~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/rcu/srcutree.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0+
  2 /*
  3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
  4  *
  5  * Copyright (C) IBM Corporation, 2006
  6  * Copyright (C) Fujitsu, 2012
  7  *
  8  * Authors: Paul McKenney <paulmck@linux.ibm.com>
  9  *         Lai Jiangshan <laijs@cn.fujitsu.com>
 10  *
 11  * For detailed explanation of Read-Copy Update mechanism see -
 12  *              Documentation/RCU/ *.txt
 13  *
 14  */
 15 
 16 #define pr_fmt(fmt) "rcu: " fmt
 17 
 18 #include <linux/export.h>
 19 #include <linux/mutex.h>
 20 #include <linux/percpu.h>
 21 #include <linux/preempt.h>
 22 #include <linux/rcupdate_wait.h>
 23 #include <linux/sched.h>
 24 #include <linux/smp.h>
 25 #include <linux/delay.h>
 26 #include <linux/module.h>
 27 #include <linux/slab.h>
 28 #include <linux/srcu.h>
 29 
 30 #include "rcu.h"
 31 #include "rcu_segcblist.h"
 32 
 33 /* Holdoff in nanoseconds for auto-expediting. */
 34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
 35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
 36 module_param(exp_holdoff, ulong, 0444);
 37 
 38 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
 39 static ulong counter_wrap_check = (ULONG_MAX >> 2);
 40 module_param(counter_wrap_check, ulong, 0444);
 41 
 42 /*
 43  * Control conversion to SRCU_SIZE_BIG:
 44  *    0: Don't convert at all.
 45  *    1: Convert at init_srcu_struct() time.
 46  *    2: Convert when rcutorture invokes srcu_torture_stats_print().
 47  *    3: Decide at boot time based on system shape (default).
 48  * 0x1x: Convert when excessive contention encountered.
 49  */
 50 #define SRCU_SIZING_NONE        0
 51 #define SRCU_SIZING_INIT        1
 52 #define SRCU_SIZING_TORTURE     2
 53 #define SRCU_SIZING_AUTO        3
 54 #define SRCU_SIZING_CONTEND     0x10
 55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
 56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
 57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
 58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
 59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
 60 static int convert_to_big = SRCU_SIZING_AUTO;
 61 module_param(convert_to_big, int, 0444);
 62 
 63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
 64 static int big_cpu_lim __read_mostly = 128;
 65 module_param(big_cpu_lim, int, 0444);
 66 
 67 /* Contention events per jiffy to initiate transition to big. */
 68 static int small_contention_lim __read_mostly = 100;
 69 module_param(small_contention_lim, int, 0444);
 70 
 71 /* Early-boot callback-management, so early that no lock is required! */
 72 static LIST_HEAD(srcu_boot_list);
 73 static bool __read_mostly srcu_init_done;
 74 
 75 static void srcu_invoke_callbacks(struct work_struct *work);
 76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
 77 static void process_srcu(struct work_struct *work);
 78 static void srcu_delay_timer(struct timer_list *t);
 79 
 80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
 81 #define spin_lock_rcu_node(p)                                                   \
 82 do {                                                                            \
 83         spin_lock(&ACCESS_PRIVATE(p, lock));                                    \
 84         smp_mb__after_unlock_lock();                                            \
 85 } while (0)
 86 
 87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
 88 
 89 #define spin_lock_irq_rcu_node(p)                                               \
 90 do {                                                                            \
 91         spin_lock_irq(&ACCESS_PRIVATE(p, lock));                                \
 92         smp_mb__after_unlock_lock();                                            \
 93 } while (0)
 94 
 95 #define spin_unlock_irq_rcu_node(p)                                             \
 96         spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
 97 
 98 #define spin_lock_irqsave_rcu_node(p, flags)                                    \
 99 do {                                                                            \
100         spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);                     \
101         smp_mb__after_unlock_lock();                                            \
102 } while (0)
103 
104 #define spin_trylock_irqsave_rcu_node(p, flags)                                 \
105 ({                                                                              \
106         bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
107                                                                                 \
108         if (___locked)                                                          \
109                 smp_mb__after_unlock_lock();                                    \
110         ___locked;                                                              \
111 })
112 
113 #define spin_unlock_irqrestore_rcu_node(p, flags)                               \
114         spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)                 \
115 
116 /*
117  * Initialize SRCU per-CPU data.  Note that statically allocated
118  * srcu_struct structures might already have srcu_read_lock() and
119  * srcu_read_unlock() running against them.  So if the is_static parameter
120  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
121  */
122 static void init_srcu_struct_data(struct srcu_struct *ssp)
123 {
124         int cpu;
125         struct srcu_data *sdp;
126 
127         /*
128          * Initialize the per-CPU srcu_data array, which feeds into the
129          * leaves of the srcu_node tree.
130          */
131         WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
132                      ARRAY_SIZE(sdp->srcu_unlock_count));
133         for_each_possible_cpu(cpu) {
134                 sdp = per_cpu_ptr(ssp->sda, cpu);
135                 spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
136                 rcu_segcblist_init(&sdp->srcu_cblist);
137                 sdp->srcu_cblist_invoking = false;
138                 sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq;
139                 sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq;
140                 sdp->mynode = NULL;
141                 sdp->cpu = cpu;
142                 INIT_WORK(&sdp->work, srcu_invoke_callbacks);
143                 timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
144                 sdp->ssp = ssp;
145         }
146 }
147 
148 /* Invalid seq state, used during snp node initialization */
149 #define SRCU_SNP_INIT_SEQ               0x2
150 
151 /*
152  * Check whether sequence number corresponding to snp node,
153  * is invalid.
154  */
155 static inline bool srcu_invl_snp_seq(unsigned long s)
156 {
157         return s == SRCU_SNP_INIT_SEQ;
158 }
159 
160 /*
161  * Allocated and initialize SRCU combining tree.  Returns @true if
162  * allocation succeeded and @false otherwise.
163  */
164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
165 {
166         int cpu;
167         int i;
168         int level = 0;
169         int levelspread[RCU_NUM_LVLS];
170         struct srcu_data *sdp;
171         struct srcu_node *snp;
172         struct srcu_node *snp_first;
173 
174         /* Initialize geometry if it has not already been initialized. */
175         rcu_init_geometry();
176         ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags);
177         if (!ssp->srcu_sup->node)
178                 return false;
179 
180         /* Work out the overall tree geometry. */
181         ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0];
182         for (i = 1; i < rcu_num_lvls; i++)
183                 ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1];
184         rcu_init_levelspread(levelspread, num_rcu_lvl);
185 
186         /* Each pass through this loop initializes one srcu_node structure. */
187         srcu_for_each_node_breadth_first(ssp, snp) {
188                 spin_lock_init(&ACCESS_PRIVATE(snp, lock));
189                 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
190                              ARRAY_SIZE(snp->srcu_data_have_cbs));
191                 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
192                         snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
193                         snp->srcu_data_have_cbs[i] = 0;
194                 }
195                 snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
196                 snp->grplo = -1;
197                 snp->grphi = -1;
198                 if (snp == &ssp->srcu_sup->node[0]) {
199                         /* Root node, special case. */
200                         snp->srcu_parent = NULL;
201                         continue;
202                 }
203 
204                 /* Non-root node. */
205                 if (snp == ssp->srcu_sup->level[level + 1])
206                         level++;
207                 snp->srcu_parent = ssp->srcu_sup->level[level - 1] +
208                                    (snp - ssp->srcu_sup->level[level]) /
209                                    levelspread[level - 1];
210         }
211 
212         /*
213          * Initialize the per-CPU srcu_data array, which feeds into the
214          * leaves of the srcu_node tree.
215          */
216         level = rcu_num_lvls - 1;
217         snp_first = ssp->srcu_sup->level[level];
218         for_each_possible_cpu(cpu) {
219                 sdp = per_cpu_ptr(ssp->sda, cpu);
220                 sdp->mynode = &snp_first[cpu / levelspread[level]];
221                 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
222                         if (snp->grplo < 0)
223                                 snp->grplo = cpu;
224                         snp->grphi = cpu;
225                 }
226                 sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo);
227         }
228         smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
229         return true;
230 }
231 
232 /*
233  * Initialize non-compile-time initialized fields, including the
234  * associated srcu_node and srcu_data structures.  The is_static parameter
235  * tells us that ->sda has already been wired up to srcu_data.
