1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * Copyright SUSE, 2021 10 * 11 * Author: Ingo Molnar <mingo@elte.hu> 12 * Paul E. McKenney <paulmck@linux.ibm.com> 13 * Frederic Weisbecker <frederic@kernel.org> 14 */ 15 16 #ifdef CONFIG_RCU_NOCB_CPU 17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 20 { 21 return lockdep_is_held(&rdp->nocb_lock); 22 } 23 24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 25 { 26 /* Race on early boot between thread creation and assignment */ 27 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread) 28 return true; 29 30 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread) 31 if (in_task()) 32 return true; 33 return false; 34 } 35 36 /* 37 * Offload callback processing from the boot-time-specified set of CPUs 38 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads 39 * created that pull the callbacks from the corresponding CPU, wait for 40 * a grace period to elapse, and invoke the callbacks. These kthreads 41 * are organized into GP kthreads, which manage incoming callbacks, wait for 42 * grace periods, and awaken CB kthreads, and the CB kthreads, which only 43 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs 44 * do a wake_up() on their GP kthread when they insert a callback into any 45 * empty list, unless the rcu_nocb_poll boot parameter has been specified, 46 * in which case each kthread actively polls its CPU. (Which isn't so great 47 * for energy efficiency, but which does reduce RCU's overhead on that CPU.) 48 * 49 * This is intended to be used in conjunction with Frederic Weisbecker's 50 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 51 * running CPU-bound user-mode computations. 52 * 53 * Offloading of callbacks can also be used as an energy-efficiency 54 * measure because CPUs with no RCU callbacks queued are more aggressive 55 * about entering dyntick-idle mode. 56 */ 57 58 59 /* 60 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. 61 * If the list is invalid, a warning is emitted and all CPUs are offloaded. 62 */ 63 static int __init rcu_nocb_setup(char *str) 64 { 65 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 66 if (*str == '=') { 67 if (cpulist_parse(++str, rcu_nocb_mask)) { 68 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); 69 cpumask_setall(rcu_nocb_mask); 70 } 71 } 72 rcu_state.nocb_is_setup = true; 73 return 1; 74 } 75 __setup("rcu_nocbs", rcu_nocb_setup); 76 77 static int __init parse_rcu_nocb_poll(char *arg) 78 { 79 rcu_nocb_poll = true; 80 return 1; 81 } 82 __setup("rcu_nocb_poll", parse_rcu_nocb_poll); 83 84 /* 85 * Don't bother bypassing ->cblist if the call_rcu() rate is low. 86 * After all, the main point of bypassing is to avoid lock contention 87 * on ->nocb_lock, which only can happen at high call_rcu() rates. 88 */ 89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; 90 module_param(nocb_nobypass_lim_per_jiffy, int, 0); 91 92 /* 93 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the 94 * lock isn't immediately available, perform minimal sanity check. 95 */ 96 static void rcu_nocb_bypass_lock(struct rcu_data *rdp) 97 __acquires(&rdp->nocb_bypass_lock) 98 { 99 lockdep_assert_irqs_disabled(); 100 if (raw_spin_trylock(&rdp->nocb_bypass_lock)) 101 return; 102 /* 103 * Contention expected only when local enqueue collide with 104 * remote flush from kthreads. 105 */ 106 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 107 raw_spin_lock(&rdp->nocb_bypass_lock); 108 } 109 110 /* 111 * Conditionally acquire the specified rcu_data structure's 112 * ->nocb_bypass_lock. 113 */ 114 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) 115 { 116 lockdep_assert_irqs_disabled(); 117 return raw_spin_trylock(&rdp->nocb_bypass_lock); 118 } 119 120 /* 121 * Release the specified rcu_data structure's ->nocb_bypass_lock. 122 */ 123 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) 124 __releases(&rdp->nocb_bypass_lock) 125 { 126 lockdep_assert_irqs_disabled(); 127 raw_spin_unlock(&rdp->nocb_bypass_lock); 128 } 129 130 /* 131 * Acquire the specified rcu_data structure's ->nocb_lock, but only 132 * if it corresponds to a no-CBs CPU. 133 */ 134 static void rcu_nocb_lock(struct rcu_data *rdp) 135 { 136 lockdep_assert_irqs_disabled(); 137 if (!rcu_rdp_is_offloaded(rdp)) 138 return; 139 raw_spin_lock(&rdp->nocb_lock); 140 } 141 142 /* 143 * Release the specified rcu_data structure's ->nocb_lock, but only 144 * if it corresponds to a no-CBs CPU. 145 */ 146 static void rcu_nocb_unlock(struct rcu_data *rdp) 147 { 148 if (rcu_rdp_is_offloaded(rdp)) { 149 lockdep_assert_irqs_disabled(); 150 raw_spin_unlock(&rdp->nocb_lock); 151 } 152 } 153 154 /* 155 * Release the specified rcu_data structure's ->nocb_lock and restore 156 * interrupts, but only if it corresponds to a no-CBs CPU. 157 */ 158 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 159 unsigned long flags) 160 { 161 if (rcu_rdp_is_offloaded(rdp)) { 162 lockdep_assert_irqs_disabled(); 163 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 164 } else { 165 local_irq_restore(flags); 166 } 167 } 168 169 /* Lockdep check that ->cblist may be safely accessed. */ 170 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 171 { 172 lockdep_assert_irqs_disabled(); 173 if (rcu_rdp_is_offloaded(rdp)) 174 lockdep_assert_held(&rdp->nocb_lock); 175 } 176 177 /* 178 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 179 * grace period. 180 */ 181 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 182 { 183 swake_up_all(sq); 184 } 185 186 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 187 { 188 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 189 } 190 191 static void rcu_init_one_nocb(struct rcu_node *rnp) 192 { 193 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 194 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 195 } 196 197 static bool __wake_nocb_gp(struct rcu_data *rdp_gp, 198 struct rcu_data *rdp, 199 bool force, unsigned long flags) 200 __releases(rdp_gp->nocb_gp_lock) 201 { 202 bool needwake = false; 203 204 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { 205 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 206 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 207 TPS("AlreadyAwake")); 208 return false; 209 } 210 211 if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 212 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 213 del_timer(&rdp_gp->nocb_timer); 214 } 215 216 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { 217 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); 218 needwake = true; 219 } 220 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 221 if (needwake) { 222 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); 223 if (cpu_is_offline(raw_smp_processor_id())) 224 swake_up_one_online(&rdp_gp->nocb_gp_wq); 225 else 226 wake_up_process(rdp_gp->nocb_gp_kthread); 227 } 228 229 return needwake; 230 } 231 232 /* 233 * Kick the GP kthread for this NOCB group. 