_cpu_ids;
725         else if (si == 0)
726                 si = nr_cpu_ids;
727         rtsarray_size = si;
728         rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL);
729         if (!rtsarray)
730                 return false;
731         for (idx = 0; idx < rtsarray_size; idx++) {
732                 rtsarray[idx] = typesafe_alloc_one();
733                 if (!rtsarray[idx])
734                         return false;
735         }
736         if (cur_ops == &typesafe_ref_ops) {
737                 rts_acquire = typesafe_ref_acquire;
738                 rts_release = typesafe_ref_release;
739         } else if (cur_ops == &typesafe_lock_ops) {
740                 rts_acquire = typesafe_lock_acquire;
741                 rts_release = typesafe_lock_release;
742         } else if (cur_ops == &typesafe_seqlock_ops) {
743                 rts_acquire = typesafe_seqlock_acquire;
744                 rts_release = typesafe_seqlock_release;
745         } else {
746                 WARN_ON_ONCE(1);
747                 return false;
748         }
749         return true;
750 }
751 
752 // Clean up after a typesafe test.
753 static void typesafe_cleanup(void)
754 {
755         long idx;
756 
757         if (rtsarray) {
758                 for (idx = 0; idx < rtsarray_size; idx++)
759                         kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]);
760                 kfree(rtsarray);
761                 rtsarray = NULL;
762                 rtsarray_size = 0;
763         }
764         kmem_cache_destroy(typesafe_kmem_cachep);
765         typesafe_kmem_cachep = NULL;
766         rts_acquire = NULL;
767         rts_release = NULL;
768 }
769 
770 // The typesafe_init() function distinguishes these structures by address.
771 static struct ref_scale_ops typesafe_ref_ops = {
772         .init           = typesafe_init,
773         .cleanup        = typesafe_cleanup,
774         .readsection    = typesafe_read_section,
775         .delaysection   = typesafe_delay_section,
776         .name           = "typesafe_ref"
777 };
778 
779 static struct ref_scale_ops typesafe_lock_ops = {
780         .init           = typesafe_init,
781         .cleanup        = typesafe_cleanup,
782         .readsection    = typesafe_read_section,
783         .delaysection   = typesafe_delay_section,
784         .name           = "typesafe_lock"
785 };
786 
787 static struct ref_scale_ops typesafe_seqlock_ops = {
788         .init           = typesafe_init,
789         .cleanup        = typesafe_cleanup,
790         .readsection    = typesafe_read_section,
791         .delaysection   = typesafe_delay_section,
792         .name           = "typesafe_seqlock"
793 };
794 
795 static void rcu_scale_one_reader(void)
796 {
797         if (readdelay <= 0)
798                 cur_ops->readsection(loops);
799         else
800                 cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000);
801 }
802 
803 // Reader kthread.  Repeatedly does empty RCU read-side
804 // critical section, minimizing update-side interference.
805 static int
806 ref_scale_reader(void *arg)
807 {
808         unsigned long flags;
809         long me = (long)arg;
810         struct reader_task *rt = &(reader_tasks[me]);
811         u64 start;
812         s64 duration;
813 
814         VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me);
815         WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)));
816         set_user_nice(current, MAX_NICE);
817         atomic_inc(&n_init);
818         if (holdoff)
819                 schedule_timeout_interruptible(holdoff * HZ);
820 repeat:
821         VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id());
822 
823         // Wait for signal that this reader can start.
824         wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) ||
825                            torture_must_stop());
826 
827         if (torture_must_stop())
828                 goto end;
829 
830         // Make sure that the CPU is affinitized appropriately during testing.
831         WARN_ON_ONCE(raw_smp_processor_id() != me);
832 
833         WRITE_ONCE(rt->start_reader, 0);
834         if (!atomic_dec_return(&n_started))
835                 while (atomic_read_acquire(&n_started))
836                         cpu_relax();
837 
838         VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx);
839 
840 
841         // To reduce noise, do an initial cache-warming invocation, check
842         // in, and then keep warming until everyone has checked in.
843         rcu_scale_one_reader();
844         if (!atomic_dec_return(&n_warmedup))
845                 while (atomic_read_acquire(&n_warmedup))
846                         rcu_scale_one_reader();
847         // Also keep interrupts disabled.  This also has the effect
848         // of preventing entries into slow path for rcu_read_unlock().
849         local_irq_save(flags);
850         start = ktime_get_mono_fast_ns();
851 
852         rcu_scale_one_reader();
853 
854         duration = ktime_get_mono_fast_ns() - start;
855         local_irq_restore(flags);
856 
857         rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration;
858         // To reduce runtime-skew noise, do maintain-load invocations until
859         // everyone is done.
