1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sched_clock() for unstable CPU clocks 4 * 5 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra 6 * 7 * Updates and enhancements: 8 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com> 9 * 10 * Based on code by: 11 * Ingo Molnar <mingo@redhat.com> 12 * Guillaume Chazarain <guichaz@gmail.com> 13 * 14 * 15 * What this file implements: 16 * 17 * cpu_clock(i) provides a fast (execution time) high resolution 18 * clock with bounded drift between CPUs. The value of cpu_clock(i) 19 * is monotonic for constant i. The timestamp returned is in nanoseconds. 20 * 21 * ######################### BIG FAT WARNING ########################## 22 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 23 * # go backwards !! # 24 * #################################################################### 25 * 26 * There is no strict promise about the base, although it tends to start 27 * at 0 on boot (but people really shouldn't rely on that). 28 * 29 * cpu_clock(i) -- can be used from any context, including NMI. 30 * local_clock() -- is cpu_clock() on the current CPU. 31 * 32 * sched_clock_cpu(i) 33 * 34 * How it is implemented: 35 * 36 * The implementation either uses sched_clock() when 37 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the 38 * sched_clock() is assumed to provide these properties (mostly it means 39 * the architecture provides a globally synchronized highres time source). 40 * 41 * Otherwise it tries to create a semi stable clock from a mixture of other 42 * clocks, including: 43 * 44 * - GTOD (clock monotonic) 45 * - sched_clock() 46 * - explicit idle events 47 * 48 * We use GTOD as base and use sched_clock() deltas to improve resolution. The 49 * deltas are filtered to provide monotonicity and keeping it within an 50 * expected window. 51 * 52 * Furthermore, explicit sleep and wakeup hooks allow us to account for time 53 * that is otherwise invisible (TSC gets stopped). 54 * 55 */ 56 57 /* 58 * Scheduler clock - returns current time in nanosec units. 59 * This is default implementation. 60 * Architectures and sub-architectures can override this. 61 */ 62 notrace unsigned long long __weak sched_clock(void) 63 { 64 return (unsigned long long)(jiffies - INITIAL_JIFFIES) 65 * (NSEC_PER_SEC / HZ); 66 } 67 EXPORT_SYMBOL_GPL(sched_clock); 68 69 static DEFINE_STATIC_KEY_FALSE(sched_clock_running); 70 71 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 72 /* 73 * We must start with !__sched_clock_stable because the unstable -> stable 74 * transition is accurate, while the stable -> unstable transition is not. 75 * 76 * Similarly we start with __sched_clock_stable_early, thereby assuming we 77 * will become stable, such that there's only a single 1 -> 0 transition. 78 */ 79 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable); 80 static int __sched_clock_stable_early = 1; 81 82 /* 83 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset 84 */ 85 __read_mostly u64 __sched_clock_offset; 86 static __read_mostly u64 __gtod_offset; 87 88 struct sched_clock_data { 89 u64 tick_raw; 90 u64 tick_gtod; 91 u64 clock; 92 }; 93 94 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); 95 96 static __always_inline struct sched_clock_data *this_scd(void) 97 { 98 return this_cpu_ptr(&sched_clock_data); 99 } 100 101 notrace static inline struct sched_clock_data *cpu_sdc(int cpu) 102 { 103 return &per_cpu(sched_clock_data, cpu); 104 } 105 106 notrace int sched_clock_stable(void) 107 { 108 return static_branch_likely(&__sched_clock_stable); 109 } 110 111 notrace static void __scd_stamp(struct sched_clock_data *scd) 112 { 113 scd->tick_gtod = ktime_get_ns(); 114 scd->tick_raw = sched_clock(); 115 } 116 117 notrace static void __set_sched_clock_stable(void) 118 { 119 struct sched_clock_data *scd; 120 121 /* 122 * Since we're still unstable and the tick is already running, we have 123 * to disable IRQs in order to get a consistent scd->tick* reading. 124 */ 125 local_irq_disable(); 126 scd = this_scd(); 127 /* 128 * Attempt to make the (initial) unstable->stable transition continuous. 129 */ 130 __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw); 131 local_irq_enable(); 132 133 printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n", 134 scd->tick_gtod, __gtod_offset, 135 scd->tick_raw, __sched_clock_offset); 136 137 static_branch_enable(&__sched_clock_stable); 138 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE); 139 } 140 141 /* 142 * If we ever get here, we're screwed, because we found out -- typically after 143 * the fact -- that TSC wasn't good. This means all our clocksources (including 144 * ktime) could have reported wrong values. 145 * 146 * What we do here is an attempt to fix up and continue sort of where we left 147 * off in a coherent manner. 