234 */ 235 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 236 { 237 unsigned long flags; 238 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 239 240 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 241 return __wake_nocb_gp(rdp_gp, rdp, force, flags); 242 } 243 244 #ifdef CONFIG_RCU_LAZY 245 /* 246 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that 247 * can elapse before lazy callbacks are flushed. Lazy callbacks 248 * could be flushed much earlier for a number of other reasons 249 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are 250 * left unsubmitted to RCU after those many jiffies. 251 */ 252 #define LAZY_FLUSH_JIFFIES (10 * HZ) 253 static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES; 254 255 // To be called only from test code. 256 void rcu_set_jiffies_lazy_flush(unsigned long jif) 257 { 258 jiffies_lazy_flush = jif; 259 } 260 EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush); 261 262 unsigned long rcu_get_jiffies_lazy_flush(void) 263 { 264 return jiffies_lazy_flush; 265 } 266 EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush); 267 #endif 268 269 /* 270 * Arrange to wake the GP kthread for this NOCB group at some future 271 * time when it is safe to do so. 272 */ 273 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, 274 const char *reason) 275 { 276 unsigned long flags; 277 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 278 279 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 280 281 /* 282 * Bypass wakeup overrides previous deferments. In case of 283 * callback storms, no need to wake up too early. 284 */ 285 if (waketype == RCU_NOCB_WAKE_LAZY && 286 rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) { 287 mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush()); 288 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 289 } else if (waketype == RCU_NOCB_WAKE_BYPASS) { 290 mod_timer(&rdp_gp->nocb_timer, jiffies + 2); 291 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 292 } else { 293 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE) 294 mod_timer(&rdp_gp->nocb_timer, jiffies + 1); 295 if (rdp_gp->nocb_defer_wakeup < waketype) 296 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 297 } 298 299 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 300 301 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 302 } 303 304 /* 305 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 306 * However, if there is a callback to be enqueued and if ->nocb_bypass 307 * proves to be initially empty, just return false because the no-CB GP 308 * kthread may need to be awakened in this case. 309 * 310 * Return true if there was something to be flushed and it succeeded, otherwise 311 * false. 312 * 313 * Note that this function always returns true if rhp is NULL. 314 */ 315 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in, 316 unsigned long j, bool lazy) 317 { 318 struct rcu_cblist rcl; 319 struct rcu_head *rhp = rhp_in; 320 321 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); 322 rcu_lockdep_assert_cblist_protected(rdp); 323 lockdep_assert_held(&rdp->nocb_bypass_lock); 324 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { 325 raw_spin_unlock(&rdp->nocb_bypass_lock); 326 return false; 327 } 328 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ 329 if (rhp) 330 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 331 332 /* 333 * If the new CB requested was a lazy one, queue it onto the main 334 * ->cblist so that we can take advantage of the grace-period that will 335 * happen regardless. But queue it onto the bypass list first so that 336 * the lazy CB is ordered with the existing CBs in the bypass list. 337 */ 338 if (lazy && rhp) { 339 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 340 rhp = NULL; 341 } 342 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); 343 WRITE_ONCE(rdp->lazy_len, 0); 344 345 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); 346 WRITE_ONCE(rdp->nocb_bypass_first, j); 347 rcu_nocb_bypass_unlock(rdp); 348 return true; 349 } 350 351 /* 352 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 353 * However, if there is a callback to be enqueued and if ->nocb_bypass 354 * proves to be initially empty, just return false because the no-CB GP 355 * kthread may need to be awakened in this case. 356 * 357 * Note that this function always returns true if rhp is NULL. 358 */ 359 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 360 unsigned long j, bool lazy) 361 { 362 if (!rcu_rdp_is_offloaded(rdp)) 363 return true; 364 rcu_lockdep_assert_cblist_protected(rdp); 365 rcu_nocb_bypass_lock(rdp); 366 return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy); 367 } 368 369 /* 370 * If the ->nocb_bypass_lock is immediately available, flush the 371 * ->nocb_bypass queue into ->cblist. 372 */ 373 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) 374 { 375 rcu_lockdep_assert_cblist_protected(rdp); 376 if (!rcu_rdp_is_offloaded(rdp) || 377 !rcu_nocb_bypass_trylock(rdp)) 378 return; 379 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false)); 380 } 381 382 /* 383 * See whether it is appropriate to use the ->nocb_bypass list in order 384 * to control contention on ->nocb_lock. A limited number of direct 385 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass 386 * is non-empty, further callbacks must be placed into ->nocb_bypass, 387 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch 388 * back to direct use of ->cblist. However, ->nocb_bypass should not be 389 * used if ->cblist is empty, because otherwise callbacks can be stranded 390 * on ->nocb_bypass because we cannot count on the current CPU ever again 391 * invoking call_rcu(). The general rule is that if ->nocb_bypass is 392 * non-empty, the corresponding no-CBs grace-period kthread must not be 393 * in an indefinite sleep state. 394 * 395 * Finally, it is not permitted to use the bypass during early boot, 396 * as doing so would confuse the auto-initialization code. Besides 397 * which, there is no point in worrying about lock contention while 398 * there is only one CPU in operation. 399 */ 400 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 401 bool *was_alldone, unsigned long flags, 402 bool lazy) 403 { 404 unsigned long c; 405 unsigned long cur_gp_seq; 406 unsigned long j = jiffies; 407 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 408 bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len)); 409 410 lockdep_assert_irqs_disabled(); 411 412 // Pure softirq/rcuc based processing: no bypassing, no 413 // locking. 414 if (!rcu_rdp_is_offloaded(rdp)) { 415 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 416 return false; 417 } 418 419 // In the process of (de-)offloading: no bypassing, but 420 // locking. 421 if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 422 rcu_nocb_lock(rdp); 423 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 424 return false; /* Not offloaded, no bypassing. */ 425 } 426 427 // Don't use ->nocb_bypass during early boot. 428 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { 429 rcu_nocb_lock(rdp); 430 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 431 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 432 return false; 433 } 434 435 // If we have advanced to a new jiffy, reset counts to allow 436 // moving back from ->nocb_bypass to ->cblist. 