860         if (!atomic_dec_return(&n_cooleddown))
861                 while (atomic_read_acquire(&n_cooleddown))
862                         rcu_scale_one_reader();
863 
864         if (atomic_dec_and_test(&nreaders_exp))
865                 wake_up(&main_wq);
866 
867         VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)",
868                                 me, exp_idx, atomic_read(&nreaders_exp));
869 
870         if (!torture_must_stop())
871                 goto repeat;
872 end:
873         torture_kthread_stopping("ref_scale_reader");
874         return 0;
875 }
876 
877 static void reset_readers(void)
878 {
879         int i;
880         struct reader_task *rt;
881 
882         for (i = 0; i < nreaders; i++) {
883                 rt = &(reader_tasks[i]);
884 
885                 rt->last_duration_ns = 0;
886         }
887 }
888 
889 // Print the results of each reader and return the sum of all their durations.
890 static u64 process_durations(int n)
891 {
892         int i;
893         struct reader_task *rt;
894         char buf1[64];
895         char *buf;
896         u64 sum = 0;
897 
898         buf = kmalloc(800 + 64, GFP_KERNEL);
899         if (!buf)
900                 return 0;
901         buf[0] = 0;
902         sprintf(buf, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)",
903                 exp_idx);
904 
905         for (i = 0; i < n && !torture_must_stop(); i++) {
906                 rt = &(reader_tasks[i]);
907                 sprintf(buf1, "%d: %llu\t", i, rt->last_duration_ns);
908 
909                 if (i % 5 == 0)
910                         strcat(buf, "\n");
911                 if (strlen(buf) >= 800) {
912                         pr_alert("%s", buf);
913                         buf[0] = 0;
914                 }
915                 strcat(buf, buf1);
916 
917                 sum += rt->last_duration_ns;
918         }
919         pr_alert("%s\n", buf);
920 
921         kfree(buf);
922         return sum;
923 }
924 
925 // The main_func is the main orchestrator, it performs a bunch of
926 // experiments.  For every experiment, it orders all the readers
927 // involved to start and waits for them to finish the experiment. It
928 // then reads their timestamps and starts the next experiment. Each
929 // experiment progresses from 1 concurrent reader to N of them at which
930 // point all the timestamps are printed.
931 static int main_func(void *arg)
932 {
933         int exp, r;
934         char buf1[64];
935         char *buf;
936         u64 *result_avg;
937 
938         set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids));
939         set_user_nice(current, MAX_NICE);
940 
941         VERBOSE_SCALEOUT("main_func task started");
942         result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL);
943         buf = kzalloc(800 + 64, GFP_KERNEL);
944         if (!result_avg || !buf) {
945                 SCALEOUT_ERRSTRING("out of memory");
946                 goto oom_exit;
947         }
948         if (holdoff)
949                 schedule_timeout_interruptible(holdoff * HZ);
950 
951         // Wait for all threads to start.
952         atomic_inc(&n_init);
953         while (atomic_read(&n_init) < nreaders + 1)
954                 schedule_timeout_uninterruptible(1);
955 
956         // Start exp readers up per experiment
957         for (exp = 0; exp < nruns && !torture_must_stop(); exp++) {
958                 if (torture_must_stop())
959                         goto end;
960 
961                 reset_readers();
962                 atomic_set(&nreaders_exp, nreaders);
963                 atomic_set(&n_started, nreaders);
964                 atomic_set(&n_warmedup, nreaders);
965                 atomic_set(&n_cooleddown, nreaders);
966 
967                 exp_idx = exp;
968 
969                 for (r = 0; r < nreaders; r++) {
970                         smp_store_release(&reader_tasks[r].start_reader, 1);
971                         wake_up(&reader_tasks[r].wq);
972                 }
973 
974                 VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers",
975                                 nreaders);
976 
977                 wait_event(main_wq,
978                            !atomic_read(&nreaders_exp) || torture_must_stop());
979 
980                 VERBOSE_SCALEOUT("main_func: experiment ended");
981 
982                 if (torture_must_stop())
983                         goto end;
984 
985                 result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops);
986         }
987 
988         // Print the average of all experiments
989         SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
990 
991         pr_alert("Runs\tTime(ns)\n");
992         for (exp = 0; exp < nruns; exp++) {
993                 u64 avg;
994                 u32 rem;
995 
996                 avg = div_u64_rem(result_avg[exp], 1000, &rem);
997                 sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem);
998                 strcat(buf, buf1);
999                 if (strlen(buf) >= 800) {
1000                         pr_alert("%s", buf);
1001                         buf[0] = 0;
1002                 }
1003         }
1004 
1005         pr_alert("%s", buf);
1006 
1007 oom_exit:
1008         // This will shutdown everything including us.
