~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/sched/cputime.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Simple CPU accounting cgroup controller
  4  */
  5 
  6 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  7  #include <asm/cputime.h>
  8 #endif
  9 
 10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 11 
 12 /*
 13  * There are no locks covering percpu hardirq/softirq time.
 14  * They are only modified in vtime_account, on corresponding CPU
 15  * with interrupts disabled. So, writes are safe.
 16  * They are read and saved off onto struct rq in update_rq_clock().
 17  * This may result in other CPU reading this CPU's IRQ time and can
 18  * race with irq/vtime_account on this CPU. We would either get old
 19  * or new value with a side effect of accounting a slice of IRQ time to wrong
 20  * task when IRQ is in progress while we read rq->clock. That is a worthy
 21  * compromise in place of having locks on each IRQ in account_system_time.
 22  */
 23 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
 24 
 25 static int sched_clock_irqtime;
 26 
 27 void enable_sched_clock_irqtime(void)
 28 {
 29         sched_clock_irqtime = 1;
 30 }
 31 
 32 void disable_sched_clock_irqtime(void)
 33 {
 34         sched_clock_irqtime = 0;
 35 }
 36 
 37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
 38                                   enum cpu_usage_stat idx)
 39 {
 40         u64 *cpustat = kcpustat_this_cpu->cpustat;
 41 
 42         u64_stats_update_begin(&irqtime->sync);
 43         cpustat[idx] += delta;
 44         irqtime->total += delta;
 45         irqtime->tick_delta += delta;
 46         u64_stats_update_end(&irqtime->sync);
 47 }
 48 
 49 /*
 50  * Called after incrementing preempt_count on {soft,}irq_enter
 51  * and before decrementing preempt_count on {soft,}irq_exit.
 52  */
 53 void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
 54 {
 55         struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 56         unsigned int pc;
 57         s64 delta;
 58         int cpu;
 59 
 60         if (!sched_clock_irqtime)
 61                 return;
 62 
 63         cpu = smp_processor_id();
 64         delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
 65         irqtime->irq_start_time += delta;
 66         pc = irq_count() - offset;
 67 
 68         /*
 69          * We do not account for softirq time from ksoftirqd here.
 70          * We want to continue accounting softirq time to ksoftirqd thread
 71          * in that case, so as not to confuse scheduler with a special task
 72          * that do not consume any time, but still wants to run.
 73          */
 74         if (pc & HARDIRQ_MASK)
 75                 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
 76         else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
 77                 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
 78 }
 79 
 80 static u64 irqtime_tick_accounted(u64 maxtime)
 81 {
 82         struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 83         u64 delta;
 84 
 85         delta = min(irqtime->tick_delta, maxtime);
 86         irqtime->tick_delta -= delta;
 87 
 88         return delta;
 89 }
 90 
 91 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
 92 
 93 #define sched_clock_irqtime     (0)
 94 
 95 static u64 irqtime_tick_accounted(u64 dummy)
 96 {
 97         return 0;
 98 }
 99 
100 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
101 
102 static inline void task_group_account_field(struct task_struct *p, int index,
103                                             u64 tmp)
104 {
105         /*
106          * Since all updates are sure to touch the root cgroup, we
107          * get ourselves ahead and touch it first. If the root cgroup
108          * is the only cgroup, then nothing else should be necessary.
109          *
110          */
111         __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
112 
113         cgroup_account_cputime_field(p, index, tmp);
114 }
115 
116 /*
117  * Account user CPU time to a process.
118  * @p: the process that the CPU time gets accounted to
119  * @cputime: the CPU time spent in user space since the last update
120  */
121 void account_user_time(struct task_struct *p, u64 cputime)
122 {
123         int index;
124 
125         /* Add user time to process. */
126         p->utime += cputime;
127         account_group_user_time(p, cputime);
128 
129         index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
130 
131         /* Add user time to cpustat. */
132         task_group_account_field(p, index, cputime);
133 
134         /* Account for user time used */
135         acct_account_cputime(p);
136 }
137 
138 /*
139  * Account guest CPU time to a process.