437 if (j == rdp->nocb_nobypass_last) { 438 c = rdp->nocb_nobypass_count + 1; 439 } else { 440 WRITE_ONCE(rdp->nocb_nobypass_last, j); 441 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; 442 if (ULONG_CMP_LT(rdp->nocb_nobypass_count, 443 nocb_nobypass_lim_per_jiffy)) 444 c = 0; 445 else if (c > nocb_nobypass_lim_per_jiffy) 446 c = nocb_nobypass_lim_per_jiffy; 447 } 448 WRITE_ONCE(rdp->nocb_nobypass_count, c); 449 450 // If there hasn't yet been all that many ->cblist enqueues 451 // this jiffy, tell the caller to enqueue onto ->cblist. But flush 452 // ->nocb_bypass first. 453 // Lazy CBs throttle this back and do immediate bypass queuing. 454 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) { 455 rcu_nocb_lock(rdp); 456 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 457 if (*was_alldone) 458 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 459 TPS("FirstQ")); 460 461 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false)); 462 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 463 return false; // Caller must enqueue the callback. 464 } 465 466 // If ->nocb_bypass has been used too long or is too full, 467 // flush ->nocb_bypass to ->cblist. 468 if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) || 469 (ncbs && bypass_is_lazy && 470 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) || 471 ncbs >= qhimark) { 472 rcu_nocb_lock(rdp); 473 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 474 475 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) { 476 if (*was_alldone) 477 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 478 TPS("FirstQ")); 479 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 480 return false; // Caller must enqueue the callback. 481 } 482 if (j != rdp->nocb_gp_adv_time && 483 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 484 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 485 rcu_advance_cbs_nowake(rdp->mynode, rdp); 486 rdp->nocb_gp_adv_time = j; 487 } 488 489 // The flush succeeded and we moved CBs into the regular list. 490 // Don't wait for the wake up timer as it may be too far ahead. 491 // Wake up the GP thread now instead, if the cblist was empty. 492 __call_rcu_nocb_wake(rdp, *was_alldone, flags); 493 494 return true; // Callback already enqueued. 495 } 496 497 // We need to use the bypass. 498 rcu_nocb_bypass_lock(rdp); 499 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 500 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 501 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 502 503 if (lazy) 504 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1); 505 506 if (!ncbs) { 507 WRITE_ONCE(rdp->nocb_bypass_first, j); 508 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); 509 } 510 rcu_nocb_bypass_unlock(rdp); 511 smp_mb(); /* Order enqueue before wake. */ 512 // A wake up of the grace period kthread or timer adjustment 513 // needs to be done only if: 514 // 1. Bypass list was fully empty before (this is the first 515 // bypass list entry), or: 516 // 2. Both of these conditions are met: 517 // a. The bypass list previously had only lazy CBs, and: 518 // b. The new CB is non-lazy. 519 if (!ncbs || (bypass_is_lazy && !lazy)) { 520 // No-CBs GP kthread might be indefinitely asleep, if so, wake. 521 rcu_nocb_lock(rdp); // Rare during call_rcu() flood. 522 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { 523 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 524 TPS("FirstBQwake")); 525 __call_rcu_nocb_wake(rdp, true, flags); 526 } else { 527 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 528 TPS("FirstBQnoWake")); 529 rcu_nocb_unlock(rdp); 530 } 531 } 532 return true; // Callback already enqueued. 533 } 534 535 /* 536 * Awaken the no-CBs grace-period kthread if needed, either due to it 537 * legitimately being asleep or due to overload conditions. 538 * 539 * If warranted, also wake up the kthread servicing this CPUs queues. 540 */ 541 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, 542 unsigned long flags) 543 __releases(rdp->nocb_lock) 544 { 545 long bypass_len; 546 unsigned long cur_gp_seq; 547 unsigned long j; 548 long lazy_len; 549 long len; 550 struct task_struct *t; 551 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 552 553 // If we are being polled or there is no kthread, just leave. 554 t = READ_ONCE(rdp->nocb_gp_kthread); 555 if (rcu_nocb_poll || !t) { 556 rcu_nocb_unlock(rdp); 557 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 558 TPS("WakeNotPoll")); 559 return; 560 } 561 // Need to actually to a wakeup. 562 len = rcu_segcblist_n_cbs(&rdp->cblist); 563 bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass); 564 lazy_len = READ_ONCE(rdp->lazy_len); 565 if (was_alldone) { 566 rdp->qlen_last_fqs_check = len; 567 // Only lazy CBs in bypass list 568 if (lazy_len && bypass_len == lazy_len) { 569 rcu_nocb_unlock(rdp); 570 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY, 571 TPS("WakeLazy")); 572 } else if (!irqs_disabled_flags(flags) && cpu_online(rdp->cpu)) { 573 /* ... if queue was empty ... */ 574 rcu_nocb_unlock(rdp); 575 wake_nocb_gp(rdp, false); 576 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 577 TPS("WakeEmpty")); 578 } else { 579 /* 580 * Don't do the wake-up upfront on fragile paths. 581 * Also offline CPUs can't call swake_up_one_online() from 582 * (soft-)IRQs. Rely on the final deferred wake-up from 583 * rcutree_report_cpu_dead() 584 */ 585 rcu_nocb_unlock(rdp); 586 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, 587 TPS("WakeEmptyIsDeferred")); 588 } 589 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 590 /* ... or if many callbacks queued. */ 591 rdp->qlen_last_fqs_check = len; 592 j = jiffies; 593 if (j != rdp->nocb_gp_adv_time && 594 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 595 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 596 rcu_advance_cbs_nowake(rdp->mynode, rdp); 597 rdp->nocb_gp_adv_time = j; 598 } 599 smp_mb(); /* Enqueue before timer_pending(). */ 600 if ((rdp->nocb_cb_sleep || 601 !rcu_segcblist_ready_cbs(&rdp->cblist)) && 602 !timer_pending(&rdp_gp->nocb_timer)) { 603 rcu_nocb_unlock(rdp); 604 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, 605 TPS("WakeOvfIsDeferred")); 606 } else { 607 rcu_nocb_unlock(rdp); 608 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 609 } 610 } else { 611 rcu_nocb_unlock(rdp); 612 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 613 } 614 } 615 616 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head, 617 rcu_callback_t func, unsigned long flags, bool lazy) 618 { 619 bool was_alldone; 620 621 if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) { 622 /* Not enqueued on bypass but locked, do regular enqueue */ 623 rcutree_enqueue(rdp, head, func); 624 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 625 } 626 } 627 628 static int nocb_gp_toggle_rdp(struct rcu_data *rdp) 629 { 630 struct rcu_segcblist *cblist = &rdp->cblist; 631 unsigned long flags; 632 int ret; 633 634 rcu_nocb_lock_irqsave(rdp, flags); 635 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 636 !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 637 /* 638 * Offloading. Set our flag and notify the offload worker. 639 * We will handle this rdp until it ever gets de-offloaded. 640 */ 641 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP); 642 ret = 1; 643 } else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 644 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 645 /* 646 * De-offloading. Clear our flag and notify the de-offload worker. 