~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/rcu/tree_plugin.h

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0+ */
  2 /*
  3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
  4  * Internal non-public definitions that provide either classic
  5  * or preemptible semantics.
  6  *
  7  * Copyright Red Hat, 2009
  8  * Copyright IBM Corporation, 2009
  9  *
 10  * Author: Ingo Molnar <mingo@elte.hu>
 11  *         Paul E. McKenney <paulmck@linux.ibm.com>
 12  */
 13 
 14 #include "../locking/rtmutex_common.h"
 15 
 16 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
 17 {
 18         /*
 19          * In order to read the offloaded state of an rdp in a safe
 20          * and stable way and prevent from its value to be changed
 21          * under us, we must either hold the barrier mutex, the cpu
 22          * hotplug lock (read or write) or the nocb lock. Local
 23          * non-preemptible reads are also safe. NOCB kthreads and
 24          * timers have their own means of synchronization against the
 25          * offloaded state updaters.
 26          */
 27         RCU_LOCKDEP_WARN(
 28                 !(lockdep_is_held(&rcu_state.barrier_mutex) ||
 29                   (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
 30                   rcu_lockdep_is_held_nocb(rdp) ||
 31                   (!(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible()) &&
 32                    rdp == this_cpu_ptr(&rcu_data)) ||
 33                   rcu_current_is_nocb_kthread(rdp)),
 34                 "Unsafe read of RCU_NOCB offloaded state"
 35         );
 36 
 37         return rcu_segcblist_is_offloaded(&rdp->cblist);
 38 }
 39 
 40 /*
 41  * Check the RCU kernel configuration parameters and print informative
 42  * messages about anything out of the ordinary.
 43  */
 44 static void __init rcu_bootup_announce_oddness(void)
 45 {
 46         if (IS_ENABLED(CONFIG_RCU_TRACE))
 47                 pr_info("\tRCU event tracing is enabled.\n");
 48         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
 49             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
 50                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
 51                         RCU_FANOUT);
 52         if (rcu_fanout_exact)
 53                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
 54         if (IS_ENABLED(CONFIG_PROVE_RCU))
 55                 pr_info("\tRCU lockdep checking is enabled.\n");
 56         if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
 57                 pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n");
 58         if (RCU_NUM_LVLS >= 4)
 59                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
 60         if (RCU_FANOUT_LEAF != 16)
 61                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
 62                         RCU_FANOUT_LEAF);
 63         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
 64                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
 65                         rcu_fanout_leaf);
 66         if (nr_cpu_ids != NR_CPUS)
 67                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
 68 #ifdef CONFIG_RCU_BOOST
 69         pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
 70                 kthread_prio, CONFIG_RCU_BOOST_DELAY);
 71 #endif
 72         if (blimit != DEFAULT_RCU_BLIMIT)
 73                 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
 74         if (qhimark != DEFAULT_RCU_QHIMARK)
 75                 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
 76         if (qlowmark != DEFAULT_RCU_QLOMARK)
 77                 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
 78         if (qovld != DEFAULT_RCU_QOVLD)
 79                 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
 80         if (jiffies_till_first_fqs != ULONG_MAX)
 81                 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
 82         if (jiffies_till_next_fqs != ULONG_MAX)
 83                 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
 84         if (jiffies_till_sched_qs != ULONG_MAX)
 85                 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
 86         if (rcu_kick_kthreads)
 87                 pr_info("\tKick kthreads if too-long grace period.\n");
 88         if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
 89                 pr_info("\tRCU callback double-/use-after-free debug is enabled.\n");
 90         if (gp_preinit_delay)
 91                 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
 92         if (gp_init_delay)
 93                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
 94         if (gp_cleanup_delay)
 95                 pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay);
 96         if (nohz_full_patience_delay < 0) {
 97                 pr_info("\tRCU NOCB CPU patience negative (%d), resetting to zero.\n", nohz_full_patience_delay);
 98                 nohz_full_patience_delay = 0;
 99         } else if (nohz_full_patience_delay > 5 * MSEC_PER_SEC) {
100                 pr_info("\tRCU NOCB CPU patience too large (%d), resetting to %ld.\n", nohz_full_patience_delay, 5 * MSEC_PER_SEC);
101                 nohz_full_patience_delay = 5 * MSEC_PER_SEC;
102         } else if (nohz_full_patience_delay) {
103                 pr_info("\tRCU NOCB CPU patience set to %d milliseconds.\n", nohz_full_patience_delay);
104         }
105         nohz_full_patience_delay_jiffies = msecs_to_jiffies(nohz_full_patience_delay);
106         if (!use_softirq)
107                 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
108         if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
109                 pr_info("\tRCU debug extended QS entry/exit.\n");
110         rcupdate_announce_bootup_oddness();
111 }
112 
113 #ifdef CONFIG_PREEMPT_RCU
114 
115 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
116 static void rcu_read_unlock_special(struct task_struct *t);
117 
118 /*
119  * Tell them what RCU they are running.
