1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Sleepable Read-Copy Update mechanism for mutual exclusion. 4 * 5 * Copyright (C) IBM Corporation, 2006 6 * Copyright (C) Fujitsu, 2012 7 * 8 * Authors: Paul McKenney <paulmck@linux.ibm.com> 9 * Lai Jiangshan <laijs@cn.fujitsu.com> 10 * 11 * For detailed explanation of Read-Copy Update mechanism see - 12 * Documentation/RCU/ *.txt 13 * 14 */ 15 16 #define pr_fmt(fmt) "rcu: " fmt 17 18 #include <linux/export.h> 19 #include <linux/mutex.h> 20 #include <linux/percpu.h> 21 #include <linux/preempt.h> 22 #include <linux/rcupdate_wait.h> 23 #include <linux/sched.h> 24 #include <linux/smp.h> 25 #include <linux/delay.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/srcu.h> 29 30 #include "rcu.h" 31 #include "rcu_segcblist.h" 32 33 /* Holdoff in nanoseconds for auto-expediting. */ 34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 36 module_param(exp_holdoff, ulong, 0444); 37 38 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 39 static ulong counter_wrap_check = (ULONG_MAX >> 2); 40 module_param(counter_wrap_check, ulong, 0444); 41 42 /* 43 * Control conversion to SRCU_SIZE_BIG: 44 * 0: Don't convert at all. 45 * 1: Convert at init_srcu_struct() time. 46 * 2: Convert when rcutorture invokes srcu_torture_stats_print(). 47 * 3: Decide at boot time based on system shape (default). 48 * 0x1x: Convert when excessive contention encountered. 49 */ 50 #define SRCU_SIZING_NONE 0 51 #define SRCU_SIZING_INIT 1 52 #define SRCU_SIZING_TORTURE 2 53 #define SRCU_SIZING_AUTO 3 54 #define SRCU_SIZING_CONTEND 0x10 55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x) 56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE)) 57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT)) 58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE)) 59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND) 60 static int convert_to_big = SRCU_SIZING_AUTO; 61 module_param(convert_to_big, int, 0444); 62 63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */ 64 static int big_cpu_lim __read_mostly = 128; 65 module_param(big_cpu_lim, int, 0444); 66 67 /* Contention events per jiffy to initiate transition to big. */ 68 static int small_contention_lim __read_mostly = 100; 69 module_param(small_contention_lim, int, 0444); 70 71 /* Early-boot callback-management, so early that no lock is required! */ 72 static LIST_HEAD(srcu_boot_list); 73 static bool __read_mostly srcu_init_done; 74 75 static void srcu_invoke_callbacks(struct work_struct *work); 76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); 77 static void process_srcu(struct work_struct *work); 78 static void srcu_delay_timer(struct timer_list *t); 79 80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 81 #define spin_lock_rcu_node(p) \ 82 do { \ 83 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 84 smp_mb__after_unlock_lock(); \ 85 } while (0) 86 87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 88 89 #define spin_lock_irq_rcu_node(p) \ 90 do { \ 91 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 92 smp_mb__after_unlock_lock(); \ 93 } while (0) 94 95 #define spin_unlock_irq_rcu_node(p) \ 96 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 97 98 #define spin_lock_irqsave_rcu_node(p, flags) \ 99 do { \ 100 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 101 smp_mb__after_unlock_lock(); \ 102 } while (0) 103 104 #define spin_trylock_irqsave_rcu_node(p, flags) \ 105 ({ \ 106 bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 107 \ 108 if (___locked) \ 109 smp_mb__after_unlock_lock(); \ 110 ___locked; \ 111 }) 112 113 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 114 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 115 116 /* 117 * Initialize SRCU per-CPU data. Note that statically allocated 118 * srcu_struct structures might already have srcu_read_lock() and 119 * srcu_read_unlock() running against them. So if the is_static parameter 120 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 121 */ 122 static void init_srcu_struct_data(struct srcu_struct *ssp) 123 { 124 int cpu; 125 struct srcu_data *sdp; 126 127 /* 128 * Initialize the per-CPU srcu_data array, which feeds into the 129 * leaves of the srcu_node tree. 130 */ 131 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 132 ARRAY_SIZE(sdp->srcu_unlock_count)); 133 for_each_possible_cpu(cpu) { 134 sdp = per_cpu_ptr(ssp->sda, cpu); 135 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 136 rcu_segcblist_init(&sdp->srcu_cblist); 137 sdp->srcu_cblist_invoking = false; 138 sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq; 139 sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq; 140 sdp->mynode = NULL; 141 sdp->cpu = cpu; 142 INIT_WORK(&sdp->work, srcu_invoke_callbacks); 143 timer_setup(&sdp->delay_work, srcu_delay_timer, 0); 144 sdp->ssp = ssp; 145 } 146 } 147 148 /* Invalid seq state, used during snp node initialization */ 149 #define SRCU_SNP_INIT_SEQ 0x2 150 151 /* 152 * Check whether sequence number corresponding to snp node, 153 * is invalid. 154 */ 155 static inline bool srcu_invl_snp_seq(unsigned long s) 156 { 157 return s == SRCU_SNP_INIT_SEQ; 158 } 159 160 /* 161 * Allocated and initialize SRCU combining tree. Returns @true if 162 * allocation succeeded and @false otherwise. 163 */ 164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags) 165 { 166 int cpu; 167 int i; 168 int level = 0; 169 int levelspread[RCU_NUM_LVLS]; 170 struct srcu_data *sdp; 171 struct srcu_node *snp; 172 struct srcu_node *snp_first; 173 174 /* Initialize geometry if it has not already been initialized. */ 175 rcu_init_geometry(); 176 ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags); 177 if (!ssp->srcu_sup->node) 178 return false; 179 180 /* Work out the overall tree geometry. */ 181 ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0]; 182 for (i = 1; i < rcu_num_lvls; i++) 183 ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1]; 184 rcu_init_levelspread(levelspread, num_rcu_lvl); 185 186 /* Each pass through this loop initializes one srcu_node structure. */ 187 srcu_for_each_node_breadth_first(ssp, snp) { 188 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 189 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 190 ARRAY_SIZE(snp->srcu_data_have_cbs)); 191 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 192 snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ; 193 snp->srcu_data_have_cbs[i] = 0; 194 } 195 snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ; 196 snp->grplo = -1; 197 snp->grphi = -1; 198 if (snp == &ssp->srcu_sup->node[0]) { 199 /* Root node, special case. */ 200 snp->srcu_parent = NULL; 201 continue; 202 } 203 204 /* Non-root node. */ 205 if (snp == ssp->srcu_sup->level[level + 1]) 206 level++; 207 snp->srcu_parent = ssp->srcu_sup->level[level - 1] + 208 (snp - ssp->srcu_sup->level[level]) / 209 levelspread[level - 1]; 210 } 211 212 /* 213 * Initialize the per-CPU srcu_data array, which feeds into the 214 * leaves of the srcu_node tree. 215 */ 216 level = rcu_num_lvls - 1; 217 snp_first = ssp->srcu_sup->level[level]; 218 for_each_possible_cpu(cpu) { 219 sdp = per_cpu_ptr(ssp->sda, cpu); 220 sdp->mynode = &snp_first[cpu / levelspread[level]]; 221 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 222 if (snp->grplo < 0) 223 snp->grplo = cpu; 224 snp->grphi = cpu; 225 } 226 sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo); 227 } 228 smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER); 229 return true; 230 } 231 232 /* 233 * Initialize non-compile-time initialized fields, including the 234 * associated srcu_node and srcu_data structures. The is_static parameter 235 * tells us that ->sda has already been wired up to srcu_data. 236 */ 237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) 238 { 239 if (!is_static) 240 ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL); 241 if (!ssp->srcu_sup) 242 return -ENOMEM; 243 if (!is_static) 244 spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 245 ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL; 246 ssp->srcu_sup->node = NULL; 247 mutex_init(&ssp->srcu_sup->srcu_cb_mutex); 248 mutex_init(&ssp->srcu_sup->srcu_gp_mutex); 249 ssp->srcu_idx = 0; 250 ssp->srcu_sup->srcu_gp_seq = 0; 251 ssp->srcu_sup->srcu_barrier_seq = 0; 252 mutex_init(&ssp->srcu_sup->srcu_barrier_mutex); 253 atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0); 254 INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu); 255 ssp->srcu_sup->sda_is_static = is_static; 256 if (!is_static) 257 ssp->sda = alloc_percpu(struct srcu_data); 258 if (!ssp->sda) 259 goto err_free_sup; 260 init_srcu_struct_data(ssp); 261 ssp->srcu_sup->srcu_gp_seq_needed_exp = 0; 262 ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns(); 263 if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) { 264 if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) 265 goto err_free_sda; 266 WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG); 267 } 268 ssp->srcu_sup->srcu_ssp = ssp; 269 smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed, 0); /* Init done. */ 270 return 0; 271 272 err_free_sda: 273 if (!is_static) { 274 free_percpu(ssp->sda); 275 ssp->sda = NULL; 276 } 277 err_free_sup: 278 if (!is_static) { 279 kfree(ssp->srcu_sup); 280 ssp->srcu_sup = NULL; 281 } 282 return -ENOMEM; 283 } 284 285 #ifdef CONFIG_DEBUG_LOCK_ALLOC 286 287 int __init_srcu_struct(struct srcu_struct *ssp, const char *name, 288 struct lock_class_key *key) 289 { 290 /* Don't re-initialize a lock while it is held. */ 291 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); 292 lockdep_init_map(&ssp->dep_map, name, key, 0); 293 return init_srcu_struct_fields(ssp, false); 294 } 295 EXPORT_SYMBOL_GPL(__init_srcu_struct); 296 297 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 298 299 /** 300 * init_srcu_struct - initialize a sleep-RCU structure 301 * @ssp: structure to initialize. 