236  */
237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
238 {
239         if (!is_static)
240                 ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL);
241         if (!ssp->srcu_sup)
242                 return -ENOMEM;
243         if (!is_static)
244                 spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
245         ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL;
246         ssp->srcu_sup->node = NULL;
247         mutex_init(&ssp->srcu_sup->srcu_cb_mutex);
248         mutex_init(&ssp->srcu_sup->srcu_gp_mutex);
249         ssp->srcu_idx = 0;
250         ssp->srcu_sup->srcu_gp_seq = 0;
251         ssp->srcu_sup->srcu_barrier_seq = 0;
252         mutex_init(&ssp->srcu_sup->srcu_barrier_mutex);
253         atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0);
254         INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu);
255         ssp->srcu_sup->sda_is_static = is_static;
256         if (!is_static)
257                 ssp->sda = alloc_percpu(struct srcu_data);
258         if (!ssp->sda)
259                 goto err_free_sup;
260         init_srcu_struct_data(ssp);
261         ssp->srcu_sup->srcu_gp_seq_needed_exp = 0;
262         ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns();
263         if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
264                 if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC))
265                         goto err_free_sda;
266                 WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG);
267         }
268         ssp->srcu_sup->srcu_ssp = ssp;
269         smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed, 0); /* Init done. */
270         return 0;
271 
272 err_free_sda:
273         if (!is_static) {
274                 free_percpu(ssp->sda);
275                 ssp->sda = NULL;
276         }
277 err_free_sup:
278         if (!is_static) {
279                 kfree(ssp->srcu_sup);
280                 ssp->srcu_sup = NULL;
281         }
282         return -ENOMEM;
283 }
284 
285 #ifdef CONFIG_DEBUG_LOCK_ALLOC
286 
287 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
288                        struct lock_class_key *key)
289 {
290         /* Don't re-initialize a lock while it is held. */
291         debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
292         lockdep_init_map(&ssp->dep_map, name, key, 0);
293         return init_srcu_struct_fields(ssp, false);
294 }
295 EXPORT_SYMBOL_GPL(__init_srcu_struct);
296 
297 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
298 
299 /**
300  * init_srcu_struct - initialize a sleep-RCU structure
301  * @ssp: structure to initialize.
302  *
303  * Must invoke this on a given srcu_struct before passing that srcu_struct
304  * to any other function.  Each srcu_struct represents a separate domain
305  * of SRCU protection.
306  */
307 int init_srcu_struct(struct srcu_struct *ssp)
308 {
309         return init_srcu_struct_fields(ssp, false);
310 }
311 EXPORT_SYMBOL_GPL(init_srcu_struct);
312 
313 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
314 
315 /*
316  * Initiate a transition to SRCU_SIZE_BIG with lock held.
317  */
318 static void __srcu_transition_to_big(struct srcu_struct *ssp)
319 {
320         lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
321         smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC);
322 }
323 
324 /*
325  * Initiate an idempotent transition to SRCU_SIZE_BIG.
326  */
327 static void srcu_transition_to_big(struct srcu_struct *ssp)
328 {
329         unsigned long flags;
330 
331         /* Double-checked locking on ->srcu_size-state. */
332         if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL)
333                 return;
334         spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
335         if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) {
336                 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
337                 return;
338         }
339         __srcu_transition_to_big(ssp);
340         spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
341 }
342 
343 /*
344  * Check to see if the just-encountered contention event justifies
345  * a transition to SRCU_SIZE_BIG.
346  */
347 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
348 {
349         unsigned long j;
350 
351         if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state)
352                 return;
353         j = jiffies;
354         if (ssp->srcu_sup->srcu_size_jiffies != j) {
355                 ssp->srcu_sup->srcu_size_jiffies = j;
356                 ssp->srcu_sup->srcu_n_lock_retries = 0;
357         }
358         if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim)
359                 return;
360         __srcu_transition_to_big(ssp);
361 }
362 
363 /*
364  * Acquire the specified srcu_data structure's ->lock, but check for
365  * excessive contention, which results in initiation of a transition
366  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
367  * parameter permits this.
368  */
369 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
370 {
371         struct srcu_struct *ssp = sdp->ssp;
372 
373         if (spin_trylock_irqsave_rcu_node(sdp, *flags))
374                 return;
375         spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
376         spin_lock_irqsave_check_contention(ssp);
377         spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags);
378         spin_lock_irqsave_rcu_node(sdp, *flags);
379 }
380 
381 /*
382  * Acquire the specified srcu_struct structure's ->lock, but check for
383  * excessive contention, which results in initiation of a transition
384  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
385  * parameter permits this.
386  */
387 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
388 {
389         if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags))
390                 return;
391         spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
392         spin_lock_irqsave_check_contention(ssp);
393 }
394 
395 /*
396  * First-use initialization of statically allocated srcu_struct
397  * structure.  Wiring up the combining tree is more than can be
398  * done with compile-time initialization, so this check is added
399  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
400  * compile-time initialized, to resolve races involving multiple
401  * CPUs trying to garner first-use privileges.
402  */
403 static void check_init_srcu_struct(struct srcu_struct *ssp)
404 {
405         unsigned long flags;
406 
407         /* The smp_load_acquire() pairs with the smp_store_release(). */
408         if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/
409                 return; /* Already initialized. */
410         spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
411         if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) {
412                 spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
413                 return;
414         }
415         init_srcu_struct_fields(ssp, true);
416         spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
417 }
418 
419 /*
420  * Returns approximate total of the readers' ->srcu_lock_count[] values
421  * for the rank of per-CPU counters specified by idx.
422  */
423 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
424 {
425         int cpu;
426         unsigned long sum = 0;
427 
428         for_each_possible_cpu(cpu) {
429                 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
430 
431                 sum += atomic_long_read(&cpuc->srcu_lock_count[idx]);
432         }
433         return sum;
434 }
435 
436 /*
437  * Returns approximate total of the readers' ->srcu_unlock_count[] values
438  * for the rank of per-CPU counters specified by idx.
439  */
440 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
441 {
442         int cpu;
443         unsigned long mask = 0;
444         unsigned long sum = 0;
445 
446         for_each_possible_cpu(cpu) {
447                 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
448 
449                 sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]);
450                 if (IS_ENABLED(CONFIG_PROVE_RCU))
451                         mask = mask | READ_ONCE(cpuc->srcu_nmi_safety);
452         }
453         WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)),
454                   "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp);
455         return sum;
456 }
457 
458 /*
459  * Return true if the number of pre-existing readers is determined to
460  * be zero.
461  */
462 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
463 {
464         unsigned long unlocks;
465 
466         unlocks = srcu_readers_unlock_idx(ssp, idx);
467 
468         /*
469          * Make sure that a lock is always counted if the corresponding
470          * unlock is counted. Needs to be a smp_mb() as the read side may
471          * contain a read from a variable that is written to before the
472          * synchronize_srcu() in the write side. In this case smp_mb()s
473          * A and B act like the store buffering pattern.
474          *
475          * This smp_mb() also pairs with smp_mb() C to prevent accesses
476          * after the synchronize_srcu() from being executed before the
477          * grace period ends.
478          */
479         smp_mb(); /* A */
480 
481         /*
482          * If the locks are the same as the unlocks, then there must have
483          * been no readers on this index at some point in this function.
484          * But there might be more readers, as a task might have read
485          * the current ->srcu_idx but not yet have incremented its CPU's
486          * ->srcu_lock_count[idx] counter.  In fact, it is possible
487          * that most of the tasks have been preempted between fetching
488          * ->srcu_idx and incrementing ->srcu_lock_count[idx].  And there
489          * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks
490          * in a system whose address space was fully populated with memory.
491          * Call this quantity Nt.
492          *
493          * So suppose that the updater is preempted at this point in the
494          * code for a long time.  That now-preempted updater has already
495          * flipped ->srcu_idx (possibly during the preceding grace period),
496          * done an smp_mb() (again, possibly during the preceding grace
497          * period), and summed up the ->srcu_unlock_count[idx] counters.
498          * How many times can a given one of the aforementioned Nt tasks
499          * increment the old ->srcu_idx value's ->srcu_lock_count[idx]
500          * counter, in the absence of nesting?
501          *
502          * It can clearly do so once, given that it has already fetched
503          * the old value of ->srcu_idx and is just about to use that value
504          * to index its increment of ->srcu_lock_count[idx].  But as soon as
505          * it leaves that SRCU read-side critical section, it will increment
506          * ->srcu_unlock_count[idx], which must follow the updater's above
507          * read from that same value.  Thus, as soon the reading task does
508          * an smp_mb() and a later fetch from ->srcu_idx, that task will be
509          * guaranteed to get the new index.  Except that the increment of
510          * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the
511          * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock()
512          * is before the smp_mb().  Thus, that task might not see the new
513          * value of ->srcu_idx until the -second- __srcu_read_lock(),
514          * which in turn means that this task might well increment
515          * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice,
516          * not just once.
517          *
518          * However, it is important to note that a given smp_mb() takes
519          * effect not just for the task executing it, but also for any
520          * later task running on that same CPU.
521          *
522          * That is, there can be almost Nt + Nc further increments of
523          * ->srcu_lock_count[idx] for the old index, where Nc is the number
524          * of CPUs.  But this is OK because the size of the task_struct
525          * structure limits the value of Nt and current systems limit Nc
526          * to a few thousand.
