1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/resource.c 4 * 5 * Copyright (C) 1999 Linus Torvalds 6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 7 * 8 * Arbitrary resource management. 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/export.h> 14 #include <linux/errno.h> 15 #include <linux/ioport.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/proc_fs.h> 21 #include <linux/pseudo_fs.h> 22 #include <linux/sched.h> 23 #include <linux/seq_file.h> 24 #include <linux/device.h> 25 #include <linux/pfn.h> 26 #include <linux/mm.h> 27 #include <linux/mount.h> 28 #include <linux/resource_ext.h> 29 #include <uapi/linux/magic.h> 30 #include <linux/string.h> 31 #include <linux/vmalloc.h> 32 #include <asm/io.h> 33 34 35 struct resource ioport_resource = { 36 .name = "PCI IO", 37 .start = 0, 38 .end = IO_SPACE_LIMIT, 39 .flags = IORESOURCE_IO, 40 }; 41 EXPORT_SYMBOL(ioport_resource); 42 43 struct resource iomem_resource = { 44 .name = "PCI mem", 45 .start = 0, 46 .end = -1, 47 .flags = IORESOURCE_MEM, 48 }; 49 EXPORT_SYMBOL(iomem_resource); 50 51 static DEFINE_RWLOCK(resource_lock); 52 53 static struct resource *next_resource(struct resource *p, bool skip_children) 54 { 55 if (!skip_children && p->child) 56 return p->child; 57 while (!p->sibling && p->parent) 58 p = p->parent; 59 return p->sibling; 60 } 61 62 #define for_each_resource(_root, _p, _skip_children) \ 63 for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children)) 64 65 #ifdef CONFIG_PROC_FS 66 67 enum { MAX_IORES_LEVEL = 5 }; 68 69 static void *r_start(struct seq_file *m, loff_t *pos) 70 __acquires(resource_lock) 71 { 72 struct resource *root = pde_data(file_inode(m->file)); 73 struct resource *p; 74 loff_t l = *pos; 75 76 read_lock(&resource_lock); 77 for_each_resource(root, p, false) { 78 if (l-- == 0) 79 break; 80 } 81 82 return p; 83 } 84 85 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 86 { 87 struct resource *p = v; 88 89 (*pos)++; 90 91 return (void *)next_resource(p, false); 92 } 93 94 static void r_stop(struct seq_file *m, void *v) 95 __releases(resource_lock) 96 { 97 read_unlock(&resource_lock); 98 } 99 100 static int r_show(struct seq_file *m, void *v) 101 { 102 struct resource *root = pde_data(file_inode(m->file)); 103 struct resource *r = v, *p; 104 unsigned long long start, end; 105 int width = root->end < 0x10000 ? 4 : 8; 106 int depth; 107 108 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 109 if (p->parent == root) 110 break; 111 112 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 113 start = r->start; 114 end = r->end; 115 } else { 116 start = end = 0; 117 } 118 119 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 120 depth * 2, "", 121 width, start, 122 width, end, 123 r->name ? r->name : "<BAD>"); 124 return 0; 125 } 126 127 static const struct seq_operations resource_op = { 128 .start = r_start, 129 .next = r_next, 130 .stop = r_stop, 131 .show = r_show, 132 }; 133 134 static int __init ioresources_init(void) 135 { 136 proc_create_seq_data("ioports", 0, NULL, &resource_op, 137 &ioport_resource); 138 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 139 return 0; 140 } 141 __initcall(ioresources_init); 142 143 #endif /* CONFIG_PROC_FS */ 144 145 static void free_resource(struct resource *res) 146 { 147 /** 148 * If the resource was allocated using memblock early during boot 149 * we'll leak it here: we can only return full pages back to the 150 * buddy and trying to be smart and reusing them eventually in 151 * alloc_resource() overcomplicates resource handling. 152 */ 153 if (res && PageSlab(virt_to_head_page(res))) 154 kfree(res); 155 } 156 157 static struct resource *alloc_resource(gfp_t flags) 158 { 159 return kzalloc(sizeof(struct resource), flags); 160 } 161 162 /* Return the conflict entry if you can't request it */ 163 static struct resource * __request_resource(struct resource *root, struct resource *new) 164 { 165 resource_size_t start = new->start; 166 resource_size_t end = new->end; 167 struct resource *tmp, **p; 168 169 if (end < start) 170 return root; 171 if (start < root->start) 172 return root; 173 if (end > root->end) 174 return root; 175 p = &root->child; 176 for (;;) { 177 tmp = *p; 178 if (!tmp || tmp->start > end) { 179 new->sibling = tmp; 180 *p = new; 181 new->parent = root; 182 return NULL; 183 } 184 p = &tmp->sibling; 185 if (tmp->end < start) 186 continue; 187 return tmp; 188 } 189 } 190 191 static int __release_resource(struct resource *old, bool release_child) 192 { 193 struct resource *tmp, **p, *chd; 194 195 p = &old->parent->child; 196 for (;;) { 197 tmp = *p; 198 if (!tmp) 199 break; 200 if (tmp == old) { 201 if (release_child || !(tmp->child)) { 202 *p = tmp->sibling; 203 } else { 204 for (chd = tmp->child;; chd = chd->sibling) { 205 chd->parent = tmp->parent; 206 if (!(chd->sibling)) 207 break; 208 } 209 *p = tmp->child; 210 chd->sibling = tmp->sibling; 211 } 212 old->parent = NULL; 213 return 0; 214 } 215 p = &tmp->sibling; 216 } 217 return -EINVAL; 218 } 219 220 static void __release_child_resources(struct resource *r) 221 { 222 struct resource *tmp, *p; 223 resource_size_t size; 224 225 p = r->child; 226 r->child = NULL; 227 while (p) { 228 tmp = p; 229 p = p->sibling; 230 231 tmp->parent = NULL; 232 tmp->sibling = NULL; 233 __release_child_resources(tmp); 234 235 printk(KERN_DEBUG "release child resource %pR\n", tmp); 236 /* need to restore size, and keep flags */ 237 size = resource_size(tmp); 238 tmp->start = 0; 239 tmp->end = size - 1; 240 } 241 } 242 243 void release_child_resources(struct resource *r) 244 { 245 write_lock(&resource_lock); 246 __release_child_resources(r); 247 write_unlock(&resource_lock); 248 } 249 250 /** 251 * request_resource_conflict - request and reserve an I/O or memory resource 252 * @root: root resource descriptor 253 * @new: resource descriptor desired by caller 254 * 255 * Returns 0 for success, conflict resource on error. 256 */ 257 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 258 { 259 struct resource *conflict; 260 261 write_lock(&resource_lock); 262 conflict = __request_resource(root, new); 263 write_unlock(&resource_lock); 264 return conflict; 265 } 266 267 /** 268 * request_resource - request and reserve an I/O or memory resource 269 * @root: root resource descriptor 270 * @new: resource descriptor desired by caller 271 * 272 * Returns 0 for success, negative error code on error. 273 */ 274 int request_resource(struct resource *root, struct resource *new) 275 { 276 struct resource *conflict; 277 278 conflict = request_resource_conflict(root, new); 279 return conflict ? -EBUSY : 0; 280 } 281 282 EXPORT_SYMBOL(request_resource); 283 284 /** 285 * release_resource - release a previously reserved resource 286 * @old: resource pointer 287 */ 288 int release_resource(struct resource *old) 289 { 290 int retval; 291 292 write_lock(&resource_lock); 293 retval = __release_resource(old, true); 294 write_unlock(&resource_lock); 295 return retval; 296 } 297 298 EXPORT_SYMBOL(release_resource); 299 300 /** 301 * find_next_iomem_res - Finds the lowest iomem resource that covers part of 302 * [@start..@end]. 303 * 304 * If a resource is found, returns 0 and @*res is overwritten with the part 305 * of the resource that's within [@start..@end]; if none is found, returns 306 * -ENODEV. Returns -EINVAL for invalid parameters. 