302 * 303 * Must invoke this on a given srcu_struct before passing that srcu_struct 304 * to any other function. Each srcu_struct represents a separate domain 305 * of SRCU protection. 306 */ 307 int init_srcu_struct(struct srcu_struct *ssp) 308 { 309 return init_srcu_struct_fields(ssp, false); 310 } 311 EXPORT_SYMBOL_GPL(init_srcu_struct); 312 313 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 314 315 /* 316 * Initiate a transition to SRCU_SIZE_BIG with lock held. 317 */ 318 static void __srcu_transition_to_big(struct srcu_struct *ssp) 319 { 320 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 321 smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC); 322 } 323 324 /* 325 * Initiate an idempotent transition to SRCU_SIZE_BIG. 326 */ 327 static void srcu_transition_to_big(struct srcu_struct *ssp) 328 { 329 unsigned long flags; 330 331 /* Double-checked locking on ->srcu_size-state. */ 332 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) 333 return; 334 spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); 335 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) { 336 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 337 return; 338 } 339 __srcu_transition_to_big(ssp); 340 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 341 } 342 343 /* 344 * Check to see if the just-encountered contention event justifies 345 * a transition to SRCU_SIZE_BIG. 346 */ 347 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp) 348 { 349 unsigned long j; 350 351 if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state) 352 return; 353 j = jiffies; 354 if (ssp->srcu_sup->srcu_size_jiffies != j) { 355 ssp->srcu_sup->srcu_size_jiffies = j; 356 ssp->srcu_sup->srcu_n_lock_retries = 0; 357 } 358 if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim) 359 return; 360 __srcu_transition_to_big(ssp); 361 } 362 363 /* 364 * Acquire the specified srcu_data structure's ->lock, but check for 365 * excessive contention, which results in initiation of a transition 366 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module 367 * parameter permits this. 368 */ 369 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags) 370 { 371 struct srcu_struct *ssp = sdp->ssp; 372 373 if (spin_trylock_irqsave_rcu_node(sdp, *flags)) 374 return; 375 spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); 376 spin_lock_irqsave_check_contention(ssp); 377 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags); 378 spin_lock_irqsave_rcu_node(sdp, *flags); 379 } 380 381 /* 382 * Acquire the specified srcu_struct structure's ->lock, but check for 383 * excessive contention, which results in initiation of a transition 384 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module 385 * parameter permits this. 386 */ 387 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags) 388 { 389 if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags)) 390 return; 391 spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); 392 spin_lock_irqsave_check_contention(ssp); 393 } 394 395 /* 396 * First-use initialization of statically allocated srcu_struct 397 * structure. Wiring up the combining tree is more than can be 398 * done with compile-time initialization, so this check is added 399 * to each update-side SRCU primitive. Use ssp->lock, which -is- 400 * compile-time initialized, to resolve races involving multiple 401 * CPUs trying to garner first-use privileges. 402 */ 403 static void check_init_srcu_struct(struct srcu_struct *ssp) 404 { 405 unsigned long flags; 406 407 /* The smp_load_acquire() pairs with the smp_store_release(). */ 408 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/ 409 return; /* Already initialized. */ 410 spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); 411 if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) { 412 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 413 return; 414 } 415 init_srcu_struct_fields(ssp, true); 416 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 417 } 418 419 /* 420 * Returns approximate total of the readers' ->srcu_lock_count[] values 421 * for the rank of per-CPU counters specified by idx. 422 */ 423 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx) 424 { 425 int cpu; 426 unsigned long sum = 0; 427 428 for_each_possible_cpu(cpu) { 429 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 430 431 sum += atomic_long_read(&cpuc->srcu_lock_count[idx]); 432 } 433 return sum; 434 } 435 436 /* 437 * Returns approximate total of the readers' ->srcu_unlock_count[] values 438 * for the rank of per-CPU counters specified by idx. 439 */ 440 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx) 441 { 442 int cpu; 443 unsigned long mask = 0; 444 unsigned long sum = 0; 445 446 for_each_possible_cpu(cpu) { 447 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 448 449 sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]); 450 if (IS_ENABLED(CONFIG_PROVE_RCU)) 451 mask = mask | READ_ONCE(cpuc->srcu_nmi_safety); 452 } 453 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)), 454 "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp); 455 return sum; 456 } 457 458 /* 459 * Return true if the number of pre-existing readers is determined to 460 * be zero. 461 */ 462 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) 463 { 464 unsigned long unlocks; 465 466 unlocks = srcu_readers_unlock_idx(ssp, idx); 467 468 /* 469 * Make sure that a lock is always counted if the corresponding 470 * unlock is counted. Needs to be a smp_mb() as the read side may 471 * contain a read from a variable that is written to before the 472 * synchronize_srcu() in the write side. In this case smp_mb()s 473 * A and B act like the store buffering pattern. 474 * 475 * This smp_mb() also pairs with smp_mb() C to prevent accesses 476 * after the synchronize_srcu() from being executed before the 477 * grace period ends. 478 */ 479 smp_mb(); /* A */ 480 481 /* 482 * If the locks are the same as the unlocks, then there must have 483 * been no readers on this index at some point in this function. 484 * But there might be more readers, as a task might have read 485 * the current ->srcu_idx but not yet have incremented its CPU's 486 * ->srcu_lock_count[idx] counter. In fact, it is possible 487 * that most of the tasks have been preempted between fetching 488 * ->srcu_idx and incrementing ->srcu_lock_count[idx]. And there 489 * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks 490 * in a system whose address space was fully populated with memory. 491 * Call this quantity Nt. 492 * 493 * So suppose that the updater is preempted at this point in the 494 * code for a long time. That now-preempted updater has already 495 * flipped ->srcu_idx (possibly during the preceding grace period), 496 * done an smp_mb() (again, possibly during the preceding grace 497 * period), and summed up the ->srcu_unlock_count[idx] counters. 498 * How many times can a given one of the aforementioned Nt tasks 499 * increment the old ->srcu_idx value's ->srcu_lock_count[idx] 500 * counter, in the absence of nesting? 501 * 502 * It can clearly do so once, given that it has already fetched 503 * the old value of ->srcu_idx and is just about to use that value 504 * to index its increment of ->srcu_lock_count[idx]. But as soon as 505 * it leaves that SRCU read-side critical section, it will increment 506 * ->srcu_unlock_count[idx], which must follow the updater's above 507 * read from that same value. Thus, as soon the reading task does 508 * an smp_mb() and a later fetch from ->srcu_idx, that task will be 509 * guaranteed to get the new index. Except that the increment of 510 * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the 511 * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock() 512 * is before the smp_mb(). Thus, that task might not see the new 513 * value of ->srcu_idx until the -second- __srcu_read_lock(), 514 * which in turn means that this task might well increment 515 * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice, 516 * not just once. 517 * 518 * However, it is important to note that a given smp_mb() takes 519 * effect not just for the task executing it, but also for any 520 * later task running on that same CPU. 521 * 522 * That is, there can be almost Nt + Nc further increments of 523 * ->srcu_lock_count[idx] for the old index, where Nc is the number 524 * of CPUs. But this is OK because the size of the task_struct 525 * structure limits the value of Nt and current systems limit Nc 526 * to a few thousand. 527 * 528 * OK, but what about nesting? This does impose a limit on 529 * nesting of half of the size of the task_struct structure 530 * (measured in bytes), which should be sufficient. A late 2022 531 * TREE01 rcutorture run reported this size to be no less than 532 * 9408 bytes, allowing up to 4704 levels of nesting, which is 533 * comfortably beyond excessive. Especially on 64-bit systems, 534 * which are unlikely to be configured with an address space fully 535 * populated with memory, at least not anytime soon. 536 */ 537 return srcu_readers_lock_idx(ssp, idx) == unlocks; 538 } 539 540 /** 541 * srcu_readers_active - returns true if there are readers. and false 542 * otherwise 543 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). 