527          *
528          * OK, but what about nesting?  This does impose a limit on
529          * nesting of half of the size of the task_struct structure
530          * (measured in bytes), which should be sufficient.  A late 2022
531          * TREE01 rcutorture run reported this size to be no less than
532          * 9408 bytes, allowing up to 4704 levels of nesting, which is
533          * comfortably beyond excessive.  Especially on 64-bit systems,
534          * which are unlikely to be configured with an address space fully
535          * populated with memory, at least not anytime soon.
536          */
537         return srcu_readers_lock_idx(ssp, idx) == unlocks;
538 }
539 
540 /**
541  * srcu_readers_active - returns true if there are readers. and false
542  *                       otherwise
543  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
544  *
545  * Note that this is not an atomic primitive, and can therefore suffer
546  * severe errors when invoked on an active srcu_struct.  That said, it
547  * can be useful as an error check at cleanup time.
548  */
549 static bool srcu_readers_active(struct srcu_struct *ssp)
550 {
551         int cpu;
552         unsigned long sum = 0;
553 
554         for_each_possible_cpu(cpu) {
555                 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
556 
557                 sum += atomic_long_read(&cpuc->srcu_lock_count[0]);
558                 sum += atomic_long_read(&cpuc->srcu_lock_count[1]);
559                 sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]);
560                 sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]);
561         }
562         return sum;
563 }
564 
565 /*
566  * We use an adaptive strategy for synchronize_srcu() and especially for
567  * synchronize_srcu_expedited().  We spin for a fixed time period
568  * (defined below, boot time configurable) to allow SRCU readers to exit
569  * their read-side critical sections.  If there are still some readers
570  * after one jiffy, we repeatedly block for one jiffy time periods.
571  * The blocking time is increased as the grace-period age increases,
572  * with max blocking time capped at 10 jiffies.
573  */
574 #define SRCU_DEFAULT_RETRY_CHECK_DELAY          5
575 
576 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
577 module_param(srcu_retry_check_delay, ulong, 0444);
578 
579 #define SRCU_INTERVAL           1               // Base delay if no expedited GPs pending.
580 #define SRCU_MAX_INTERVAL       10              // Maximum incremental delay from slow readers.
581 
582 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO       3UL     // Lowmark on default per-GP-phase
583                                                         // no-delay instances.
584 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI       1000UL  // Highmark on default per-GP-phase
585                                                         // no-delay instances.
586 
587 #define SRCU_UL_CLAMP_LO(val, low)      ((val) > (low) ? (val) : (low))
588 #define SRCU_UL_CLAMP_HI(val, high)     ((val) < (high) ? (val) : (high))
589 #define SRCU_UL_CLAMP(val, low, high)   SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
590 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
591 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
592 // called from process_srcu().
593 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED \
594         (2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
595 
596 // Maximum per-GP-phase consecutive no-delay instances.
597 #define SRCU_DEFAULT_MAX_NODELAY_PHASE  \
598         SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED,  \
599                       SRCU_DEFAULT_MAX_NODELAY_PHASE_LO,        \
600                       SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
601 
602 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
603 module_param(srcu_max_nodelay_phase, ulong, 0444);
604 
605 // Maximum consecutive no-delay instances.
606 #define SRCU_DEFAULT_MAX_NODELAY        (SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ? \
607                                          SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
608 
609 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
610 module_param(srcu_max_nodelay, ulong, 0444);
611 
612 /*
613  * Return grace-period delay, zero if there are expedited grace
614  * periods pending, SRCU_INTERVAL otherwise.
615  */
616 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
617 {
618         unsigned long gpstart;
619         unsigned long j;
620         unsigned long jbase = SRCU_INTERVAL;
621         struct srcu_usage *sup = ssp->srcu_sup;
622 
623         if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
624                 jbase = 0;
625         if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) {
626                 j = jiffies - 1;
627                 gpstart = READ_ONCE(sup->srcu_gp_start);
628                 if (time_after(j, gpstart))
629                         jbase += j - gpstart;
630                 if (!jbase) {
631                         WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1);
632                         if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
633                                 jbase = 1;
634                 }
635         }
636         return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
637 }
638 
639 /**
640  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
641  * @ssp: structure to clean up.
642  *
643  * Must invoke this after you are finished using a given srcu_struct that
644  * was initialized via init_srcu_struct(), else you leak memory.
645  */
646 void cleanup_srcu_struct(struct srcu_struct *ssp)
647 {
648         int cpu;
649         struct srcu_usage *sup = ssp->srcu_sup;
650 
651         if (WARN_ON(!srcu_get_delay(ssp)))
652                 return; /* Just leak it! */
653         if (WARN_ON(srcu_readers_active(ssp)))
654                 return; /* Just leak it! */
655         flush_delayed_work(&sup->work);
656         for_each_possible_cpu(cpu) {
657                 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
658 
659                 del_timer_sync(&sdp->delay_work);
660                 flush_work(&sdp->work);
661                 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
662                         return; /* Forgot srcu_barrier(), so just leak it! */
663         }
664         if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
665             WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) ||
666             WARN_ON(srcu_readers_active(ssp))) {
667                 pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
668                         __func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)),
669                         rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed);
670                 return; // Caller forgot to stop doing call_srcu()?
671                         // Or caller invoked start_poll_synchronize_srcu()
672                         // and then cleanup_srcu_struct() before that grace
673                         // period ended?
674         }
675         kfree(sup->node);
676         sup->node = NULL;
677         sup->srcu_size_state = SRCU_SIZE_SMALL;
678         if (!sup->sda_is_static) {
679                 free_percpu(ssp->sda);
680                 ssp->sda = NULL;
681                 kfree(sup);
682                 ssp->srcu_sup = NULL;
683         }
684 }
685 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
686 
687 #ifdef CONFIG_PROVE_RCU
688 /*
689  * Check for consistent NMI safety.
690  */
691 void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe)
692 {
693         int nmi_safe_mask = 1 << nmi_safe;
694         int old_nmi_safe_mask;
695         struct srcu_data *sdp;
696 
697         /* NMI-unsafe use in NMI is a bad sign */
698         WARN_ON_ONCE(!nmi_safe && in_nmi());
699         sdp = raw_cpu_ptr(ssp->sda);
700         old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety);
701         if (!old_nmi_safe_mask) {
702                 WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask);
703                 return;
704         }
705         WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask);
706 }
707 EXPORT_SYMBOL_GPL(srcu_check_nmi_safety);
708 #endif /* CONFIG_PROVE_RCU */
709 
710 /*
711  * Counts the new reader in the appropriate per-CPU element of the
712  * srcu_struct.
713  * Returns an index that must be passed to the matching srcu_read_unlock().
714  */
715 int __srcu_read_lock(struct srcu_struct *ssp)
716 {
717         int idx;
718 
719         idx = READ_ONCE(ssp->srcu_idx) & 0x1;
720         this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter);
721         smp_mb(); /* B */  /* Avoid leaking the critical section. */
722         return idx;
723 }
724 EXPORT_SYMBOL_GPL(__srcu_read_lock);
725 
726 /*
727  * Removes the count for the old reader from the appropriate per-CPU
728  * element of the srcu_struct.  Note that this may well be a different
729  * CPU than that which was incremented by the corresponding srcu_read_lock().
730  */
731 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
732 {
733         smp_mb(); /* C */  /* Avoid leaking the critical section. */
734         this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter);
735 }
736 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
737 
738 #ifdef CONFIG_NEED_SRCU_NMI_SAFE
739 
740 /*
741  * Counts the new reader in the appropriate per-CPU element of the
742  * srcu_struct, but in an NMI-safe manner using RMW atomics.
743  * Returns an index that must be passed to the matching srcu_read_unlock().
744  */
745 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
746 {
747         int idx;
748         struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
749 
750         idx = READ_ONCE(ssp->srcu_idx) & 0x1;
751         atomic_long_inc(&sdp->srcu_lock_count[idx]);
752         smp_mb__after_atomic(); /* B */  /* Avoid leaking the critical section. */
753         return idx;
754 }
755 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
756 
757 /*
758  * Removes the count for the old reader from the appropriate per-CPU
759  * element of the srcu_struct.  Note that this may well be a different
760  * CPU than that which was incremented by the corresponding srcu_read_lock().
761  */
762 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
763 {
764         struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
765 
766         smp_mb__before_atomic(); /* C */  /* Avoid leaking the critical section. */
767         atomic_long_inc(&sdp->srcu_unlock_count[idx]);
768 }
769 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
770 
771 #endif // CONFIG_NEED_SRCU_NMI_SAFE
772 
773 /*
774  * Start an SRCU grace period.
775  */
776 static void srcu_gp_start(struct srcu_struct *ssp)
777 {
778         int state;
779 
780         lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
781         WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed));
782         WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies);
783         WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0);
784         smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
785         rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq);
786         state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq);
787         WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
788 }
789 
790 
791 static void srcu_delay_timer(struct timer_list *t)
792 {
793         struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
794 
795         queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
796 }
797 
798 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
799                                        unsigned long delay)
800 {
801         if (!delay) {
802                 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
803                 return;
804         }
805 
806         timer_reduce(&sdp->delay_work, jiffies + delay);
807 }
808 
809 /*
810  * Schedule callback invocation for the specified srcu_data structure,
811  * if possible, on the corresponding CPU.