120  */
121 static void __init rcu_bootup_announce(void)
122 {
123         pr_info("Preemptible hierarchical RCU implementation.\n");
124         rcu_bootup_announce_oddness();
125 }
126 
127 /* Flags for rcu_preempt_ctxt_queue() decision table. */
128 #define RCU_GP_TASKS    0x8
129 #define RCU_EXP_TASKS   0x4
130 #define RCU_GP_BLKD     0x2
131 #define RCU_EXP_BLKD    0x1
132 
133 /*
134  * Queues a task preempted within an RCU-preempt read-side critical
135  * section into the appropriate location within the ->blkd_tasks list,
136  * depending on the states of any ongoing normal and expedited grace
137  * periods.  The ->gp_tasks pointer indicates which element the normal
138  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
139  * indicates which element the expedited grace period is waiting on (again,
140  * NULL if none).  If a grace period is waiting on a given element in the
141  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
142  * adding a task to the tail of the list blocks any grace period that is
143  * already waiting on one of the elements.  In contrast, adding a task
144  * to the head of the list won't block any grace period that is already
145  * waiting on one of the elements.
146  *
147  * This queuing is imprecise, and can sometimes make an ongoing grace
148  * period wait for a task that is not strictly speaking blocking it.
149  * Given the choice, we needlessly block a normal grace period rather than
150  * blocking an expedited grace period.
151  *
152  * Note that an endless sequence of expedited grace periods still cannot
153  * indefinitely postpone a normal grace period.  Eventually, all of the
154  * fixed number of preempted tasks blocking the normal grace period that are
155  * not also blocking the expedited grace period will resume and complete
156  * their RCU read-side critical sections.  At that point, the ->gp_tasks
157  * pointer will equal the ->exp_tasks pointer, at which point the end of
158  * the corresponding expedited grace period will also be the end of the
159  * normal grace period.
160  */
161 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
162         __releases(rnp->lock) /* But leaves rrupts disabled. */
163 {
164         int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
165                          (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
166                          (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
167                          (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
168         struct task_struct *t = current;
169 
170         raw_lockdep_assert_held_rcu_node(rnp);
171         WARN_ON_ONCE(rdp->mynode != rnp);
172         WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
173         /* RCU better not be waiting on newly onlined CPUs! */
174         WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
175                      rdp->grpmask);
176 
177         /*
178          * Decide where to queue the newly blocked task.  In theory,
179          * this could be an if-statement.  In practice, when I tried
180          * that, it was quite messy.
181          */
182         switch (blkd_state) {
183         case 0:
184         case                RCU_EXP_TASKS:
185         case                RCU_EXP_TASKS + RCU_GP_BLKD:
186         case RCU_GP_TASKS:
187         case RCU_GP_TASKS + RCU_EXP_TASKS:
188 
189                 /*
190                  * Blocking neither GP, or first task blocking the normal
191                  * GP but not blocking the already-waiting expedited GP.
192                  * Queue at the head of the list to avoid unnecessarily
193                  * blocking the already-waiting GPs.
194                  */
195                 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
196                 break;
197 
198         case                                              RCU_EXP_BLKD:
199         case                                RCU_GP_BLKD:
200         case                                RCU_GP_BLKD + RCU_EXP_BLKD:
201         case RCU_GP_TASKS +                               RCU_EXP_BLKD:
202         case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
203         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
204 
205                 /*
206                  * First task arriving that blocks either GP, or first task
207                  * arriving that blocks the expedited GP (with the normal
208                  * GP already waiting), or a task arriving that blocks
209                  * both GPs with both GPs already waiting.  Queue at the
210                  * tail of the list to avoid any GP waiting on any of the
211                  * already queued tasks that are not blocking it.
212                  */
213                 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
214                 break;
215 
216         case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
217         case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
218         case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
219 
220                 /*
221                  * Second or subsequent task blocking the expedited GP.
222                  * The task either does not block the normal GP, or is the
223                  * first task blocking the normal GP.  Queue just after
224                  * the first task blocking the expedited GP.
225                  */
226                 list_add(&t->rcu_node_entry, rnp->exp_tasks);
227                 break;
228 
229         case RCU_GP_TASKS +                 RCU_GP_BLKD:
230         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
231 
232                 /*
233                  * Second or subsequent task blocking the normal GP.
234                  * The task does not block the expedited GP. Queue just
235                  * after the first task blocking the normal GP.
236                  */
237                 list_add(&t->rcu_node_entry, rnp->gp_tasks);
238                 break;
239 
240         default:
241 
242                 /* Yet another exercise in excessive paranoia. */
243                 WARN_ON_ONCE(1);
244                 break;
245         }
246 
247         /*
248          * We have now queued the task.  If it was the first one to
249          * block either grace period, update the ->gp_tasks and/or
250          * ->exp_tasks pointers, respectively, to reference the newly
251          * blocked tasks.
252          */
253         if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
254                 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
255                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
256         }
257         if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
258                 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
259         WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
260                      !(rnp->qsmask & rdp->grpmask));
261         WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
262                      !(rnp->expmask & rdp->grpmask));
263         raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
264 
265         /*
266          * Report the quiescent state for the expedited GP.  This expedited
267          * GP should not be able to end until we report, so there should be
268          * no need to check for a subsequent expedited GP.  (Though we are
269          * still in a quiescent state in any case.)
270          *
271          * Interrupts are disabled, so ->cpu_no_qs.b.exp cannot change.
272          */
273         if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp)
274                 rcu_report_exp_rdp(rdp);
275         else
276                 WARN_ON_ONCE(rdp->cpu_no_qs.b.exp);
277 }
278 
279 /*
280  * Record a preemptible-RCU quiescent state for the specified CPU.