544 * 545 * Note that this is not an atomic primitive, and can therefore suffer 546 * severe errors when invoked on an active srcu_struct. That said, it 547 * can be useful as an error check at cleanup time. 548 */ 549 static bool srcu_readers_active(struct srcu_struct *ssp) 550 { 551 int cpu; 552 unsigned long sum = 0; 553 554 for_each_possible_cpu(cpu) { 555 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 556 557 sum += atomic_long_read(&cpuc->srcu_lock_count[0]); 558 sum += atomic_long_read(&cpuc->srcu_lock_count[1]); 559 sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]); 560 sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]); 561 } 562 return sum; 563 } 564 565 /* 566 * We use an adaptive strategy for synchronize_srcu() and especially for 567 * synchronize_srcu_expedited(). We spin for a fixed time period 568 * (defined below, boot time configurable) to allow SRCU readers to exit 569 * their read-side critical sections. If there are still some readers 570 * after one jiffy, we repeatedly block for one jiffy time periods. 571 * The blocking time is increased as the grace-period age increases, 572 * with max blocking time capped at 10 jiffies. 573 */ 574 #define SRCU_DEFAULT_RETRY_CHECK_DELAY 5 575 576 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY; 577 module_param(srcu_retry_check_delay, ulong, 0444); 578 579 #define SRCU_INTERVAL 1 // Base delay if no expedited GPs pending. 580 #define SRCU_MAX_INTERVAL 10 // Maximum incremental delay from slow readers. 581 582 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO 3UL // Lowmark on default per-GP-phase 583 // no-delay instances. 584 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI 1000UL // Highmark on default per-GP-phase 585 // no-delay instances. 586 587 #define SRCU_UL_CLAMP_LO(val, low) ((val) > (low) ? (val) : (low)) 588 #define SRCU_UL_CLAMP_HI(val, high) ((val) < (high) ? (val) : (high)) 589 #define SRCU_UL_CLAMP(val, low, high) SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high)) 590 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto 591 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay() 592 // called from process_srcu(). 593 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED \ 594 (2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY) 595 596 // Maximum per-GP-phase consecutive no-delay instances. 597 #define SRCU_DEFAULT_MAX_NODELAY_PHASE \ 598 SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED, \ 599 SRCU_DEFAULT_MAX_NODELAY_PHASE_LO, \ 600 SRCU_DEFAULT_MAX_NODELAY_PHASE_HI) 601 602 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE; 603 module_param(srcu_max_nodelay_phase, ulong, 0444); 604 605 // Maximum consecutive no-delay instances. 606 #define SRCU_DEFAULT_MAX_NODELAY (SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ? \ 607 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100) 608 609 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY; 610 module_param(srcu_max_nodelay, ulong, 0444); 611 612 /* 613 * Return grace-period delay, zero if there are expedited grace 614 * periods pending, SRCU_INTERVAL otherwise. 615 */ 616 static unsigned long srcu_get_delay(struct srcu_struct *ssp) 617 { 618 unsigned long gpstart; 619 unsigned long j; 620 unsigned long jbase = SRCU_INTERVAL; 621 struct srcu_usage *sup = ssp->srcu_sup; 622 623 if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp))) 624 jbase = 0; 625 if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) { 626 j = jiffies - 1; 627 gpstart = READ_ONCE(sup->srcu_gp_start); 628 if (time_after(j, gpstart)) 629 jbase += j - gpstart; 630 if (!jbase) { 631 WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1); 632 if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase) 633 jbase = 1; 634 } 635 } 636 return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase; 637 } 638 639 /** 640 * cleanup_srcu_struct - deconstruct a sleep-RCU structure 641 * @ssp: structure to clean up. 642 * 643 * Must invoke this after you are finished using a given srcu_struct that 644 * was initialized via init_srcu_struct(), else you leak memory. 645 */ 646 void cleanup_srcu_struct(struct srcu_struct *ssp) 647 { 648 int cpu; 649 struct srcu_usage *sup = ssp->srcu_sup; 650 651 if (WARN_ON(!srcu_get_delay(ssp))) 652 return; /* Just leak it! */ 653 if (WARN_ON(srcu_readers_active(ssp))) 654 return; /* Just leak it! */ 655 flush_delayed_work(&sup->work); 656 for_each_possible_cpu(cpu) { 657 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 658 659 del_timer_sync(&sdp->delay_work); 660 flush_work(&sdp->work); 661 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) 662 return; /* Forgot srcu_barrier(), so just leak it! */ 663 } 664 if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) || 665 WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) || 666 WARN_ON(srcu_readers_active(ssp))) { 667 pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n", 668 __func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)), 669 rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed); 670 return; // Caller forgot to stop doing call_srcu()? 671 // Or caller invoked start_poll_synchronize_srcu() 672 // and then cleanup_srcu_struct() before that grace 673 // period ended? 674 } 675 kfree(sup->node); 676 sup->node = NULL; 677 sup->srcu_size_state = SRCU_SIZE_SMALL; 678 if (!sup->sda_is_static) { 679 free_percpu(ssp->sda); 680 ssp->sda = NULL; 681 kfree(sup); 682 ssp->srcu_sup = NULL; 683 } 684 } 685 EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 686 687 #ifdef CONFIG_PROVE_RCU 688 /* 689 * Check for consistent NMI safety. 690 */ 691 void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe) 692 { 693 int nmi_safe_mask = 1 << nmi_safe; 694 int old_nmi_safe_mask; 695 struct srcu_data *sdp; 696 697 /* NMI-unsafe use in NMI is a bad sign */ 698 WARN_ON_ONCE(!nmi_safe && in_nmi()); 699 sdp = raw_cpu_ptr(ssp->sda); 700 old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety); 701 if (!old_nmi_safe_mask) { 702 WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask); 703 return; 704 } 705 WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask); 706 } 707 EXPORT_SYMBOL_GPL(srcu_check_nmi_safety); 708 #endif /* CONFIG_PROVE_RCU */ 709 710 /* 711 * Counts the new reader in the appropriate per-CPU element of the 712 * srcu_struct. 713 * Returns an index that must be passed to the matching srcu_read_unlock(). 714 */ 715 int __srcu_read_lock(struct srcu_struct *ssp) 716 { 717 int idx; 718 719 idx = READ_ONCE(ssp->srcu_idx) & 0x1; 720 this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter); 721 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 722 return idx; 723 } 724 EXPORT_SYMBOL_GPL(__srcu_read_lock); 725 726 /* 727 * Removes the count for the old reader from the appropriate per-CPU 728 * element of the srcu_struct. Note that this may well be a different 729 * CPU than that which was incremented by the corresponding srcu_read_lock(). 730 */ 731 void __srcu_read_unlock(struct srcu_struct *ssp, int idx) 732 { 733 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 734 this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter); 735 } 736 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 737 738 #ifdef CONFIG_NEED_SRCU_NMI_SAFE 739 740 /* 741 * Counts the new reader in the appropriate per-CPU element of the 742 * srcu_struct, but in an NMI-safe manner using RMW atomics. 743 * Returns an index that must be passed to the matching srcu_read_unlock(). 744 */ 745 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp) 746 { 747 int idx; 748 struct srcu_data *sdp = raw_cpu_ptr(ssp->sda); 749 750 idx = READ_ONCE(ssp->srcu_idx) & 0x1; 751 atomic_long_inc(&sdp->srcu_lock_count[idx]); 752 smp_mb__after_atomic(); /* B */ /* Avoid leaking the critical section. */ 753 return idx; 754 } 755 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe); 756 757 /* 758 * Removes the count for the old reader from the appropriate per-CPU 759 * element of the srcu_struct. Note that this may well be a different 760 * CPU than that which was incremented by the corresponding srcu_read_lock(). 761 */ 762 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx) 763 { 764 struct srcu_data *sdp = raw_cpu_ptr(ssp->sda); 765 766 smp_mb__before_atomic(); /* C */ /* Avoid leaking the critical section. */ 767 atomic_long_inc(&sdp->srcu_unlock_count[idx]); 768 } 769 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe); 770 771 #endif // CONFIG_NEED_SRCU_NMI_SAFE 772 773 /* 774 * Start an SRCU grace period. 