812  */
813 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
814 {
815         srcu_queue_delayed_work_on(sdp, delay);
816 }
817 
818 /*
819  * Schedule callback invocation for all srcu_data structures associated
820  * with the specified srcu_node structure that have callbacks for the
821  * just-completed grace period, the one corresponding to idx.  If possible,
822  * schedule this invocation on the corresponding CPUs.
823  */
824 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
825                                   unsigned long mask, unsigned long delay)
826 {
827         int cpu;
828 
829         for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
830                 if (!(mask & (1UL << (cpu - snp->grplo))))
831                         continue;
832                 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
833         }
834 }
835 
836 /*
837  * Note the end of an SRCU grace period.  Initiates callback invocation
838  * and starts a new grace period if needed.
839  *
840  * The ->srcu_cb_mutex acquisition does not protect any data, but
841  * instead prevents more than one grace period from starting while we
842  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
843  * array to have a finite number of elements.
844  */
845 static void srcu_gp_end(struct srcu_struct *ssp)
846 {
847         unsigned long cbdelay = 1;
848         bool cbs;
849         bool last_lvl;
850         int cpu;
851         unsigned long gpseq;
852         int idx;
853         unsigned long mask;
854         struct srcu_data *sdp;
855         unsigned long sgsne;
856         struct srcu_node *snp;
857         int ss_state;
858         struct srcu_usage *sup = ssp->srcu_sup;
859 
860         /* Prevent more than one additional grace period. */
861         mutex_lock(&sup->srcu_cb_mutex);
862 
863         /* End the current grace period. */
864         spin_lock_irq_rcu_node(sup);
865         idx = rcu_seq_state(sup->srcu_gp_seq);
866         WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
867         if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
868                 cbdelay = 0;
869 
870         WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns());
871         rcu_seq_end(&sup->srcu_gp_seq);
872         gpseq = rcu_seq_current(&sup->srcu_gp_seq);
873         if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq))
874                 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq);
875         spin_unlock_irq_rcu_node(sup);
876         mutex_unlock(&sup->srcu_gp_mutex);
877         /* A new grace period can start at this point.  But only one. */
878 
879         /* Initiate callback invocation as needed. */
880         ss_state = smp_load_acquire(&sup->srcu_size_state);
881         if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
882                 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()),
883                                         cbdelay);
884         } else {
885                 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
886                 srcu_for_each_node_breadth_first(ssp, snp) {
887                         spin_lock_irq_rcu_node(snp);
888                         cbs = false;
889                         last_lvl = snp >= sup->level[rcu_num_lvls - 1];
890                         if (last_lvl)
891                                 cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
892                         snp->srcu_have_cbs[idx] = gpseq;
893                         rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
894                         sgsne = snp->srcu_gp_seq_needed_exp;
895                         if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
896                                 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
897                         if (ss_state < SRCU_SIZE_BIG)
898                                 mask = ~0;
899                         else
900                                 mask = snp->srcu_data_have_cbs[idx];
901                         snp->srcu_data_have_cbs[idx] = 0;
902                         spin_unlock_irq_rcu_node(snp);
903                         if (cbs)
904                                 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
905                 }
906         }
907 
908         /* Occasionally prevent srcu_data counter wrap. */
909         if (!(gpseq & counter_wrap_check))
910                 for_each_possible_cpu(cpu) {
911                         sdp = per_cpu_ptr(ssp->sda, cpu);
912                         spin_lock_irq_rcu_node(sdp);
913                         if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
914                                 sdp->srcu_gp_seq_needed = gpseq;
915                         if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
916                                 sdp->srcu_gp_seq_needed_exp = gpseq;
917                         spin_unlock_irq_rcu_node(sdp);
918                 }
919 
920         /* Callback initiation done, allow grace periods after next. */
921         mutex_unlock(&sup->srcu_cb_mutex);
922 
923         /* Start a new grace period if needed. */
924         spin_lock_irq_rcu_node(sup);
925         gpseq = rcu_seq_current(&sup->srcu_gp_seq);
926         if (!rcu_seq_state(gpseq) &&
927             ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) {
928                 srcu_gp_start(ssp);
929                 spin_unlock_irq_rcu_node(sup);
930                 srcu_reschedule(ssp, 0);
931         } else {
932                 spin_unlock_irq_rcu_node(sup);
933         }
934 
935         /* Transition to big if needed. */
936         if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
937                 if (ss_state == SRCU_SIZE_ALLOC)
938                         init_srcu_struct_nodes(ssp, GFP_KERNEL);
939                 else
940                         smp_store_release(&sup->srcu_size_state, ss_state + 1);
941         }
942 }
943 
944 /*
945  * Funnel-locking scheme to scalably mediate many concurrent expedited
946  * grace-period requests.  This function is invoked for the first known
947  * expedited request for a grace period that has already been requested,
948  * but without expediting.  To start a completely new grace period,
949  * whether expedited or not, use srcu_funnel_gp_start() instead.
950  */
951 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
952                                   unsigned long s)
953 {
954         unsigned long flags;
955         unsigned long sgsne;
956 
957         if (snp)
958                 for (; snp != NULL; snp = snp->srcu_parent) {
959                         sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
960                         if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) ||
961                             (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
962                                 return;
963                         spin_lock_irqsave_rcu_node(snp, flags);
964                         sgsne = snp->srcu_gp_seq_needed_exp;
965                         if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
966                                 spin_unlock_irqrestore_rcu_node(snp, flags);
967                                 return;
968                         }
969                         WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
970                         spin_unlock_irqrestore_rcu_node(snp, flags);
971                 }
972         spin_lock_irqsave_ssp_contention(ssp, &flags);
973         if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s))
974                 WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s);
975         spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
976 }
977 
978 /*
979  * Funnel-locking scheme to scalably mediate many concurrent grace-period
980  * requests.  The winner has to do the work of actually starting grace
981  * period s.  Losers must either ensure that their desired grace-period
982  * number is recorded on at least their leaf srcu_node structure, or they
983  * must take steps to invoke their own callbacks.
984  *
985  * Note that this function also does the work of srcu_funnel_exp_start(),
986  * in some cases by directly invoking it.
987  *
988  * The srcu read lock should be hold around this function. And s is a seq snap
989  * after holding that lock.
990  */
991 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
992                                  unsigned long s, bool do_norm)
993 {
994         unsigned long flags;
995         int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
996         unsigned long sgsne;
997         struct srcu_node *snp;
998         struct srcu_node *snp_leaf;
999         unsigned long snp_seq;
1000         struct srcu_usage *sup = ssp->srcu_sup;
1001 
1002         /* Ensure that snp node tree is fully initialized before traversing it */
1003         if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1004                 snp_leaf = NULL;
1005         else
1006                 snp_leaf = sdp->mynode;
1007 
1008         if (snp_leaf)
1009                 /* Each pass through the loop does one level of the srcu_node tree. */
1010                 for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
1011                         if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf)
1012                                 return; /* GP already done and CBs recorded. */
1013                         spin_lock_irqsave_rcu_node(snp, flags);
1014                         snp_seq = snp->srcu_have_cbs[idx];
1015                         if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
1016                                 if (snp == snp_leaf && snp_seq == s)
1017                                         snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1018                                 spin_unlock_irqrestore_rcu_node(snp, flags);
1019                                 if (snp == snp_leaf && snp_seq != s) {
1020                                         srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
1021                                         return;
1022                                 }
1023                                 if (!do_norm)
1024                                         srcu_funnel_exp_start(ssp, snp, s);
1025                                 return;
1026                         }
1027                         snp->srcu_have_cbs[idx] = s;
1028                         if (snp == snp_leaf)
1029                                 snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1030                         sgsne = snp->srcu_gp_seq_needed_exp;
1031                         if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
1032                                 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1033                         spin_unlock_irqrestore_rcu_node(snp, flags);
1034                 }
1035 
1036         /* Top of tree, must ensure the grace period will be started. */
1037         spin_lock_irqsave_ssp_contention(ssp, &flags);
1038         if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) {
1039                 /*
1040                  * Record need for grace period s.  Pair with load
1041                  * acquire setting up for initialization.
1042                  */
1043                 smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/
1044         }
1045         if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s))
1046                 WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s);
1047 
1048         /* If grace period not already in progress, start it. */
1049         if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) &&
1050             rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) {
1051                 WARN_ON_ONCE(ULONG_CMP_GE(sup->srcu_gp_seq, sup->srcu_gp_seq_needed));
1052                 srcu_gp_start(ssp);
1053 
1054                 // And how can that list_add() in the "else" clause
1055                 // possibly be safe for concurrent execution?  Well,
1056                 // it isn't.  And it does not have to be.  After all, it
1057                 // can only be executed during early boot when there is only
1058                 // the one boot CPU running with interrupts still disabled.