647 * We will ignore this rdp until it ever gets re-offloaded. 648 */ 649 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP); 650 ret = 0; 651 } else { 652 WARN_ON_ONCE(1); 653 ret = -1; 654 } 655 656 rcu_nocb_unlock_irqrestore(rdp, flags); 657 658 return ret; 659 } 660 661 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu) 662 { 663 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); 664 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, 665 !READ_ONCE(my_rdp->nocb_gp_sleep)); 666 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); 667 } 668 669 /* 670 * No-CBs GP kthreads come here to wait for additional callbacks to show up 671 * or for grace periods to end. 672 */ 673 static void nocb_gp_wait(struct rcu_data *my_rdp) 674 { 675 bool bypass = false; 676 int __maybe_unused cpu = my_rdp->cpu; 677 unsigned long cur_gp_seq; 678 unsigned long flags; 679 bool gotcbs = false; 680 unsigned long j = jiffies; 681 bool lazy = false; 682 bool needwait_gp = false; // This prevents actual uninitialized use. 683 bool needwake; 684 bool needwake_gp; 685 struct rcu_data *rdp, *rdp_toggling = NULL; 686 struct rcu_node *rnp; 687 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. 688 bool wasempty = false; 689 690 /* 691 * Each pass through the following loop checks for CBs and for the 692 * nearest grace period (if any) to wait for next. The CB kthreads 693 * and the global grace-period kthread are awakened if needed. 694 */ 695 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); 696 /* 697 * An rcu_data structure is removed from the list after its 698 * CPU is de-offloaded and added to the list before that CPU is 699 * (re-)offloaded. If the following loop happens to be referencing 700 * that rcu_data structure during the time that the corresponding 701 * CPU is de-offloaded and then immediately re-offloaded, this 702 * loop's rdp pointer will be carried to the end of the list by 703 * the resulting pair of list operations. This can cause the loop 704 * to skip over some of the rcu_data structures that were supposed 705 * to have been scanned. Fortunately a new iteration through the 706 * entire loop is forced after a given CPU's rcu_data structure 707 * is added to the list, so the skipped-over rcu_data structures 708 * won't be ignored for long. 709 */ 710 list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) { 711 long bypass_ncbs; 712 bool flush_bypass = false; 713 long lazy_ncbs; 714 715 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); 716 rcu_nocb_lock_irqsave(rdp, flags); 717 lockdep_assert_held(&rdp->nocb_lock); 718 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 719 lazy_ncbs = READ_ONCE(rdp->lazy_len); 720 721 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) && 722 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) || 723 bypass_ncbs > 2 * qhimark)) { 724 flush_bypass = true; 725 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) && 726 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || 727 bypass_ncbs > 2 * qhimark)) { 728 flush_bypass = true; 729 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { 730 rcu_nocb_unlock_irqrestore(rdp, flags); 731 continue; /* No callbacks here, try next. */ 732 } 733 734 if (flush_bypass) { 735 // Bypass full or old, so flush it. 736 (void)rcu_nocb_try_flush_bypass(rdp, j); 737 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 738 lazy_ncbs = READ_ONCE(rdp->lazy_len); 739 } 740 741 if (bypass_ncbs) { 742 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 743 bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass")); 744 if (bypass_ncbs == lazy_ncbs) 745 lazy = true; 746 else 747 bypass = true; 748 } 749 rnp = rdp->mynode; 750 751 // Advance callbacks if helpful and low contention. 752 needwake_gp = false; 753 if (!rcu_segcblist_restempty(&rdp->cblist, 754 RCU_NEXT_READY_TAIL) || 755 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 756 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { 757 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 758 needwake_gp = rcu_advance_cbs(rnp, rdp); 759 wasempty = rcu_segcblist_restempty(&rdp->cblist, 760 RCU_NEXT_READY_TAIL); 761 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ 762 } 763 // Need to wait on some grace period? 764 WARN_ON_ONCE(wasempty && 765 !rcu_segcblist_restempty(&rdp->cblist, 766 RCU_NEXT_READY_TAIL)); 767 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { 768 if (!needwait_gp || 769 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) 770 wait_gp_seq = cur_gp_seq; 771 needwait_gp = true; 772 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 773 TPS("NeedWaitGP")); 774 } 775 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 776 needwake = rdp->nocb_cb_sleep; 777 WRITE_ONCE(rdp->nocb_cb_sleep, false); 778 } else { 779 needwake = false; 780 } 781 rcu_nocb_unlock_irqrestore(rdp, flags); 782 if (needwake) { 783 swake_up_one(&rdp->nocb_cb_wq); 784 gotcbs = true; 785 } 786 if (needwake_gp) 787 rcu_gp_kthread_wake(); 788 } 789 790 my_rdp->nocb_gp_bypass = bypass; 791 my_rdp->nocb_gp_gp = needwait_gp; 792 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; 793 794 // At least one child with non-empty ->nocb_bypass, so set 795 // timer in order to avoid stranding its callbacks. 796 if (!rcu_nocb_poll) { 797 // If bypass list only has lazy CBs. Add a deferred lazy wake up. 798 if (lazy && !bypass) { 799 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY, 800 TPS("WakeLazyIsDeferred")); 801 // Otherwise add a deferred bypass wake up. 802 } else if (bypass) { 803 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS, 804 TPS("WakeBypassIsDeferred")); 805 } 806 } 807 808 if (rcu_nocb_poll) { 809 /* Polling, so trace if first poll in the series. */ 810 if (gotcbs) 811 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); 812 if (list_empty(&my_rdp->nocb_head_rdp)) { 813 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 814 if (!my_rdp->nocb_toggling_rdp) 815 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 816 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 817 /* Wait for any offloading rdp */ 818 nocb_gp_sleep(my_rdp, cpu); 819 } else { 820 schedule_timeout_idle(1); 821 } 822 } else if (!needwait_gp) { 823 /* Wait for callbacks to appear. */ 824 nocb_gp_sleep(my_rdp, cpu); 825 } else { 826 rnp = my_rdp->mynode; 827 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); 828 swait_event_interruptible_exclusive( 829 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], 830 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || 831 !READ_ONCE(my_rdp->nocb_gp_sleep)); 832 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); 833 } 834 835 if (!rcu_nocb_poll) { 836 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 837 // (De-)queue an rdp to/from the group if its nocb state is changing 838 rdp_toggling = my_rdp->nocb_toggling_rdp; 839 if (rdp_toggling) 840 my_rdp->nocb_toggling_rdp = NULL; 841 842 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 843 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 844 del_timer(&my_rdp->nocb_timer); 845 } 846 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 