140  * @p: the process that the CPU time gets accounted to
141  * @cputime: the CPU time spent in virtual machine since the last update
142  */
143 void account_guest_time(struct task_struct *p, u64 cputime)
144 {
145         u64 *cpustat = kcpustat_this_cpu->cpustat;
146 
147         /* Add guest time to process. */
148         p->utime += cputime;
149         account_group_user_time(p, cputime);
150         p->gtime += cputime;
151 
152         /* Add guest time to cpustat. */
153         if (task_nice(p) > 0) {
154                 task_group_account_field(p, CPUTIME_NICE, cputime);
155                 cpustat[CPUTIME_GUEST_NICE] += cputime;
156         } else {
157                 task_group_account_field(p, CPUTIME_USER, cputime);
158                 cpustat[CPUTIME_GUEST] += cputime;
159         }
160 }
161 
162 /*
163  * Account system CPU time to a process and desired cpustat field
164  * @p: the process that the CPU time gets accounted to
165  * @cputime: the CPU time spent in kernel space since the last update
166  * @index: pointer to cpustat field that has to be updated
167  */
168 void account_system_index_time(struct task_struct *p,
169                                u64 cputime, enum cpu_usage_stat index)
170 {
171         /* Add system time to process. */
172         p->stime += cputime;
173         account_group_system_time(p, cputime);
174 
175         /* Add system time to cpustat. */
176         task_group_account_field(p, index, cputime);
177 
178         /* Account for system time used */
179         acct_account_cputime(p);
180 }
181 
182 /*
183  * Account system CPU time to a process.
184  * @p: the process that the CPU time gets accounted to
185  * @hardirq_offset: the offset to subtract from hardirq_count()
186  * @cputime: the CPU time spent in kernel space since the last update
187  */
188 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
189 {
190         int index;
191 
192         if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
193                 account_guest_time(p, cputime);
194                 return;
195         }
196 
197         if (hardirq_count() - hardirq_offset)
198                 index = CPUTIME_IRQ;
199         else if (in_serving_softirq())
200                 index = CPUTIME_SOFTIRQ;
201         else
202                 index = CPUTIME_SYSTEM;
203 
204         account_system_index_time(p, cputime, index);
205 }
206 
207 /*
208  * Account for involuntary wait time.
209  * @cputime: the CPU time spent in involuntary wait
210  */
211 void account_steal_time(u64 cputime)
212 {
213         u64 *cpustat = kcpustat_this_cpu->cpustat;
214 
215         cpustat[CPUTIME_STEAL] += cputime;
216 }
217 
218 /*
219  * Account for idle time.
220  * @cputime: the CPU time spent in idle wait
221  */
222 void account_idle_time(u64 cputime)
223 {
224         u64 *cpustat = kcpustat_this_cpu->cpustat;
225         struct rq *rq = this_rq();
226 
227         if (atomic_read(&rq->nr_iowait) > 0)
228                 cpustat[CPUTIME_IOWAIT] += cputime;
229         else
230                 cpustat[CPUTIME_IDLE] += cputime;
231 }
232 
233 
234 #ifdef CONFIG_SCHED_CORE
235 /*
236  * Account for forceidle time due to core scheduling.
237  *
238  * REQUIRES: schedstat is enabled.
239  */
240 void __account_forceidle_time(struct task_struct *p, u64 delta)
241 {
242         __schedstat_add(p->stats.core_forceidle_sum, delta);
243 
244         task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
245 }
246 #endif
247 
248 /*
249  * When a guest is interrupted for a longer amount of time, missed clock
250  * ticks are not redelivered later. Due to that, this function may on
251  * occasion account more time than the calling functions think elapsed.
252  */
253 static __always_inline u64 steal_account_process_time(u64 maxtime)
254 {
255 #ifdef CONFIG_PARAVIRT
256         if (static_key_false(&paravirt_steal_enabled)) {
257                 u64 steal;
258 
259                 steal = paravirt_steal_clock(smp_processor_id());
260                 steal -= this_rq()->prev_steal_time;
261                 steal = min(steal, maxtime);
262                 account_steal_time(steal);
263                 this_rq()->prev_steal_time += steal;
264 
265                 return steal;
266         }
267 #endif
268         return 0;
269 }
270 
271 /*
272  * Account how much elapsed time was spent in steal, IRQ, or softirq time.