775 */ 776 static void srcu_gp_start(struct srcu_struct *ssp) 777 { 778 int state; 779 780 lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); 781 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)); 782 WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies); 783 WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0); 784 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 785 rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq); 786 state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq); 787 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 788 } 789 790 791 static void srcu_delay_timer(struct timer_list *t) 792 { 793 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); 794 795 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 796 } 797 798 static void srcu_queue_delayed_work_on(struct srcu_data *sdp, 799 unsigned long delay) 800 { 801 if (!delay) { 802 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 803 return; 804 } 805 806 timer_reduce(&sdp->delay_work, jiffies + delay); 807 } 808 809 /* 810 * Schedule callback invocation for the specified srcu_data structure, 811 * if possible, on the corresponding CPU. 812 */ 813 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 814 { 815 srcu_queue_delayed_work_on(sdp, delay); 816 } 817 818 /* 819 * Schedule callback invocation for all srcu_data structures associated 820 * with the specified srcu_node structure that have callbacks for the 821 * just-completed grace period, the one corresponding to idx. If possible, 822 * schedule this invocation on the corresponding CPUs. 823 */ 824 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, 825 unsigned long mask, unsigned long delay) 826 { 827 int cpu; 828 829 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 830 if (!(mask & (1UL << (cpu - snp->grplo)))) 831 continue; 832 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); 833 } 834 } 835 836 /* 837 * Note the end of an SRCU grace period. Initiates callback invocation 838 * and starts a new grace period if needed. 839 * 840 * The ->srcu_cb_mutex acquisition does not protect any data, but 841 * instead prevents more than one grace period from starting while we 842 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 843 * array to have a finite number of elements. 844 */ 845 static void srcu_gp_end(struct srcu_struct *ssp) 846 { 847 unsigned long cbdelay = 1; 848 bool cbs; 849 bool last_lvl; 850 int cpu; 851 unsigned long gpseq; 852 int idx; 853 unsigned long mask; 854 struct srcu_data *sdp; 855 unsigned long sgsne; 856 struct srcu_node *snp; 857 int ss_state; 858 struct srcu_usage *sup = ssp->srcu_sup; 859 860 /* Prevent more than one additional grace period. */ 861 mutex_lock(&sup->srcu_cb_mutex); 862 863 /* End the current grace period. */ 864 spin_lock_irq_rcu_node(sup); 865 idx = rcu_seq_state(sup->srcu_gp_seq); 866 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 867 if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp))) 868 cbdelay = 0; 869 870 WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns()); 871 rcu_seq_end(&sup->srcu_gp_seq); 872 gpseq = rcu_seq_current(&sup->srcu_gp_seq); 873 if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq)) 874 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq); 875 spin_unlock_irq_rcu_node(sup); 876 mutex_unlock(&sup->srcu_gp_mutex); 877 /* A new grace period can start at this point. But only one. */ 878 879 /* Initiate callback invocation as needed. */ 880 ss_state = smp_load_acquire(&sup->srcu_size_state); 881 if (ss_state < SRCU_SIZE_WAIT_BARRIER) { 882 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()), 883 cbdelay); 884 } else { 885 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 886 srcu_for_each_node_breadth_first(ssp, snp) { 887 spin_lock_irq_rcu_node(snp); 888 cbs = false; 889 last_lvl = snp >= sup->level[rcu_num_lvls - 1]; 890 if (last_lvl) 891 cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq; 892 snp->srcu_have_cbs[idx] = gpseq; 893 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 894 sgsne = snp->srcu_gp_seq_needed_exp; 895 if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq)) 896 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq); 897 if (ss_state < SRCU_SIZE_BIG) 898 mask = ~0; 899 else 900 mask = snp->srcu_data_have_cbs[idx]; 901 snp->srcu_data_have_cbs[idx] = 0; 902 spin_unlock_irq_rcu_node(snp); 903 if (cbs) 904 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); 905 } 906 } 907 908 /* Occasionally prevent srcu_data counter wrap. */ 909 if (!(gpseq & counter_wrap_check)) 910 for_each_possible_cpu(cpu) { 911 sdp = per_cpu_ptr(ssp->sda, cpu); 912 spin_lock_irq_rcu_node(sdp); 913 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100)) 914 sdp->srcu_gp_seq_needed = gpseq; 915 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100)) 916 sdp->srcu_gp_seq_needed_exp = gpseq; 917 spin_unlock_irq_rcu_node(sdp); 918 } 919 920 /* Callback initiation done, allow grace periods after next. */ 921 mutex_unlock(&sup->srcu_cb_mutex); 922 923 /* Start a new grace period if needed. */ 924 spin_lock_irq_rcu_node(sup); 925 gpseq = rcu_seq_current(&sup->srcu_gp_seq); 926 if (!rcu_seq_state(gpseq) && 927 ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) { 928 srcu_gp_start(ssp); 929 spin_unlock_irq_rcu_node(sup); 930 srcu_reschedule(ssp, 0); 931 } else { 932 spin_unlock_irq_rcu_node(sup); 933 } 934 935 /* Transition to big if needed. */ 936 if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) { 937 if (ss_state == SRCU_SIZE_ALLOC) 938 init_srcu_struct_nodes(ssp, GFP_KERNEL); 939 else 940 smp_store_release(&sup->srcu_size_state, ss_state + 1); 941 } 942 } 943 944 /* 945 * Funnel-locking scheme to scalably mediate many concurrent expedited 946 * grace-period requests. This function is invoked for the first known 947 * expedited request for a grace period that has already been requested, 948 * but without expediting. To start a completely new grace period, 949 * whether expedited or not, use srcu_funnel_gp_start() instead. 950 */ 951 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, 952 unsigned long s) 953 { 954 unsigned long flags; 955 unsigned long sgsne; 956 957 if (snp) 958 for (; snp != NULL; snp = snp->srcu_parent) { 959 sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp); 960 if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) || 961 (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s))) 962 return; 963 spin_lock_irqsave_rcu_node(snp, flags); 964 sgsne = snp->srcu_gp_seq_needed_exp; 965 if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) { 966 spin_unlock_irqrestore_rcu_node(snp, flags); 967 return; 968 } 969 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 970 spin_unlock_irqrestore_rcu_node(snp, flags); 971 } 972 spin_lock_irqsave_ssp_contention(ssp, &flags); 973 if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s)) 974 WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s); 975 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); 976 } 977 978 /* 979 * Funnel-locking scheme to scalably mediate many concurrent grace-period 980 * requests. The winner has to do the work of actually starting grace 981 * period s. Losers must either ensure that their desired grace-period 982 * number is recorded on at least their leaf srcu_node structure, or they 983 * must take steps to invoke their own callbacks. 984 * 985 * Note that this function also does the work of srcu_funnel_exp_start(), 986 * in some cases by directly invoking it. 987 * 988 * The srcu read lock should be hold around this function. And s is a seq snap 989 * after holding that lock. 990 */ 991 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, 992 unsigned long s, bool do_norm) 993 { 994 unsigned long flags; 995 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 996 unsigned long sgsne; 997 struct srcu_node *snp; 998 struct srcu_node *snp_leaf; 999 unsigned long snp_seq; 1000 struct srcu_usage *sup = ssp->srcu_sup; 1001 1002 /* Ensure that snp node tree is fully initialized before traversing it */ 1003 if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 1004 snp_leaf = NULL; 1005 else 1006 snp_leaf = sdp->mynode; 1007 1008 if (snp_leaf) 1009 /* Each pass through the loop does one level of the srcu_node tree. */ 1010 for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) { 1011 if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf) 1012 return; /* GP already done and CBs recorded. */ 1013 spin_lock_irqsave_rcu_node(snp, flags); 1014 snp_seq = snp->srcu_have_cbs[idx]; 1015 if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) { 1016 if (snp == snp_leaf && snp_seq == s) 1017 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 1018 spin_unlock_irqrestore_rcu_node(snp, flags); 1019 if (snp == snp_leaf && snp_seq != s) { 1020 srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0); 1021 return; 1022 } 1023 if (!do_norm) 1024 srcu_funnel_exp_start(ssp, snp, s); 1025 return; 1026 } 1027 snp->srcu_have_cbs[idx] = s; 1028 if (snp == snp_leaf) 1029 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 1030 sgsne = snp->srcu_gp_seq_needed_exp; 1031 if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s))) 1032 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 1033 spin_unlock_irqrestore_rcu_node(snp, flags); 1034 } 1035 1036 /* Top of tree, must ensure the grace period will be started. */ 1037 spin_lock_irqsave_ssp_contention(ssp, &flags); 1038 if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) { 1039 /* 1040 * Record need for grace period s. Pair with load 1041 * acquire setting up for initialization. 1042 */ 1043 smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/ 1044 } 1045 if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s)) 1046 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s); 1047 1048 /* If grace period not already in progress, start it. */ 1049 if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && 1050 rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) { 1051 WARN_ON_ONCE(ULONG_CMP_GE(sup->srcu_gp_seq, sup->srcu_gp_seq_needed)); 1052 srcu_gp_start(ssp); 1053 1054 // And how can that list_add() in the "else" clause 1055 // possibly be safe for concurrent execution? Well, 1056 // it isn't. And it does not have to be. After all, it 1057 // can only be executed during early boot when there is only 1058 // the one boot CPU running with interrupts still disabled. 