847 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 848 } else { 849 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp); 850 if (rdp_toggling) { 851 /* 852 * Paranoid locking to make sure nocb_toggling_rdp is well 853 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could 854 * race with another round of nocb toggling for this rdp. 855 * Nocb locking should prevent from that already but we stick 856 * to paranoia, especially in rare path. 857 */ 858 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 859 my_rdp->nocb_toggling_rdp = NULL; 860 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 861 } 862 } 863 864 if (rdp_toggling) { 865 int ret; 866 867 ret = nocb_gp_toggle_rdp(rdp_toggling); 868 if (ret == 1) 869 list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp); 870 else if (ret == 0) 871 list_del(&rdp_toggling->nocb_entry_rdp); 872 873 swake_up_one(&rdp_toggling->nocb_state_wq); 874 } 875 876 my_rdp->nocb_gp_seq = -1; 877 WARN_ON(signal_pending(current)); 878 } 879 880 /* 881 * No-CBs grace-period-wait kthread. There is one of these per group 882 * of CPUs, but only once at least one CPU in that group has come online 883 * at least once since boot. This kthread checks for newly posted 884 * callbacks from any of the CPUs it is responsible for, waits for a 885 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances 886 * that then have callback-invocation work to do. 887 */ 888 static int rcu_nocb_gp_kthread(void *arg) 889 { 890 struct rcu_data *rdp = arg; 891 892 for (;;) { 893 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); 894 nocb_gp_wait(rdp); 895 cond_resched_tasks_rcu_qs(); 896 } 897 return 0; 898 } 899 900 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp) 901 { 902 return !READ_ONCE(rdp->nocb_cb_sleep) || kthread_should_park(); 903 } 904 905 /* 906 * Invoke any ready callbacks from the corresponding no-CBs CPU, 907 * then, if there are no more, wait for more to appear. 908 */ 909 static void nocb_cb_wait(struct rcu_data *rdp) 910 { 911 struct rcu_segcblist *cblist = &rdp->cblist; 912 unsigned long cur_gp_seq; 913 unsigned long flags; 914 bool needwake_gp = false; 915 struct rcu_node *rnp = rdp->mynode; 916 917 swait_event_interruptible_exclusive(rdp->nocb_cb_wq, 918 nocb_cb_wait_cond(rdp)); 919 if (kthread_should_park()) { 920 kthread_parkme(); 921 } else if (READ_ONCE(rdp->nocb_cb_sleep)) { 922 WARN_ON(signal_pending(current)); 923 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 924 } 925 926 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); 927 928 local_irq_save(flags); 929 rcu_momentary_dyntick_idle(); 930 local_irq_restore(flags); 931 /* 932 * Disable BH to provide the expected environment. Also, when 933 * transitioning to/from NOCB mode, a self-requeuing callback might 934 * be invoked from softirq. A short grace period could cause both 935 * instances of this callback would execute concurrently. 936 */ 937 local_bh_disable(); 938 rcu_do_batch(rdp); 939 local_bh_enable(); 940 lockdep_assert_irqs_enabled(); 941 rcu_nocb_lock_irqsave(rdp, flags); 942 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) && 943 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && 944 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ 945 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); 946 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 947 } 948 949 if (!rcu_segcblist_ready_cbs(cblist)) { 950 WRITE_ONCE(rdp->nocb_cb_sleep, true); 951 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); 952 } else { 953 WRITE_ONCE(rdp->nocb_cb_sleep, false); 954 } 955 956 rcu_nocb_unlock_irqrestore(rdp, flags); 957 if (needwake_gp) 958 rcu_gp_kthread_wake(); 959 } 960 961 /* 962 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke 963 * nocb_cb_wait() to do the dirty work. 964 */ 965 static int rcu_nocb_cb_kthread(void *arg) 966 { 967 struct rcu_data *rdp = arg; 968 969 // Each pass through this loop does one callback batch, and, 970 // if there are no more ready callbacks, waits for them. 971 for (;;) { 972 nocb_cb_wait(rdp); 973 cond_resched_tasks_rcu_qs(); 974 } 975 return 0; 976 } 977 978 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 979 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 980 { 981 return READ_ONCE(rdp->nocb_defer_wakeup) >= level; 982 } 983 984 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 985 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp, 986 struct rcu_data *rdp, int level, 987 unsigned long flags) 988 __releases(rdp_gp->nocb_gp_lock) 989 { 990 int ndw; 991 int ret; 992 993 if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) { 994 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 995 return false; 996 } 997 998 ndw = rdp_gp->nocb_defer_wakeup; 999 ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 1000 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 1001 1002 return ret; 1003 } 1004 1005 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 1006 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 1007 { 1008 unsigned long flags; 1009 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 1010 1011 WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp); 1012 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); 1013 1014 raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags); 1015 smp_mb__after_spinlock(); /* Timer expire before wakeup. */ 1016 do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags); 1017 } 1018 1019 /* 1020 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 1021 * This means we do an inexact common-case check. Note that if 1022 * we miss, ->nocb_timer will eventually clean things up. 1023 */ 1024 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1025 { 1026 unsigned long flags; 1027 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1028 1029 if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE)) 1030 return false; 1031 1032 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1033 return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags); 1034 } 1035 1036 void rcu_nocb_flush_deferred_wakeup(void) 1037 { 1038 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data)); 1039 } 1040 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup); 1041 1042 static int rdp_offload_toggle(struct rcu_data *rdp, 1043 bool offload, unsigned long flags) 1044 __releases(rdp->nocb_lock) 1045 { 1046 struct rcu_segcblist *cblist = &rdp->cblist; 1047 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1048 bool wake_gp = false; 1049 1050 rcu_segcblist_offload(cblist, offload); 1051 rcu_nocb_unlock_irqrestore(rdp, flags); 1052 1053 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1054 // Queue this rdp for add/del to/from the list to iterate on rcuog 1055 WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp); 1056 if (rdp_gp->nocb_gp_sleep) { 1057 rdp_gp->nocb_gp_sleep = false; 1058 wake_gp = true; 1059 } 1060 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1061 1062 return wake_gp; 1063 } 1064 1065 static long rcu_nocb_rdp_deoffload(void *arg) 1066 { 1067 struct rcu_data *rdp = arg; 1068 struct rcu_segcblist *cblist = &rdp->cblist; 1069 unsigned long flags; 1070 int wake_gp; 1071 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1072 1073 /* 1074 * rcu_nocb_rdp_deoffload() may be called directly if 1075 * rcuog/o[p] spawn failed, because at this time the rdp->cpu 1076 * is not online yet. 1077 */ 1078 WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu)); 1079 1080 pr_info("De-offloading %d\n", rdp->cpu); 1081 1082 rcu_nocb_lock_irqsave(rdp, flags); 1083 /* 1084 * Flush once and for all now. This suffices because we are 1085 * running on the target CPU holding ->nocb_lock (thus having 1086 * interrupts disabled), and because rdp_offload_toggle() 1087 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED. 1088 * Thus future calls to rcu_segcblist_completely_offloaded() will 1089 * return false, which means that future calls to rcu_nocb_try_bypass() 1090 * will refuse to put anything into the bypass. 