273  */
274 static inline u64 account_other_time(u64 max)
275 {
276         u64 accounted;
277 
278         lockdep_assert_irqs_disabled();
279 
280         accounted = steal_account_process_time(max);
281 
282         if (accounted < max)
283                 accounted += irqtime_tick_accounted(max - accounted);
284 
285         return accounted;
286 }
287 
288 #ifdef CONFIG_64BIT
289 static inline u64 read_sum_exec_runtime(struct task_struct *t)
290 {
291         return t->se.sum_exec_runtime;
292 }
293 #else
294 static u64 read_sum_exec_runtime(struct task_struct *t)
295 {
296         u64 ns;
297         struct rq_flags rf;
298         struct rq *rq;
299 
300         rq = task_rq_lock(t, &rf);
301         ns = t->se.sum_exec_runtime;
302         task_rq_unlock(rq, t, &rf);
303 
304         return ns;
305 }
306 #endif
307 
308 /*
309  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
310  * tasks (sum on group iteration) belonging to @tsk's group.
311  */
312 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
313 {
314         struct signal_struct *sig = tsk->signal;
315         u64 utime, stime;
316         struct task_struct *t;
317         unsigned int seq, nextseq;
318         unsigned long flags;
319 
320         /*
321          * Update current task runtime to account pending time since last
322          * scheduler action or thread_group_cputime() call. This thread group
323          * might have other running tasks on different CPUs, but updating
324          * their runtime can affect syscall performance, so we skip account
325          * those pending times and rely only on values updated on tick or
326          * other scheduler action.
327          */
328         if (same_thread_group(current, tsk))
329                 (void) task_sched_runtime(current);
330 
331         rcu_read_lock();
332         /* Attempt a lockless read on the first round. */
333         nextseq = 0;
334         do {
335                 seq = nextseq;
336                 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
337                 times->utime = sig->utime;
338                 times->stime = sig->stime;
339                 times->sum_exec_runtime = sig->sum_sched_runtime;
340 
341                 for_each_thread(tsk, t) {
342                         task_cputime(t, &utime, &stime);
343                         times->utime += utime;
344                         times->stime += stime;
345                         times->sum_exec_runtime += read_sum_exec_runtime(t);
346                 }
347                 /* If lockless access failed, take the lock. */
348                 nextseq = 1;
349         } while (need_seqretry(&sig->stats_lock, seq));
350         done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
351         rcu_read_unlock();
352 }
353 
354 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
355 /*
356  * Account a tick to a process and cpustat
357  * @p: the process that the CPU time gets accounted to
358  * @user_tick: is the tick from userspace
359  * @rq: the pointer to rq
360  *
361  * Tick demultiplexing follows the order
362  * - pending hardirq update
363  * - pending softirq update
364  * - user_time
365  * - idle_time
366  * - system time
367  *   - check for guest_time
368  *   - else account as system_time
369  *
370  * Check for hardirq is done both for system and user time as there is
371  * no timer going off while we are on hardirq and hence we may never get an
372  * opportunity to update it solely in system time.
373  * p->stime and friends are only updated on system time and not on IRQ
374  * softirq as those do not count in task exec_runtime any more.
375  */
376 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
377                                          int ticks)
378 {
379         u64 other, cputime = TICK_NSEC * ticks;
380 
381         /*
382          * When returning from idle, many ticks can get accounted at
383          * once, including some ticks of steal, IRQ, and softirq time.
384          * Subtract those ticks from the amount of time accounted to
385          * idle, or potentially user or system time. Due to rounding,
386          * other time can exceed ticks occasionally.
387          */
388         other = account_other_time(ULONG_MAX);
389         if (other >= cputime)
390                 return;
391 
392         cputime -= other;
393 
394         if (this_cpu_ksoftirqd() == p) {
395                 /*
396                  * ksoftirqd time do not get accounted in cpu_softirq_time.
397                  * So, we have to handle it separately here.
398                  * Also, p->stime needs to be updated for ksoftirqd.
