1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/debug.c 4 * 5 * Print the CFS rbtree and other debugging details 6 * 7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 8 */ 9 10 /* 11 * This allows printing both to /sys/kernel/debug/sched/debug and 12 * to the console 13 */ 14 #define SEQ_printf(m, x...) \ 15 do { \ 16 if (m) \ 17 seq_printf(m, x); \ 18 else \ 19 pr_cont(x); \ 20 } while (0) 21 22 /* 23 * Ease the printing of nsec fields: 24 */ 25 static long long nsec_high(unsigned long long nsec) 26 { 27 if ((long long)nsec < 0) { 28 nsec = -nsec; 29 do_div(nsec, 1000000); 30 return -nsec; 31 } 32 do_div(nsec, 1000000); 33 34 return nsec; 35 } 36 37 static unsigned long nsec_low(unsigned long long nsec) 38 { 39 if ((long long)nsec < 0) 40 nsec = -nsec; 41 42 return do_div(nsec, 1000000); 43 } 44 45 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 46 47 #define SCHED_FEAT(name, enabled) \ 48 #name , 49 50 static const char * const sched_feat_names[] = { 51 #include "features.h" 52 }; 53 54 #undef SCHED_FEAT 55 56 static int sched_feat_show(struct seq_file *m, void *v) 57 { 58 int i; 59 60 for (i = 0; i < __SCHED_FEAT_NR; i++) { 61 if (!(sysctl_sched_features & (1UL << i))) 62 seq_puts(m, "NO_"); 63 seq_printf(m, "%s ", sched_feat_names[i]); 64 } 65 seq_puts(m, "\n"); 66 67 return 0; 68 } 69 70 #ifdef CONFIG_JUMP_LABEL 71 72 #define jump_label_key__true STATIC_KEY_INIT_TRUE 73 #define jump_label_key__false STATIC_KEY_INIT_FALSE 74 75 #define SCHED_FEAT(name, enabled) \ 76 jump_label_key__##enabled , 77 78 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 79 #include "features.h" 80 }; 81 82 #undef SCHED_FEAT 83 84 static void sched_feat_disable(int i) 85 { 86 static_key_disable_cpuslocked(&sched_feat_keys[i]); 87 } 88 89 static void sched_feat_enable(int i) 90 { 91 static_key_enable_cpuslocked(&sched_feat_keys[i]); 92 } 93 #else 94 static void sched_feat_disable(int i) { }; 95 static void sched_feat_enable(int i) { }; 96 #endif /* CONFIG_JUMP_LABEL */ 97 98 static int sched_feat_set(char *cmp) 99 { 100 int i; 101 int neg = 0; 102 103 if (strncmp(cmp, "NO_", 3) == 0) { 104 neg = 1; 105 cmp += 3; 106 } 107 108 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp); 109 if (i < 0) 110 return i; 111 112 if (neg) { 113 sysctl_sched_features &= ~(1UL << i); 114 sched_feat_disable(i); 115 } else { 116 sysctl_sched_features |= (1UL << i); 117 sched_feat_enable(i); 118 } 119 120 return 0; 121 } 122 123 static ssize_t 124 sched_feat_write(struct file *filp, const char __user *ubuf, 125 size_t cnt, loff_t *ppos) 126 { 127 char buf[64]; 128 char *cmp; 129 int ret; 130 struct inode *inode; 131 132 if (cnt > 63) 133 cnt = 63; 134 135 if (copy_from_user(&buf, ubuf, cnt)) 136 return -EFAULT; 137 138 buf[cnt] = 0; 139 cmp = strstrip(buf); 140 141 /* Ensure the static_key remains in a consistent state */ 142 inode = file_inode(filp); 143 cpus_read_lock(); 144 inode_lock(inode); 145 ret = sched_feat_set(cmp); 146 inode_unlock(inode); 147 cpus_read_unlock(); 148 if (ret < 0) 149 return ret; 150 151 *ppos += cnt; 152 153 return cnt; 154 } 155 156 static int sched_feat_open(struct inode *inode, struct file *filp) 157 { 158 return single_open(filp, sched_feat_show, NULL); 159 } 160 161 static const struct file_operations sched_feat_fops = { 162 .open = sched_feat_open, 163 .write = sched_feat_write, 164 .read = seq_read, 165 .llseek = seq_lseek, 166 .release = single_release, 167 }; 168 169 #ifdef CONFIG_SMP 170 171 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf, 172 size_t cnt, loff_t *ppos) 173 { 174 char buf[16]; 175 unsigned int scaling; 176 177 if (cnt > 15) 178 cnt = 15; 179 180 if (copy_from_user(&buf, ubuf, cnt)) 181 return -EFAULT; 182 buf[cnt] = '\0'; 183 184 if (kstrtouint(buf, 10, &scaling)) 185 return -EINVAL; 186 187 if (scaling >= SCHED_TUNABLESCALING_END) 188 return -EINVAL; 189 190 sysctl_sched_tunable_scaling = scaling; 191 if (sched_update_scaling()) 192 return -EINVAL; 193 194 *ppos += cnt; 195 return cnt; 196 } 197 198 static int sched_scaling_show(struct seq_file *m, void *v) 199 { 200 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling); 201 return 0; 202 } 203 204 static int sched_scaling_open(struct inode *inode, struct file *filp) 205 { 206 return single_open(filp, sched_scaling_show, NULL); 207 } 208 209 static const struct file_operations sched_scaling_fops = { 210 .open = sched_scaling_open, 211 .write = sched_scaling_write, 212 .read = seq_read, 213 .llseek = seq_lseek, 214 .release = single_release, 215 }; 216 217 #endif /* SMP */ 218 219 #ifdef CONFIG_PREEMPT_DYNAMIC 220 221 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf, 222 size_t cnt, loff_t *ppos) 223 { 224 char buf[16]; 225 int mode; 226 227 if (cnt > 15) 228 cnt = 15; 229 230 if (copy_from_user(&buf, ubuf, cnt)) 231 return -EFAULT; 232 233 buf[cnt] = 0; 234 mode = sched_dynamic_mode(strstrip(buf)); 235 if (mode < 0) 236 return mode; 237 238 sched_dynamic_update(mode); 239 240 *ppos += cnt; 241 242 return cnt; 243 } 244 245 static int sched_dynamic_show(struct seq_file *m, void *v) 246 { 247 static const char * preempt_modes[] = { 248 "none", "voluntary", "full" 249 }; 250 int i; 251 252 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) { 253 if (preempt_dynamic_mode == i) 254 seq_puts(m, "("); 255 seq_puts(m, preempt_modes[i]); 256 if (preempt_dynamic_mode == i) 257 seq_puts(m, ")"); 258 259 seq_puts(m, " "); 260 } 261 262 seq_puts(m, "\n"); 263 return 0; 264 } 265 266 static int sched_dynamic_open(struct inode *inode, struct file *filp) 267 { 268 return single_open(filp, sched_dynamic_show, NULL); 269 } 270 271 static const struct file_operations sched_dynamic_fops = { 272 .open = sched_dynamic_open, 273 .write = sched_dynamic_write, 274 .read = seq_read, 275 .llseek = seq_lseek, 276 .release = single_release, 277 }; 278 279 #endif /* CONFIG_PREEMPT_DYNAMIC */ 280 281 __read_mostly bool sched_debug_verbose; 282 283 #ifdef CONFIG_SMP 284 static struct dentry *sd_dentry; 285 286 287 static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf, 288 size_t cnt, loff_t *ppos) 289 { 290 ssize_t result; 291 bool orig; 292 293 cpus_read_lock(); 294 mutex_lock(&sched_domains_mutex); 295 296 orig = sched_debug_verbose; 297 result = debugfs_write_file_bool(filp, ubuf, cnt, ppos); 298 299 if (sched_debug_verbose && !orig) 300 update_sched_domain_debugfs(); 301 else if (!sched_debug_verbose && orig) { 302 debugfs_remove(sd_dentry); 303 sd_dentry = NULL; 304 } 305 306 mutex_unlock(&sched_domains_mutex); 307 cpus_read_unlock(); 308 309 return result; 310 } 311 #else 312 #define sched_verbose_write debugfs_write_file_bool 313 #endif 314 315 static const struct file_operations sched_verbose_fops = { 316 .read = debugfs_read_file_bool, 317 .write = sched_verbose_write, 318 .open = simple_open, 319 .llseek = default_llseek, 320 }; 321 322 static const struct seq_operations sched_debug_sops; 323 324 static int sched_debug_open(struct inode *inode, struct file *filp) 325 { 326 return seq_open(filp, &sched_debug_sops); 327 } 328 329 static const struct file_operations sched_debug_fops = { 330 .open = sched_debug_open, 331 .read = seq_read, 332 .llseek = seq_lseek, 333 .release = seq_release, 334 }; 335 336 static struct dentry *debugfs_sched; 337 338 static __init int sched_init_debug(void) 339 { 340 struct dentry __maybe_unused *numa; 341 342 debugfs_sched = debugfs_create_dir("sched", NULL); 343 344 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops); 345 debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops); 346 #ifdef CONFIG_PREEMPT_DYNAMIC 347 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops); 348 #endif 349 350 debugfs_create_u32("base_slice_ns", 0644, debugfs_sched, &sysctl_sched_base_slice); 351 352 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms); 353 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once); 354 355 #ifdef CONFIG_SMP 356 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops); 357 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost); 