1059                 if (likely(srcu_init_done))
1060                         queue_delayed_work(rcu_gp_wq, &sup->work,
1061                                            !!srcu_get_delay(ssp));
1062                 else if (list_empty(&sup->work.work.entry))
1063                         list_add(&sup->work.work.entry, &srcu_boot_list);
1064         }
1065         spin_unlock_irqrestore_rcu_node(sup, flags);
1066 }
1067 
1068 /*
1069  * Wait until all readers counted by array index idx complete, but
1070  * loop an additional time if there is an expedited grace period pending.
1071  * The caller must ensure that ->srcu_idx is not changed while checking.
1072  */
1073 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
1074 {
1075         unsigned long curdelay;
1076 
1077         curdelay = !srcu_get_delay(ssp);
1078 
1079         for (;;) {
1080                 if (srcu_readers_active_idx_check(ssp, idx))
1081                         return true;
1082                 if ((--trycount + curdelay) <= 0)
1083                         return false;
1084                 udelay(srcu_retry_check_delay);
1085         }
1086 }
1087 
1088 /*
1089  * Increment the ->srcu_idx counter so that future SRCU readers will
1090  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
1091  * us to wait for pre-existing readers in a starvation-free manner.
1092  */
1093 static void srcu_flip(struct srcu_struct *ssp)
1094 {
1095         /*
1096          * Because the flip of ->srcu_idx is executed only if the
1097          * preceding call to srcu_readers_active_idx_check() found that
1098          * the ->srcu_unlock_count[] and ->srcu_lock_count[] sums matched
1099          * and because that summing uses atomic_long_read(), there is
1100          * ordering due to a control dependency between that summing and
1101          * the WRITE_ONCE() in this call to srcu_flip().  This ordering
1102          * ensures that if this updater saw a given reader's increment from
1103          * __srcu_read_lock(), that reader was using a value of ->srcu_idx
1104          * from before the previous call to srcu_flip(), which should be
1105          * quite rare.  This ordering thus helps forward progress because
1106          * the grace period could otherwise be delayed by additional
1107          * calls to __srcu_read_lock() using that old (soon to be new)
1108          * value of ->srcu_idx.
1109          *
1110          * This sum-equality check and ordering also ensures that if
1111          * a given call to __srcu_read_lock() uses the new value of
1112          * ->srcu_idx, this updater's earlier scans cannot have seen
1113          * that reader's increments, which is all to the good, because
1114          * this grace period need not wait on that reader.  After all,
1115          * if those earlier scans had seen that reader, there would have
1116          * been a sum mismatch and this code would not be reached.
1117          *
1118          * This means that the following smp_mb() is redundant, but
1119          * it stays until either (1) Compilers learn about this sort of
1120          * control dependency or (2) Some production workload running on
1121          * a production system is unduly delayed by this slowpath smp_mb().
1122          */
1123         smp_mb(); /* E */  /* Pairs with B and C. */
1124 
1125         WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); // Flip the counter.
1126 
1127         /*
1128          * Ensure that if the updater misses an __srcu_read_unlock()
1129          * increment, that task's __srcu_read_lock() following its next
1130          * __srcu_read_lock() or __srcu_read_unlock() will see the above
1131          * counter update.  Note that both this memory barrier and the
1132          * one in srcu_readers_active_idx_check() provide the guarantee
1133          * for __srcu_read_lock().
1134          */
1135         smp_mb(); /* D */  /* Pairs with C. */
1136 }
1137 
1138 /*
1139  * If SRCU is likely idle, return true, otherwise return false.
1140  *
1141  * Note that it is OK for several current from-idle requests for a new
1142  * grace period from idle to specify expediting because they will all end
1143  * up requesting the same grace period anyhow.  So no loss.
1144  *
1145  * Note also that if any CPU (including the current one) is still invoking
1146  * callbacks, this function will nevertheless say "idle".  This is not
1147  * ideal, but the overhead of checking all CPUs' callback lists is even
1148  * less ideal, especially on large systems.  Furthermore, the wakeup
1149  * can happen before the callback is fully removed, so we have no choice
1150  * but to accept this type of error.
1151  *
1152  * This function is also subject to counter-wrap errors, but let's face
1153  * it, if this function was preempted for enough time for the counters
1154  * to wrap, it really doesn't matter whether or not we expedite the grace
1155  * period.  The extra overhead of a needlessly expedited grace period is
1156  * negligible when amortized over that time period, and the extra latency
1157  * of a needlessly non-expedited grace period is similarly negligible.
1158  */
1159 static bool srcu_might_be_idle(struct srcu_struct *ssp)
1160 {
1161         unsigned long curseq;
1162         unsigned long flags;
1163         struct srcu_data *sdp;
1164         unsigned long t;
1165         unsigned long tlast;
1166 
1167         check_init_srcu_struct(ssp);
1168         /* If the local srcu_data structure has callbacks, not idle.  */
1169         sdp = raw_cpu_ptr(ssp->sda);
1170         spin_lock_irqsave_rcu_node(sdp, flags);
1171         if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
1172                 spin_unlock_irqrestore_rcu_node(sdp, flags);
1173                 return false; /* Callbacks already present, so not idle. */
1174         }
1175         spin_unlock_irqrestore_rcu_node(sdp, flags);
1176 
1177         /*
1178          * No local callbacks, so probabilistically probe global state.
1179          * Exact information would require acquiring locks, which would
1180          * kill scalability, hence the probabilistic nature of the probe.
1181          */
1182 
1183         /* First, see if enough time has passed since the last GP. */
1184         t = ktime_get_mono_fast_ns();
1185         tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end);
1186         if (exp_holdoff == 0 ||
1187             time_in_range_open(t, tlast, tlast + exp_holdoff))
1188                 return false; /* Too soon after last GP. */
1189 
1190         /* Next, check for probable idleness. */
1191         curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1192         smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
1193         if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed)))
1194                 return false; /* Grace period in progress, so not idle. */
1195         smp_mb(); /* Order ->srcu_gp_seq with prior access. */
1196         if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq))
1197                 return false; /* GP # changed, so not idle. */
1198         return true; /* With reasonable probability, idle! */
1199 }
1200 
1201 /*
1202  * SRCU callback function to leak a callback.
1203  */
1204 static void srcu_leak_callback(struct rcu_head *rhp)
1205 {
1206 }
1207 
1208 /*
1209  * Start an SRCU grace period, and also queue the callback if non-NULL.
1210  */
1211 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
1212                                              struct rcu_head *rhp, bool do_norm)
1213 {
1214         unsigned long flags;
1215         int idx;
1216         bool needexp = false;
1217         bool needgp = false;
1218         unsigned long s;
1219         struct srcu_data *sdp;
1220         struct srcu_node *sdp_mynode;
1221         int ss_state;
1222 
1223         check_init_srcu_struct(ssp);
1224         /*
1225          * While starting a new grace period, make sure we are in an
1226          * SRCU read-side critical section so that the grace-period
1227          * sequence number cannot wrap around in the meantime.
1228          */
1229         idx = __srcu_read_lock_nmisafe(ssp);
1230         ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state);
1231         if (ss_state < SRCU_SIZE_WAIT_CALL)
1232                 sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
1233         else
1234                 sdp = raw_cpu_ptr(ssp->sda);
1235         spin_lock_irqsave_sdp_contention(sdp, &flags);
1236         if (rhp)
1237                 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
1238         /*
1239          * It's crucial to capture the snapshot 's' for acceleration before
1240          * reading the current gp_seq that is used for advancing. This is
1241          * essential because if the acceleration snapshot is taken after a
1242          * failed advancement attempt, there's a risk that a grace period may
1243          * conclude and a new one may start in the interim. If the snapshot is
1244          * captured after this sequence of events, the acceleration snapshot 's'
1245          * could be excessively advanced, leading to acceleration failure.
1246          * In such a scenario, an 'acceleration leak' can occur, where new
1247          * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment.
1248          * Also note that encountering advancing failures is a normal
1249          * occurrence when the grace period for RCU_WAIT_TAIL is in progress.
1250          *
1251          * To see this, consider the following events which occur if
1252          * rcu_seq_snap() were to be called after advance:
1253          *
1254          *  1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the
1255          *     RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8).
1256          *
1257          *  2) The grace period for RCU_WAIT_TAIL is seen as started but not
1258          *     completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1.
1259          *
1260          *  3) This value is passed to rcu_segcblist_advance() which can't move
1261          *     any segment forward and fails.
1262          *
1263          *  4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
1264          *     But then the call to rcu_seq_snap() observes the grace period for the
1265          *     RCU_WAIT_TAIL segment as completed and the subsequent one for the
1266          *     RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1)
1267          *     so it returns a snapshot of the next grace period, which is X + 12.