281  * Note that this does not necessarily mean that the task currently running
282  * on the CPU is in a quiescent state:  Instead, it means that the current
283  * grace period need not wait on any RCU read-side critical section that
284  * starts later on this CPU.  It also means that if the current task is
285  * in an RCU read-side critical section, it has already added itself to
286  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
287  * current task, there might be any number of other tasks blocked while
288  * in an RCU read-side critical section.
289  *
290  * Unlike non-preemptible-RCU, quiescent state reports for expedited
291  * grace periods are handled separately via deferred quiescent states
292  * and context switch events.
293  *
294  * Callers to this function must disable preemption.
295  */
296 static void rcu_qs(void)
297 {
298         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
299         if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) {
300                 trace_rcu_grace_period(TPS("rcu_preempt"),
301                                        __this_cpu_read(rcu_data.gp_seq),
302                                        TPS("cpuqs"));
303                 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
304                 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
305                 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
306         }
307 }
308 
309 /*
310  * We have entered the scheduler, and the current task might soon be
311  * context-switched away from.  If this task is in an RCU read-side
312  * critical section, we will no longer be able to rely on the CPU to
313  * record that fact, so we enqueue the task on the blkd_tasks list.
314  * The task will dequeue itself when it exits the outermost enclosing
315  * RCU read-side critical section.  Therefore, the current grace period
316  * cannot be permitted to complete until the blkd_tasks list entries
317  * predating the current grace period drain, in other words, until
318  * rnp->gp_tasks becomes NULL.
319  *
320  * Caller must disable interrupts.
321  */
322 void rcu_note_context_switch(bool preempt)
323 {
324         struct task_struct *t = current;
325         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
326         struct rcu_node *rnp;
327 
328         trace_rcu_utilization(TPS("Start context switch"));
329         lockdep_assert_irqs_disabled();
330         WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
331         if (rcu_preempt_depth() > 0 &&
332             !t->rcu_read_unlock_special.b.blocked) {
333 
334                 /* Possibly blocking in an RCU read-side critical section. */
335                 rnp = rdp->mynode;
336                 raw_spin_lock_rcu_node(rnp);
337                 t->rcu_read_unlock_special.b.blocked = true;
338                 t->rcu_blocked_node = rnp;
339 
340                 /*
341                  * Verify the CPU's sanity, trace the preemption, and
342                  * then queue the task as required based on the states
343                  * of any ongoing and expedited grace periods.
344                  */
345                 WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp));
346                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
347                 trace_rcu_preempt_task(rcu_state.name,
348                                        t->pid,
349                                        (rnp->qsmask & rdp->grpmask)
350                                        ? rnp->gp_seq
351                                        : rcu_seq_snap(&rnp->gp_seq));
352                 rcu_preempt_ctxt_queue(rnp, rdp);
353         } else {
354                 rcu_preempt_deferred_qs(t);
355         }
356 
357         /*
358          * Either we were not in an RCU read-side critical section to
359          * begin with, or we have now recorded that critical section
360          * globally.  Either way, we can now note a quiescent state
361          * for this CPU.  Again, if we were in an RCU read-side critical
362          * section, and if that critical section was blocking the current
363          * grace period, then the fact that the task has been enqueued
364          * means that we continue to block the current grace period.
365          */
366         rcu_qs();
367         if (rdp->cpu_no_qs.b.exp)
368                 rcu_report_exp_rdp(rdp);
369         rcu_tasks_qs(current, preempt);
370         trace_rcu_utilization(TPS("End context switch"));
371 }
372 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
373 
374 /*
375  * Check for preempted RCU readers blocking the current grace period
376  * for the specified rcu_node structure.  If the caller needs a reliable
377  * answer, it must hold the rcu_node's ->lock.
378  */
379 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
380 {
381         return READ_ONCE(rnp->gp_tasks) != NULL;
382 }
383 
384 /* limit value for ->rcu_read_lock_nesting. */
385 #define RCU_NEST_PMAX (INT_MAX / 2)
386 
387 static void rcu_preempt_read_enter(void)
388 {
389         WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
390 }
391 
392 static int rcu_preempt_read_exit(void)
393 {
394         int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;
395 
396         WRITE_ONCE(current->rcu_read_lock_nesting, ret);
397         return ret;
398 }
399 
400 static void rcu_preempt_depth_set(int val)
401 {
402         WRITE_ONCE(current->rcu_read_lock_nesting, val);
403 }
404 
405 /*
406  * Preemptible RCU implementation for rcu_read_lock().
407  * Just increment ->rcu_read_lock_nesting, shared state will be updated
408  * if we block.
409  */
410 void __rcu_read_lock(void)
411 {
412         rcu_preempt_read_enter();
413         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
414                 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
415         if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
416                 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
417         barrier();  /* critical section after entry code. */
418 }
419 EXPORT_SYMBOL_GPL(__rcu_read_lock);
420 
421 /*
422  * Preemptible RCU implementation for rcu_read_unlock().
423  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
424  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
425  * invoke rcu_read_unlock_special() to clean up after a context switch
426  * in an RCU read-side critical section and other special cases.
427  */
428 void __rcu_read_unlock(void)
429 {
430         struct task_struct *t = current;
431 
432         barrier();  // critical section before exit code.
433         if (rcu_preempt_read_exit() == 0) {
434                 barrier();  // critical-section exit before .s check.