148 * 149 * The only way to fully avoid random clock jumps is to boot with: 150 * "tsc=unstable". 151 */ 152 notrace static void __sched_clock_work(struct work_struct *work) 153 { 154 struct sched_clock_data *scd; 155 int cpu; 156 157 /* take a current timestamp and set 'now' */ 158 preempt_disable(); 159 scd = this_scd(); 160 __scd_stamp(scd); 161 scd->clock = scd->tick_gtod + __gtod_offset; 162 preempt_enable(); 163 164 /* clone to all CPUs */ 165 for_each_possible_cpu(cpu) 166 per_cpu(sched_clock_data, cpu) = *scd; 167 168 printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n"); 169 printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n", 170 scd->tick_gtod, __gtod_offset, 171 scd->tick_raw, __sched_clock_offset); 172 173 static_branch_disable(&__sched_clock_stable); 174 } 175 176 static DECLARE_WORK(sched_clock_work, __sched_clock_work); 177 178 notrace static void __clear_sched_clock_stable(void) 179 { 180 if (!sched_clock_stable()) 181 return; 182 183 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE); 184 schedule_work(&sched_clock_work); 185 } 186 187 notrace void clear_sched_clock_stable(void) 188 { 189 __sched_clock_stable_early = 0; 190 191 smp_mb(); /* matches sched_clock_init_late() */ 192 193 if (static_key_count(&sched_clock_running.key) == 2) 194 __clear_sched_clock_stable(); 195 } 196 197 notrace static void __sched_clock_gtod_offset(void) 198 { 199 struct sched_clock_data *scd = this_scd(); 200 201 __scd_stamp(scd); 202 __gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod; 203 } 204 205 void __init sched_clock_init(void) 206 { 207 /* 208 * Set __gtod_offset such that once we mark sched_clock_running, 209 * sched_clock_tick() continues where sched_clock() left off. 210 * 211 * Even if TSC is buggered, we're still UP at this point so it 212 * can't really be out of sync. 213 */ 214 local_irq_disable(); 215 __sched_clock_gtod_offset(); 216 local_irq_enable(); 217 218 static_branch_inc(&sched_clock_running); 219 } 220 /* 221 * We run this as late_initcall() such that it runs after all built-in drivers, 222 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable. 223 */ 224 static int __init sched_clock_init_late(void) 225 { 226 static_branch_inc(&sched_clock_running); 227 /* 228 * Ensure that it is impossible to not do a static_key update. 229 * 230 * Either {set,clear}_sched_clock_stable() must see sched_clock_running 231 * and do the update, or we must see their __sched_clock_stable_early 232 * and do the update, or both. 233 */ 234 smp_mb(); /* matches {set,clear}_sched_clock_stable() */ 235 236 if (__sched_clock_stable_early) 237 __set_sched_clock_stable(); 238 239 return 0; 240 } 241 late_initcall(sched_clock_init_late); 242 243 /* 244 * min, max except they take wrapping into account 245 */ 246 247 static __always_inline u64 wrap_min(u64 x, u64 y) 248 { 249 return (s64)(x - y) < 0 ? x : y; 250 } 251 252 static __always_inline u64 wrap_max(u64 x, u64 y) 253 { 254 return (s64)(x - y) > 0 ? x : y; 255 } 256 257 /* 258 * update the percpu scd from the raw @now value 259 * 260 * - filter out backward motion 261 * - use the GTOD tick value to create a window to filter crazy TSC values 262 */ 263 static __always_inline u64 sched_clock_local(struct sched_clock_data *scd) 264 { 265 u64 now, clock, old_clock, min_clock, max_clock, gtod; 266 s64 delta; 267 268 again: 269 now = sched_clock_noinstr(); 270 delta = now - scd->tick_raw; 271 if (unlikely(delta < 0)) 272 delta = 0; 273 274 old_clock = scd->clock; 275 276 /* 277 * scd->clock = clamp(scd->tick_gtod + delta, 278 * max(scd->tick_gtod, scd->clock), 279 * scd->tick_gtod + TICK_NSEC); 280 */ 281 282 gtod = scd->tick_gtod + __gtod_offset; 283 clock = gtod + delta; 284 min_clock = wrap_max(gtod, old_clock); 285 max_clock = wrap_max(old_clock, gtod + TICK_NSEC); 286 287 clock = wrap_max(clock, min_clock); 288 clock = wrap_min(clock, max_clock); 289 290 if (!raw_try_cmpxchg64(&scd->clock, &old_clock, clock)) 291 goto again; 292 293 return clock; 294 } 295 296 noinstr u64 local_clock_noinstr(void) 297 { 298 u64 clock; 299 300 if (static_branch_likely(&__sched_clock_stable)) 301 return sched_clock_noinstr() + __sched_clock_offset; 302 303 if (!static_branch_likely(&sched_clock_running)) 304 return sched_clock_noinstr(); 305 306 clock = sched_clock_local(this_scd()); 307 308 return clock; 309 } 310 311 u64 local_clock(void) 312 { 313 u64 now; 314 preempt_disable_notrace(); 315 now = local_clock_noinstr(); 316 preempt_enable_notrace(); 317 return now; 318 } 319 EXPORT_SYMBOL_GPL(local_clock); 320 321 static notrace u64 sched_clock_remote(struct sched_clock_data *scd) 322 { 323 struct sched_clock_data *my_scd = this_scd(); 324 u64 this_clock, remote_clock; 325 u64 *ptr, old_val, val; 326 327 #if BITS_PER_LONG != 64 328 again: 329 /* 330 * Careful here: The local and the remote clock values need to 331 * be read out atomic as we need to compare the values and 332 * then update either the local or the remote side. So the 333 * cmpxchg64 below only protects one readout. 