1009         if (shutdown) {
1010                 shutdown_start = 1;
1011                 wake_up(&shutdown_wq);
1012         }
1013 
1014         // Wait for torture to stop us
1015         while (!torture_must_stop())
1016                 schedule_timeout_uninterruptible(1);
1017 
1018 end:
1019         torture_kthread_stopping("main_func");
1020         kfree(result_avg);
1021         kfree(buf);
1022         return 0;
1023 }
1024 
1025 static void
1026 ref_scale_print_module_parms(struct ref_scale_ops *cur_ops, const char *tag)
1027 {
1028         pr_alert("%s" SCALE_FLAG
1029                  "--- %s:  verbose=%d verbose_batched=%d shutdown=%d holdoff=%d lookup_instances=%ld loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag,
1030                  verbose, verbose_batched, shutdown, holdoff, lookup_instances, loops, nreaders, nruns, readdelay);
1031 }
1032 
1033 static void
1034 ref_scale_cleanup(void)
1035 {
1036         int i;
1037 
1038         if (torture_cleanup_begin())
1039                 return;
1040 
1041         if (!cur_ops) {
1042                 torture_cleanup_end();
1043                 return;
1044         }
1045 
1046         if (reader_tasks) {
1047                 for (i = 0; i < nreaders; i++)
1048                         torture_stop_kthread("ref_scale_reader",
1049                                              reader_tasks[i].task);
1050         }
1051         kfree(reader_tasks);
1052 
1053         torture_stop_kthread("main_task", main_task);
1054         kfree(main_task);
1055 
1056         // Do scale-type-specific cleanup operations.
1057         if (cur_ops->cleanup != NULL)
1058                 cur_ops->cleanup();
1059 
1060         torture_cleanup_end();
1061 }
1062 
1063 // Shutdown kthread.  Just waits to be awakened, then shuts down system.
1064 static int
1065 ref_scale_shutdown(void *arg)
1066 {
1067         wait_event_idle(shutdown_wq, shutdown_start);
1068 
1069         smp_mb(); // Wake before output.
1070         ref_scale_cleanup();
1071         kernel_power_off();
1072 
1073         return -EINVAL;
1074 }
1075 
1076 static int __init
1077 ref_scale_init(void)
1078 {
1079         long i;
1080         int firsterr = 0;
1081         static struct ref_scale_ops *scale_ops[] = {
1082                 &rcu_ops, &srcu_ops, RCU_TRACE_OPS RCU_TASKS_OPS &refcnt_ops, &rwlock_ops,
1083                 &rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops, &jiffies_ops,
1084                 &typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops,
1085         };
1086 
1087         if (!torture_init_begin(scale_type, verbose))
1088                 return -EBUSY;
1089 
1090         for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
1091                 cur_ops = scale_ops[i];
1092                 if (strcmp(scale_type, cur_ops->name) == 0)
1093                         break;
1094         }
1095         if (i == ARRAY_SIZE(scale_ops)) {
1096                 pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
1097                 pr_alert("rcu-scale types:");
1098                 for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
1099                         pr_cont(" %s", scale_ops[i]->name);
1100                 pr_cont("\n");
1101                 firsterr = -EINVAL;
1102                 cur_ops = NULL;
1103                 goto unwind;
1104         }
1105         if (cur_ops->init)
1106                 if (!cur_ops->init()) {
1107                         firsterr = -EUCLEAN;
1108                         goto unwind;
1109                 }
1110 
1111         ref_scale_print_module_parms(cur_ops, "Start of test");
1112 
1113         // Shutdown task
1114         if (shutdown) {
1115                 init_waitqueue_head(&shutdown_wq);
1116                 firsterr = torture_create_kthread(ref_scale_shutdown, NULL,
1117                                                   shutdown_task);
1118                 if (torture_init_error(firsterr))
1119                         goto unwind;
1120                 schedule_timeout_uninterruptible(1);
1121         }
1122 
1123         // Reader tasks (default to ~75% of online CPUs).
1124         if (nreaders < 0)
1125                 nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2);
1126         if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops))
1127                 loops = 1;
1128         if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders))
1129                 nreaders = 1;
1130         if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns))
1131                 nruns = 1;
1132         reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]),
1133                                GFP_KERNEL);
1134         if (!reader_tasks) {
1135                 SCALEOUT_ERRSTRING("out of memory");
1136                 firsterr = -ENOMEM;
1137                 goto unwind;
1138         }
1139 
1140         VERBOSE_SCALEOUT("Starting %d reader threads", nreaders);
1141 
1142         for (i = 0; i < nreaders; i++) {
1143                 init_waitqueue_head(&reader_tasks[i].wq);
1144                 firsterr = torture_create_kthread(ref_scale_reader, (void *)i,
1145                                                   reader_tasks[i].task);
1146                 if (torture_init_error(firsterr))
1147                         goto unwind;
1148         }
1149 
1150         // Main Task
1151         init_waitqueue_head(&main_wq);
1152         firsterr = torture_create_kthread(main_func, NULL, main_task);
1153         if (torture_init_error(firsterr))
1154                 goto unwind;
1155 
1156         torture_init_end();
1157         return 0;
1158 
1159 unwind:
1160         torture_init_end();
1161         ref_scale_cleanup();
1162         if (shutdown) {
1163                 WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST));
1164                 kernel_power_off();
1165         }
1166         return firsterr;
1167 }
1168 
1169 module_init(ref_scale_init);
1170 module_exit(ref_scale_cleanup);
1171 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php