435                 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
436                         rcu_read_unlock_special(t);
437         }
438         if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
439                 int rrln = rcu_preempt_depth();
440 
441                 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
442         }
443 }
444 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
445 
446 /*
447  * Advance a ->blkd_tasks-list pointer to the next entry, instead
448  * returning NULL if at the end of the list.
449  */
450 static struct list_head *rcu_next_node_entry(struct task_struct *t,
451                                              struct rcu_node *rnp)
452 {
453         struct list_head *np;
454 
455         np = t->rcu_node_entry.next;
456         if (np == &rnp->blkd_tasks)
457                 np = NULL;
458         return np;
459 }
460 
461 /*
462  * Return true if the specified rcu_node structure has tasks that were
463  * preempted within an RCU read-side critical section.
464  */
465 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
466 {
467         return !list_empty(&rnp->blkd_tasks);
468 }
469 
470 /*
471  * Report deferred quiescent states.  The deferral time can
472  * be quite short, for example, in the case of the call from
473  * rcu_read_unlock_special().
474  */
475 static notrace void
476 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
477 {
478         bool empty_exp;
479         bool empty_norm;
480         bool empty_exp_now;
481         struct list_head *np;
482         bool drop_boost_mutex = false;
483         struct rcu_data *rdp;
484         struct rcu_node *rnp;
485         union rcu_special special;
486 
487         /*
488          * If RCU core is waiting for this CPU to exit its critical section,
489          * report the fact that it has exited.  Because irqs are disabled,
490          * t->rcu_read_unlock_special cannot change.
491          */
492         special = t->rcu_read_unlock_special;
493         rdp = this_cpu_ptr(&rcu_data);
494         if (!special.s && !rdp->cpu_no_qs.b.exp) {
495                 local_irq_restore(flags);
496                 return;
497         }
498         t->rcu_read_unlock_special.s = 0;
499         if (special.b.need_qs) {
500                 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
501                         rdp->cpu_no_qs.b.norm = false;
502                         rcu_report_qs_rdp(rdp);
503                         udelay(rcu_unlock_delay);
504                 } else {
505                         rcu_qs();
506                 }
507         }
508 
509         /*
510          * Respond to a request by an expedited grace period for a
511          * quiescent state from this CPU.  Note that requests from
512          * tasks are handled when removing the task from the
513          * blocked-tasks list below.
514          */
515         if (rdp->cpu_no_qs.b.exp)
516                 rcu_report_exp_rdp(rdp);
517 
518         /* Clean up if blocked during RCU read-side critical section. */
519         if (special.b.blocked) {
520 
521                 /*
522                  * Remove this task from the list it blocked on.  The task
523                  * now remains queued on the rcu_node corresponding to the
524                  * CPU it first blocked on, so there is no longer any need
525                  * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
526                  */
527                 rnp = t->rcu_blocked_node;
528                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
529                 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
530                 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
531                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
532                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
533                              (!empty_norm || rnp->qsmask));
534                 empty_exp = sync_rcu_exp_done(rnp);
535                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
536                 np = rcu_next_node_entry(t, rnp);
537                 list_del_init(&t->rcu_node_entry);
538                 t->rcu_blocked_node = NULL;
539                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
540                                                 rnp->gp_seq, t->pid);
541                 if (&t->rcu_node_entry == rnp->gp_tasks)
542                         WRITE_ONCE(rnp->gp_tasks, np);
543                 if (&t->rcu_node_entry == rnp->exp_tasks)
544                         WRITE_ONCE(rnp->exp_tasks, np);
545                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
546                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
547                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
548                         if (&t->rcu_node_entry == rnp->boost_tasks)
549                                 WRITE_ONCE(rnp->boost_tasks, np);
550                 }
551 
552                 /*
553                  * If this was the last task on the current list, and if
554                  * we aren't waiting on any CPUs, report the quiescent state.
555                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
556                  * so we must take a snapshot of the expedited state.
557                  */
558                 empty_exp_now = sync_rcu_exp_done(rnp);
559                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
560                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
561                                                          rnp->gp_seq,
562                                                          0, rnp->qsmask,
563                                                          rnp->level,
564                                                          rnp->grplo,
565                                                          rnp->grphi,
566                                                          !!rnp->gp_tasks);
567                         rcu_report_unblock_qs_rnp(rnp, flags);
568                 } else {
569                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
570                 }
571 
572                 /*
573                  * If this was the last task on the expedited lists,
574                  * then we need to report up the rcu_node hierarchy.
575                  */
576                 if (!empty_exp && empty_exp_now)
577                         rcu_report_exp_rnp(rnp, true);
578 
579                 /* Unboost if we were boosted. */
580                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
581                         rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);
582         } else {
583                 local_irq_restore(flags);
584         }
585 }
586 
587 /*
588  * Is a deferred quiescent-state pending, and are we also not in
589  * an RCU read-side critical section?  It is the caller's responsibility
590  * to ensure it is otherwise safe to report any deferred quiescent
591  * states.  The reason for this is that it is safe to report a
592  * quiescent state during context switch even though preemption
593  * is disabled.  This function cannot be expected to understand these
594  * nuances, so the caller must handle them.
595  */
596 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
597 {
598         return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) ||
599                 READ_ONCE(t->rcu_read_unlock_special.s)) &&
600                rcu_preempt_depth() == 0;
601 }
602 
603 /*
604  * Report a deferred quiescent state if needed and safe to do so.