1268          *
1269          *  5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the
1270          *     freshly enqueued callback in RCU_NEXT_TAIL can't move to
1271          *     RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
1272          *     period (gp_num = X + 8). So acceleration fails.
1273          */
1274         s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1275         if (rhp) {
1276                 rcu_segcblist_advance(&sdp->srcu_cblist,
1277                                       rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1278                 /*
1279                  * Acceleration can never fail because the base current gp_seq
1280                  * used for acceleration is <= the value of gp_seq used for
1281                  * advancing. This means that RCU_NEXT_TAIL segment will
1282                  * always be able to be emptied by the acceleration into the
1283                  * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments.
1284                  */
1285                 WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s));
1286         }
1287         if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
1288                 sdp->srcu_gp_seq_needed = s;
1289                 needgp = true;
1290         }
1291         if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
1292                 sdp->srcu_gp_seq_needed_exp = s;
1293                 needexp = true;
1294         }
1295         spin_unlock_irqrestore_rcu_node(sdp, flags);
1296 
1297         /* Ensure that snp node tree is fully initialized before traversing it */
1298         if (ss_state < SRCU_SIZE_WAIT_BARRIER)
1299                 sdp_mynode = NULL;
1300         else
1301                 sdp_mynode = sdp->mynode;
1302 
1303         if (needgp)
1304                 srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1305         else if (needexp)
1306                 srcu_funnel_exp_start(ssp, sdp_mynode, s);
1307         __srcu_read_unlock_nmisafe(ssp, idx);
1308         return s;
1309 }
1310 
1311 /*
1312  * Enqueue an SRCU callback on the srcu_data structure associated with
1313  * the current CPU and the specified srcu_struct structure, initiating
1314  * grace-period processing if it is not already running.
1315  *
1316  * Note that all CPUs must agree that the grace period extended beyond
1317  * all pre-existing SRCU read-side critical section.  On systems with
1318  * more than one CPU, this means that when "func()" is invoked, each CPU
1319  * is guaranteed to have executed a full memory barrier since the end of
1320  * its last corresponding SRCU read-side critical section whose beginning
1321  * preceded the call to call_srcu().  It also means that each CPU executing
1322  * an SRCU read-side critical section that continues beyond the start of
1323  * "func()" must have executed a memory barrier after the call_srcu()
1324  * but before the beginning of that SRCU read-side critical section.
1325  * Note that these guarantees include CPUs that are offline, idle, or
1326  * executing in user mode, as well as CPUs that are executing in the kernel.
1327  *
1328  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
1329  * resulting SRCU callback function "func()", then both CPU A and CPU
1330  * B are guaranteed to execute a full memory barrier during the time
1331  * interval between the call to call_srcu() and the invocation of "func()".
1332  * This guarantee applies even if CPU A and CPU B are the same CPU (but
1333  * again only if the system has more than one CPU).
1334  *
1335  * Of course, these guarantees apply only for invocations of call_srcu(),
1336  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
1337  * srcu_struct structure.
1338  */
1339 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1340                         rcu_callback_t func, bool do_norm)
1341 {
1342         if (debug_rcu_head_queue(rhp)) {
1343                 /* Probable double call_srcu(), so leak the callback. */
1344                 WRITE_ONCE(rhp->func, srcu_leak_callback);
1345                 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
1346                 return;
1347         }
1348         rhp->func = func;
1349         (void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
1350 }
1351 
1352 /**
1353  * call_srcu() - Queue a callback for invocation after an SRCU grace period
1354  * @ssp: srcu_struct in queue the callback
1355  * @rhp: structure to be used for queueing the SRCU callback.
1356  * @func: function to be invoked after the SRCU grace period
1357  *
1358  * The callback function will be invoked some time after a full SRCU
1359  * grace period elapses, in other words after all pre-existing SRCU
1360  * read-side critical sections have completed.  However, the callback
1361  * function might well execute concurrently with other SRCU read-side
1362  * critical sections that started after call_srcu() was invoked.  SRCU
1363  * read-side critical sections are delimited by srcu_read_lock() and
1364  * srcu_read_unlock(), and may be nested.
1365  *
1366  * The callback will be invoked from process context, but must nevertheless
1367  * be fast and must not block.
1368  */
1369 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1370                rcu_callback_t func)
1371 {
1372         __call_srcu(ssp, rhp, func, true);
1373 }
1374 EXPORT_SYMBOL_GPL(call_srcu);
1375 
1376 /*
1377  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
1378  */
1379 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
1380 {
1381         struct rcu_synchronize rcu;
1382 
1383         srcu_lock_sync(&ssp->dep_map);
1384 
1385         RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
1386                          lock_is_held(&rcu_bh_lock_map) ||
1387                          lock_is_held(&rcu_lock_map) ||
1388                          lock_is_held(&rcu_sched_lock_map),
1389                          "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
1390 
1391         if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
1392                 return;
1393         might_sleep();
1394         check_init_srcu_struct(ssp);
1395         init_completion(&rcu.completion);
1396         init_rcu_head_on_stack(&rcu.head);
1397         __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
1398         wait_for_completion(&rcu.completion);
1399         destroy_rcu_head_on_stack(&rcu.head);
1400 
1401         /*
1402          * Make sure that later code is ordered after the SRCU grace
1403          * period.  This pairs with the spin_lock_irq_rcu_node()
1404          * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
1405          * because the current CPU might have been totally uninvolved with
1406          * (and thus unordered against) that grace period.
1407          */
1408         smp_mb();
1409 }
1410 
1411 /**
1412  * synchronize_srcu_expedited - Brute-force SRCU grace period
1413  * @ssp: srcu_struct with which to synchronize.
1414  *
1415  * Wait for an SRCU grace period to elapse, but be more aggressive about
1416  * spinning rather than blocking when waiting.
1417  *
1418  * Note that synchronize_srcu_expedited() has the same deadlock and
1419  * memory-ordering properties as does synchronize_srcu().
1420  */
1421 void synchronize_srcu_expedited(struct srcu_struct *ssp)
1422 {
1423         __synchronize_srcu(ssp, rcu_gp_is_normal());
1424 }
1425 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
1426 
1427 /**
1428  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
1429  * @ssp: srcu_struct with which to synchronize.
1430  *
1431  * Wait for the count to drain to zero of both indexes. To avoid the
1432  * possible starvation of synchronize_srcu(), it waits for the count of
1433  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
1434  * and then flip the srcu_idx and wait for the count of the other index.
1435  *
1436  * Can block; must be called from process context.
1437  *
1438  * Note that it is illegal to call synchronize_srcu() from the corresponding
1439  * SRCU read-side critical section; doing so will result in deadlock.
1440  * However, it is perfectly legal to call synchronize_srcu() on one
1441  * srcu_struct from some other srcu_struct's read-side critical section,
1442  * as long as the resulting graph of srcu_structs is acyclic.
1443  *
1444  * There are memory-ordering constraints implied by synchronize_srcu().
1445  * On systems with more than one CPU, when synchronize_srcu() returns,
1446  * each CPU is guaranteed to have executed a full memory barrier since
1447  * the end of its last corresponding SRCU read-side critical section
1448  * whose beginning preceded the call to synchronize_srcu().  In addition,
1449  * each CPU having an SRCU read-side critical section that extends beyond
1450  * the return from synchronize_srcu() is guaranteed to have executed a
1451  * full memory barrier after the beginning of synchronize_srcu() and before
1452  * the beginning of that SRCU read-side critical section.  Note that these
1453  * guarantees include CPUs that are offline, idle, or executing in user mode,
1454  * as well as CPUs that are executing in the kernel.
1455  *
1456  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1457  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1458  * to have executed a full memory barrier during the execution of
1459  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
1460  * are the same CPU, but again only if the system has more than one CPU.
1461  *
1462  * Of course, these memory-ordering guarantees apply only when
1463  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1464  * passed the same srcu_struct structure.
1465  *
1466  * Implementation of these memory-ordering guarantees is similar to
1467  * that of synchronize_rcu().
1468  *
1469  * If SRCU is likely idle, expedite the first request.  This semantic
1470  * was provided by Classic SRCU, and is relied upon by its users, so TREE
1471  * SRCU must also provide it.  Note that detecting idleness is heuristic
1472  * and subject to both false positives and negatives.
1473  */
1474 void synchronize_srcu(struct srcu_struct *ssp)
1475 {
1476         if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1477                 synchronize_srcu_expedited(ssp);
1478         else
1479                 __synchronize_srcu(ssp, true);
1480 }
1481 EXPORT_SYMBOL_GPL(synchronize_srcu);
1482 
1483 /**
1484  * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1485  * @ssp: srcu_struct to provide cookie for.
1486  *
1487  * This function returns a cookie that can be passed to
1488  * poll_state_synchronize_srcu(), which will return true if a full grace
1489  * period has elapsed in the meantime.  It is the caller's responsibility
1490  * to make sure that grace period happens, for example, by invoking
1491  * call_srcu() after return from get_state_synchronize_srcu().