1059 if (likely(srcu_init_done)) 1060 queue_delayed_work(rcu_gp_wq, &sup->work, 1061 !!srcu_get_delay(ssp)); 1062 else if (list_empty(&sup->work.work.entry)) 1063 list_add(&sup->work.work.entry, &srcu_boot_list); 1064 } 1065 spin_unlock_irqrestore_rcu_node(sup, flags); 1066 } 1067 1068 /* 1069 * Wait until all readers counted by array index idx complete, but 1070 * loop an additional time if there is an expedited grace period pending. 1071 * The caller must ensure that ->srcu_idx is not changed while checking. 1072 */ 1073 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) 1074 { 1075 unsigned long curdelay; 1076 1077 curdelay = !srcu_get_delay(ssp); 1078 1079 for (;;) { 1080 if (srcu_readers_active_idx_check(ssp, idx)) 1081 return true; 1082 if ((--trycount + curdelay) <= 0) 1083 return false; 1084 udelay(srcu_retry_check_delay); 1085 } 1086 } 1087 1088 /* 1089 * Increment the ->srcu_idx counter so that future SRCU readers will 1090 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 1091 * us to wait for pre-existing readers in a starvation-free manner. 1092 */ 1093 static void srcu_flip(struct srcu_struct *ssp) 1094 { 1095 /* 1096 * Because the flip of ->srcu_idx is executed only if the 1097 * preceding call to srcu_readers_active_idx_check() found that 1098 * the ->srcu_unlock_count[] and ->srcu_lock_count[] sums matched 1099 * and because that summing uses atomic_long_read(), there is 1100 * ordering due to a control dependency between that summing and 1101 * the WRITE_ONCE() in this call to srcu_flip(). This ordering 1102 * ensures that if this updater saw a given reader's increment from 1103 * __srcu_read_lock(), that reader was using a value of ->srcu_idx 1104 * from before the previous call to srcu_flip(), which should be 1105 * quite rare. This ordering thus helps forward progress because 1106 * the grace period could otherwise be delayed by additional 1107 * calls to __srcu_read_lock() using that old (soon to be new) 1108 * value of ->srcu_idx. 1109 * 1110 * This sum-equality check and ordering also ensures that if 1111 * a given call to __srcu_read_lock() uses the new value of 1112 * ->srcu_idx, this updater's earlier scans cannot have seen 1113 * that reader's increments, which is all to the good, because 1114 * this grace period need not wait on that reader. After all, 1115 * if those earlier scans had seen that reader, there would have 1116 * been a sum mismatch and this code would not be reached. 1117 * 1118 * This means that the following smp_mb() is redundant, but 1119 * it stays until either (1) Compilers learn about this sort of 1120 * control dependency or (2) Some production workload running on 1121 * a production system is unduly delayed by this slowpath smp_mb(). 1122 */ 1123 smp_mb(); /* E */ /* Pairs with B and C. */ 1124 1125 WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); // Flip the counter. 1126 1127 /* 1128 * Ensure that if the updater misses an __srcu_read_unlock() 1129 * increment, that task's __srcu_read_lock() following its next 1130 * __srcu_read_lock() or __srcu_read_unlock() will see the above 1131 * counter update. Note that both this memory barrier and the 1132 * one in srcu_readers_active_idx_check() provide the guarantee 1133 * for __srcu_read_lock(). 1134 */ 1135 smp_mb(); /* D */ /* Pairs with C. */ 1136 } 1137 1138 /* 1139 * If SRCU is likely idle, return true, otherwise return false. 1140 * 1141 * Note that it is OK for several current from-idle requests for a new 1142 * grace period from idle to specify expediting because they will all end 1143 * up requesting the same grace period anyhow. So no loss. 1144 * 1145 * Note also that if any CPU (including the current one) is still invoking 1146 * callbacks, this function will nevertheless say "idle". This is not 1147 * ideal, but the overhead of checking all CPUs' callback lists is even 1148 * less ideal, especially on large systems. Furthermore, the wakeup 1149 * can happen before the callback is fully removed, so we have no choice 1150 * but to accept this type of error. 1151 * 1152 * This function is also subject to counter-wrap errors, but let's face 1153 * it, if this function was preempted for enough time for the counters 1154 * to wrap, it really doesn't matter whether or not we expedite the grace 1155 * period. The extra overhead of a needlessly expedited grace period is 1156 * negligible when amortized over that time period, and the extra latency 1157 * of a needlessly non-expedited grace period is similarly negligible. 1158 */ 1159 static bool srcu_might_be_idle(struct srcu_struct *ssp) 1160 { 1161 unsigned long curseq; 1162 unsigned long flags; 1163 struct srcu_data *sdp; 1164 unsigned long t; 1165 unsigned long tlast; 1166 1167 check_init_srcu_struct(ssp); 1168 /* If the local srcu_data structure has callbacks, not idle. */ 1169 sdp = raw_cpu_ptr(ssp->sda); 1170 spin_lock_irqsave_rcu_node(sdp, flags); 1171 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 1172 spin_unlock_irqrestore_rcu_node(sdp, flags); 1173 return false; /* Callbacks already present, so not idle. */ 1174 } 1175 spin_unlock_irqrestore_rcu_node(sdp, flags); 1176 1177 /* 1178 * No local callbacks, so probabilistically probe global state. 1179 * Exact information would require acquiring locks, which would 1180 * kill scalability, hence the probabilistic nature of the probe. 1181 */ 1182 1183 /* First, see if enough time has passed since the last GP. */ 1184 t = ktime_get_mono_fast_ns(); 1185 tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end); 1186 if (exp_holdoff == 0 || 1187 time_in_range_open(t, tlast, tlast + exp_holdoff)) 1188 return false; /* Too soon after last GP. */ 1189 1190 /* Next, check for probable idleness. */ 1191 curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); 1192 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 1193 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed))) 1194 return false; /* Grace period in progress, so not idle. */ 1195 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 1196 if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)) 1197 return false; /* GP # changed, so not idle. */ 1198 return true; /* With reasonable probability, idle! */ 1199 } 1200 1201 /* 1202 * SRCU callback function to leak a callback. 1203 */ 1204 static void srcu_leak_callback(struct rcu_head *rhp) 1205 { 1206 } 1207 1208 /* 1209 * Start an SRCU grace period, and also queue the callback if non-NULL. 1210 */ 1211 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp, 1212 struct rcu_head *rhp, bool do_norm) 1213 { 1214 unsigned long flags; 1215 int idx; 1216 bool needexp = false; 1217 bool needgp = false; 1218 unsigned long s; 1219 struct srcu_data *sdp; 1220 struct srcu_node *sdp_mynode; 1221 int ss_state; 1222 1223 check_init_srcu_struct(ssp); 1224 /* 1225 * While starting a new grace period, make sure we are in an 1226 * SRCU read-side critical section so that the grace-period 1227 * sequence number cannot wrap around in the meantime. 1228 */ 1229 idx = __srcu_read_lock_nmisafe(ssp); 1230 ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state); 1231 if (ss_state < SRCU_SIZE_WAIT_CALL) 1232 sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id()); 1233 else 1234 sdp = raw_cpu_ptr(ssp->sda); 1235 spin_lock_irqsave_sdp_contention(sdp, &flags); 1236 if (rhp) 1237 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp); 1238 /* 1239 * It's crucial to capture the snapshot 's' for acceleration before 1240 * reading the current gp_seq that is used for advancing. This is 1241 * essential because if the acceleration snapshot is taken after a 1242 * failed advancement attempt, there's a risk that a grace period may 1243 * conclude and a new one may start in the interim. If the snapshot is 1244 * captured after this sequence of events, the acceleration snapshot 's' 1245 * could be excessively advanced, leading to acceleration failure. 1246 * In such a scenario, an 'acceleration leak' can occur, where new 1247 * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment. 1248 * Also note that encountering advancing failures is a normal 1249 * occurrence when the grace period for RCU_WAIT_TAIL is in progress. 1250 * 1251 * To see this, consider the following events which occur if 1252 * rcu_seq_snap() were to be called after advance: 1253 * 1254 * 1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the 1255 * RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8). 1256 * 1257 * 2) The grace period for RCU_WAIT_TAIL is seen as started but not 1258 * completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1. 1259 * 1260 * 3) This value is passed to rcu_segcblist_advance() which can't move 1261 * any segment forward and fails. 1262 * 1263 * 4) srcu_gp_start_if_needed() still proceeds with callback acceleration. 1264 * But then the call to rcu_seq_snap() observes the grace period for the 1265 * RCU_WAIT_TAIL segment as completed and the subsequent one for the 1266 * RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1) 1267 * so it returns a snapshot of the next grace period, which is X + 12. 1268 * 1269 * 5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the 1270 * freshly enqueued callback in RCU_NEXT_TAIL can't move to 1271 * RCU_NEXT_READY_TAIL which already has callbacks for a previous grace 1272 * period (gp_num = X + 8). So acceleration fails. 