605  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
606  * not being in an RCU read-side critical section.  The caller must
607  * evaluate safety in terms of interrupt, softirq, and preemption
608  * disabling.
609  */
610 notrace void rcu_preempt_deferred_qs(struct task_struct *t)
611 {
612         unsigned long flags;
613 
614         if (!rcu_preempt_need_deferred_qs(t))
615                 return;
616         local_irq_save(flags);
617         rcu_preempt_deferred_qs_irqrestore(t, flags);
618 }
619 
620 /*
621  * Minimal handler to give the scheduler a chance to re-evaluate.
622  */
623 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
624 {
625         struct rcu_data *rdp;
626 
627         rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
628         rdp->defer_qs_iw_pending = false;
629 }
630 
631 /*
632  * Handle special cases during rcu_read_unlock(), such as needing to
633  * notify RCU core processing or task having blocked during the RCU
634  * read-side critical section.
635  */
636 static void rcu_read_unlock_special(struct task_struct *t)
637 {
638         unsigned long flags;
639         bool irqs_were_disabled;
640         bool preempt_bh_were_disabled =
641                         !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
642 
643         /* NMI handlers cannot block and cannot safely manipulate state. */
644         if (in_nmi())
645                 return;
646 
647         local_irq_save(flags);
648         irqs_were_disabled = irqs_disabled_flags(flags);
649         if (preempt_bh_were_disabled || irqs_were_disabled) {
650                 bool expboost; // Expedited GP in flight or possible boosting.
651                 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
652                 struct rcu_node *rnp = rdp->mynode;
653 
654                 expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
655                            (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
656                            (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
657                            ((rdp->grpmask & READ_ONCE(rnp->qsmask)) || t->rcu_blocked_node)) ||
658                            (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
659                             t->rcu_blocked_node);
660                 // Need to defer quiescent state until everything is enabled.
661                 if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) {
662                         // Using softirq, safe to awaken, and either the
663                         // wakeup is free or there is either an expedited
664                         // GP in flight or a potential need to deboost.
665                         raise_softirq_irqoff(RCU_SOFTIRQ);
666                 } else {
667                         // Enabling BH or preempt does reschedule, so...
668                         // Also if no expediting and no possible deboosting,
669                         // slow is OK.  Plus nohz_full CPUs eventually get
670                         // tick enabled.
671                         set_tsk_need_resched(current);
672                         set_preempt_need_resched();
673                         if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
674                             expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
675                                 // Get scheduler to re-evaluate and call hooks.
676                                 // If !IRQ_WORK, FQS scan will eventually IPI.
677                                 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
678                                     IS_ENABLED(CONFIG_PREEMPT_RT))
679                                         rdp->defer_qs_iw = IRQ_WORK_INIT_HARD(
680                                                                 rcu_preempt_deferred_qs_handler);
681                                 else
682                                         init_irq_work(&rdp->defer_qs_iw,
683                                                       rcu_preempt_deferred_qs_handler);
684                                 rdp->defer_qs_iw_pending = true;
685                                 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
686                         }
687                 }
688                 local_irq_restore(flags);
689                 return;
690         }
691         rcu_preempt_deferred_qs_irqrestore(t, flags);
692 }
693 
694 /*
695  * Check that the list of blocked tasks for the newly completed grace
696  * period is in fact empty.  It is a serious bug to complete a grace
697  * period that still has RCU readers blocked!  This function must be
698  * invoked -before- updating this rnp's ->gp_seq.
699  *
700  * Also, if there are blocked tasks on the list, they automatically
701  * block the newly created grace period, so set up ->gp_tasks accordingly.
702  */
703 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
704 {
705         struct task_struct *t;
706 
707         RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
708         raw_lockdep_assert_held_rcu_node(rnp);
709         if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
710                 dump_blkd_tasks(rnp, 10);
711         if (rcu_preempt_has_tasks(rnp) &&
712             (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
713                 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
714                 t = container_of(rnp->gp_tasks, struct task_struct,
715                                  rcu_node_entry);
716                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
717                                                 rnp->gp_seq, t->pid);
718         }
719         WARN_ON_ONCE(rnp->qsmask);
720 }
721 
722 /*
723  * Check for a quiescent state from the current CPU, including voluntary
724  * context switches for Tasks RCU.  When a task blocks, the task is
725  * recorded in the corresponding CPU's rcu_node structure, which is checked
726  * elsewhere, hence this function need only check for quiescent states
727  * related to the current CPU, not to those related to tasks.
728  */
729 static void rcu_flavor_sched_clock_irq(int user)
730 {
731         struct task_struct *t = current;
732 
733         lockdep_assert_irqs_disabled();
734         if (rcu_preempt_depth() > 0 ||
735             (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
736                 /* No QS, force context switch if deferred. */
737                 if (rcu_preempt_need_deferred_qs(t)) {
738                         set_tsk_need_resched(t);
739                         set_preempt_need_resched();
740                 }
741         } else if (rcu_preempt_need_deferred_qs(t)) {
742                 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
743                 return;
744         } else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
745                 rcu_qs(); /* Report immediate QS. */
746                 return;
747         }
748 
749         /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
750         if (rcu_preempt_depth() > 0 &&
751             __this_cpu_read(rcu_data.core_needs_qs) &&
752             __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
753             !t->rcu_read_unlock_special.b.need_qs &&
754             time_after(jiffies, rcu_state.gp_start + HZ))
755                 t->rcu_read_unlock_special.b.need_qs = true;
756 }
757 
758 /*
759  * Check for a task exiting while in a preemptible-RCU read-side
760  * critical section, clean up if so.  No need to issue warnings, as
761  * debug_check_no_locks_held() already does this if lockdep is enabled.