1492  */
1493 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1494 {
1495         // Any prior manipulation of SRCU-protected data must happen
1496         // before the load from ->srcu_gp_seq.
1497         smp_mb();
1498         return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1499 }
1500 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1501 
1502 /**
1503  * start_poll_synchronize_srcu - Provide cookie and start grace period
1504  * @ssp: srcu_struct to provide cookie for.
1505  *
1506  * This function returns a cookie that can be passed to
1507  * poll_state_synchronize_srcu(), which will return true if a full grace
1508  * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1509  * this function also ensures that any needed SRCU grace period will be
1510  * started.  This convenience does come at a cost in terms of CPU overhead.
1511  */
1512 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1513 {
1514         return srcu_gp_start_if_needed(ssp, NULL, true);
1515 }
1516 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1517 
1518 /**
1519  * poll_state_synchronize_srcu - Has cookie's grace period ended?
1520  * @ssp: srcu_struct to provide cookie for.
1521  * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1522  *
1523  * This function takes the cookie that was returned from either
1524  * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1525  * returns @true if an SRCU grace period elapsed since the time that the
1526  * cookie was created.
1527  *
1528  * Because cookies are finite in size, wrapping/overflow is possible.
1529  * This is more pronounced on 32-bit systems where cookies are 32 bits,
1530  * where in theory wrapping could happen in about 14 hours assuming
1531  * 25-microsecond expedited SRCU grace periods.  However, a more likely
1532  * overflow lower bound is on the order of 24 days in the case of
1533  * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1534  * system requires geologic timespans, as in more than seven million years
1535  * even for expedited SRCU grace periods.
1536  *
1537  * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1538  * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1539  * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1540  * few minutes.  If this proves to be a problem, this counter will be
1541  * expanded to the same size as for Tree SRCU.
1542  */
1543 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1544 {
1545         if (cookie != SRCU_GET_STATE_COMPLETED &&
1546             !rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie))
1547                 return false;
1548         // Ensure that the end of the SRCU grace period happens before
1549         // any subsequent code that the caller might execute.
1550         smp_mb(); // ^^^
1551         return true;
1552 }
1553 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1554 
1555 /*
1556  * Callback function for srcu_barrier() use.
1557  */
1558 static void srcu_barrier_cb(struct rcu_head *rhp)
1559 {
1560         struct srcu_data *sdp;
1561         struct srcu_struct *ssp;
1562 
1563         sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1564         ssp = sdp->ssp;
1565         if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1566                 complete(&ssp->srcu_sup->srcu_barrier_completion);
1567 }
1568 
1569 /*
1570  * Enqueue an srcu_barrier() callback on the specified srcu_data
1571  * structure's ->cblist.  but only if that ->cblist already has at least one
1572  * callback enqueued.  Note that if a CPU already has callbacks enqueue,
1573  * it must have already registered the need for a future grace period,
1574  * so all we need do is enqueue a callback that will use the same grace
1575  * period as the last callback already in the queue.
1576  */
1577 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
1578 {
1579         spin_lock_irq_rcu_node(sdp);
1580         atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1581         sdp->srcu_barrier_head.func = srcu_barrier_cb;
1582         debug_rcu_head_queue(&sdp->srcu_barrier_head);
1583         if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1584                                    &sdp->srcu_barrier_head)) {
1585                 debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1586                 atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1587         }
1588         spin_unlock_irq_rcu_node(sdp);
1589 }
1590 
1591 /**
1592  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1593  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1594  */
1595 void srcu_barrier(struct srcu_struct *ssp)
1596 {
1597         int cpu;
1598         int idx;
1599         unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq);
1600 
1601         check_init_srcu_struct(ssp);
1602         mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex);
1603         if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) {
1604                 smp_mb(); /* Force ordering following return. */
1605                 mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1606                 return; /* Someone else did our work for us. */
1607         }
1608         rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq);
1609         init_completion(&ssp->srcu_sup->srcu_barrier_completion);
1610 
1611         /* Initial count prevents reaching zero until all CBs are posted. */
1612         atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1);
1613 
1614         idx = __srcu_read_lock_nmisafe(ssp);
1615         if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1616                 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, get_boot_cpu_id()));
1617         else
1618                 for_each_possible_cpu(cpu)
1619                         srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
1620         __srcu_read_unlock_nmisafe(ssp, idx);
1621 
1622         /* Remove the initial count, at which point reaching zero can happen. */
1623         if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1624                 complete(&ssp->srcu_sup->srcu_barrier_completion);
1625         wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion);
1626 
1627         rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq);
1628         mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1629 }
1630 EXPORT_SYMBOL_GPL(srcu_barrier);
1631 
1632 /**
1633  * srcu_batches_completed - return batches completed.
1634  * @ssp: srcu_struct on which to report batch completion.
1635  *
1636  * Report the number of batches, correlated with, but not necessarily
1637  * precisely the same as, the number of grace periods that have elapsed.
1638  */
1639 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1640 {
1641         return READ_ONCE(ssp->srcu_idx);
1642 }
1643 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1644 
1645 /*
1646  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1647  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1648  * completed in that state.
1649  */
1650 static void srcu_advance_state(struct srcu_struct *ssp)
1651 {
1652         int idx;
1653 
1654         mutex_lock(&ssp->srcu_sup->srcu_gp_mutex);
1655 
1656         /*
1657          * Because readers might be delayed for an extended period after
1658          * fetching ->srcu_idx for their index, at any point in time there
1659          * might well be readers using both idx=0 and idx=1.  We therefore
1660          * need to wait for readers to clear from both index values before
1661          * invoking a callback.
1662          *
1663          * The load-acquire ensures that we see the accesses performed
1664          * by the prior grace period.
1665          */
1666         idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */
1667         if (idx == SRCU_STATE_IDLE) {
1668                 spin_lock_irq_rcu_node(ssp->srcu_sup);
1669                 if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1670                         WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq));
1671                         spin_unlock_irq_rcu_node(ssp->srcu_sup);
1672                         mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1673                         return;
1674                 }
1675                 idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq));
1676                 if (idx == SRCU_STATE_IDLE)
1677                         srcu_gp_start(ssp);
1678                 spin_unlock_irq_rcu_node(ssp->srcu_sup);
1679                 if (idx != SRCU_STATE_IDLE) {
1680                         mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1681                         return; /* Someone else started the grace period. */
1682                 }
1683         }
1684 
1685         if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1686                 idx = 1 ^ (ssp->srcu_idx & 1);
1687                 if (!try_check_zero(ssp, idx, 1)) {
1688                         mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1689                         return; /* readers present, retry later. */
1690                 }
1691                 srcu_flip(ssp);
1692                 spin_lock_irq_rcu_node(ssp->srcu_sup);
1693                 rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2);
1694                 ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1695                 spin_unlock_irq_rcu_node(ssp->srcu_sup);
1696         }
1697 
1698         if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1699 
1700                 /*
1701                  * SRCU read-side critical sections are normally short,
1702                  * so check at least twice in quick succession after a flip.
1703                  */
1704                 idx = 1 ^ (ssp->srcu_idx & 1);
1705                 if (!try_check_zero(ssp, idx, 2)) {
1706                         mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1707                         return; /* readers present, retry later. */
1708                 }
1709                 ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1710                 srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1711         }
1712 }
1713 
1714 /*
1715  * Invoke a limited number of SRCU callbacks that have passed through
1716  * their grace period.  If there are more to do, SRCU will reschedule
1717  * the workqueue.  Note that needed memory barriers have been executed
1718  * in this task's context by srcu_readers_active_idx_check().
1719  */
1720 static void srcu_invoke_callbacks(struct work_struct *work)
1721 {
1722         long len;
1723         bool more;
1724         struct rcu_cblist ready_cbs;
1725         struct rcu_head *rhp;
1726         struct srcu_data *sdp;
1727         struct srcu_struct *ssp;
1728 
1729         sdp = container_of(work, struct srcu_data, work);
1730 
1731         ssp = sdp->ssp;
1732         rcu_cblist_init(&ready_cbs);
1733         spin_lock_irq_rcu_node(sdp);
1734         WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL));
1735         rcu_segcblist_advance(&sdp->srcu_cblist,
1736                               rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1737         /*
1738          * Although this function is theoretically re-entrant, concurrent
1739          * callbacks invocation is disallowed to avoid executing an SRCU barrier
1740          * too early.
1741          */
1742         if (sdp->srcu_cblist_invoking ||
1743             !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1744                 spin_unlock_irq_rcu_node(sdp);
1745                 return;  /* Someone else on the job or nothing to do. */
1746         }
1747 
1748         /* We are on the job!  Extract and invoke ready callbacks. */
1749         sdp->srcu_cblist_invoking = true;
1750         rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1751         len = ready_cbs.len;
1752         spin_unlock_irq_rcu_node(sdp);
1753         rhp = rcu_cblist_dequeue(&ready_cbs);
1754         for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1755                 debug_rcu_head_unqueue(rhp);
1756                 debug_rcu_head_callback(rhp);
1757                 local_bh_disable();
1758                 rhp->func(rhp);
1759                 local_bh_enable();
1760         }
1761         WARN_ON_ONCE(ready_cbs.len);
1762 
1763         /*
1764          * Update counts, accelerate new callbacks, and if needed,
1765          * schedule another round of callback invocation.