1273 */ 1274 s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); 1275 if (rhp) { 1276 rcu_segcblist_advance(&sdp->srcu_cblist, 1277 rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); 1278 /* 1279 * Acceleration can never fail because the base current gp_seq 1280 * used for acceleration is <= the value of gp_seq used for 1281 * advancing. This means that RCU_NEXT_TAIL segment will 1282 * always be able to be emptied by the acceleration into the 1283 * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments. 1284 */ 1285 WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s)); 1286 } 1287 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 1288 sdp->srcu_gp_seq_needed = s; 1289 needgp = true; 1290 } 1291 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 1292 sdp->srcu_gp_seq_needed_exp = s; 1293 needexp = true; 1294 } 1295 spin_unlock_irqrestore_rcu_node(sdp, flags); 1296 1297 /* Ensure that snp node tree is fully initialized before traversing it */ 1298 if (ss_state < SRCU_SIZE_WAIT_BARRIER) 1299 sdp_mynode = NULL; 1300 else 1301 sdp_mynode = sdp->mynode; 1302 1303 if (needgp) 1304 srcu_funnel_gp_start(ssp, sdp, s, do_norm); 1305 else if (needexp) 1306 srcu_funnel_exp_start(ssp, sdp_mynode, s); 1307 __srcu_read_unlock_nmisafe(ssp, idx); 1308 return s; 1309 } 1310 1311 /* 1312 * Enqueue an SRCU callback on the srcu_data structure associated with 1313 * the current CPU and the specified srcu_struct structure, initiating 1314 * grace-period processing if it is not already running. 1315 * 1316 * Note that all CPUs must agree that the grace period extended beyond 1317 * all pre-existing SRCU read-side critical section. On systems with 1318 * more than one CPU, this means that when "func()" is invoked, each CPU 1319 * is guaranteed to have executed a full memory barrier since the end of 1320 * its last corresponding SRCU read-side critical section whose beginning 1321 * preceded the call to call_srcu(). It also means that each CPU executing 1322 * an SRCU read-side critical section that continues beyond the start of 1323 * "func()" must have executed a memory barrier after the call_srcu() 1324 * but before the beginning of that SRCU read-side critical section. 1325 * Note that these guarantees include CPUs that are offline, idle, or 1326 * executing in user mode, as well as CPUs that are executing in the kernel. 1327 * 1328 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the 1329 * resulting SRCU callback function "func()", then both CPU A and CPU 1330 * B are guaranteed to execute a full memory barrier during the time 1331 * interval between the call to call_srcu() and the invocation of "func()". 1332 * This guarantee applies even if CPU A and CPU B are the same CPU (but 1333 * again only if the system has more than one CPU). 1334 * 1335 * Of course, these guarantees apply only for invocations of call_srcu(), 1336 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 1337 * srcu_struct structure. 1338 */ 1339 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 1340 rcu_callback_t func, bool do_norm) 1341 { 1342 if (debug_rcu_head_queue(rhp)) { 1343 /* Probable double call_srcu(), so leak the callback. */ 1344 WRITE_ONCE(rhp->func, srcu_leak_callback); 1345 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 1346 return; 1347 } 1348 rhp->func = func; 1349 (void)srcu_gp_start_if_needed(ssp, rhp, do_norm); 1350 } 1351 1352 /** 1353 * call_srcu() - Queue a callback for invocation after an SRCU grace period 1354 * @ssp: srcu_struct in queue the callback 1355 * @rhp: structure to be used for queueing the SRCU callback. 1356 * @func: function to be invoked after the SRCU grace period 1357 * 1358 * The callback function will be invoked some time after a full SRCU 1359 * grace period elapses, in other words after all pre-existing SRCU 1360 * read-side critical sections have completed. However, the callback 1361 * function might well execute concurrently with other SRCU read-side 1362 * critical sections that started after call_srcu() was invoked. SRCU 1363 * read-side critical sections are delimited by srcu_read_lock() and 1364 * srcu_read_unlock(), and may be nested. 1365 * 1366 * The callback will be invoked from process context, but must nevertheless 1367 * be fast and must not block. 1368 */ 1369 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 1370 rcu_callback_t func) 1371 { 1372 __call_srcu(ssp, rhp, func, true); 1373 } 1374 EXPORT_SYMBOL_GPL(call_srcu); 1375 1376 /* 1377 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 1378 */ 1379 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) 1380 { 1381 struct rcu_synchronize rcu; 1382 1383 srcu_lock_sync(&ssp->dep_map); 1384 1385 RCU_LOCKDEP_WARN(lockdep_is_held(ssp) || 1386 lock_is_held(&rcu_bh_lock_map) || 1387 lock_is_held(&rcu_lock_map) || 1388 lock_is_held(&rcu_sched_lock_map), 1389 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 1390 1391 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 1392 return; 1393 might_sleep(); 1394 check_init_srcu_struct(ssp); 1395 init_completion(&rcu.completion); 1396 init_rcu_head_on_stack(&rcu.head); 1397 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); 1398 wait_for_completion(&rcu.completion); 1399 destroy_rcu_head_on_stack(&rcu.head); 1400 1401 /* 1402 * Make sure that later code is ordered after the SRCU grace 1403 * period. This pairs with the spin_lock_irq_rcu_node() 1404 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 1405 * because the current CPU might have been totally uninvolved with 1406 * (and thus unordered against) that grace period. 1407 */ 1408 smp_mb(); 1409 } 1410 1411 /** 1412 * synchronize_srcu_expedited - Brute-force SRCU grace period 1413 * @ssp: srcu_struct with which to synchronize. 1414 * 1415 * Wait for an SRCU grace period to elapse, but be more aggressive about 1416 * spinning rather than blocking when waiting. 1417 * 1418 * Note that synchronize_srcu_expedited() has the same deadlock and 1419 * memory-ordering properties as does synchronize_srcu(). 1420 */ 1421 void synchronize_srcu_expedited(struct srcu_struct *ssp) 1422 { 1423 __synchronize_srcu(ssp, rcu_gp_is_normal()); 1424 } 1425 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 1426 1427 /** 1428 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 1429 * @ssp: srcu_struct with which to synchronize. 1430 * 1431 * Wait for the count to drain to zero of both indexes. To avoid the 1432 * possible starvation of synchronize_srcu(), it waits for the count of 1433 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 1434 * and then flip the srcu_idx and wait for the count of the other index. 1435 * 1436 * Can block; must be called from process context. 1437 * 1438 * Note that it is illegal to call synchronize_srcu() from the corresponding 1439 * SRCU read-side critical section; doing so will result in deadlock. 1440 * However, it is perfectly legal to call synchronize_srcu() on one 1441 * srcu_struct from some other srcu_struct's read-side critical section, 1442 * as long as the resulting graph of srcu_structs is acyclic. 1443 * 1444 * There are memory-ordering constraints implied by synchronize_srcu(). 1445 * On systems with more than one CPU, when synchronize_srcu() returns, 1446 * each CPU is guaranteed to have executed a full memory barrier since 1447 * the end of its last corresponding SRCU read-side critical section 1448 * whose beginning preceded the call to synchronize_srcu(). In addition, 1449 * each CPU having an SRCU read-side critical section that extends beyond 1450 * the return from synchronize_srcu() is guaranteed to have executed a 1451 * full memory barrier after the beginning of synchronize_srcu() and before 1452 * the beginning of that SRCU read-side critical section. Note that these 1453 * guarantees include CPUs that are offline, idle, or executing in user mode, 1454 * as well as CPUs that are executing in the kernel. 1455 * 1456 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 1457 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 1458 * to have executed a full memory barrier during the execution of 1459 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 1460 * are the same CPU, but again only if the system has more than one CPU. 1461 * 1462 * Of course, these memory-ordering guarantees apply only when 1463 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 1464 * passed the same srcu_struct structure. 1465 * 1466 * Implementation of these memory-ordering guarantees is similar to 1467 * that of synchronize_rcu(). 1468 * 1469 * If SRCU is likely idle, expedite the first request. This semantic 1470 * was provided by Classic SRCU, and is relied upon by its users, so TREE 1471 * SRCU must also provide it. Note that detecting idleness is heuristic 1472 * and subject to both false positives and negatives. 1473 */ 1474 void synchronize_srcu(struct srcu_struct *ssp) 1475 { 1476 if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited()) 1477 synchronize_srcu_expedited(ssp); 1478 else 1479 __synchronize_srcu(ssp, true); 1480 } 1481 EXPORT_SYMBOL_GPL(synchronize_srcu); 1482 1483 /** 1484 * get_state_synchronize_srcu - Provide an end-of-grace-period cookie 1485 * @ssp: srcu_struct to provide cookie for. 1486 * 1487 * This function returns a cookie that can be passed to 1488 * poll_state_synchronize_srcu(), which will return true if a full grace 1489 * period has elapsed in the meantime. It is the caller's responsibility 1490 * to make sure that grace period happens, for example, by invoking 1491 * call_srcu() after return from get_state_synchronize_srcu(). 