307 * 308 * @start: start address of the resource searched for 309 * @end: end address of same resource 310 * @flags: flags which the resource must have 311 * @desc: descriptor the resource must have 312 * @res: return ptr, if resource found 313 * 314 * The caller must specify @start, @end, @flags, and @desc 315 * (which may be IORES_DESC_NONE). 316 */ 317 static int find_next_iomem_res(resource_size_t start, resource_size_t end, 318 unsigned long flags, unsigned long desc, 319 struct resource *res) 320 { 321 struct resource *p; 322 323 if (!res) 324 return -EINVAL; 325 326 if (start >= end) 327 return -EINVAL; 328 329 read_lock(&resource_lock); 330 331 for_each_resource(&iomem_resource, p, false) { 332 /* If we passed the resource we are looking for, stop */ 333 if (p->start > end) { 334 p = NULL; 335 break; 336 } 337 338 /* Skip until we find a range that matches what we look for */ 339 if (p->end < start) 340 continue; 341 342 if ((p->flags & flags) != flags) 343 continue; 344 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 345 continue; 346 347 /* Found a match, break */ 348 break; 349 } 350 351 if (p) { 352 /* copy data */ 353 *res = (struct resource) { 354 .start = max(start, p->start), 355 .end = min(end, p->end), 356 .flags = p->flags, 357 .desc = p->desc, 358 .parent = p->parent, 359 }; 360 } 361 362 read_unlock(&resource_lock); 363 return p ? 0 : -ENODEV; 364 } 365 366 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end, 367 unsigned long flags, unsigned long desc, 368 void *arg, 369 int (*func)(struct resource *, void *)) 370 { 371 struct resource res; 372 int ret = -EINVAL; 373 374 while (start < end && 375 !find_next_iomem_res(start, end, flags, desc, &res)) { 376 ret = (*func)(&res, arg); 377 if (ret) 378 break; 379 380 start = res.end + 1; 381 } 382 383 return ret; 384 } 385 386 /** 387 * walk_iomem_res_desc - Walks through iomem resources and calls func() 388 * with matching resource ranges. 389 * * 390 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 391 * @flags: I/O resource flags 392 * @start: start addr 393 * @end: end addr 394 * @arg: function argument for the callback @func 395 * @func: callback function that is called for each qualifying resource area 396 * 397 * All the memory ranges which overlap start,end and also match flags and 398 * desc are valid candidates. 399 * 400 * NOTE: For a new descriptor search, define a new IORES_DESC in 401 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 402 */ 403 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 404 u64 end, void *arg, int (*func)(struct resource *, void *)) 405 { 406 return __walk_iomem_res_desc(start, end, flags, desc, arg, func); 407 } 408 EXPORT_SYMBOL_GPL(walk_iomem_res_desc); 409 410 /* 411 * This function calls the @func callback against all memory ranges of type 412 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 413 * Now, this function is only for System RAM, it deals with full ranges and 414 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 415 * ranges. 416 */ 417 int walk_system_ram_res(u64 start, u64 end, void *arg, 418 int (*func)(struct resource *, void *)) 419 { 420 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 421 422 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, 423 func); 424 } 425 426 /* 427 * This function, being a variant of walk_system_ram_res(), calls the @func 428 * callback against all memory ranges of type System RAM which are marked as 429 * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from 430 * higher to lower. 431 */ 432 int walk_system_ram_res_rev(u64 start, u64 end, void *arg, 433 int (*func)(struct resource *, void *)) 434 { 435 struct resource res, *rams; 436 int rams_size = 16, i; 437 unsigned long flags; 438 int ret = -1; 439 440 /* create a list */ 441 rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL); 442 if (!rams) 443 return ret; 444 445 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 446 i = 0; 447 while ((start < end) && 448 (!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) { 449 if (i >= rams_size) { 450 /* re-alloc */ 451 struct resource *rams_new; 452 453 rams_new = kvrealloc(rams, rams_size * sizeof(struct resource), 454 (rams_size + 16) * sizeof(struct resource), 455 GFP_KERNEL); 456 if (!rams_new) 457 goto out; 458 459 rams = rams_new; 460 rams_size += 16; 461 } 462 463 rams[i].start = res.start; 464 rams[i++].end = res.end; 465 466 start = res.end + 1; 467 } 468 469 /* go reverse */ 470 for (i--; i >= 0; i--) { 471 ret = (*func)(&rams[i], arg); 472 if (ret) 473 break; 474 } 475 476 out: 477 kvfree(rams); 478 return ret; 479 } 480 481 /* 482 * This function calls the @func callback against all memory ranges, which 483 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 484 */ 485 int walk_mem_res(u64 start, u64 end, void *arg, 486 int (*func)(struct resource *, void *)) 487 { 488 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY; 489 490 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg, 491 func); 492 } 493 494 /* 495 * This function calls the @func callback against all memory ranges of type 496 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 497 * It is to be used only for System RAM. 498 */ 499 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 500 void *arg, int (*func)(unsigned long, unsigned long, void *)) 501 { 502 resource_size_t start, end; 503 unsigned long flags; 504 struct resource res; 505 unsigned long pfn, end_pfn; 506 int ret = -EINVAL; 507 508 start = (u64) start_pfn << PAGE_SHIFT; 509 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 510 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 511 while (start < end && 512 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) { 513 pfn = PFN_UP(res.start); 514 end_pfn = PFN_DOWN(res.end + 1); 515 if (end_pfn > pfn) 516 ret = (*func)(pfn, end_pfn - pfn, arg); 517 if (ret) 518 break; 519 start = res.end + 1; 520 } 521 return ret; 522 } 523 524 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 525 { 526 return 1; 527 } 528 529 /* 530 * This generic page_is_ram() returns true if specified address is 531 * registered as System RAM in iomem_resource list. 532 */ 533 int __weak page_is_ram(unsigned long pfn) 534 { 535 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 536 } 537 EXPORT_SYMBOL_GPL(page_is_ram); 538 539 static int __region_intersects(struct resource *parent, resource_size_t start, 540 size_t size, unsigned long flags, 541 unsigned long desc) 542 { 543 resource_size_t ostart, oend; 544 int type = 0; int other = 0; 545 struct resource *p, *dp; 546 bool is_type, covered; 547 struct resource res; 548 549 res.start = start; 550 res.end = start + size - 1; 551 552 for (p = parent->child; p ; p = p->sibling) { 553 if (!resource_overlaps(p, &res)) 554 continue; 555 is_type = (p->flags & flags) == flags && 556 (desc == IORES_DESC_NONE || desc == p->desc); 557 if (is_type) { 558 type++; 559 continue; 560 } 561 /* 562 * Continue to search in descendant resources as if the 563 * matched descendant resources cover some ranges of 'p'. 564 * 565 * |------------- "CXL Window 0" ------------| 566 * |-- "System RAM" --| 567 * 568 * will behave similar as the following fake resource 569 * tree when searching "System RAM". 570 * 571 * |-- "System RAM" --||-- "CXL Window 0a" --| 572 */ 573 covered = false; 574 ostart = max(res.start, p->start); 575 oend = min(res.end, p->end); 576 for_each_resource(p, dp, false) { 577 if (!resource_overlaps(dp, &res)) 578 continue; 579 is_type = (dp->flags & flags) == flags && 580 (desc == IORES_DESC_NONE || desc == dp->desc); 581 if (is_type) { 582 type++; 583 /* 584 * Range from 'ostart' to 'dp->start' 585 * isn't covered by matched resource. 