399                  */
400                 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
401         } else if (user_tick) {
402                 account_user_time(p, cputime);
403         } else if (p == this_rq()->idle) {
404                 account_idle_time(cputime);
405         } else if (p->flags & PF_VCPU) { /* System time or guest time */
406                 account_guest_time(p, cputime);
407         } else {
408                 account_system_index_time(p, cputime, CPUTIME_SYSTEM);
409         }
410 }
411 
412 static void irqtime_account_idle_ticks(int ticks)
413 {
414         irqtime_account_process_tick(current, 0, ticks);
415 }
416 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
417 static inline void irqtime_account_idle_ticks(int ticks) { }
418 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
419                                                 int nr_ticks) { }
420 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
421 
422 /*
423  * Use precise platform statistics if available:
424  */
425 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
426 
427 void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
428 {
429         unsigned int pc = irq_count() - offset;
430 
431         if (pc & HARDIRQ_OFFSET) {
432                 vtime_account_hardirq(tsk);
433         } else if (pc & SOFTIRQ_OFFSET) {
434                 vtime_account_softirq(tsk);
435         } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
436                    is_idle_task(tsk)) {
437                 vtime_account_idle(tsk);
438         } else {
439                 vtime_account_kernel(tsk);
440         }
441 }
442 
443 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
444                     u64 *ut, u64 *st)
445 {
446         *ut = curr->utime;
447         *st = curr->stime;
448 }
449 
450 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
451 {
452         *ut = p->utime;
453         *st = p->stime;
454 }
455 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
456 
457 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
458 {
459         struct task_cputime cputime;
460 
461         thread_group_cputime(p, &cputime);
462 
463         *ut = cputime.utime;
464         *st = cputime.stime;
465 }
466 
467 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
468 
469 /*
470  * Account a single tick of CPU time.
471  * @p: the process that the CPU time gets accounted to
472  * @user_tick: indicates if the tick is a user or a system tick
473  */
474 void account_process_tick(struct task_struct *p, int user_tick)
475 {
476         u64 cputime, steal;
477 
478         if (vtime_accounting_enabled_this_cpu())
479                 return;
480 
481         if (sched_clock_irqtime) {
482                 irqtime_account_process_tick(p, user_tick, 1);
483                 return;
484         }
485 
486         cputime = TICK_NSEC;
487         steal = steal_account_process_time(ULONG_MAX);
488 
489         if (steal >= cputime)
490                 return;
491 
492         cputime -= steal;
493 
494         if (user_tick)
495                 account_user_time(p, cputime);
496         else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
497                 account_system_time(p, HARDIRQ_OFFSET, cputime);
498         else
499                 account_idle_time(cputime);
500 }
501 
502 /*
503  * Account multiple ticks of idle time.
504  * @ticks: number of stolen ticks
505  */
506 void account_idle_ticks(unsigned long ticks)
507 {
508         u64 cputime, steal;
509 
510         if (sched_clock_irqtime) {
511                 irqtime_account_idle_ticks(ticks);
512                 return;
513         }
514 
515         cputime = ticks * TICK_NSEC;
516         steal = steal_account_process_time(ULONG_MAX);
517 
518         if (steal >= cputime)
519                 return;
520 
521         cputime -= steal;
522         account_idle_time(cputime);
523 }
524 
525 /*
526  * Adjust tick based cputime random precision against scheduler runtime
527  * accounting.
528  *
529  * Tick based cputime accounting depend on random scheduling timeslices of a
530  * task to be interrupted or not by the timer.  Depending on these
531  * circumstances, the number of these interrupts may be over or
532  * under-optimistic, matching the real user and system cputime with a variable
533  * precision.
534  *
535  * Fix this by scaling these tick based values against the total runtime
536  * accounted by the CFS scheduler.
537  *
538  * This code provides the following guarantees:
539  *
540  *   stime + utime == rtime
541  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
542  *
543  * Assuming that rtime_i+1 >= rtime_i.
544  */
545 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
546                     u64 *ut, u64 *st)
547 {
548         u64 rtime, stime, utime;
549         unsigned long flags;
550 
551         /* Serialize concurrent callers such that we can honour our guarantees */
552         raw_spin_lock_irqsave(&prev->lock, flags);
553         rtime = curr->sum_exec_runtime;
554 
555         /*
556          * This is possible under two circumstances:
557          *  - rtime isn't monotonic after all (a bug);
558          *  - we got reordered by the lock.
559          *
560          * In both cases this acts as a filter such that the rest of the code
561          * can assume it is monotonic regardless of anything else.