358 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate); 359 360 mutex_lock(&sched_domains_mutex); 361 update_sched_domain_debugfs(); 362 mutex_unlock(&sched_domains_mutex); 363 #endif 364 365 #ifdef CONFIG_NUMA_BALANCING 366 numa = debugfs_create_dir("numa_balancing", debugfs_sched); 367 368 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay); 369 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min); 370 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max); 371 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size); 372 debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold); 373 #endif 374 375 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops); 376 377 return 0; 378 } 379 late_initcall(sched_init_debug); 380 381 #ifdef CONFIG_SMP 382 383 static cpumask_var_t sd_sysctl_cpus; 384 385 static int sd_flags_show(struct seq_file *m, void *v) 386 { 387 unsigned long flags = *(unsigned int *)m->private; 388 int idx; 389 390 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 391 seq_puts(m, sd_flag_debug[idx].name); 392 seq_puts(m, " "); 393 } 394 seq_puts(m, "\n"); 395 396 return 0; 397 } 398 399 static int sd_flags_open(struct inode *inode, struct file *file) 400 { 401 return single_open(file, sd_flags_show, inode->i_private); 402 } 403 404 static const struct file_operations sd_flags_fops = { 405 .open = sd_flags_open, 406 .read = seq_read, 407 .llseek = seq_lseek, 408 .release = single_release, 409 }; 410 411 static void register_sd(struct sched_domain *sd, struct dentry *parent) 412 { 413 #define SDM(type, mode, member) \ 414 debugfs_create_##type(#member, mode, parent, &sd->member) 415 416 SDM(ulong, 0644, min_interval); 417 SDM(ulong, 0644, max_interval); 418 SDM(u64, 0644, max_newidle_lb_cost); 419 SDM(u32, 0644, busy_factor); 420 SDM(u32, 0644, imbalance_pct); 421 SDM(u32, 0644, cache_nice_tries); 422 SDM(str, 0444, name); 423 424 #undef SDM 425 426 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops); 427 debugfs_create_file("groups_flags", 0444, parent, &sd->groups->flags, &sd_flags_fops); 428 debugfs_create_u32("level", 0444, parent, (u32 *)&sd->level); 429 } 430 431 void update_sched_domain_debugfs(void) 432 { 433 int cpu, i; 434 435 /* 436 * This can unfortunately be invoked before sched_debug_init() creates 437 * the debug directory. Don't touch sd_sysctl_cpus until then. 438 */ 439 if (!debugfs_sched) 440 return; 441 442 if (!sched_debug_verbose) 443 return; 444 445 if (!cpumask_available(sd_sysctl_cpus)) { 446 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) 447 return; 448 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); 449 } 450 451 if (!sd_dentry) { 452 sd_dentry = debugfs_create_dir("domains", debugfs_sched); 453 454 /* rebuild sd_sysctl_cpus if empty since it gets cleared below */ 455 if (cpumask_empty(sd_sysctl_cpus)) 456 cpumask_copy(sd_sysctl_cpus, cpu_online_mask); 457 } 458 459 for_each_cpu(cpu, sd_sysctl_cpus) { 460 struct sched_domain *sd; 461 struct dentry *d_cpu; 462 char buf[32]; 463 464 snprintf(buf, sizeof(buf), "cpu%d", cpu); 465 debugfs_lookup_and_remove(buf, sd_dentry); 466 d_cpu = debugfs_create_dir(buf, sd_dentry); 467 468 i = 0; 469 for_each_domain(cpu, sd) { 470 struct dentry *d_sd; 471 472 snprintf(buf, sizeof(buf), "domain%d", i); 473 d_sd = debugfs_create_dir(buf, d_cpu); 474 475 register_sd(sd, d_sd); 476 i++; 477 } 478 479 __cpumask_clear_cpu(cpu, sd_sysctl_cpus); 480 } 481 } 482 483 void dirty_sched_domain_sysctl(int cpu) 484 { 485 if (cpumask_available(sd_sysctl_cpus)) 486 __cpumask_set_cpu(cpu, sd_sysctl_cpus); 487 } 488 489 #endif /* CONFIG_SMP */ 490 491 #ifdef CONFIG_FAIR_GROUP_SCHED 492 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 493 { 494 struct sched_entity *se = tg->se[cpu]; 495 496 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 497 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", \ 498 #F, (long long)schedstat_val(stats->F)) 499 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 