586 */ 587 if (dp->start > ostart) 588 break; 589 if (dp->end >= oend) { 590 covered = true; 591 break; 592 } 593 /* Remove covered range */ 594 ostart = max(ostart, dp->end + 1); 595 } 596 } 597 if (!covered) 598 other++; 599 } 600 601 if (type == 0) 602 return REGION_DISJOINT; 603 604 if (other == 0) 605 return REGION_INTERSECTS; 606 607 return REGION_MIXED; 608 } 609 610 /** 611 * region_intersects() - determine intersection of region with known resources 612 * @start: region start address 613 * @size: size of region 614 * @flags: flags of resource (in iomem_resource) 615 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 616 * 617 * Check if the specified region partially overlaps or fully eclipses a 618 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 619 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 620 * return REGION_MIXED if the region overlaps @flags/@desc and another 621 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 622 * and no other defined resource. Note that REGION_INTERSECTS is also 623 * returned in the case when the specified region overlaps RAM and undefined 624 * memory holes. 625 * 626 * region_intersect() is used by memory remapping functions to ensure 627 * the user is not remapping RAM and is a vast speed up over walking 628 * through the resource table page by page. 629 */ 630 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 631 unsigned long desc) 632 { 633 int ret; 634 635 read_lock(&resource_lock); 636 ret = __region_intersects(&iomem_resource, start, size, flags, desc); 637 read_unlock(&resource_lock); 638 639 return ret; 640 } 641 EXPORT_SYMBOL_GPL(region_intersects); 642 643 void __weak arch_remove_reservations(struct resource *avail) 644 { 645 } 646 647 static void resource_clip(struct resource *res, resource_size_t min, 648 resource_size_t max) 649 { 650 if (res->start < min) 651 res->start = min; 652 if (res->end > max) 653 res->end = max; 654 } 655 656 /* 657 * Find empty space in the resource tree with the given range and 658 * alignment constraints 659 */ 660 static int __find_resource_space(struct resource *root, struct resource *old, 661 struct resource *new, resource_size_t size, 662 struct resource_constraint *constraint) 663 { 664 struct resource *this = root->child; 665 struct resource tmp = *new, avail, alloc; 666 resource_alignf alignf = constraint->alignf; 667 668 tmp.start = root->start; 669 /* 670 * Skip past an allocated resource that starts at 0, since the assignment 671 * of this->start - 1 to tmp->end below would cause an underflow. 672 */ 673 if (this && this->start == root->start) { 674 tmp.start = (this == old) ? old->start : this->end + 1; 675 this = this->sibling; 676 } 677 for(;;) { 678 if (this) 679 tmp.end = (this == old) ? this->end : this->start - 1; 680 else 681 tmp.end = root->end; 682 683 if (tmp.end < tmp.start) 684 goto next; 685 686 resource_clip(&tmp, constraint->min, constraint->max); 687 arch_remove_reservations(&tmp); 688 689 /* Check for overflow after ALIGN() */ 690 avail.start = ALIGN(tmp.start, constraint->align); 691 avail.end = tmp.end; 692 avail.flags = new->flags & ~IORESOURCE_UNSET; 693 if (avail.start >= tmp.start) { 694 alloc.flags = avail.flags; 695 if (alignf) { 696 alloc.start = alignf(constraint->alignf_data, 697 &avail, size, constraint->align); 698 } else { 699 alloc.start = avail.start; 700 } 701 alloc.end = alloc.start + size - 1; 702 if (alloc.start <= alloc.end && 703 resource_contains(&avail, &alloc)) { 704 new->start = alloc.start; 705 new->end = alloc.end; 706 return 0; 707 } 708 } 709 710 next: if (!this || this->end == root->end) 711 break; 712 713 if (this != old) 714 tmp.start = this->end + 1; 715 this = this->sibling; 716 } 717 return -EBUSY; 718 } 719 720 /** 721 * find_resource_space - Find empty space in the resource tree 722 * @root: Root resource descriptor 723 * @new: Resource descriptor awaiting an empty resource space 724 * @size: The minimum size of the empty space 725 * @constraint: The range and alignment constraints to be met 726 * 727 * Finds an empty space under @root in the resource tree satisfying range and 728 * alignment @constraints. 729 * 730 * Return: 731 * * %0 - if successful, @new members start, end, and flags are altered. 732 * * %-EBUSY - if no empty space was found. 733 */ 734 int find_resource_space(struct resource *root, struct resource *new, 735 resource_size_t size, 736 struct resource_constraint *constraint) 737 { 738 return __find_resource_space(root, NULL, new, size, constraint); 739 } 740 EXPORT_SYMBOL_GPL(find_resource_space); 741 742 /** 743 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 744 * The resource will be relocated if the new size cannot be reallocated in the 745 * current location. 746 * 747 * @root: root resource descriptor 748 * @old: resource descriptor desired by caller 749 * @newsize: new size of the resource descriptor 750 * @constraint: the size and alignment constraints to be met. 751 */ 752 static int reallocate_resource(struct resource *root, struct resource *old, 753 resource_size_t newsize, 754 struct resource_constraint *constraint) 755 { 756 int err=0; 757 struct resource new = *old; 758 struct resource *conflict; 759 760 write_lock(&resource_lock); 761 762 if ((err = __find_resource_space(root, old, &new, newsize, constraint))) 763 goto out; 764 765 if (resource_contains(&new, old)) { 766 old->start = new.start; 767 old->end = new.end; 768 goto out; 769 } 770 771 if (old->child) { 772 err = -EBUSY; 773 goto out; 774 } 775 776 if (resource_contains(old, &new)) { 777 old->start = new.start; 778 old->end = new.end; 779 } else { 780 __release_resource(old, true); 781 *old = new; 782 conflict = __request_resource(root, old); 783 BUG_ON(conflict); 784 } 785 out: 786 write_unlock(&resource_lock); 787 return err; 788 } 789 790 791 /** 792 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 793 * The resource will be reallocated with a new size if it was already allocated 794 * @root: root resource descriptor 795 * @new: resource descriptor desired by caller 796 * @size: requested resource region size 797 * @min: minimum boundary to allocate 798 * @max: maximum boundary to allocate 799 * @align: alignment requested, in bytes 800 * @alignf: alignment function, optional, called if not NULL 801 * @alignf_data: arbitrary data to pass to the @alignf function 802 */ 803 int allocate_resource(struct resource *root, struct resource *new, 804 resource_size_t size, resource_size_t min, 805 resource_size_t max, resource_size_t align, 806 resource_alignf alignf, 807 void *alignf_data) 808 { 809 int err; 810 struct resource_constraint constraint; 811 812 constraint.min = min; 813 constraint.max = max; 814 constraint.align = align; 815 constraint.alignf = alignf; 816 constraint.alignf_data = alignf_data; 817 818 if ( new->parent ) { 819 /* resource is already allocated, try reallocating with 820 the new constraints */ 821 return reallocate_resource(root, new, size, &constraint); 822 } 823 824 write_lock(&resource_lock); 825 err = find_resource_space(root, new, size, &constraint); 826 if (err >= 0 && __request_resource(root, new)) 827 err = -EBUSY; 828 write_unlock(&resource_lock); 829 return err; 830 } 831 832 EXPORT_SYMBOL(allocate_resource); 833 834 /** 835 * lookup_resource - find an existing resource by a resource