562          */
563         if (prev->stime + prev->utime >= rtime)
564                 goto out;
565 
566         stime = curr->stime;
567         utime = curr->utime;
568 
569         /*
570          * If either stime or utime are 0, assume all runtime is userspace.
571          * Once a task gets some ticks, the monotonicity code at 'update:'
572          * will ensure things converge to the observed ratio.
573          */
574         if (stime == 0) {
575                 utime = rtime;
576                 goto update;
577         }
578 
579         if (utime == 0) {
580                 stime = rtime;
581                 goto update;
582         }
583 
584         stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
585         /*
586          * Because mul_u64_u64_div_u64() can approximate on some
587          * achitectures; enforce the constraint that: a*b/(b+c) <= a.
588          */
589         if (unlikely(stime > rtime))
590                 stime = rtime;
591 
592 update:
593         /*
594          * Make sure stime doesn't go backwards; this preserves monotonicity
595          * for utime because rtime is monotonic.
596          *
597          *  utime_i+1 = rtime_i+1 - stime_i
598          *            = rtime_i+1 - (rtime_i - utime_i)
599          *            = (rtime_i+1 - rtime_i) + utime_i
600          *            >= utime_i
601          */
602         if (stime < prev->stime)
603                 stime = prev->stime;
604         utime = rtime - stime;
605 
606         /*
607          * Make sure utime doesn't go backwards; this still preserves
608          * monotonicity for stime, analogous argument to above.
609          */
610         if (utime < prev->utime) {
611                 utime = prev->utime;
612                 stime = rtime - utime;
613         }
614 
615         prev->stime = stime;
616         prev->utime = utime;
617 out:
618         *ut = prev->utime;
619         *st = prev->stime;
620         raw_spin_unlock_irqrestore(&prev->lock, flags);
621 }
622 
623 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
624 {
625         struct task_cputime cputime = {
626                 .sum_exec_runtime = p->se.sum_exec_runtime,
627         };
628 
629         if (task_cputime(p, &cputime.utime, &cputime.stime))
630                 cputime.sum_exec_runtime = task_sched_runtime(p);
631         cputime_adjust(&cputime, &p->prev_cputime, ut, st);
632 }
633 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
634 
635 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
636 {
637         struct task_cputime cputime;
638 
639         thread_group_cputime(p, &cputime);
640         cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
641 }
642 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
643 
644 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
645 static u64 vtime_delta(struct vtime *vtime)
646 {
647         unsigned long long clock;
648 
649         clock = sched_clock();
650         if (clock < vtime->starttime)
651                 return 0;
652 
653         return clock - vtime->starttime;
654 }
655 
656 static u64 get_vtime_delta(struct vtime *vtime)
657 {
658         u64 delta = vtime_delta(vtime);
659         u64 other;
660 
661         /*
662          * Unlike tick based timing, vtime based timing never has lost
663          * ticks, and no need for steal time accounting to make up for
664          * lost ticks. Vtime accounts a rounded version of actual
665          * elapsed time. Limit account_other_time to prevent rounding
666          * errors from causing elapsed vtime to go negative.