762  * Besides, if this function does anything other than just immediately
763  * return, there was a bug of some sort.  Spewing warnings from this
764  * function is like as not to simply obscure important prior warnings.
765  */
766 void exit_rcu(void)
767 {
768         struct task_struct *t = current;
769 
770         if (unlikely(!list_empty(&current->rcu_node_entry))) {
771                 rcu_preempt_depth_set(1);
772                 barrier();
773                 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
774         } else if (unlikely(rcu_preempt_depth())) {
775                 rcu_preempt_depth_set(1);
776         } else {
777                 return;
778         }
779         __rcu_read_unlock();
780         rcu_preempt_deferred_qs(current);
781 }
782 
783 /*
784  * Dump the blocked-tasks state, but limit the list dump to the
785  * specified number of elements.
786  */
787 static void
788 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
789 {
790         int cpu;
791         int i;
792         struct list_head *lhp;
793         struct rcu_data *rdp;
794         struct rcu_node *rnp1;
795 
796         raw_lockdep_assert_held_rcu_node(rnp);
797         pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
798                 __func__, rnp->grplo, rnp->grphi, rnp->level,
799                 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
800         for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
801                 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
802                         __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
803         pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
804                 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
805                 READ_ONCE(rnp->exp_tasks));
806         pr_info("%s: ->blkd_tasks", __func__);
807         i = 0;
808         list_for_each(lhp, &rnp->blkd_tasks) {
809                 pr_cont(" %p", lhp);
810                 if (++i >= ncheck)
811                         break;
812         }
813         pr_cont("\n");
814         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
815                 rdp = per_cpu_ptr(&rcu_data, cpu);
816                 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
817                         cpu, ".o"[rcu_rdp_cpu_online(rdp)],
818                         (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
819                         (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
820         }
821 }
822 
823 #else /* #ifdef CONFIG_PREEMPT_RCU */
824 
825 /*
826  * If strict grace periods are enabled, and if the calling
827  * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
828  * report that quiescent state and, if requested, spin for a bit.
829  */
830 void rcu_read_unlock_strict(void)
831 {
832         struct rcu_data *rdp;
833 
834         if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
835                 return;
836         rdp = this_cpu_ptr(&rcu_data);
837         rdp->cpu_no_qs.b.norm = false;
838         rcu_report_qs_rdp(rdp);
839         udelay(rcu_unlock_delay);
840 }
841 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
842 
843 /*
844  * Tell them what RCU they are running.
845  */
846 static void __init rcu_bootup_announce(void)
847 {
848         pr_info("Hierarchical RCU implementation.\n");
849         rcu_bootup_announce_oddness();
850 }
851 
852 /*
853  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
854  * how many quiescent states passed, just if there was at least one since
855  * the start of the grace period, this just sets a flag.  The caller must
856  * have disabled preemption.
857  */
858 static void rcu_qs(void)
859 {
860         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
861         if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
862                 return;
863         trace_rcu_grace_period(TPS("rcu_sched"),
864                                __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
865         __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
866         if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
867                 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
868 }
869 
870 /*
871  * Register an urgently needed quiescent state.  If there is an
872  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
873  * dyntick-idle quiescent state visible to other CPUs, which will in
874  * some cases serve for expedited as well as normal grace periods.
875  * Either way, register a lightweight quiescent state.
876  */
877 void rcu_all_qs(void)
878 {
879         unsigned long flags;
880 
881         if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
882                 return;
883         preempt_disable();  // For CONFIG_PREEMPT_COUNT=y kernels
884         /* Load rcu_urgent_qs before other flags. */
885         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
886                 preempt_enable();
887                 return;
888         }
889         this_cpu_write(rcu_data.rcu_urgent_qs, false);
890         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
891                 local_irq_save(flags);
892                 rcu_momentary_dyntick_idle();
893                 local_irq_restore(flags);
894         }
895         rcu_qs();
896         preempt_enable();
897 }
898 EXPORT_SYMBOL_GPL(rcu_all_qs);
899 
900 /*
901  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
902  */
903 void rcu_note_context_switch(bool preempt)
904 {
905         trace_rcu_utilization(TPS("Start context switch"));
906         rcu_qs();
907         /* Load rcu_urgent_qs before other flags. */
908         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
909                 goto out;
910         this_cpu_write(rcu_data.rcu_urgent_qs, false);
911         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
912                 rcu_momentary_dyntick_idle();
913 out:
914         rcu_tasks_qs(current, preempt);
915         trace_rcu_utilization(TPS("End context switch"));
916 }
917 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
918 
919 /*
920  * Because preemptible RCU does not exist, there are never any preempted
921  * RCU readers.
922  */
923 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
924 {
925         return 0;
926 }
927 
928 /*
929  * Because there is no preemptible RCU, there can be no readers blocked.
930  */
931 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
932 {
933         return false;
934 }
935 
936 /*
937  * Because there is no preemptible RCU, there can be no deferred quiescent
938  * states.