start address 836 * @root: root resource descriptor 837 * @start: resource start address 838 * 839 * Returns a pointer to the resource if found, NULL otherwise 840 */ 841 struct resource *lookup_resource(struct resource *root, resource_size_t start) 842 { 843 struct resource *res; 844 845 read_lock(&resource_lock); 846 for (res = root->child; res; res = res->sibling) { 847 if (res->start == start) 848 break; 849 } 850 read_unlock(&resource_lock); 851 852 return res; 853 } 854 855 /* 856 * Insert a resource into the resource tree. If successful, return NULL, 857 * otherwise return the conflicting resource (compare to __request_resource()) 858 */ 859 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 860 { 861 struct resource *first, *next; 862 863 for (;; parent = first) { 864 first = __request_resource(parent, new); 865 if (!first) 866 return first; 867 868 if (first == parent) 869 return first; 870 if (WARN_ON(first == new)) /* duplicated insertion */ 871 return first; 872 873 if ((first->start > new->start) || (first->end < new->end)) 874 break; 875 if ((first->start == new->start) && (first->end == new->end)) 876 break; 877 } 878 879 for (next = first; ; next = next->sibling) { 880 /* Partial overlap? Bad, and unfixable */ 881 if (next->start < new->start || next->end > new->end) 882 return next; 883 if (!next->sibling) 884 break; 885 if (next->sibling->start > new->end) 886 break; 887 } 888 889 new->parent = parent; 890 new->sibling = next->sibling; 891 new->child = first; 892 893 next->sibling = NULL; 894 for (next = first; next; next = next->sibling) 895 next->parent = new; 896 897 if (parent->child == first) { 898 parent->child = new; 899 } else { 900 next = parent->child; 901 while (next->sibling != first) 902 next = next->sibling; 903 next->sibling = new; 904 } 905 return NULL; 906 } 907 908 /** 909 * insert_resource_conflict - Inserts resource in the resource tree 910 * @parent: parent of the new resource 911 * @new: new resource to insert 912 * 913 * Returns 0 on success, conflict resource if the resource can't be inserted. 914 * 915 * This function is equivalent to request_resource_conflict when no conflict 916 * happens. If a conflict happens, and the conflicting resources 917 * entirely fit within the range of the new resource, then the new 918 * resource is inserted and the conflicting resources become children of 919 * the new resource. 920 * 921 * This function is intended for producers of resources, such as FW modules 922 * and bus drivers. 923 */ 924 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 925 { 926 struct resource *conflict; 927 928 write_lock(&resource_lock); 929 conflict = __insert_resource(parent, new); 930 write_unlock(&resource_lock); 931 return conflict; 932 } 933 934 /** 935 * insert_resource - Inserts a resource in the resource tree 936 * @parent: parent of the new resource 937 * @new: new resource to insert 938 * 939 * Returns 0 on success, -EBUSY if the resource can't be inserted. 940 * 941 * This function is intended for producers of resources, such as FW modules 942 * and bus drivers. 943 */ 944 int insert_resource(struct resource *parent, struct resource *new) 945 { 946 struct resource *conflict; 947 948 conflict = insert_resource_conflict(parent, new); 949 return conflict ? -EBUSY : 0; 950 } 951 EXPORT_SYMBOL_GPL(insert_resource); 952 953 /** 954 * insert_resource_expand_to_fit - Insert a resource into the resource tree 955 * @root: root resource descriptor 956 * @new: new resource to insert 957 * 958 * Insert a resource into the resource tree, possibly expanding it in order 959 * to make it encompass any conflicting resources. 960 */ 961 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 962 { 963 if (new->parent) 964 return; 965 966 write_lock(&resource_lock); 967 for (;;) { 968 struct resource *conflict; 969 970 conflict = __insert_resource(root, new); 971 if (!conflict) 972 break; 973 if (conflict == root) 974 break; 975 976 /* Ok, expand resource to cover the conflict, then try again .. */ 977 if (conflict->start < new->start) 978 new->start = conflict->start; 979 if (conflict->end > new->end) 980 new->end = conflict->end; 981 982 pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 983 } 984 write_unlock(&resource_lock); 985 } 986 /* 987 * Not for general consumption, only early boot memory map parsing, PCI 988 * resource discovery, and late discovery of CXL resources are expected 989 * to use this interface. The former are built-in and only the latter, 990 * CXL, is a module. 991 */ 992 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL); 993 994 /** 995 * remove_resource - Remove a resource in the resource tree 996 * @old: resource to remove 997 * 998 * Returns 0 on success, -EINVAL if the resource is not valid. 999 * 1000 * This function removes a resource previously inserted by insert_resource() 1001 * or insert_resource_conflict(), and moves the children (if any) up to 1002 * where they were before. insert_resource() and insert_resource_conflict() 1003 * insert a new resource, and move any conflicting resources down to the 1004 * children of the new resource. 1005 * 1006 * insert_resource(), insert_resource_conflict() and remove_resource() are 1007 * intended for producers of resources, such as FW modules and bus drivers. 1008 */ 1009 int remove_resource(struct resource *old) 1010 { 1011 int retval; 1012 1013 write_lock(&resource_lock); 1014 retval = __release_resource(old, false); 1015 write_unlock(&resource_lock); 1016 return retval; 1017 } 1018 EXPORT_SYMBOL_GPL(remove_resource); 1019 1020 static int __adjust_resource(struct resource *res, resource_size_t start, 1021 resource_size_t size) 1022 { 1023 struct resource *tmp, *parent = res->parent; 1024 resource_size_t end = start + size - 1; 1025 int result = -EBUSY; 1026 1027 if (!parent) 1028 goto skip; 1029 1030 if ((start < parent->start) || (end > parent->end)) 1031 goto out; 1032 1033 if (res->sibling && (res->sibling->start <= end)) 1034 goto out; 1035 1036 tmp = parent->child; 1037 if (tmp != res) { 1038 while (tmp->sibling != res) 1039 tmp = tmp->sibling; 1040 if (start <= tmp->end) 1041 goto out; 1042 } 1043 1044 skip: 1045 for (tmp = res->child; tmp; tmp = tmp->sibling) 1046 if ((tmp->start < start) || (tmp->end > end)) 1047 goto out; 1048 1049 res->start = start; 1050 res->end = end; 1051 result = 0; 1052 1053 out: 1054 return result; 1055 } 1056 1057 /** 1058 * adjust_resource - modify a resource's start and size 1059 * @res: resource to modify 1060 * @start: new start value 1061 * @size: new size 1062 * 1063 * Given an existing resource, change its start and size to match the 1064 * arguments. Returns 0 on success, -EBUSY if it can't fit. 1065 * Existing children of the resource are assumed to be immutable. 