500 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", \ 501 #F, SPLIT_NS((long long)schedstat_val(stats->F))) 502 503 if (!se) 504 return; 505 506 PN(se->exec_start); 507 PN(se->vruntime); 508 PN(se->sum_exec_runtime); 509 510 if (schedstat_enabled()) { 511 struct sched_statistics *stats; 512 stats = __schedstats_from_se(se); 513 514 PN_SCHEDSTAT(wait_start); 515 PN_SCHEDSTAT(sleep_start); 516 PN_SCHEDSTAT(block_start); 517 PN_SCHEDSTAT(sleep_max); 518 PN_SCHEDSTAT(block_max); 519 PN_SCHEDSTAT(exec_max); 520 PN_SCHEDSTAT(slice_max); 521 PN_SCHEDSTAT(wait_max); 522 PN_SCHEDSTAT(wait_sum); 523 P_SCHEDSTAT(wait_count); 524 } 525 526 P(se->load.weight); 527 #ifdef CONFIG_SMP 528 P(se->avg.load_avg); 529 P(se->avg.util_avg); 530 P(se->avg.runnable_avg); 531 #endif 532 533 #undef PN_SCHEDSTAT 534 #undef PN 535 #undef P_SCHEDSTAT 536 #undef P 537 } 538 #endif 539 540 #ifdef CONFIG_CGROUP_SCHED 541 static DEFINE_SPINLOCK(sched_debug_lock); 542 static char group_path[PATH_MAX]; 543 544 static void task_group_path(struct task_group *tg, char *path, int plen) 545 { 546 if (autogroup_path(tg, path, plen)) 547 return; 548 549 cgroup_path(tg->css.cgroup, path, plen); 550 } 551 552 /* 553 * Only 1 SEQ_printf_task_group_path() caller can use the full length 554 * group_path[] for cgroup path. Other simultaneous callers will have 555 * to use a shorter stack buffer. A "..." suffix is appended at the end 556 * of the stack buffer so that it will show up in case the output length 557 * matches the given buffer size to indicate possible path name truncation. 558 */ 559 #define SEQ_printf_task_group_path(m, tg, fmt...) \ 560 { \ 561 if (spin_trylock(&sched_debug_lock)) { \ 562 task_group_path(tg, group_path, sizeof(group_path)); \ 563 SEQ_printf(m, fmt, group_path); \ 564 spin_unlock(&sched_debug_lock); \ 565 } else { \ 566 char buf[128]; \ 567 char *bufend = buf + sizeof(buf) - 3; \ 568 task_group_path(tg, buf, bufend - buf); \ 569 strcpy(bufend - 1, "..."); \ 570 SEQ_printf(m, fmt, buf); \ 571 } \ 572 } 573 #endif 574 575 static void 576 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 577 { 578 if (task_current(rq, p)) 579 SEQ_printf(m, ">R"); 580 else 581 SEQ_printf(m, " %c", task_state_to_char(p)); 582 583 SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %9Ld %5d ", 584 p->comm, task_pid_nr(p), 585 SPLIT_NS(p->se.vruntime), 586 entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N', 587 SPLIT_NS(p->se.deadline), 588 SPLIT_NS(p->se.slice), 589 SPLIT_NS(p->se.sum_exec_runtime), 590 (long long)(p->nvcsw + p->nivcsw), 591 p->prio); 592 593 SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld", 594 SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)), 595 SPLIT_NS(p->se.sum_exec_runtime), 596 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)), 597 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime))); 598 599 #ifdef CONFIG_NUMA_BALANCING 600 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 601 #endif 602 #ifdef CONFIG_CGROUP_SCHED 603 SEQ_printf_task_group_path(m, task_group(p), " %s") 604 #endif 605 606 SEQ_printf(m, "\n"); 607 } 608 609 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 610 { 611 struct task_struct *g, *p; 612 613 SEQ_printf(m, "\n"); 614 SEQ_printf(m, "runnable tasks:\n"); 615 SEQ_printf(m, " S task PID tree-key switches prio" 616 " wait-time sum-exec sum-sleep\n"); 617 SEQ_printf(m, "-------------------------------------------------------" 618 "------------------------------------------------------\n"); 619 620 rcu_read_lock(); 621 for_each_process_thread(g, p) { 622 if (task_cpu(p) != rq_cpu) 623 continue; 624 625 print_task(m, rq, p); 626 } 627 rcu_read_unlock(); 628 } 629 630 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 631 { 632 s64 left_vruntime = -1, min_vruntime, right_vruntime = -1, left_deadline = -1, spread; 633 struct sched_entity *last, *first, *root; 634 struct rq *rq = cpu_rq(cpu); 635 unsigned long flags; 636 637 #ifdef CONFIG_FAIR_GROUP_SCHED 638 SEQ_printf(m, "\n"); 