939  */
940 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
941 {
942         return false;
943 }
944 
945 // Except that we do need to respond to a request by an expedited
946 // grace period for a quiescent state from this CPU.  Note that in
947 // non-preemptible kernels, there can be no context switches within RCU
948 // read-side critical sections, which in turn means that the leaf rcu_node
949 // structure's blocked-tasks list is always empty.  is therefore no need to
950 // actually check it.  Instead, a quiescent state from this CPU suffices,
951 // and this function is only called from such a quiescent state.
952 notrace void rcu_preempt_deferred_qs(struct task_struct *t)
953 {
954         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
955 
956         if (READ_ONCE(rdp->cpu_no_qs.b.exp))
957                 rcu_report_exp_rdp(rdp);
958 }
959 
960 /*
961  * Because there is no preemptible RCU, there can be no readers blocked,
962  * so there is no need to check for blocked tasks.  So check only for
963  * bogus qsmask values.
964  */
965 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
966 {
967         WARN_ON_ONCE(rnp->qsmask);
968 }
969 
970 /*
971  * Check to see if this CPU is in a non-context-switch quiescent state,
972  * namely user mode and idle loop.
973  */
974 static void rcu_flavor_sched_clock_irq(int user)
975 {
976         if (user || rcu_is_cpu_rrupt_from_idle()) {
977 
978                 /*
979                  * Get here if this CPU took its interrupt from user
980                  * mode or from the idle loop, and if this is not a
981                  * nested interrupt.  In this case, the CPU is in
982                  * a quiescent state, so note it.
983                  *
984                  * No memory barrier is required here because rcu_qs()
985                  * references only CPU-local variables that other CPUs
986                  * neither access nor modify, at least not while the
987                  * corresponding CPU is online.
988                  */
989                 rcu_qs();
990         }
991 }
992 
993 /*
994  * Because preemptible RCU does not exist, tasks cannot possibly exit
995  * while in preemptible RCU read-side critical sections.
996  */
997 void exit_rcu(void)
998 {
999 }
1000 
1001 /*
1002  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
1003  */
1004 static void
1005 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
1006 {
1007         WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1008 }
1009 
1010 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1011 
1012 /*
1013  * If boosting, set rcuc kthreads to realtime priority.
1014  */
1015 static void rcu_cpu_kthread_setup(unsigned int cpu)
1016 {
1017         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1018 #ifdef CONFIG_RCU_BOOST
1019         struct sched_param sp;
1020 
1021         sp.sched_priority = kthread_prio;
1022         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1023 #endif /* #ifdef CONFIG_RCU_BOOST */
1024 
1025         WRITE_ONCE(rdp->rcuc_activity, jiffies);
1026 }
1027 
1028 static bool rcu_is_callbacks_nocb_kthread(struct rcu_data *rdp)
1029 {
1030 #ifdef CONFIG_RCU_NOCB_CPU
1031         return rdp->nocb_cb_kthread == current;
1032 #else
1033         return false;
1034 #endif
1035 }
1036 
1037 /*
1038  * Is the current CPU running the RCU-callbacks kthread?
1039  * Caller must have preemption disabled.
1040  */
1041 static bool rcu_is_callbacks_kthread(struct rcu_data *rdp)
1042 {
1043         return rdp->rcu_cpu_kthread_task == current ||
1044                         rcu_is_callbacks_nocb_kthread(rdp);
1045 }
1046 
1047 #ifdef CONFIG_RCU_BOOST
1048 
1049 /*
1050  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1051  * or ->boost_tasks, advancing the pointer to the next task in the
1052  * ->blkd_tasks list.
1053  *
1054  * Note that irqs must be enabled: boosting the task can block.
1055  * Returns 1 if there are more tasks needing to be boosted.
1056  */
1057 static int rcu_boost(struct rcu_node *rnp)
1058 {
1059         unsigned long flags;
1060         struct task_struct *t;
1061         struct list_head *tb;
1062 
1063         if (READ_ONCE(rnp->exp_tasks) == NULL &&
1064             READ_ONCE(rnp->boost_tasks) == NULL)
1065                 return 0;  /* Nothing left to boost. */
1066 
1067         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1068 
1069         /*
1070          * Recheck under the lock: all tasks in need of boosting
1071          * might exit their RCU read-side critical sections on their own.
1072          */
1073         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1074                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1075                 return 0;
1076         }
1077 
1078         /*
1079          * Preferentially boost tasks blocking expedited grace periods.
1080          * This cannot starve the normal grace periods because a second
1081          * expedited grace period must boost all blocked tasks, including
1082          * those blocking the pre-existing normal grace period.
1083          */
1084         if (rnp->exp_tasks != NULL)
1085                 tb = rnp->exp_tasks;
1086         else
1087                 tb = rnp->boost_tasks;
1088 
1089         /*
1090          * We boost task t by manufacturing an rt_mutex that appears to
1091          * be held by task t.  We leave a pointer to that rt_mutex where
1092          * task t can find it, and task t will release the mutex when it
1093          * exits its outermost RCU read-side critical section.  Then
1094          * simply acquiring this artificial rt_mutex will boost task
1095          * t's priority.  (Thanks to tglx for suggesting this approach!)
1096          *
1097          * Note that task t must acquire rnp->lock to remove itself from
1098          * the ->blkd_tasks list, which it will do from exit() if from
1099          * nowhere else.  We therefore are guaranteed that task t will
1100          * stay around at least until we drop rnp->lock.  Note that
1101          * rnp->lock also resolves races between our priority boosting
1102          * and task t's exiting its outermost RCU read-side critical
1103          * section.