1492 */ 1493 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp) 1494 { 1495 // Any prior manipulation of SRCU-protected data must happen 1496 // before the load from ->srcu_gp_seq. 1497 smp_mb(); 1498 return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); 1499 } 1500 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu); 1501 1502 /** 1503 * start_poll_synchronize_srcu - Provide cookie and start grace period 1504 * @ssp: srcu_struct to provide cookie for. 1505 * 1506 * This function returns a cookie that can be passed to 1507 * poll_state_synchronize_srcu(), which will return true if a full grace 1508 * period has elapsed in the meantime. Unlike get_state_synchronize_srcu(), 1509 * this function also ensures that any needed SRCU grace period will be 1510 * started. This convenience does come at a cost in terms of CPU overhead. 1511 */ 1512 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp) 1513 { 1514 return srcu_gp_start_if_needed(ssp, NULL, true); 1515 } 1516 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu); 1517 1518 /** 1519 * poll_state_synchronize_srcu - Has cookie's grace period ended? 1520 * @ssp: srcu_struct to provide cookie for. 1521 * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu(). 1522 * 1523 * This function takes the cookie that was returned from either 1524 * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and 1525 * returns @true if an SRCU grace period elapsed since the time that the 1526 * cookie was created. 1527 * 1528 * Because cookies are finite in size, wrapping/overflow is possible. 1529 * This is more pronounced on 32-bit systems where cookies are 32 bits, 1530 * where in theory wrapping could happen in about 14 hours assuming 1531 * 25-microsecond expedited SRCU grace periods. However, a more likely 1532 * overflow lower bound is on the order of 24 days in the case of 1533 * one-millisecond SRCU grace periods. Of course, wrapping in a 64-bit 1534 * system requires geologic timespans, as in more than seven million years 1535 * even for expedited SRCU grace periods. 1536 * 1537 * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems 1538 * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU. This uses 1539 * a 16-bit cookie, which rcutorture routinely wraps in a matter of a 1540 * few minutes. If this proves to be a problem, this counter will be 1541 * expanded to the same size as for Tree SRCU. 1542 */ 1543 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie) 1544 { 1545 if (cookie != SRCU_GET_STATE_COMPLETED && 1546 !rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie)) 1547 return false; 1548 // Ensure that the end of the SRCU grace period happens before 1549 // any subsequent code that the caller might execute. 1550 smp_mb(); // ^^^ 1551 return true; 1552 } 1553 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu); 1554 1555 /* 1556 * Callback function for srcu_barrier() use. 1557 */ 1558 static void srcu_barrier_cb(struct rcu_head *rhp) 1559 { 1560 struct srcu_data *sdp; 1561 struct srcu_struct *ssp; 1562 1563 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1564 ssp = sdp->ssp; 1565 if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) 1566 complete(&ssp->srcu_sup->srcu_barrier_completion); 1567 } 1568 1569 /* 1570 * Enqueue an srcu_barrier() callback on the specified srcu_data 1571 * structure's ->cblist. but only if that ->cblist already has at least one 1572 * callback enqueued. Note that if a CPU already has callbacks enqueue, 1573 * it must have already registered the need for a future grace period, 1574 * so all we need do is enqueue a callback that will use the same grace 1575 * period as the last callback already in the queue. 1576 */ 1577 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp) 1578 { 1579 spin_lock_irq_rcu_node(sdp); 1580 atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt); 1581 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1582 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1583 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1584 &sdp->srcu_barrier_head)) { 1585 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1586 atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt); 1587 } 1588 spin_unlock_irq_rcu_node(sdp); 1589 } 1590 1591 /** 1592 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1593 * @ssp: srcu_struct on which to wait for in-flight callbacks. 1594 */ 1595 void srcu_barrier(struct srcu_struct *ssp) 1596 { 1597 int cpu; 1598 int idx; 1599 unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq); 1600 1601 check_init_srcu_struct(ssp); 1602 mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex); 1603 if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) { 1604 smp_mb(); /* Force ordering following return. */ 1605 mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); 1606 return; /* Someone else did our work for us. */ 1607 } 1608 rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq); 1609 init_completion(&ssp->srcu_sup->srcu_barrier_completion); 1610 1611 /* Initial count prevents reaching zero until all CBs are posted. */ 1612 atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1); 1613 1614 idx = __srcu_read_lock_nmisafe(ssp); 1615 if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 1616 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, get_boot_cpu_id())); 1617 else 1618 for_each_possible_cpu(cpu) 1619 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu)); 1620 __srcu_read_unlock_nmisafe(ssp, idx); 1621 1622 /* Remove the initial count, at which point reaching zero can happen. */ 1623 if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) 1624 complete(&ssp->srcu_sup->srcu_barrier_completion); 1625 wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion); 1626 1627 rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq); 1628 mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); 1629 } 1630 EXPORT_SYMBOL_GPL(srcu_barrier); 1631 1632 /** 1633 * srcu_batches_completed - return batches completed. 1634 * @ssp: srcu_struct on which to report batch completion. 1635 * 1636 * Report the number of batches, correlated with, but not necessarily 1637 * precisely the same as, the number of grace periods that have elapsed. 1638 */ 1639 unsigned long srcu_batches_completed(struct srcu_struct *ssp) 1640 { 1641 return READ_ONCE(ssp->srcu_idx); 1642 } 1643 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1644 1645 /* 1646 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1647 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1648 * completed in that state. 1649 */ 1650 static void srcu_advance_state(struct srcu_struct *ssp) 1651 { 1652 int idx; 1653 1654 mutex_lock(&ssp->srcu_sup->srcu_gp_mutex); 1655 1656 /* 1657 * Because readers might be delayed for an extended period after 1658 * fetching ->srcu_idx for their index, at any point in time there 1659 * might well be readers using both idx=0 and idx=1. We therefore 1660 * need to wait for readers to clear from both index values before 1661 * invoking a callback. 1662 * 1663 * The load-acquire ensures that we see the accesses performed 1664 * by the prior grace period. 1665 */ 1666 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */ 1667 if (idx == SRCU_STATE_IDLE) { 1668 spin_lock_irq_rcu_node(ssp->srcu_sup); 1669 if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { 1670 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)); 1671 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1672 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1673 return; 1674 } 1675 idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)); 1676 if (idx == SRCU_STATE_IDLE) 1677 srcu_gp_start(ssp); 1678 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1679 if (idx != SRCU_STATE_IDLE) { 1680 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1681 return; /* Someone else started the grace period. */ 1682 } 1683 } 1684 1685 if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1686 idx = 1 ^ (ssp->srcu_idx & 1); 1687 if (!try_check_zero(ssp, idx, 1)) { 1688 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1689 return; /* readers present, retry later. */ 1690 } 1691 srcu_flip(ssp); 1692 spin_lock_irq_rcu_node(ssp->srcu_sup); 1693 rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2); 1694 ssp->srcu_sup->srcu_n_exp_nodelay = 0; 1695 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1696 } 1697 1698 if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1699 1700 /* 1701 * SRCU read-side critical sections are normally short, 1702 * so check at least twice in quick succession after a flip. 1703 */ 1704 idx = 1 ^ (ssp->srcu_idx & 1); 1705 if (!try_check_zero(ssp, idx, 2)) { 1706 mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); 1707 return; /* readers present, retry later. */ 1708 } 1709 ssp->srcu_sup->srcu_n_exp_nodelay = 0; 1710 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ 1711 } 1712 } 1713 1714 /* 1715 * Invoke a limited number of SRCU callbacks that have passed through 1716 * their grace period. If there are more to do, SRCU will reschedule 1717 * the workqueue. Note that needed memory barriers have been executed 1718 * in this task's context by srcu_readers_active_idx_check(). 