639 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu); 640 #else 641 SEQ_printf(m, "\n"); 642 SEQ_printf(m, "cfs_rq[%d]:\n", cpu); 643 #endif 644 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 645 SPLIT_NS(cfs_rq->exec_clock)); 646 647 raw_spin_rq_lock_irqsave(rq, flags); 648 root = __pick_root_entity(cfs_rq); 649 if (root) 650 left_vruntime = root->min_vruntime; 651 first = __pick_first_entity(cfs_rq); 652 if (first) 653 left_deadline = first->deadline; 654 last = __pick_last_entity(cfs_rq); 655 if (last) 656 right_vruntime = last->vruntime; 657 min_vruntime = cfs_rq->min_vruntime; 658 raw_spin_rq_unlock_irqrestore(rq, flags); 659 660 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_deadline", 661 SPLIT_NS(left_deadline)); 662 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_vruntime", 663 SPLIT_NS(left_vruntime)); 664 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 665 SPLIT_NS(min_vruntime)); 666 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "avg_vruntime", 667 SPLIT_NS(avg_vruntime(cfs_rq))); 668 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "right_vruntime", 669 SPLIT_NS(right_vruntime)); 670 spread = right_vruntime - left_vruntime; 671 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread)); 672 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 673 cfs_rq->nr_spread_over); 674 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 675 SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running); 676 SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running", 677 cfs_rq->idle_nr_running); 678 SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running", 679 cfs_rq->idle_h_nr_running); 680 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 681 #ifdef CONFIG_SMP 682 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 683 cfs_rq->avg.load_avg); 684 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg", 685 cfs_rq->avg.runnable_avg); 686 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 687 cfs_rq->avg.util_avg); 688 SEQ_printf(m, " .%-30s: %u\n", "util_est", 689 cfs_rq->avg.util_est); 690 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg", 691 cfs_rq->removed.load_avg); 692 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg", 693 cfs_rq->removed.util_avg); 694 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg", 695 cfs_rq->removed.runnable_avg); 696 #ifdef CONFIG_FAIR_GROUP_SCHED 697 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 698 cfs_rq->tg_load_avg_contrib); 699 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 700 atomic_long_read(&cfs_rq->tg->load_avg)); 701 #endif 702 #endif 703 #ifdef CONFIG_CFS_BANDWIDTH 704 SEQ_printf(m, " .%-30s: %d\n", "throttled", 705 cfs_rq->throttled); 706 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 707 cfs_rq->throttle_count); 708 #endif 709 710 #ifdef CONFIG_FAIR_GROUP_SCHED 711 print_cfs_group_stats(m, cpu, cfs_rq->tg); 712 #endif 713 } 714 715 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 716 { 717 #ifdef CONFIG_RT_GROUP_SCHED 718 SEQ_printf(m, "\n"); 719 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu); 720 #else 721 SEQ_printf(m, "\n"); 722 SEQ_printf(m, "rt_rq[%d]:\n", cpu); 723 #endif 724 725 #define P(x) \ 726 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 727 #define PU(x) \ 728 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) 729 #define PN(x) \ 730 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 731 732 PU(rt_nr_running); 733 P(rt_throttled); 734 PN(rt_time); 735 PN(rt_runtime); 736 737 #undef PN 738 #undef PU 739 #undef P 740 } 741 742 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 743 { 744 struct dl_bw *dl_bw; 745 746 SEQ_printf(m, "\n"); 747 SEQ_printf(m, "dl_rq[%d]:\n", cpu); 748 749 #define PU(x) \ 750 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) 751 752 PU(dl_nr_running); 753 #ifdef CONFIG_SMP 754 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 755 #else 756 dl_bw = &dl_rq->dl_bw; 757 #endif 758 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 759 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 760 761 #undef PU 762 } 763 764 static void print_cpu(struct seq_file *m, int cpu) 765 { 766 struct rq *rq = cpu_rq(cpu); 767 768 #ifdef CONFIG_X86 769 { 770 unsigned int freq = cpu_khz ? : 1; 771 772 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 773 cpu, freq / 1000, (freq % 1000)); 774 } 775 #else 776 SEQ_printf(m, "cpu#%d\n", cpu); 777 #endif 778 779 #define P(x) \ 780 do { \ 781 if (sizeof(rq->x) == 4) \ 782 SEQ_printf(m, " .