334 * 335 * We must reread via sched_clock_local() in the retry case on 336 * 32-bit kernels as an NMI could use sched_clock_local() via the 337 * tracer and hit between the readout of 338 * the low 32-bit and the high 32-bit portion. 339 */ 340 this_clock = sched_clock_local(my_scd); 341 /* 342 * We must enforce atomic readout on 32-bit, otherwise the 343 * update on the remote CPU can hit in between the readout of 344 * the low 32-bit and the high 32-bit portion. 345 */ 346 remote_clock = cmpxchg64(&scd->clock, 0, 0); 347 #else 348 /* 349 * On 64-bit kernels the read of [my]scd->clock is atomic versus the 350 * update, so we can avoid the above 32-bit dance. 351 */ 352 sched_clock_local(my_scd); 353 again: 354 this_clock = my_scd->clock; 355 remote_clock = scd->clock; 356 #endif 357 358 /* 359 * Use the opportunity that we have both locks 360 * taken to couple the two clocks: we take the 361 * larger time as the latest time for both 362 * runqueues. (this creates monotonic movement) 363 */ 364 if (likely((s64)(remote_clock - this_clock) < 0)) { 365 ptr = &scd->clock; 366 old_val = remote_clock; 367 val = this_clock; 368 } else { 369 /* 370 * Should be rare, but possible: 371 */ 372 ptr = &my_scd->clock; 373 old_val = this_clock; 374 val = remote_clock; 375 } 376 377 if (!try_cmpxchg64(ptr, &old_val, val)) 378 goto again; 379 380 return val; 381 } 382 383 /* 384 * Similar to cpu_clock(), but requires local IRQs to be disabled. 385 * 386 * See cpu_clock(). 387 */ 388 notrace u64 sched_clock_cpu(int cpu) 389 { 390 struct sched_clock_data *scd; 391 u64 clock; 392 393 if (sched_clock_stable()) 394 return sched_clock() + __sched_clock_offset; 395 396 if (!static_branch_likely(&sched_clock_running)) 397 return sched_clock(); 398 399 preempt_disable_notrace(); 400 scd = cpu_sdc(cpu); 401 402 if (cpu != smp_processor_id()) 403 clock = sched_clock_remote(scd); 404 else 405 clock = sched_clock_local(scd); 406 preempt_enable_notrace(); 407 408 return clock; 409 } 410 EXPORT_SYMBOL_GPL(sched_clock_cpu); 411 412 notrace void sched_clock_tick(void) 413 { 414 struct sched_clock_data *scd; 415 416 if (sched_clock_stable()) 417 return; 418 419 if (!static_branch_likely(&sched_clock_running)) 420 return; 421 422 lockdep_assert_irqs_disabled(); 423 424 scd = this_scd(); 425 __scd_stamp(scd); 426 sched_clock_local(scd); 427 } 428 429 notrace void sched_clock_tick_stable(void) 430 { 431 if (!sched_clock_stable()) 432 return; 433 434 /* 435 * Called under watchdog_lock. 436 * 437 * The watchdog just found this TSC to (still) be stable, so now is a 438 * good moment to update our __gtod_offset. Because once we find the 439 * TSC to be unstable, any computation will be computing crap. 440 */ 441 local_irq_disable(); 442 __sched_clock_gtod_offset(); 443 local_irq_enable(); 444 } 445 446 /* 447 * We are going deep-idle (IRQs are disabled): 448 */ 449 notrace void sched_clock_idle_sleep_event(void) 450 { 451 sched_clock_cpu(smp_processor_id()); 452 } 453 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); 454 455 /* 456 * We just idled; resync with ktime. 457 */ 458 notrace void sched_clock_idle_wakeup_event(void) 459 { 460 unsigned long flags; 461 462 if (sched_clock_stable()) 463 return; 464 465 if (unlikely(timekeeping_suspended)) 466 return; 467 468 local_irq_save(flags); 469 sched_clock_tick(); 470 local_irq_restore(flags); 471 } 472 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); 473 474 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ 475 476 void __init sched_clock_init(void) 477 { 478 static_branch_inc(&sched_clock_running); 479 local_irq_disable(); 480 generic_sched_clock_init(); 481 local_irq_enable(); 482 } 483 484 notrace u64 sched_clock_cpu(int cpu) 485 { 486 if (!static_branch_likely(&sched_clock_running)) 487 return 0; 488 489 return sched_clock(); 490 } 491 492 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ 493 494 /* 495 * Running clock - returns the time that has elapsed while a guest has been 496 * running. 497 * On a guest this value should be local_clock minus the time the guest was 498 * suspended by the hypervisor (for any reason). 499 * On bare metal this function should return the same as local_clock. 500 * Architectures and sub-architectures can override this. 501 */ 502 notrace u64 __weak running_clock(void) 503 { 504 return local_clock(); 505 } 506
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.