1719 */ 1720 static void srcu_invoke_callbacks(struct work_struct *work) 1721 { 1722 long len; 1723 bool more; 1724 struct rcu_cblist ready_cbs; 1725 struct rcu_head *rhp; 1726 struct srcu_data *sdp; 1727 struct srcu_struct *ssp; 1728 1729 sdp = container_of(work, struct srcu_data, work); 1730 1731 ssp = sdp->ssp; 1732 rcu_cblist_init(&ready_cbs); 1733 spin_lock_irq_rcu_node(sdp); 1734 WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL)); 1735 rcu_segcblist_advance(&sdp->srcu_cblist, 1736 rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); 1737 /* 1738 * Although this function is theoretically re-entrant, concurrent 1739 * callbacks invocation is disallowed to avoid executing an SRCU barrier 1740 * too early. 1741 */ 1742 if (sdp->srcu_cblist_invoking || 1743 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1744 spin_unlock_irq_rcu_node(sdp); 1745 return; /* Someone else on the job or nothing to do. */ 1746 } 1747 1748 /* We are on the job! Extract and invoke ready callbacks. */ 1749 sdp->srcu_cblist_invoking = true; 1750 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1751 len = ready_cbs.len; 1752 spin_unlock_irq_rcu_node(sdp); 1753 rhp = rcu_cblist_dequeue(&ready_cbs); 1754 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1755 debug_rcu_head_unqueue(rhp); 1756 debug_rcu_head_callback(rhp); 1757 local_bh_disable(); 1758 rhp->func(rhp); 1759 local_bh_enable(); 1760 } 1761 WARN_ON_ONCE(ready_cbs.len); 1762 1763 /* 1764 * Update counts, accelerate new callbacks, and if needed, 1765 * schedule another round of callback invocation. 1766 */ 1767 spin_lock_irq_rcu_node(sdp); 1768 rcu_segcblist_add_len(&sdp->srcu_cblist, -len); 1769 sdp->srcu_cblist_invoking = false; 1770 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1771 spin_unlock_irq_rcu_node(sdp); 1772 /* An SRCU barrier or callbacks from previous nesting work pending */ 1773 if (more) 1774 srcu_schedule_cbs_sdp(sdp, 0); 1775 } 1776 1777 /* 1778 * Finished one round of SRCU grace period. Start another if there are 1779 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1780 */ 1781 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) 1782 { 1783 bool pushgp = true; 1784 1785 spin_lock_irq_rcu_node(ssp->srcu_sup); 1786 if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { 1787 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) { 1788 /* All requests fulfilled, time to go idle. */ 1789 pushgp = false; 1790 } 1791 } else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) { 1792 /* Outstanding request and no GP. Start one. */ 1793 srcu_gp_start(ssp); 1794 } 1795 spin_unlock_irq_rcu_node(ssp->srcu_sup); 1796 1797 if (pushgp) 1798 queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay); 1799 } 1800 1801 /* 1802 * This is the work-queue function that handles SRCU grace periods. 1803 */ 1804 static void process_srcu(struct work_struct *work) 1805 { 1806 unsigned long curdelay; 1807 unsigned long j; 1808 struct srcu_struct *ssp; 1809 struct srcu_usage *sup; 1810 1811 sup = container_of(work, struct srcu_usage, work.work); 1812 ssp = sup->srcu_ssp; 1813 1814 srcu_advance_state(ssp); 1815 curdelay = srcu_get_delay(ssp); 1816 if (curdelay) { 1817 WRITE_ONCE(sup->reschedule_count, 0); 1818 } else { 1819 j = jiffies; 1820 if (READ_ONCE(sup->reschedule_jiffies) == j) { 1821 WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1); 1822 if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay) 1823 curdelay = 1; 1824 } else { 1825 WRITE_ONCE(sup->reschedule_count, 1); 1826 WRITE_ONCE(sup->reschedule_jiffies, j); 1827 } 1828 } 1829 srcu_reschedule(ssp, curdelay); 1830 } 1831 1832 void srcutorture_get_gp_data(struct srcu_struct *ssp, int *flags, 1833 unsigned long *gp_seq) 1834 { 1835 *flags = 0; 1836 *gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); 1837 } 1838 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1839 1840 static const char * const srcu_size_state_name[] = { 1841 "SRCU_SIZE_SMALL", 1842 "SRCU_SIZE_ALLOC", 1843 "SRCU_SIZE_WAIT_BARRIER", 1844 "SRCU_SIZE_WAIT_CALL", 1845 "SRCU_SIZE_WAIT_CBS1", 1846 "SRCU_SIZE_WAIT_CBS2", 1847 "SRCU_SIZE_WAIT_CBS3", 1848 "SRCU_SIZE_WAIT_CBS4", 1849 "SRCU_SIZE_BIG", 1850 "SRCU_SIZE_???", 1851 }; 1852 1853 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) 1854 { 1855 int cpu; 1856 int idx; 1857 unsigned long s0 = 0, s1 = 0; 1858 int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state); 1859 int ss_state_idx = ss_state; 1860 1861 idx = ssp->srcu_idx & 0x1; 1862 if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name)) 1863 ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1; 1864 pr_alert("%s%s Tree SRCU g%ld state %d (%s)", 1865 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state, 1866 srcu_size_state_name[ss_state_idx]); 1867 if (!ssp->sda) { 1868 // Called after cleanup_srcu_struct(), perhaps. 1869 pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n"); 1870 } else { 1871 pr_cont(" per-CPU(idx=%d):", idx); 1872 for_each_possible_cpu(cpu) { 1873 unsigned long l0, l1; 1874 unsigned long u0, u1; 1875 long c0, c1; 1876 struct srcu_data *sdp; 1877 1878 sdp = per_cpu_ptr(ssp->sda, cpu); 1879 u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx])); 1880 u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx])); 1881 1882 /* 1883 * Make sure that a lock is always counted if the corresponding 1884 * unlock is counted. 1885 */ 1886 smp_rmb(); 1887 1888 l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx])); 1889 l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx])); 1890 1891 c0 = l0 - u0; 1892 c1 = l1 - u1; 1893 pr_cont(" %d(%ld,%ld %c)", 1894 cpu, c0, c1, 1895 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]); 1896 s0 += c0; 1897 s1 += c1; 1898 } 1899 pr_cont(" T(%ld,%ld)\n", s0, s1); 1900 } 1901 if (SRCU_SIZING_IS_TORTURE()) 1902 srcu_transition_to_big(ssp); 1903 } 1904 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1905 1906 static int __init srcu_bootup_announce(void) 1907 { 1908 pr_info("Hierarchical SRCU implementation.\n"); 1909 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1910 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1911 if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY) 1912 pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay); 1913 if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY) 1914 pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay); 1915 pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase); 1916 return 0; 1917 } 1918 early_initcall(srcu_bootup_announce); 1919 1920 void __init srcu_init(void) 1921 { 1922 struct srcu_usage *sup; 1923 1924 /* Decide on srcu_struct-size strategy. */ 1925 if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) { 1926 if (nr_cpu_ids >= big_cpu_lim) { 1927 convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention. 1928 pr_info("%s: Setting srcu_struct sizes to big.\n", __func__); 1929 } else { 1930 convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND; 1931 pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__); 1932 } 1933 } 1934 1935 /* 1936 * Once that is set, call_srcu() can follow the normal path and 1937 * queue delayed work. This must follow RCU workqueues creation 1938 * and timers initialization. 1939 */ 1940 srcu_init_done = true; 1941 while (!list_empty(&srcu_boot_list)) { 1942 sup = list_first_entry(&srcu_boot_list, struct srcu_usage, 1943 work.work.entry); 1944 list_del_init(&sup->work.work.entry); 1945 if (SRCU_SIZING_IS(SRCU_SIZING_INIT) && 1946 sup->srcu_size_state == SRCU_SIZE_SMALL) 1947 sup->srcu_size_state = SRCU_SIZE_ALLOC; 1948 queue_work(rcu_gp_wq, &sup->work.work); 1949 } 1950 } 1951 1952 #ifdef CONFIG_MODULES 1953 1954 /* Initialize any global-scope srcu_struct structures used by this module. */ 1955 static int srcu_module_coming(struct module *mod) 1956 { 1957 int i; 1958 struct srcu_struct *ssp; 1959 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1960 1961 for (i = 0; i < mod->num_srcu_structs; i++) { 1962 ssp = *(sspp++); 1963 ssp->sda = alloc_percpu(struct srcu_data); 1964 if (WARN_ON_ONCE(!ssp->sda)) 1965 return -ENOMEM; 1966 } 1967 return 0; 1968 } 1969 1970 /* Clean up any global-scope srcu_struct structures used by this module. */ 1971 static void srcu_module_going(struct module *mod) 1972 { 1973 int i; 1974 struct srcu_struct *ssp; 1975 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1976 1977 for (i = 0; i < mod->num_srcu_structs; i++) { 1978 ssp = *(sspp++); 1979 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) && 1980 !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static)) 1981 cleanup_srcu_struct(ssp); 1982 if (!WARN_ON(srcu_readers_active(ssp))) 1983 free_percpu(ssp->sda); 1984 } 1985 } 1986 1987 /* Handle one module, either coming or going. */ 1988 static int srcu_module_notify(struct notifier_block *self, 1989 unsigned long val, void *data) 1990 { 1991 struct module *mod = data; 1992 int ret = 0; 1993 1994 switch (val) { 1995 case MODULE_STATE_COMING: 1996 ret = srcu_module_coming(mod); 1997 break; 1998 case MODULE_STATE_GOING: 1999 srcu_module_going(mod); 2000 break; 2001 default: 2002 break; 2003 } 2004 return ret; 2005 } 2006 2007 static struct notifier_block srcu_module_nb = { 2008 .notifier_call = srcu_module_notify, 2009 .priority = 0, 2010 }; 2011 2012 static __init int init_srcu_module_notifier(void) 2013 { 2014 int ret; 2015 2016 ret = register_module_notifier(&srcu_module_nb); 2017 if (ret) 2018 pr_warn("Failed to register srcu module notifier\n"); 2019 return ret; 2020 } 2021 late_initcall(init_srcu_module_notifier); 2022 2023 #endif /* #ifdef CONFIG_MODULES */ 2024
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.