1066 */ 1067 int adjust_resource(struct resource *res, resource_size_t start, 1068 resource_size_t size) 1069 { 1070 int result; 1071 1072 write_lock(&resource_lock); 1073 result = __adjust_resource(res, start, size); 1074 write_unlock(&resource_lock); 1075 return result; 1076 } 1077 EXPORT_SYMBOL(adjust_resource); 1078 1079 static void __init 1080 __reserve_region_with_split(struct resource *root, resource_size_t start, 1081 resource_size_t end, const char *name) 1082 { 1083 struct resource *parent = root; 1084 struct resource *conflict; 1085 struct resource *res = alloc_resource(GFP_ATOMIC); 1086 struct resource *next_res = NULL; 1087 int type = resource_type(root); 1088 1089 if (!res) 1090 return; 1091 1092 res->name = name; 1093 res->start = start; 1094 res->end = end; 1095 res->flags = type | IORESOURCE_BUSY; 1096 res->desc = IORES_DESC_NONE; 1097 1098 while (1) { 1099 1100 conflict = __request_resource(parent, res); 1101 if (!conflict) { 1102 if (!next_res) 1103 break; 1104 res = next_res; 1105 next_res = NULL; 1106 continue; 1107 } 1108 1109 /* conflict covered whole area */ 1110 if (conflict->start <= res->start && 1111 conflict->end >= res->end) { 1112 free_resource(res); 1113 WARN_ON(next_res); 1114 break; 1115 } 1116 1117 /* failed, split and try again */ 1118 if (conflict->start > res->start) { 1119 end = res->end; 1120 res->end = conflict->start - 1; 1121 if (conflict->end < end) { 1122 next_res = alloc_resource(GFP_ATOMIC); 1123 if (!next_res) { 1124 free_resource(res); 1125 break; 1126 } 1127 next_res->name = name; 1128 next_res->start = conflict->end + 1; 1129 next_res->end = end; 1130 next_res->flags = type | IORESOURCE_BUSY; 1131 next_res->desc = IORES_DESC_NONE; 1132 } 1133 } else { 1134 res->start = conflict->end + 1; 1135 } 1136 } 1137 1138 } 1139 1140 void __init 1141 reserve_region_with_split(struct resource *root, resource_size_t start, 1142 resource_size_t end, const char *name) 1143 { 1144 int abort = 0; 1145 1146 write_lock(&resource_lock); 1147 if (root->start > start || root->end < end) { 1148 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1149 (unsigned long long)start, (unsigned long long)end, 1150 root); 1151 if (start > root->end || end < root->start) 1152 abort = 1; 1153 else { 1154 if (end > root->end) 1155 end = root->end; 1156 if (start < root->start) 1157 start = root->start; 1158 pr_err("fixing request to [0x%llx-0x%llx]\n", 1159 (unsigned long long)start, 1160 (unsigned long long)end); 1161 } 1162 dump_stack(); 1163 } 1164 if (!abort) 1165 __reserve_region_with_split(root, start, end, name); 1166 write_unlock(&resource_lock); 1167 } 1168 1169 /** 1170 * resource_alignment - calculate resource's alignment 1171 * @res: resource pointer 1172 * 1173 * Returns alignment on success, 0 (invalid alignment) on failure. 1174 */ 1175 resource_size_t resource_alignment(struct resource *res) 1176 { 1177 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1178 case IORESOURCE_SIZEALIGN: 1179 return resource_size(res); 1180 case IORESOURCE_STARTALIGN: 1181 return res->start; 1182 default: 1183 return 0; 1184 } 1185 } 1186 1187 /* 1188 * This is compatibility stuff for IO resources. 1189 * 1190 * Note how this, unlike the above, knows about 1191 * the IO flag meanings (busy etc). 1192 * 1193 * request_region creates a new busy region. 1194 * 1195 * release_region releases a matching busy region. 1196 */ 1197 1198 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1199 1200 static struct inode *iomem_inode; 1201 1202 #ifdef CONFIG_IO_STRICT_DEVMEM 1203 static void revoke_iomem(struct resource *res) 1204 { 1205 /* pairs with smp_store_release() in iomem_init_inode() */ 1206 struct inode *inode = smp_load_acquire(&iomem_inode); 1207 1208 /* 1209 * Check that the initialization has completed. Losing the race 1210 * is ok because it means drivers are claiming resources before 1211 * the fs_initcall level of init and prevent iomem_get_mapping users 1212 * from establishing mappings. 1213 */ 1214 if (!inode) 1215 return; 1216 1217 /* 1218 * The expectation is that the driver has successfully marked 1219 * the resource busy by this point, so devmem_is_allowed() 1220 * should start returning false, however for performance this 1221 * does not iterate the entire resource range. 1222 */ 1223 if (devmem_is_allowed(PHYS_PFN(res->start)) && 1224 devmem_is_allowed(PHYS_PFN(res->end))) { 1225 /* 1226 * *cringe* iomem=relaxed says "go ahead, what's the 1227 * worst that can happen?" 1228 */ 1229 return; 1230 } 1231 1232 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1); 1233 } 1234 #else 1235 static void revoke_iomem(struct resource *res) {} 1236 #endif 1237 1238 struct address_space *iomem_get_mapping(void) 1239 { 1240 /* 1241 * This function is only called from file open paths, hence guaranteed 1242 * that fs_initcalls have completed and no need to check for NULL. But 1243 * since revoke_iomem can be called before the initcall we still need 1244 * the barrier to appease checkers. 1245 */ 1246 return smp_load_acquire(&iomem_inode)->i_mapping; 1247 } 1248 1249 static int __request_region_locked(struct resource *res, struct resource *parent, 1250 resource_size_t start, resource_size_t n, 1251 const char *name, int flags) 1252 { 1253 DECLARE_WAITQUEUE(wait, current); 1254 1255 res->name = name; 1256 res->start = start; 1257 res->end = start + n - 1; 1258 1259 for (;;) { 1260 struct resource *conflict; 1261 1262 res->flags = resource_type(parent) | resource_ext_type(parent); 1263 res->flags |= IORESOURCE_BUSY | flags; 1264 res->desc = parent->desc; 1265 1266 conflict = __request_resource(parent, res); 1267 if (!conflict) 1268 break; 1269 /* 1270 * mm/hmm.c reserves physical addresses which then 1271 * become unavailable to other users. Conflicts are 1272 * not expected. Warn to aid debugging if encountered. 1273 */ 1274 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 1275 pr_warn("Unaddressable device %s %pR conflicts with %pR", 1276 conflict->name, conflict, res); 1277 } 1278 if (conflict != parent) { 1279 if (!(conflict->flags & IORESOURCE_BUSY)) { 1280 parent = conflict; 1281 continue; 1282 } 1283 } 1284 if (conflict->flags & flags & IORESOURCE_MUXED) { 1285 add_wait_queue(&muxed_resource_wait, &wait); 1286 write_unlock(&resource_lock); 1287 set_current_state(TASK_UNINTERRUPTIBLE); 1288 schedule(); 1289 remove_wait_queue(&muxed_resource_wait, &wait); 1290 write_lock(&resource_lock); 1291 continue; 1292 } 1293 /* Uhhuh, that didn't work out.. */ 1294 return -EBUSY; 1295 } 1296 1297 return 0; 1298 } 1299 1300 /** 1301 * __request_region - create a new busy resource region 1302 * @parent: parent resource descriptor 1303 * @start: resource start address 1304 * @n: resource region size 1305 * @name: reserving caller's ID string 1306 * @flags: IO resource flags 1307 */ 1308 struct resource *__request_region(struct resource *parent, 1309 resource_size_t start, resource_size_t n, 1310 const char *name, int flags) 1311 { 1312 struct resource *res = alloc_resource(GFP_KERNEL); 1313 int ret; 1314 1315 if (!res) 1316 return NULL; 1317 1318 write_lock(&resource_lock); 1319 ret = __request_region_locked(res, parent, start, n, name, flags); 1320 write_unlock(&resource_lock); 1321 1322 if (ret) { 1323 free_resource(res); 1324 return NULL; 1325 } 1326 1327 if (parent == &iomem_resource) 1328 revoke_iomem(res); 1329 1330 return res; 1331 } 1332 EXPORT_SYMBOL(__request_region); 1333 1334 /** 1335 * __release_region - release a previously reserved resource region 1336 * @parent: parent resource descriptor 1337 * @start: resource start address 1338 * @n: resource region size 1339 * 1340 * The described resource region must match a currently busy region. 1341 */ 1342 void __release_region(struct resource *parent, resource_size_t start, 1343 resource_size_t n) 1344 { 1345 struct resource **p; 1346 resource_size_t end; 1347 1348 p = &parent->child; 1349 end = start + n - 1; 1350 1351 write_lock(&resource_lock); 1352 1353 for (;;) { 1354 struct resource *res = *p; 1355 1356 if (!res) 1357 break; 1358 if (res->start <= start && res->end >= end) { 1359 if (!