1091 */ 1092 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 1093 /* 1094 * Start with invoking rcu_core() early. This way if the current thread 1095 * happens to preempt an ongoing call to rcu_core() in the middle, 1096 * leaving some work dismissed because rcu_core() still thinks the rdp is 1097 * completely offloaded, we are guaranteed a nearby future instance of 1098 * rcu_core() to catch up. 1099 */ 1100 rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE); 1101 invoke_rcu_core(); 1102 wake_gp = rdp_offload_toggle(rdp, false, flags); 1103 1104 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1105 if (rdp_gp->nocb_gp_kthread) { 1106 if (wake_gp) 1107 wake_up_process(rdp_gp->nocb_gp_kthread); 1108 1109 swait_event_exclusive(rdp->nocb_state_wq, 1110 !rcu_segcblist_test_flags(cblist, 1111 SEGCBLIST_KTHREAD_GP)); 1112 if (rdp->nocb_cb_kthread) 1113 kthread_park(rdp->nocb_cb_kthread); 1114 } else { 1115 /* 1116 * No kthread to clear the flags for us or remove the rdp from the nocb list 1117 * to iterate. Do it here instead. Locking doesn't look stricly necessary 1118 * but we stick to paranoia in this rare path. 1119 */ 1120 rcu_nocb_lock_irqsave(rdp, flags); 1121 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_GP); 1122 rcu_nocb_unlock_irqrestore(rdp, flags); 1123 1124 list_del(&rdp->nocb_entry_rdp); 1125 } 1126 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1127 1128 /* 1129 * Lock one last time to acquire latest callback updates from kthreads 1130 * so we can later handle callbacks locally without locking. 1131 */ 1132 rcu_nocb_lock_irqsave(rdp, flags); 1133 /* 1134 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb 1135 * lock is released but how about being paranoid for once? 1136 */ 1137 rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING); 1138 /* 1139 * Without SEGCBLIST_LOCKING, we can't use 1140 * rcu_nocb_unlock_irqrestore() anymore. 1141 */ 1142 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1143 1144 /* Sanity check */ 1145 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1146 1147 1148 return 0; 1149 } 1150 1151 int rcu_nocb_cpu_deoffload(int cpu) 1152 { 1153 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1154 int ret = 0; 1155 1156 cpus_read_lock(); 1157 mutex_lock(&rcu_state.barrier_mutex); 1158 if (rcu_rdp_is_offloaded(rdp)) { 1159 if (cpu_online(cpu)) { 1160 ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp); 1161 if (!ret) 1162 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1163 } else { 1164 pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu); 1165 ret = -EINVAL; 1166 } 1167 } 1168 mutex_unlock(&rcu_state.barrier_mutex); 1169 cpus_read_unlock(); 1170 1171 return ret; 1172 } 1173 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload); 1174 1175 static long rcu_nocb_rdp_offload(void *arg) 1176 { 1177 struct rcu_data *rdp = arg; 1178 struct rcu_segcblist *cblist = &rdp->cblist; 1179 unsigned long flags; 1180 int wake_gp; 1181 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1182 1183 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id()); 1184 /* 1185 * For now we only support re-offload, ie: the rdp must have been 1186 * offloaded on boot first. 1187 */ 1188 if (!rdp->nocb_gp_rdp) 1189 return -EINVAL; 1190 1191 if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread)) 1192 return -EINVAL; 1193 1194 pr_info("Offloading %d\n", rdp->cpu); 1195 1196 /* 1197 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING 1198 * is set. 1199 */ 1200 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1201 1202 /* 1203 * We didn't take the nocb lock while working on the 1204 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode). 1205 * Every modifications that have been done previously on 1206 * rdp->cblist must be visible remotely by the nocb kthreads 1207 * upon wake up after reading the cblist flags. 1208 * 1209 * The layout against nocb_lock enforces that ordering: 1210 * 1211 * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait() 1212 * ------------------------- ---------------------------- 1213 * WRITE callbacks rcu_nocb_lock() 1214 * rcu_nocb_lock() READ flags 1215 * WRITE flags READ callbacks 1216 * rcu_nocb_unlock() rcu_nocb_unlock() 1217 */ 1218 wake_gp = rdp_offload_toggle(rdp, true, flags); 1219 if (wake_gp) 1220 wake_up_process(rdp_gp->nocb_gp_kthread); 1221 1222 kthread_unpark(rdp->nocb_cb_kthread); 1223 1224 swait_event_exclusive(rdp->nocb_state_wq, 1225 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); 1226 1227 /* 1228 * All kthreads are ready to work, we can finally relieve rcu_core() and 1229 * enable nocb bypass. 1230 */ 1231 rcu_nocb_lock_irqsave(rdp, flags); 1232 rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE); 1233 rcu_nocb_unlock_irqrestore(rdp, flags); 1234 1235 return 0; 1236 } 1237 1238 int rcu_nocb_cpu_offload(int cpu) 1239 { 1240 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1241 int ret = 0; 1242 1243 cpus_read_lock(); 1244 mutex_lock(&rcu_state.barrier_mutex); 1245 if (!rcu_rdp_is_offloaded(rdp)) { 1246 if (cpu_online(cpu)) { 1247 ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp); 1248 if (!ret) 1249 cpumask_set_cpu(cpu, rcu_nocb_mask); 1250 } else { 1251 pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu); 1252 ret = -EINVAL; 1253 } 1254 } 1255 mutex_unlock(&rcu_state.barrier_mutex); 1256 cpus_read_unlock(); 1257 1258 return ret; 1259 } 1260 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload); 1261 1262 #ifdef CONFIG_RCU_LAZY 1263 static unsigned long 1264 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1265 { 1266 int cpu; 1267 unsigned long count = 0; 1268 1269 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1270 return 0; 1271 1272 /* Protect rcu_nocb_mask against concurrent (de-)offloading. */ 1273 if (!mutex_trylock(&rcu_state.barrier_mutex)) 1274 return 0; 1275 1276 /* Snapshot count of all CPUs */ 1277 for_each_cpu(cpu, rcu_nocb_mask) { 1278 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1279 1280 count += READ_ONCE(rdp->lazy_len); 1281 } 1282 1283 mutex_unlock(&rcu_state.barrier_mutex); 1284 1285 return count ? count : SHRINK_EMPTY; 1286 } 1287 1288 static unsigned long 1289 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1290 { 1291 int cpu; 1292 unsigned long flags; 1293 unsigned long count = 0; 1294 1295 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1296 return 0; 1297 /* 1298 * Protect against concurrent (de-)offloading. Otherwise nocb locking 1299 * may be ignored or imbalanced. 