1104          */
1105         t = container_of(tb, struct task_struct, rcu_node_entry);
1106         rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
1107         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1108         /* Lock only for side effect: boosts task t's priority. */
1109         rt_mutex_lock(&rnp->boost_mtx);
1110         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1111         rnp->n_boosts++;
1112 
1113         return READ_ONCE(rnp->exp_tasks) != NULL ||
1114                READ_ONCE(rnp->boost_tasks) != NULL;
1115 }
1116 
1117 /*
1118  * Priority-boosting kthread, one per leaf rcu_node.
1119  */
1120 static int rcu_boost_kthread(void *arg)
1121 {
1122         struct rcu_node *rnp = (struct rcu_node *)arg;
1123         int spincnt = 0;
1124         int more2boost;
1125 
1126         trace_rcu_utilization(TPS("Start boost kthread@init"));
1127         for (;;) {
1128                 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1129                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1130                 rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1131                          READ_ONCE(rnp->exp_tasks));
1132                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1133                 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1134                 more2boost = rcu_boost(rnp);
1135                 if (more2boost)
1136                         spincnt++;
1137                 else
1138                         spincnt = 0;
1139                 if (spincnt > 10) {
1140                         WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1141                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1142                         schedule_timeout_idle(2);
1143                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1144                         spincnt = 0;
1145                 }
1146         }
1147         /* NOTREACHED */
1148         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1149         return 0;
1150 }
1151 
1152 /*
1153  * Check to see if it is time to start boosting RCU readers that are
1154  * blocking the current grace period, and, if so, tell the per-rcu_node
1155  * kthread to start boosting them.  If there is an expedited grace
1156  * period in progress, it is always time to boost.
1157  *
1158  * The caller must hold rnp->lock, which this function releases.
1159  * The ->boost_kthread_task is immortal, so we don't need to worry
1160  * about it going away.
1161  */
1162 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1163         __releases(rnp->lock)
1164 {
1165         raw_lockdep_assert_held_rcu_node(rnp);
1166         if (!rnp->boost_kthread_task ||
1167             (!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) {
1168                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1169                 return;
1170         }
1171         if (rnp->exp_tasks != NULL ||
1172             (rnp->gp_tasks != NULL &&
1173              rnp->boost_tasks == NULL &&
1174              rnp->qsmask == 0 &&
1175              (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld ||
1176               IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)))) {
1177                 if (rnp->exp_tasks == NULL)
1178                         WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1179                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1180                 rcu_wake_cond(rnp->boost_kthread_task,
1181                               READ_ONCE(rnp->boost_kthread_status));
1182         } else {
1183                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1184         }
1185 }
1186 
1187 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1188 
1189 /*
1190  * Do priority-boost accounting for the start of a new grace period.
1191  */
1192 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1193 {
1194         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1195 }
1196 
1197 /*
1198  * Create an RCU-boost kthread for the specified node if one does not
1199  * already exist.  We only create this kthread for preemptible RCU.
1200  */
1201 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1202 {
1203         unsigned long flags;
1204         int rnp_index = rnp - rcu_get_root();
1205         struct sched_param sp;
1206         struct task_struct *t;
1207 
1208         if (rnp->boost_kthread_task)
1209                 return;
1210 
1211         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1212                            "rcub/%d", rnp_index);
1213         if (WARN_ON_ONCE(IS_ERR(t)))
1214                 return;
1215 
1216         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1217         rnp->boost_kthread_task = t;
1218         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1219         sp.sched_priority = kthread_prio;
1220         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1221         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1222 }
1223 
1224 static struct task_struct *rcu_boost_task(struct rcu_node *rnp)
1225 {
1226         return READ_ONCE(rnp->boost_kthread_task);
1227 }
1228 
1229 #else /* #ifdef CONFIG_RCU_BOOST */
1230 
1231 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1232         __releases(rnp->lock)
1233 {
1234         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1235 }
1236 
1237 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1238 {
1239 }
1240 
1241 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1242 {
1243 }
1244 
1245 static struct task_struct *rcu_boost_task(struct rcu_node *rnp)
1246 {
1247         return NULL;
1248 }
1249 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1250 
1251 /*
1252  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
1253  * grace-period kthread will do force_quiescent_state() processing?
1254  * The idea is to avoid waking up RCU core processing on such a
1255  * CPU unless the grace period has extended for too long.
1256  *
1257  * This code relies on the fact that all NO_HZ_FULL CPUs are also
1258  * RCU_NOCB_CPU CPUs.
1259  */
1260 static bool rcu_nohz_full_cpu(void)
1261 {
1262 #ifdef CONFIG_NO_HZ_FULL
1263         if (tick_nohz_full_cpu(smp_processor_id()) &&
1264             (!rcu_gp_in_progress() ||
1265              time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
1266                 return true;
1267 #endif /* #ifdef CONFIG_NO_HZ_FULL */
1268         return false;
1269 }
1270 
1271 /*
1272  * Bind the RCU grace-period kthreads to the housekeeping CPU.
1273  */
1274 static void rcu_bind_gp_kthread(void)
1275 {
1276         if (!tick_nohz_full_enabled())
1277                 return;
1278         housekeeping_affine(current, HK_TYPE_RCU);
1279 }
1280 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php