667          */
668         other = account_other_time(delta);
669         WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
670         vtime->starttime += delta;
671 
672         return delta - other;
673 }
674 
675 static void vtime_account_system(struct task_struct *tsk,
676                                  struct vtime *vtime)
677 {
678         vtime->stime += get_vtime_delta(vtime);
679         if (vtime->stime >= TICK_NSEC) {
680                 account_system_time(tsk, irq_count(), vtime->stime);
681                 vtime->stime = 0;
682         }
683 }
684 
685 static void vtime_account_guest(struct task_struct *tsk,
686                                 struct vtime *vtime)
687 {
688         vtime->gtime += get_vtime_delta(vtime);
689         if (vtime->gtime >= TICK_NSEC) {
690                 account_guest_time(tsk, vtime->gtime);
691                 vtime->gtime = 0;
692         }
693 }
694 
695 static void __vtime_account_kernel(struct task_struct *tsk,
696                                    struct vtime *vtime)
697 {
698         /* We might have scheduled out from guest path */
699         if (vtime->state == VTIME_GUEST)
700                 vtime_account_guest(tsk, vtime);
701         else
702                 vtime_account_system(tsk, vtime);
703 }
704 
705 void vtime_account_kernel(struct task_struct *tsk)
706 {
707         struct vtime *vtime = &tsk->vtime;
708 
709         if (!vtime_delta(vtime))
710                 return;
711 
712         write_seqcount_begin(&vtime->seqcount);
713         __vtime_account_kernel(tsk, vtime);
714         write_seqcount_end(&vtime->seqcount);
715 }
716 
717 void vtime_user_enter(struct task_struct *tsk)
718 {
719         struct vtime *vtime = &tsk->vtime;
720 
721         write_seqcount_begin(&vtime->seqcount);
722         vtime_account_system(tsk, vtime);
723         vtime->state = VTIME_USER;
724         write_seqcount_end(&vtime->seqcount);
725 }
726 
727 void vtime_user_exit(struct task_struct *tsk)
728 {
729         struct vtime *vtime = &tsk->vtime;
730 
731         write_seqcount_begin(&vtime->seqcount);
732         vtime->utime += get_vtime_delta(vtime);
733         if (vtime->utime >= TICK_NSEC) {
734                 account_user_time(tsk, vtime->utime);
735                 vtime->utime = 0;
736         }
737         vtime->state = VTIME_SYS;
738         write_seqcount_end(&vtime->seqcount);
739 }
740 
741 void vtime_guest_enter(struct task_struct *tsk)
742 {
743         struct vtime *vtime = &tsk->vtime;
744         /*
745          * The flags must be updated under the lock with
746          * the vtime_starttime flush and update.
747          * That enforces a right ordering and update sequence
748          * synchronization against the reader (task_gtime())
749          * that can thus safely catch up with a tickless delta.
750          */
751         write_seqcount_begin(&vtime->seqcount);
752         vtime_account_system(tsk, vtime);
753         tsk->flags |= PF_VCPU;
754         vtime->state = VTIME_GUEST;
755         write_seqcount_end(&vtime->seqcount);
756 }
757 EXPORT_SYMBOL_GPL(vtime_guest_enter);
758 
759 void vtime_guest_exit(struct task_struct *tsk)
760 {
761         struct vtime *vtime = &tsk->vtime;
762 
763         write_seqcount_begin(&vtime->seqcount);
764         vtime_account_guest(tsk, vtime);
765         tsk->flags &= ~PF_VCPU;
766         vtime->state = VTIME_SYS;
767         write_seqcount_end(&vtime->seqcount);
768 }
769 EXPORT_SYMBOL_GPL(vtime_guest_exit);
770 
771 void vtime_account_idle(struct task_struct *tsk)
772 {
773         account_idle_time(get_vtime_delta(&tsk->vtime));
774 }
775 
776 void vtime_task_switch_generic(struct task_struct *prev)
777 {
778         struct vtime *vtime = &prev->vtime;
779 
780         write_seqcount_begin(&vtime->seqcount);
781         if (vtime->state == VTIME_IDLE)
782                 vtime_account_idle(prev);
783         else
784                 __vtime_account_kernel(prev, vtime);
785         vtime->state = VTIME_INACTIVE;
786         vtime->cpu = -1;
787         write_seqcount_end(&vtime->seqcount);
788 
789         vtime = &current->vtime;
790 
791         write_seqcount_begin(&vtime->seqcount);
792         if (is_idle_task(current))
793                 vtime->state = VTIME_IDLE;
794         else if (current->flags & PF_VCPU)
795                 vtime->state = VTIME_GUEST;
796         else
797                 vtime->state = VTIME_SYS;
798         vtime->starttime = sched_clock();
799         vtime->cpu = smp_processor_id();
800         write_seqcount_end(&vtime->seqcount);
801 }
802 
803 void vtime_init_idle(struct task_struct *t, int cpu)
804 {
805         struct vtime *vtime = &t->vtime;
806         unsigned long flags;
807 
808         local_irq_save(flags);
809         write_seqcount_begin(&vtime->seqcount);
810         vtime->state = VTIME_IDLE;
811         vtime->starttime = sched_clock();
812         vtime->cpu = cpu;
813         write_seqcount_end(&vtime->seqcount);
814         local_irq_restore(flags);
815 }
816 
817 u64 task_gtime(struct task_struct *t)
818 {
819         struct vtime *vtime = &t->vtime;
820         unsigned int seq;
821         u64 gtime;
822 
823         if (!vtime_accounting_enabled())
824                 return t->gtime;
825 
826         do {
827                 seq = read_seqcount_begin(&vtime->seqcount);
828 
829                 gtime = t->gtime;
830                 if (vtime->state == VTIME_GUEST)
831                         gtime += vtime->gtime + vtime_delta(vtime);
832 
833         } while (read_seqcount_retry(&vtime->seqcount, seq));
834 
835         return gtime;
836 }
837 
838 /*
839  * Fetch cputime raw values from fields of task_struct and
840  * add up the pending nohz execution time since the last
841  * cputime snapshot.