1300 */ 1301 if (!mutex_trylock(&rcu_state.barrier_mutex)) { 1302 /* 1303 * But really don't insist if barrier_mutex is contended since we 1304 * can't guarantee that it will never engage in a dependency 1305 * chain involving memory allocation. The lock is seldom contended 1306 * anyway. 1307 */ 1308 return 0; 1309 } 1310 1311 /* Snapshot count of all CPUs */ 1312 for_each_cpu(cpu, rcu_nocb_mask) { 1313 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1314 int _count; 1315 1316 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp))) 1317 continue; 1318 1319 if (!READ_ONCE(rdp->lazy_len)) 1320 continue; 1321 1322 rcu_nocb_lock_irqsave(rdp, flags); 1323 /* 1324 * Recheck under the nocb lock. Since we are not holding the bypass 1325 * lock we may still race with increments from the enqueuer but still 1326 * we know for sure if there is at least one lazy callback. 1327 */ 1328 _count = READ_ONCE(rdp->lazy_len); 1329 if (!_count) { 1330 rcu_nocb_unlock_irqrestore(rdp, flags); 1331 continue; 1332 } 1333 rcu_nocb_try_flush_bypass(rdp, jiffies); 1334 rcu_nocb_unlock_irqrestore(rdp, flags); 1335 wake_nocb_gp(rdp, false); 1336 sc->nr_to_scan -= _count; 1337 count += _count; 1338 if (sc->nr_to_scan <= 0) 1339 break; 1340 } 1341 1342 mutex_unlock(&rcu_state.barrier_mutex); 1343 1344 return count ? count : SHRINK_STOP; 1345 } 1346 #endif // #ifdef CONFIG_RCU_LAZY 1347 1348 void __init rcu_init_nohz(void) 1349 { 1350 int cpu; 1351 struct rcu_data *rdp; 1352 const struct cpumask *cpumask = NULL; 1353 struct shrinker * __maybe_unused lazy_rcu_shrinker; 1354 1355 #if defined(CONFIG_NO_HZ_FULL) 1356 if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask)) 1357 cpumask = tick_nohz_full_mask; 1358 #endif 1359 1360 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) && 1361 !rcu_state.nocb_is_setup && !cpumask) 1362 cpumask = cpu_possible_mask; 1363 1364 if (cpumask) { 1365 if (!cpumask_available(rcu_nocb_mask)) { 1366 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 1367 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 1368 return; 1369 } 1370 } 1371 1372 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask); 1373 rcu_state.nocb_is_setup = true; 1374 } 1375 1376 if (!rcu_state.nocb_is_setup) 1377 return; 1378 1379 #ifdef CONFIG_RCU_LAZY 1380 lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy"); 1381 if (!lazy_rcu_shrinker) { 1382 pr_err("Failed to allocate lazy_rcu shrinker!\n"); 1383 } else { 1384 lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count; 1385 lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan; 1386 1387 shrinker_register(lazy_rcu_shrinker); 1388 } 1389 #endif // #ifdef CONFIG_RCU_LAZY 1390 1391 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 1392 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 1393 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 1394 rcu_nocb_mask); 1395 } 1396 if (cpumask_empty(rcu_nocb_mask)) 1397 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 1398 else 1399 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 1400 cpumask_pr_args(rcu_nocb_mask)); 1401 if (rcu_nocb_poll) 1402 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 1403 1404 for_each_cpu(cpu, rcu_nocb_mask) { 1405 rdp = per_cpu_ptr(&rcu_data, cpu); 1406 if (rcu_segcblist_empty(&rdp->cblist)) 1407 rcu_segcblist_init(&rdp->cblist); 1408 rcu_segcblist_offload(&rdp->cblist, true); 1409 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_GP); 1410 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE); 1411 } 1412 rcu_organize_nocb_kthreads(); 1413 } 1414 1415 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 1416 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1417 { 1418 init_swait_queue_head(&rdp->nocb_cb_wq); 1419 init_swait_queue_head(&rdp->nocb_gp_wq); 1420 init_swait_queue_head(&rdp->nocb_state_wq); 1421 raw_spin_lock_init(&rdp->nocb_lock); 1422 raw_spin_lock_init(&rdp->nocb_bypass_lock); 1423 raw_spin_lock_init(&rdp->nocb_gp_lock); 1424 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 1425 rcu_cblist_init(&rdp->nocb_bypass); 1426 WRITE_ONCE(rdp->lazy_len, 0); 1427 mutex_init(&rdp->nocb_gp_kthread_mutex); 1428 } 1429 1430 /* 1431 * If the specified CPU is a no-CBs CPU that does not already have its 1432 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread 1433 * for this CPU's group has not yet been created, spawn it as well. 1434 */ 1435 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1436 { 1437 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1438 struct rcu_data *rdp_gp; 1439 struct task_struct *t; 1440 struct sched_param sp; 1441 1442 if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup) 1443 return; 1444 1445 /* If there already is an rcuo kthread, then nothing to do. */ 1446 if (rdp->nocb_cb_kthread) 1447 return; 1448 1449 /* If we didn't spawn the GP kthread first, reorganize! */ 1450 sp.sched_priority = kthread_prio; 1451 rdp_gp = rdp->nocb_gp_rdp; 1452 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1453 if (!rdp_gp->nocb_gp_kthread) { 1454 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, 1455 "rcuog/%d", rdp_gp->cpu); 1456 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) { 1457 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1458 goto end; 1459 } 1460 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); 1461 if (kthread_prio) 1462 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1463 } 1464 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1465 1466 /* Spawn the kthread for this CPU. */ 1467 t = kthread_create(rcu_nocb_cb_kthread, rdp, 1468 "rcuo%c/%d", rcu_state.abbr, cpu); 1469 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) 1470 goto end; 1471 1472 if (rcu_rdp_is_offloaded(rdp)) 1473 wake_up_process(t); 1474 else 1475 kthread_park(t); 1476 1477 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio) 1478 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1479 1480 WRITE_ONCE(rdp->nocb_cb_kthread, t); 1481 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); 1482 return; 1483 end: 1484 mutex_lock(&rcu_state.barrier_mutex); 1485 if (rcu_rdp_is_offloaded(rdp)) { 1486 rcu_nocb_rdp_deoffload(rdp); 1487 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1488 } 1489 mutex_unlock(&rcu_state.barrier_mutex); 1490 } 1491 1492 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ 1493 static int rcu_nocb_gp_stride = -1; 1494 module_param(rcu_nocb_gp_stride, int, 0444); 1495 1496 /* 1497 * Initialize GP-CB relationships for all no-CBs CPU. 1498 */ 1499 static void __init rcu_organize_nocb_kthreads(void) 1500 { 1501 int cpu; 1502 bool firsttime = true; 1503 bool gotnocbs = false; 1504 bool gotnocbscbs = true; 1505 int ls = rcu_nocb_gp_stride; 1506 int nl = 0; /* Next GP kthread. */ 1507 struct rcu_data *rdp; 1508 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ 1509 1510 if (!cpumask_available(rcu_nocb_mask)) 1511 return; 1512 if (ls == -1) { 1513 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); 1514 rcu_nocb_gp_stride = ls; 1515 } 1516 1517 /* 1518 * Each pass through this loop sets up one rcu_data structure. 