(res->flags & IORESOURCE_BUSY)) { 1360 p = &res->child; 1361 continue; 1362 } 1363 if (res->start != start || res->end != end) 1364 break; 1365 *p = res->sibling; 1366 write_unlock(&resource_lock); 1367 if (res->flags & IORESOURCE_MUXED) 1368 wake_up(&muxed_resource_wait); 1369 free_resource(res); 1370 return; 1371 } 1372 p = &res->sibling; 1373 } 1374 1375 write_unlock(&resource_lock); 1376 1377 pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end); 1378 } 1379 EXPORT_SYMBOL(__release_region); 1380 1381 #ifdef CONFIG_MEMORY_HOTREMOVE 1382 /** 1383 * release_mem_region_adjustable - release a previously reserved memory region 1384 * @start: resource start address 1385 * @size: resource region size 1386 * 1387 * This interface is intended for memory hot-delete. The requested region 1388 * is released from a currently busy memory resource. The requested region 1389 * must either match exactly or fit into a single busy resource entry. In 1390 * the latter case, the remaining resource is adjusted accordingly. 1391 * Existing children of the busy memory resource must be immutable in the 1392 * request. 1393 * 1394 * Note: 1395 * - Additional release conditions, such as overlapping region, can be 1396 * supported after they are confirmed as valid cases. 1397 * - When a busy memory resource gets split into two entries, the code 1398 * assumes that all children remain in the lower address entry for 1399 * simplicity. Enhance this logic when necessary. 1400 */ 1401 void release_mem_region_adjustable(resource_size_t start, resource_size_t size) 1402 { 1403 struct resource *parent = &iomem_resource; 1404 struct resource *new_res = NULL; 1405 bool alloc_nofail = false; 1406 struct resource **p; 1407 struct resource *res; 1408 resource_size_t end; 1409 1410 end = start + size - 1; 1411 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end))) 1412 return; 1413 1414 /* 1415 * We free up quite a lot of memory on memory hotunplug (esp., memap), 1416 * just before releasing the region. This is highly unlikely to 1417 * fail - let's play save and make it never fail as the caller cannot 1418 * perform any error handling (e.g., trying to re-add memory will fail 1419 * similarly). 1420 */ 1421 retry: 1422 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0)); 1423 1424 p = &parent->child; 1425 write_lock(&resource_lock); 1426 1427 while ((res = *p)) { 1428 if (res->start >= end) 1429 break; 1430 1431 /* look for the next resource if it does not fit into */ 1432 if (res->start > start || res->end < end) { 1433 p = &res->sibling; 1434 continue; 1435 } 1436 1437 if (!(res->flags & IORESOURCE_MEM)) 1438 break; 1439 1440 if (!(res->flags & IORESOURCE_BUSY)) { 1441 p = &res->child; 1442 continue; 1443 } 1444 1445 /* found the target resource; let's adjust accordingly */ 1446 if (res->start == start && res->end == end) { 1447 /* free the whole entry */ 1448 *p = res->sibling; 1449 free_resource(res); 1450 } else if (res->start == start && res->end != end) { 1451 /* adjust the start */ 1452 WARN_ON_ONCE(__adjust_resource(res, end + 1, 1453 res->end - end)); 1454 } else if (res->start != start && res->end == end) { 1455 /* adjust the end */ 1456 WARN_ON_ONCE(__adjust_resource(res, res->start, 1457 start - res->start)); 1458 } else { 1459 /* split into two entries - we need a new resource */ 1460 if (!new_res) { 1461 new_res = alloc_resource(GFP_ATOMIC); 1462 if (!new_res) { 1463 alloc_nofail = true; 1464 write_unlock(&resource_lock); 1465 goto retry; 1466 } 1467 } 1468 new_res->name = res->name; 1469 new_res->start = end + 1; 1470 new_res->end = res->end; 1471 new_res->flags = res->flags; 1472 new_res->desc = res->desc; 1473 new_res->parent = res->parent; 1474 new_res->sibling = res->sibling; 1475 new_res->child = NULL; 1476 1477 if (WARN_ON_ONCE(__adjust_resource(res, res->start, 1478 start - res->start))) 1479 break; 1480 res->sibling = new_res; 1481 new_res = NULL; 1482 } 1483 1484 break; 1485 } 1486 1487 write_unlock(&resource_lock); 1488 free_resource(new_res); 1489 } 1490 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1491 1492 #ifdef CONFIG_MEMORY_HOTPLUG 1493 static bool system_ram_resources_mergeable(struct resource *r1, 1494 struct resource *r2) 1495 { 1496 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */ 1497 return r1->flags == r2->flags && r1->end + 1 == r2->start && 1498 r1->name == r2->name && r1->desc == r2->desc && 1499 !r1->child && !r2->child; 1500 } 1501 1502 /** 1503 * merge_system_ram_resource - mark the System RAM resource mergeable and try to 1504 * merge it with adjacent, mergeable resources 1505 * @res: resource descriptor 1506 * 1507 * This interface is intended for memory hotplug, whereby lots of contiguous 1508 * system ram resources are added (e.g., via add_memory*()) by a driver, and 1509 * the actual resource boundaries are not of interest (e.g., it might be 1510 * relevant for DIMMs). Only resources that are marked mergeable, that have the 1511 * same parent, and that don't have any children are considered. All mergeable 1512 * resources must be immutable during the request. 1513 * 1514 * Note: 1515 * - The caller has to make sure that no pointers to resources that are 1516 * marked mergeable are used anymore after this call - the resource might 1517 * be freed and the pointer might be stale! 1518 * - release_mem_region_adjustable() will split on demand on memory hotunplug 1519 */ 1520 void merge_system_ram_resource(struct resource *res) 1521 { 1522 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 1523 struct resource *cur; 1524 1525 if (WARN_ON_ONCE((res->flags & flags) != flags)) 1526 return; 1527 1528 write_lock(&resource_lock); 1529 res->flags |= IORESOURCE_SYSRAM_MERGEABLE; 1530 1531 /* Try to merge with next item in the list. */ 1532 cur = res->sibling; 1533 if (cur && system_ram_resources_mergeable(res, cur)) { 1534 res->end = cur->end; 1535 res->sibling = cur->sibling; 1536 free_resource(cur); 1537 } 1538 1539 /* Try to merge with previous item in the list. */ 1540 cur = res->parent->child; 1541 while (cur && cur->sibling != res) 1542 cur = cur->sibling; 1543 if (cur && system_ram_resources_mergeable(cur, res)) { 1544 cur->end = res->end; 1545 cur->sibling = res->sibling; 1546 free_resource(res); 1547 } 1548 write_unlock(&resource_lock); 1549 } 1550 #endif /* CONFIG_MEMORY_HOTPLUG */ 1551 1552 /* 1553 * Managed region resource 1554 */ 1555 static void devm_resource_release(struct device *dev, void *ptr) 1556 { 1557 struct resource **r = ptr; 1558 1559 release_resource(*r); 1560 } 1561 1562 /** 1563 * devm_request_resource() - request and reserve an I/O or memory resource 1564 * @dev: device for which to request the resource 1565 * @root: root of the resource tree from which to request the resource 1566 * @new: descriptor of the resource to request 1567 * 1568 * This is a device-managed version of request_resource(). There is usually 1569 * no need to release resources requested by this function explicitly since 1570 * that will be taken care of when the device is unbound from its driver. 1571 * If for some reason the resource needs to be released explicitly, because 1572 * of ordering issues for example, drivers must call devm_release_resource() 1573 * rather than the regular release_resource(). 1574 * 1575 * When a conflict is detected between any existing resources and the newly 1576 * requested resource, an error message will be printed. 1577 * 1578 * Returns 0 on success or a negative error code on failure. 