842  */
843 bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
844 {
845         struct vtime *vtime = &t->vtime;
846         unsigned int seq;
847         u64 delta;
848         int ret;
849 
850         if (!vtime_accounting_enabled()) {
851                 *utime = t->utime;
852                 *stime = t->stime;
853                 return false;
854         }
855 
856         do {
857                 ret = false;
858                 seq = read_seqcount_begin(&vtime->seqcount);
859 
860                 *utime = t->utime;
861                 *stime = t->stime;
862 
863                 /* Task is sleeping or idle, nothing to add */
864                 if (vtime->state < VTIME_SYS)
865                         continue;
866 
867                 ret = true;
868                 delta = vtime_delta(vtime);
869 
870                 /*
871                  * Task runs either in user (including guest) or kernel space,
872                  * add pending nohz time to the right place.
873                  */
874                 if (vtime->state == VTIME_SYS)
875                         *stime += vtime->stime + delta;
876                 else
877                         *utime += vtime->utime + delta;
878         } while (read_seqcount_retry(&vtime->seqcount, seq));
879 
880         return ret;
881 }
882 
883 static int vtime_state_fetch(struct vtime *vtime, int cpu)
884 {
885         int state = READ_ONCE(vtime->state);
886 
887         /*
888          * We raced against a context switch, fetch the
889          * kcpustat task again.
890          */
891         if (vtime->cpu != cpu && vtime->cpu != -1)
892                 return -EAGAIN;
893 
894         /*
895          * Two possible things here:
896          * 1) We are seeing the scheduling out task (prev) or any past one.
897          * 2) We are seeing the scheduling in task (next) but it hasn't
898          *    passed though vtime_task_switch() yet so the pending
899          *    cputime of the prev task may not be flushed yet.
900          *
901          * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
902          */
903         if (state == VTIME_INACTIVE)
904                 return -EAGAIN;
905 
906         return state;
907 }
908 
909 static u64 kcpustat_user_vtime(struct vtime *vtime)
910 {
911         if (vtime->state == VTIME_USER)
912                 return vtime->utime + vtime_delta(vtime);
913         else if (vtime->state == VTIME_GUEST)
914                 return vtime->gtime + vtime_delta(vtime);
915         return 0;
916 }
917 
918 static int kcpustat_field_vtime(u64 *cpustat,
919                                 struct task_struct *tsk,
920                                 enum cpu_usage_stat usage,
921                                 int cpu, u64 *val)
922 {
923         struct vtime *vtime = &tsk->vtime;
924         unsigned int seq;
925 
926         do {
927                 int state;
928 
929                 seq = read_seqcount_begin(&vtime->seqcount);
930 
931                 state = vtime_state_fetch(vtime, cpu);
932                 if (state < 0)
933                         return state;
934 
935                 *val = cpustat[usage];
936 
937                 /*
938                  * Nice VS unnice cputime accounting may be inaccurate if
939                  * the nice value has changed since the last vtime update.
940                  * But proper fix would involve interrupting target on nice
941                  * updates which is a no go on nohz_full (although the scheduler
942                  * may still interrupt the target if rescheduling is needed...)