1519 * Should the corresponding CPU come online in the future, then 1520 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 1521 */ 1522 for_each_possible_cpu(cpu) { 1523 rdp = per_cpu_ptr(&rcu_data, cpu); 1524 if (rdp->cpu >= nl) { 1525 /* New GP kthread, set up for CBs & next GP. */ 1526 gotnocbs = true; 1527 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 1528 rdp_gp = rdp; 1529 INIT_LIST_HEAD(&rdp->nocb_head_rdp); 1530 if (dump_tree) { 1531 if (!firsttime) 1532 pr_cont("%s\n", gotnocbscbs 1533 ? "" : " (self only)"); 1534 gotnocbscbs = false; 1535 firsttime = false; 1536 pr_alert("%s: No-CB GP kthread CPU %d:", 1537 __func__, cpu); 1538 } 1539 } else { 1540 /* Another CB kthread, link to previous GP kthread. */ 1541 gotnocbscbs = true; 1542 if (dump_tree) 1543 pr_cont(" %d", cpu); 1544 } 1545 rdp->nocb_gp_rdp = rdp_gp; 1546 if (cpumask_test_cpu(cpu, rcu_nocb_mask)) 1547 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp); 1548 } 1549 if (gotnocbs && dump_tree) 1550 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); 1551 } 1552 1553 /* 1554 * Bind the current task to the offloaded CPUs. If there are no offloaded 1555 * CPUs, leave the task unbound. Splat if the bind attempt fails. 1556 */ 1557 void rcu_bind_current_to_nocb(void) 1558 { 1559 if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask)) 1560 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 1561 } 1562 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 1563 1564 // The ->on_cpu field is available only in CONFIG_SMP=y, so... 1565 #ifdef CONFIG_SMP 1566 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1567 { 1568 return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : ""; 1569 } 1570 #else // #ifdef CONFIG_SMP 1571 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1572 { 1573 return ""; 1574 } 1575 #endif // #else #ifdef CONFIG_SMP 1576 1577 /* 1578 * Dump out nocb grace-period kthread state for the specified rcu_data 1579 * structure. 1580 */ 1581 static void show_rcu_nocb_gp_state(struct rcu_data *rdp) 1582 { 1583 struct rcu_node *rnp = rdp->mynode; 1584 1585 pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n", 1586 rdp->cpu, 1587 "kK"[!!rdp->nocb_gp_kthread], 1588 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], 1589 "dD"[!!rdp->nocb_defer_wakeup], 1590 "tT"[timer_pending(&rdp->nocb_timer)], 1591 "sS"[!!rdp->nocb_gp_sleep], 1592 ".W"[swait_active(&rdp->nocb_gp_wq)], 1593 ".W"[swait_active(&rnp->nocb_gp_wq[0])], 1594 ".W"[swait_active(&rnp->nocb_gp_wq[1])], 1595 ".B"[!!rdp->nocb_gp_bypass], 1596 ".G"[!!rdp->nocb_gp_gp], 1597 (long)rdp->nocb_gp_seq, 1598 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops), 1599 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.', 1600 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, 1601 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread)); 1602 } 1603 1604 /* Dump out nocb kthread state for the specified rcu_data structure. */ 1605 static void show_rcu_nocb_state(struct rcu_data *rdp) 1606 { 1607 char bufw[20]; 1608 char bufr[20]; 1609 struct rcu_data *nocb_next_rdp; 1610 struct rcu_segcblist *rsclp = &rdp->cblist; 1611 bool waslocked; 1612 bool wassleep; 1613 1614 if (rdp->nocb_gp_rdp == rdp) 1615 show_rcu_nocb_gp_state(rdp); 1616 1617 nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp, 1618 &rdp->nocb_entry_rdp, 1619 typeof(*rdp), 1620 nocb_entry_rdp); 1621 1622 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]); 1623 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]); 1624 pr_info(" CB %d^%d->%d %c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n", 1625 rdp->cpu, rdp->nocb_gp_rdp->cpu, 1626 nocb_next_rdp ? nocb_next_rdp->cpu : -1, 1627 "kK"[!!rdp->nocb_cb_kthread], 1628 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], 1629 "lL"[raw_spin_is_locked(&rdp->nocb_lock)], 1630 "sS"[!!rdp->nocb_cb_sleep], 1631 ".W"[swait_active(&rdp->nocb_cb_wq)], 1632 jiffies - rdp->nocb_bypass_first, 1633 jiffies - rdp->nocb_nobypass_last, 1634 rdp->nocb_nobypass_count, 1635 ".D"[rcu_segcblist_ready_cbs(rsclp)], 1636 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)], 1637 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw, 1638 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)], 1639 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr, 1640 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)], 1641 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], 1642 rcu_segcblist_n_cbs(&rdp->cblist), 1643 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.', 1644 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1, 1645 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); 1646 1647 /* It is OK for GP kthreads to have GP state. */ 1648 if (rdp->nocb_gp_rdp == rdp) 1649 return; 1650 1651 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); 1652 wassleep = swait_active(&rdp->nocb_gp_wq); 1653 if (!rdp->nocb_gp_sleep && !waslocked && !wassleep) 1654 return; /* Nothing untoward. */ 1655 1656 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n", 1657 "lL"[waslocked], 1658 "dD"[!!rdp->nocb_defer_wakeup], 1659 "sS"[!!rdp->nocb_gp_sleep], 1660 ".W"[wassleep]); 1661 } 1662 1663 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 1664 1665 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 1666 { 1667 return 0; 1668 } 1669 1670 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 1671 { 1672 return false; 1673 } 1674 1675 /* No ->nocb_lock to acquire. */ 1676 static void rcu_nocb_lock(struct rcu_data *rdp) 1677 { 1678 } 1679 1680 /* No ->nocb_lock to release. */ 1681 static void rcu_nocb_unlock(struct rcu_data *rdp) 1682 { 1683 } 1684 1685 /* No ->nocb_lock to release. */ 1686 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 1687 unsigned long flags) 1688 { 1689 local_irq_restore(flags); 1690 } 1691 1692 /* Lockdep check that ->cblist may be safely accessed. */ 1693 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 1694 { 1695 lockdep_assert_irqs_disabled(); 1696 } 1697 1698 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1699 { 1700 } 1701 1702 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1703 { 1704 return NULL; 1705 } 1706 1707 static void rcu_init_one_nocb(struct rcu_node *rnp) 1708 { 1709 } 1710 1711 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 1712 { 1713 return false; 1714 } 1715 1716 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1717 unsigned long j, bool lazy) 1718 { 1719 return true; 1720 } 1721 1722 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head, 1723 rcu_callback_t func, unsigned long flags, bool lazy) 1724 { 1725 WARN_ON_ONCE(1); /* Should be dead code! */ 1726 } 1727 1728 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, 1729 unsigned long flags) 1730 { 1731 WARN_ON_ONCE(1); /* Should be dead code! */ 1732 } 1733 1734 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1735 { 1736 } 1737 1738 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 1739 { 1740 return false; 1741 } 1742 1743 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1744 { 1745 return false; 1746 } 1747 1748 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1749 { 1750 } 1751 1752 static void show_rcu_nocb_state(struct rcu_data *rdp) 1753 { 1754 } 1755 1756 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 1757
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.