1766          */
1767         spin_lock_irq_rcu_node(sdp);
1768         rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1769         sdp->srcu_cblist_invoking = false;
1770         more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1771         spin_unlock_irq_rcu_node(sdp);
1772         /* An SRCU barrier or callbacks from previous nesting work pending */
1773         if (more)
1774                 srcu_schedule_cbs_sdp(sdp, 0);
1775 }
1776 
1777 /*
1778  * Finished one round of SRCU grace period.  Start another if there are
1779  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1780  */
1781 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1782 {
1783         bool pushgp = true;
1784 
1785         spin_lock_irq_rcu_node(ssp->srcu_sup);
1786         if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1787                 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) {
1788                         /* All requests fulfilled, time to go idle. */
1789                         pushgp = false;
1790                 }
1791         } else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) {
1792                 /* Outstanding request and no GP.  Start one. */
1793                 srcu_gp_start(ssp);
1794         }
1795         spin_unlock_irq_rcu_node(ssp->srcu_sup);
1796 
1797         if (pushgp)
1798                 queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay);
1799 }
1800 
1801 /*
1802  * This is the work-queue function that handles SRCU grace periods.
1803  */
1804 static void process_srcu(struct work_struct *work)
1805 {
1806         unsigned long curdelay;
1807         unsigned long j;
1808         struct srcu_struct *ssp;
1809         struct srcu_usage *sup;
1810 
1811         sup = container_of(work, struct srcu_usage, work.work);
1812         ssp = sup->srcu_ssp;
1813 
1814         srcu_advance_state(ssp);
1815         curdelay = srcu_get_delay(ssp);
1816         if (curdelay) {
1817                 WRITE_ONCE(sup->reschedule_count, 0);
1818         } else {
1819                 j = jiffies;
1820                 if (READ_ONCE(sup->reschedule_jiffies) == j) {
1821                         WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1);
1822                         if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay)
1823                                 curdelay = 1;
1824                 } else {
1825                         WRITE_ONCE(sup->reschedule_count, 1);
1826                         WRITE_ONCE(sup->reschedule_jiffies, j);
1827                 }
1828         }
1829         srcu_reschedule(ssp, curdelay);
1830 }
1831 
1832 void srcutorture_get_gp_data(struct srcu_struct *ssp, int *flags,
1833                              unsigned long *gp_seq)
1834 {
1835         *flags = 0;
1836         *gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1837 }
1838 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1839 
1840 static const char * const srcu_size_state_name[] = {
1841         "SRCU_SIZE_SMALL",
1842         "SRCU_SIZE_ALLOC",
1843         "SRCU_SIZE_WAIT_BARRIER",
1844         "SRCU_SIZE_WAIT_CALL",
1845         "SRCU_SIZE_WAIT_CBS1",
1846         "SRCU_SIZE_WAIT_CBS2",
1847         "SRCU_SIZE_WAIT_CBS3",
1848         "SRCU_SIZE_WAIT_CBS4",
1849         "SRCU_SIZE_BIG",
1850         "SRCU_SIZE_???",
1851 };
1852 
1853 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1854 {
1855         int cpu;
1856         int idx;
1857         unsigned long s0 = 0, s1 = 0;
1858         int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state);
1859         int ss_state_idx = ss_state;
1860 
1861         idx = ssp->srcu_idx & 0x1;
1862         if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
1863                 ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
1864         pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
1865                  tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state,
1866                  srcu_size_state_name[ss_state_idx]);
1867         if (!ssp->sda) {
1868                 // Called after cleanup_srcu_struct(), perhaps.
1869                 pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
1870         } else {
1871                 pr_cont(" per-CPU(idx=%d):", idx);
1872                 for_each_possible_cpu(cpu) {
1873                         unsigned long l0, l1;
1874                         unsigned long u0, u1;
1875                         long c0, c1;
1876                         struct srcu_data *sdp;
1877 
1878                         sdp = per_cpu_ptr(ssp->sda, cpu);
1879                         u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx]));
1880                         u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx]));
1881 
1882                         /*
1883                          * Make sure that a lock is always counted if the corresponding
1884                          * unlock is counted.
1885                          */
1886                         smp_rmb();
1887 
1888                         l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx]));
1889                         l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx]));
1890 
1891                         c0 = l0 - u0;
1892                         c1 = l1 - u1;
1893                         pr_cont(" %d(%ld,%ld %c)",
1894                                 cpu, c0, c1,
1895                                 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1896                         s0 += c0;
1897                         s1 += c1;
1898                 }
1899                 pr_cont(" T(%ld,%ld)\n", s0, s1);
1900         }
1901         if (SRCU_SIZING_IS_TORTURE())
1902                 srcu_transition_to_big(ssp);
1903 }
1904 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1905 
1906 static int __init srcu_bootup_announce(void)
1907 {
1908         pr_info("Hierarchical SRCU implementation.\n");
1909         if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1910                 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1911         if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
1912                 pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
1913         if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
1914                 pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
1915         pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
1916         return 0;
1917 }
1918 early_initcall(srcu_bootup_announce);
1919 
1920 void __init srcu_init(void)
1921 {
1922         struct srcu_usage *sup;
1923 
1924         /* Decide on srcu_struct-size strategy. */
1925         if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
1926                 if (nr_cpu_ids >= big_cpu_lim) {
1927                         convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
1928                         pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
1929                 } else {
1930                         convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
1931                         pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
1932                 }
1933         }
1934 
1935         /*
1936          * Once that is set, call_srcu() can follow the normal path and
1937          * queue delayed work. This must follow RCU workqueues creation
1938          * and timers initialization.
1939          */
1940         srcu_init_done = true;
1941         while (!list_empty(&srcu_boot_list)) {
1942                 sup = list_first_entry(&srcu_boot_list, struct srcu_usage,
1943                                       work.work.entry);
1944                 list_del_init(&sup->work.work.entry);
1945                 if (SRCU_SIZING_IS(SRCU_SIZING_INIT) &&
1946                     sup->srcu_size_state == SRCU_SIZE_SMALL)
1947                         sup->srcu_size_state = SRCU_SIZE_ALLOC;
1948                 queue_work(rcu_gp_wq, &sup->work.work);
1949         }
1950 }
1951 
1952 #ifdef CONFIG_MODULES
1953 
1954 /* Initialize any global-scope srcu_struct structures used by this module. */
1955 static int srcu_module_coming(struct module *mod)
1956 {
1957         int i;
1958         struct srcu_struct *ssp;
1959         struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1960 
1961         for (i = 0; i < mod->num_srcu_structs; i++) {
1962                 ssp = *(sspp++);
1963                 ssp->sda = alloc_percpu(struct srcu_data);
1964                 if (WARN_ON_ONCE(!ssp->sda))
1965                         return -ENOMEM;
1966         }
1967         return 0;
1968 }
1969 
1970 /* Clean up any global-scope srcu_struct structures used by this module. */
1971 static void srcu_module_going(struct module *mod)
1972 {
1973         int i;
1974         struct srcu_struct *ssp;
1975         struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1976 
1977         for (i = 0; i < mod->num_srcu_structs; i++) {
1978                 ssp = *(sspp++);
1979                 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) &&
1980                     !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static))
1981                         cleanup_srcu_struct(ssp);
1982                 if (!WARN_ON(srcu_readers_active(ssp)))
1983                         free_percpu(ssp->sda);
1984         }
1985 }
1986 
1987 /* Handle one module, either coming or going. */
1988 static int srcu_module_notify(struct notifier_block *self,
1989                               unsigned long val, void *data)
1990 {
1991         struct module *mod = data;
1992         int ret = 0;
1993 
1994         switch (val) {
1995         case MODULE_STATE_COMING:
1996                 ret = srcu_module_coming(mod);
1997                 break;
1998         case MODULE_STATE_GOING:
1999                 srcu_module_going(mod);
2000                 break;
2001         default:
2002                 break;
2003         }
2004         return ret;
2005 }
2006 
2007 static struct notifier_block srcu_module_nb = {
2008         .notifier_call = srcu_module_notify,
2009         .priority = 0,
2010 };
2011 
2012 static __init int init_srcu_module_notifier(void)
2013 {
2014         int ret;
2015 
2016         ret = register_module_notifier(&srcu_module_nb);
2017         if (ret)
2018                 pr_warn("Failed to register srcu module notifier\n");
2019         return ret;
2020 }
2021 late_initcall(init_srcu_module_notifier);
2022 
2023 #endif /* #ifdef CONFIG_MODULES */
2024 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php