1579 */ 1580 int devm_request_resource(struct device *dev, struct resource *root, 1581 struct resource *new) 1582 { 1583 struct resource *conflict, **ptr; 1584 1585 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1586 if (!ptr) 1587 return -ENOMEM; 1588 1589 *ptr = new; 1590 1591 conflict = request_resource_conflict(root, new); 1592 if (conflict) { 1593 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1594 new, conflict->name, conflict); 1595 devres_free(ptr); 1596 return -EBUSY; 1597 } 1598 1599 devres_add(dev, ptr); 1600 return 0; 1601 } 1602 EXPORT_SYMBOL(devm_request_resource); 1603 1604 static int devm_resource_match(struct device *dev, void *res, void *data) 1605 { 1606 struct resource **ptr = res; 1607 1608 return *ptr == data; 1609 } 1610 1611 /** 1612 * devm_release_resource() - release a previously requested resource 1613 * @dev: device for which to release the resource 1614 * @new: descriptor of the resource to release 1615 * 1616 * Releases a resource previously requested using devm_request_resource(). 1617 */ 1618 void devm_release_resource(struct device *dev, struct resource *new) 1619 { 1620 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1621 new)); 1622 } 1623 EXPORT_SYMBOL(devm_release_resource); 1624 1625 struct region_devres { 1626 struct resource *parent; 1627 resource_size_t start; 1628 resource_size_t n; 1629 }; 1630 1631 static void devm_region_release(struct device *dev, void *res) 1632 { 1633 struct region_devres *this = res; 1634 1635 __release_region(this->parent, this->start, this->n); 1636 } 1637 1638 static int devm_region_match(struct device *dev, void *res, void *match_data) 1639 { 1640 struct region_devres *this = res, *match = match_data; 1641 1642 return this->parent == match->parent && 1643 this->start == match->start && this->n == match->n; 1644 } 1645 1646 struct resource * 1647 __devm_request_region(struct device *dev, struct resource *parent, 1648 resource_size_t start, resource_size_t n, const char *name) 1649 { 1650 struct region_devres *dr = NULL; 1651 struct resource *res; 1652 1653 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1654 GFP_KERNEL); 1655 if (!dr) 1656 return NULL; 1657 1658 dr->parent = parent; 1659 dr->start = start; 1660 dr->n = n; 1661 1662 res = __request_region(parent, start, n, name, 0); 1663 if (res) 1664 devres_add(dev, dr); 1665 else 1666 devres_free(dr); 1667 1668 return res; 1669 } 1670 EXPORT_SYMBOL(__devm_request_region); 1671 1672 void __devm_release_region(struct device *dev, struct resource *parent, 1673 resource_size_t start, resource_size_t n) 1674 { 1675 struct region_devres match_data = { parent, start, n }; 1676 1677 __release_region(parent, start, n); 1678 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1679 &match_data)); 1680 } 1681 EXPORT_SYMBOL(__devm_release_region); 1682 1683 /* 1684 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1685 */ 1686 #define MAXRESERVE 4 1687 static int __init reserve_setup(char *str) 1688 { 1689 static int reserved; 1690 static struct resource reserve[MAXRESERVE]; 1691 1692 for (;;) { 1693 unsigned int io_start, io_num; 1694 int x = reserved; 1695 struct resource *parent; 1696 1697 if (get_option(&str, &io_start) != 2) 1698 break; 1699 if (get_option(&str, &io_num) == 0) 1700 break; 1701 if (x < MAXRESERVE) { 1702 struct resource *res = reserve + x; 1703 1704 /* 1705 * If the region starts below 0x10000, we assume it's 1706 * I/O port space; otherwise assume it's memory. 1707 */ 1708 if (io_start < 0x10000) { 1709 res->flags = IORESOURCE_IO; 1710 parent = &ioport_resource; 1711 } else { 1712 res->flags = IORESOURCE_MEM; 1713 parent = &iomem_resource; 1714 } 1715 res->name = "reserved"; 1716 res->start = io_start; 1717 res->end = io_start + io_num - 1; 1718 res->flags |= IORESOURCE_BUSY; 1719 res->desc = IORES_DESC_NONE; 1720 res->child = NULL; 1721 if (request_resource(parent, res) == 0) 1722 reserved = x+1; 1723 } 1724 } 1725 return 1; 1726 } 1727 __setup("reserve=", reserve_setup); 1728 1729 /* 1730 * Check if the requested addr and size spans more than any slot in the 1731 * iomem resource tree. 1732 */ 1733 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1734 { 1735 resource_size_t end = addr + size - 1; 1736 struct resource *p; 1737 int err = 0; 1738 1739 read_lock(&resource_lock); 1740 for_each_resource(&iomem_resource, p, false) { 1741 /* 1742 * We can probably skip the resources without 1743 * IORESOURCE_IO attribute? 1744 */ 1745 if (p->start > end) 1746 continue; 1747 if (p->end < addr) 1748 continue; 1749 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1750 PFN_DOWN(p->end) >= PFN_DOWN(end)) 1751 continue; 1752 /* 1753 * if a resource is "BUSY", it's not a hardware resource 1754 * but a driver mapping of such a resource; we don't want 1755 * to warn for those; some drivers legitimately map only 1756 * partial hardware resources. (example: vesafb) 1757 */ 1758 if (p->flags & IORESOURCE_BUSY) 1759 continue; 1760 1761 pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n", 1762 &addr, &end, p->name, p); 1763 err = -1; 1764 break; 1765 } 1766 read_unlock(&resource_lock); 1767 1768 return err; 1769 } 1770 1771 #ifdef CONFIG_STRICT_DEVMEM 1772 static int strict_iomem_checks = 1; 1773 #else 1774 static int strict_iomem_checks; 1775 #endif 1776 1777 /* 1778 * Check if an address is exclusive to the kernel and must not be mapped to 1779 * user space, for example, via /dev/mem. 1780 * 1781 * Returns true if exclusive to the kernel, otherwise returns false. 1782 */ 1783 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size) 1784 { 1785 const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM | 1786 IORESOURCE_EXCLUSIVE; 1787 bool skip_children = false, err = false; 1788 struct resource *p; 1789 1790 read_lock(&resource_lock); 1791 for_each_resource(root, p, skip_children) { 1792 if (p->start >= addr + size) 1793 break; 1794 if (p->end < addr) { 1795 skip_children = true; 1796 continue; 1797 } 1798 skip_children = false; 1799 1800 /* 1801 * IORESOURCE_SYSTEM_RAM resources are exclusive if 1802 * IORESOURCE_EXCLUSIVE is set, even if they 1803 * are not busy and even if "iomem=relaxed" is set. The 1804 * responsible driver dynamically adds/removes system RAM within 1805 * such an area and uncontrolled access is dangerous. 1806 */ 1807 if ((p->flags & exclusive_system_ram) == exclusive_system_ram) { 1808 err = true; 1809 break; 1810 } 1811 1812 /* 1813 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1814 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1815 * resource is busy. 1816 */ 1817 if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY)) 1818 continue; 1819 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1820 || p->flags & IORESOURCE_EXCLUSIVE) { 1821 err = true; 1822 break; 1823 } 1824 } 1825 read_unlock(&resource_lock); 1826 1827 return err; 1828 } 1829 1830 bool iomem_is_exclusive(u64 addr) 1831 { 1832 return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK, 1833 PAGE_SIZE); 1834 } 1835 1836 struct resource_entry *resource_list_create_entry(struct resource *res, 1837 size_t extra_size) 1838 { 1839 struct resource_entry *entry; 1840 1841 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1842 if (entry) { 1843 INIT_LIST_HEAD(&entry->node); 1844 entry->res = res ? res : &entry->__res; 1845 } 1846 1847 return entry; 1848 } 1849 EXPORT_SYMBOL(resource_list_create_entry); 1850 1851 void resource_list_free(struct list_head *head) 1852 { 1853 struct resource_entry *entry, *tmp; 1854 1855 list_for_each_entry_safe(entry, tmp, head, node) 1856 resource_list_destroy_entry(entry); 1857 } 1858 EXPORT_SYMBOL(resource_list_free); 1859 1860 #ifdef CONFIG_GET_FREE_REGION 1861 #define GFR_DESCENDING (1UL << 0) 1862 #define GFR_REQUEST_REGION (1UL << 1) 1863 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT) 1864 1865 static resource_size_t gfr_start(struct resource *base, resource_size_t size, 1866 resource_size_t align, unsigned long flags) 1867 { 1868 if (flags & GFR_DESCENDING) { 1869 resource_size_t end; 1870 1871 end = min_t(resource_size_t, base->end, PHYSMEM_END); 1872 return end - size + 1; 1873 } 1874 1875 return ALIGN(base->start, align); 1876 } 1877 1878 static bool gfr_continue(struct resource *base, resource_size_t addr, 1879 resource_size_t size, unsigned long flags) 1880 { 1881 if (flags & GFR_DESCENDING) 1882 return addr > size && addr >= base->start; 1883 /* 1884 * In the ascend case be careful that the last increment by 1885 * @size did not wrap 0. 