943                  */
944                 switch (usage) {
945                 case CPUTIME_SYSTEM:
946                         if (state == VTIME_SYS)
947                                 *val += vtime->stime + vtime_delta(vtime);
948                         break;
949                 case CPUTIME_USER:
950                         if (task_nice(tsk) <= 0)
951                                 *val += kcpustat_user_vtime(vtime);
952                         break;
953                 case CPUTIME_NICE:
954                         if (task_nice(tsk) > 0)
955                                 *val += kcpustat_user_vtime(vtime);
956                         break;
957                 case CPUTIME_GUEST:
958                         if (state == VTIME_GUEST && task_nice(tsk) <= 0)
959                                 *val += vtime->gtime + vtime_delta(vtime);
960                         break;
961                 case CPUTIME_GUEST_NICE:
962                         if (state == VTIME_GUEST && task_nice(tsk) > 0)
963                                 *val += vtime->gtime + vtime_delta(vtime);
964                         break;
965                 default:
966                         break;
967                 }
968         } while (read_seqcount_retry(&vtime->seqcount, seq));
969 
970         return 0;
971 }
972 
973 u64 kcpustat_field(struct kernel_cpustat *kcpustat,
974                    enum cpu_usage_stat usage, int cpu)
975 {
976         u64 *cpustat = kcpustat->cpustat;
977         u64 val = cpustat[usage];
978         struct rq *rq;
979         int err;
980 
981         if (!vtime_accounting_enabled_cpu(cpu))
982                 return val;
983 
984         rq = cpu_rq(cpu);
985 
986         for (;;) {
987                 struct task_struct *curr;
988 
989                 rcu_read_lock();
990                 curr = rcu_dereference(rq->curr);
991                 if (WARN_ON_ONCE(!curr)) {
992                         rcu_read_unlock();
993                         return cpustat[usage];
994                 }
995 
996                 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
997                 rcu_read_unlock();
998 
999                 if (!err)
1000                         return val;
1001 
1002                 cpu_relax();
1003         }
1004 }
1005 EXPORT_SYMBOL_GPL(kcpustat_field);
1006 
1007 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1008                                     const struct kernel_cpustat *src,
1009                                     struct task_struct *tsk, int cpu)
1010 {
1011         struct vtime *vtime = &tsk->vtime;
1012         unsigned int seq;
1013 
1014         do {
1015                 u64 *cpustat;
1016                 u64 delta;
1017                 int state;
1018 
1019                 seq = read_seqcount_begin(&vtime->seqcount);
1020 
1021                 state = vtime_state_fetch(vtime, cpu);
1022                 if (state < 0)
1023                         return state;
1024 
1025                 *dst = *src;
1026                 cpustat = dst->cpustat;
1027 
1028                 /* Task is sleeping, dead or idle, nothing to add */
1029                 if (state < VTIME_SYS)
1030                         continue;
1031 
1032                 delta = vtime_delta(vtime);
1033 
1034                 /*
1035                  * Task runs either in user (including guest) or kernel space,
1036                  * add pending nohz time to the right place.
1037                  */
1038                 if (state == VTIME_SYS) {
1039                         cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1040                 } else if (state == VTIME_USER) {
1041                         if (task_nice(tsk) > 0)
1042                                 cpustat[CPUTIME_NICE] += vtime->utime + delta;
1043                         else
1044                                 cpustat[CPUTIME_USER] += vtime->utime + delta;
1045                 } else {
1046                         WARN_ON_ONCE(state != VTIME_GUEST);
1047                         if (task_nice(tsk) > 0) {
1048                                 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1049                                 cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1050                         } else {
1051                                 cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1052                                 cpustat[CPUTIME_USER] += vtime->gtime + delta;
1053                         }
1054                 }
1055         } while (read_seqcount_retry(&vtime->seqcount, seq));
1056 
1057         return 0;
1058 }
1059 
1060 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1061 {
1062         const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1063         struct rq *rq;
1064         int err;
1065 
1066         if (!vtime_accounting_enabled_cpu(cpu)) {
1067                 *dst = *src;
1068                 return;
1069         }
1070 
1071         rq = cpu_rq(cpu);
1072 
1073         for (;;) {
1074                 struct task_struct *curr;
1075 
1076                 rcu_read_lock();
1077                 curr = rcu_dereference(rq->curr);
1078                 if (WARN_ON_ONCE(!curr)) {
1079                         rcu_read_unlock();
1080                         *dst = *src;
1081                         return;
1082                 }
1083 
1084                 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1085                 rcu_read_unlock();
1086 
1087                 if (!err)
1088                         return;
1089 
1090                 cpu_relax();
1091         }
1092 }
1093 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1094 
1095 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1096 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php