1886 */ 1887 return addr > addr - size && 1888 addr <= min_t(resource_size_t, base->end, PHYSMEM_END); 1889 } 1890 1891 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size, 1892 unsigned long flags) 1893 { 1894 if (flags & GFR_DESCENDING) 1895 return addr - size; 1896 return addr + size; 1897 } 1898 1899 static void remove_free_mem_region(void *_res) 1900 { 1901 struct resource *res = _res; 1902 1903 if (res->parent) 1904 remove_resource(res); 1905 free_resource(res); 1906 } 1907 1908 static struct resource * 1909 get_free_mem_region(struct device *dev, struct resource *base, 1910 resource_size_t size, const unsigned long align, 1911 const char *name, const unsigned long desc, 1912 const unsigned long flags) 1913 { 1914 resource_size_t addr; 1915 struct resource *res; 1916 struct region_devres *dr = NULL; 1917 1918 size = ALIGN(size, align); 1919 1920 res = alloc_resource(GFP_KERNEL); 1921 if (!res) 1922 return ERR_PTR(-ENOMEM); 1923 1924 if (dev && (flags & GFR_REQUEST_REGION)) { 1925 dr = devres_alloc(devm_region_release, 1926 sizeof(struct region_devres), GFP_KERNEL); 1927 if (!dr) { 1928 free_resource(res); 1929 return ERR_PTR(-ENOMEM); 1930 } 1931 } else if (dev) { 1932 if (devm_add_action_or_reset(dev, remove_free_mem_region, res)) 1933 return ERR_PTR(-ENOMEM); 1934 } 1935 1936 write_lock(&resource_lock); 1937 for (addr = gfr_start(base, size, align, flags); 1938 gfr_continue(base, addr, align, flags); 1939 addr = gfr_next(addr, align, flags)) { 1940 if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) != 1941 REGION_DISJOINT) 1942 continue; 1943 1944 if (flags & GFR_REQUEST_REGION) { 1945 if (__request_region_locked(res, &iomem_resource, addr, 1946 size, name, 0)) 1947 break; 1948 1949 if (dev) { 1950 dr->parent = &iomem_resource; 1951 dr->start = addr; 1952 dr->n = size; 1953 devres_add(dev, dr); 1954 } 1955 1956 res->desc = desc; 1957 write_unlock(&resource_lock); 1958 1959 1960 /* 1961 * A driver is claiming this region so revoke any 1962 * mappings. 1963 */ 1964 revoke_iomem(res); 1965 } else { 1966 res->start = addr; 1967 res->end = addr + size - 1; 1968 res->name = name; 1969 res->desc = desc; 1970 res->flags = IORESOURCE_MEM; 1971 1972 /* 1973 * Only succeed if the resource hosts an exclusive 1974 * range after the insert 1975 */ 1976 if (__insert_resource(base, res) || res->child) 1977 break; 1978 1979 write_unlock(&resource_lock); 1980 } 1981 1982 return res; 1983 } 1984 write_unlock(&resource_lock); 1985 1986 if (flags & GFR_REQUEST_REGION) { 1987 free_resource(res); 1988 devres_free(dr); 1989 } else if (dev) 1990 devm_release_action(dev, remove_free_mem_region, res); 1991 1992 return ERR_PTR(-ERANGE); 1993 } 1994 1995 /** 1996 * devm_request_free_mem_region - find free region for device private memory 1997 * 1998 * @dev: device struct to bind the resource to 1999 * @size: size in bytes of the device memory to add 2000 * @base: resource tree to look in 2001 * 2002 * This function tries to find an empty range of physical address big enough to 2003 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE 2004 * memory, which in turn allocates struct pages. 2005 */ 2006 struct resource *devm_request_free_mem_region(struct device *dev, 2007 struct resource *base, unsigned long size) 2008 { 2009 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION; 2010 2011 return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN, 2012 dev_name(dev), 2013 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags); 2014 } 2015 EXPORT_SYMBOL_GPL(devm_request_free_mem_region); 2016 2017 struct resource *request_free_mem_region(struct resource *base, 2018 unsigned long size, const char *name) 2019 { 2020 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION; 2021 2022 return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name, 2023 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags); 2024 } 2025 EXPORT_SYMBOL_GPL(request_free_mem_region); 2026 2027 /** 2028 * alloc_free_mem_region - find a free region relative to @base 2029 * @base: resource that will parent the new resource 2030 * @size: size in bytes of memory to allocate from @base 2031 * @align: alignment requirements for the allocation 2032 * @name: resource name 2033 * 2034 * Buses like CXL, that can dynamically instantiate new memory regions, 2035 * need a method to allocate physical address space for those regions. 2036 * Allocate and insert a new resource to cover a free, unclaimed by a 2037 * descendant of @base, range in the span of @base. 2038 */ 2039 struct resource *alloc_free_mem_region(struct resource *base, 2040 unsigned long size, unsigned long align, 2041 const char *name) 2042 { 2043 /* Default of ascending direction and insert resource */ 2044 unsigned long flags = 0; 2045 2046 return get_free_mem_region(NULL, base, size, align, name, 2047 IORES_DESC_NONE, flags); 2048 } 2049 EXPORT_SYMBOL_NS_GPL(alloc_free_mem_region, CXL); 2050 #endif /* CONFIG_GET_FREE_REGION */ 2051 2052 static int __init strict_iomem(char *str) 2053 { 2054 if (strstr(str, "relaxed")) 2055 strict_iomem_checks = 0; 2056 if (strstr(str, "strict")) 2057 strict_iomem_checks = 1; 2058 return 1; 2059 } 2060 2061 static int iomem_fs_init_fs_context(struct fs_context *fc) 2062 { 2063 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM; 2064 } 2065 2066 static struct file_system_type iomem_fs_type = { 2067 .name = "iomem", 2068 .owner = THIS_MODULE, 2069 .init_fs_context = iomem_fs_init_fs_context, 2070 .kill_sb = kill_anon_super, 2071 }; 2072 2073 static int __init iomem_init_inode(void) 2074 { 2075 static struct vfsmount *iomem_vfs_mount; 2076 static int iomem_fs_cnt; 2077 struct inode *inode; 2078 int rc; 2079 2080 rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt); 2081 if (rc < 0) { 2082 pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc); 2083 return rc; 2084 } 2085 2086 inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb); 2087 if (IS_ERR(inode)) { 2088 rc = PTR_ERR(inode); 2089 pr_err("Cannot allocate inode for iomem: %d\n", rc); 2090 simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt); 2091 return rc; 2092 } 2093 2094 /* 2095 * Publish iomem revocation inode initialized. 2096 * Pairs with smp_load_acquire() in revoke_iomem(). 2097 */ 2098 smp_store_release(&iomem_inode, inode); 2099 2100 return 0; 2101 } 2102 2103 fs_initcall(iomem_init_inode); 2104 2105 __setup("iomem=", strict_iomem); 2106
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.