%-30s: %d\n", #x, (int)(rq->x)); \ 783 else \ 784 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 785 } while (0) 786 787 #define PN(x) \ 788 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 789 790 P(nr_running); 791 P(nr_switches); 792 P(nr_uninterruptible); 793 PN(next_balance); 794 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 795 PN(clock); 796 PN(clock_task); 797 #undef P 798 #undef PN 799 800 #ifdef CONFIG_SMP 801 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 802 P64(avg_idle); 803 P64(max_idle_balance_cost); 804 #undef P64 805 #endif 806 807 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 808 if (schedstat_enabled()) { 809 P(yld_count); 810 P(sched_count); 811 P(sched_goidle); 812 P(ttwu_count); 813 P(ttwu_local); 814 } 815 #undef P 816 817 print_cfs_stats(m, cpu); 818 print_rt_stats(m, cpu); 819 print_dl_stats(m, cpu); 820 821 print_rq(m, rq, cpu); 822 SEQ_printf(m, "\n"); 823 } 824 825 static const char *sched_tunable_scaling_names[] = { 826 "none", 827 "logarithmic", 828 "linear" 829 }; 830 831 static void sched_debug_header(struct seq_file *m) 832 { 833 u64 ktime, sched_clk, cpu_clk; 834 unsigned long flags; 835 836 local_irq_save(flags); 837 ktime = ktime_to_ns(ktime_get()); 838 sched_clk = sched_clock(); 839 cpu_clk = local_clock(); 840 local_irq_restore(flags); 841 842 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 843 init_utsname()->release, 844 (int)strcspn(init_utsname()->version, " "), 845 init_utsname()->version); 846 847 #define P(x) \ 848 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 849 #define PN(x) \ 850 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 851 PN(ktime); 852 PN(sched_clk); 853 PN(cpu_clk); 854 P(jiffies); 855 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 856 P(sched_clock_stable()); 857 #endif 858 #undef PN 859 #undef P 860 861 SEQ_printf(m, "\n"); 862 SEQ_printf(m, "sysctl_sched\n"); 863 864 #define P(x) \ 865 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 866 #define PN(x) \ 867 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 868 PN(sysctl_sched_base_slice); 869 P(sysctl_sched_features); 870 #undef PN 871 #undef P 872 873 SEQ_printf(m, " .%-40s: %d (%s)\n", 874 "sysctl_sched_tunable_scaling", 875 sysctl_sched_tunable_scaling, 876 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 877 SEQ_printf(m, "\n"); 878 } 879 880 static int sched_debug_show(struct seq_file *m, void *v) 881 { 882 int cpu = (unsigned long)(v - 2); 883 884 if (cpu != -1) 885 print_cpu(m, cpu); 886 else 887 sched_debug_header(m); 888 889 return 0; 890 } 891 892 void sysrq_sched_debug_show(void) 893 { 894 int cpu; 895 896 sched_debug_header(NULL); 897 for_each_online_cpu(cpu) { 898 /* 899 * Need to reset softlockup watchdogs on all CPUs, because 900 * another CPU might be blocked waiting for us to process 901 * an IPI or stop_machine. 902 */ 903 touch_nmi_watchdog(); 904 touch_all_softlockup_watchdogs(); 905 print_cpu(NULL, cpu); 906 } 907 } 908 909 /* 910 * This iterator needs some explanation. 911 * It returns 1 for the header position. 912 * This means 2 is CPU 0. 913 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have 914 * to use cpumask_* to iterate over the CPUs. 915 */ 916 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 917 { 918 unsigned long n = *offset; 919 920 if (n == 0) 921 return (void *) 1; 922 923 n--; 924 925 if (n > 0) 926 n = cpumask_next(n - 1, cpu_online_mask); 927 else 928 n = cpumask_first(cpu_online_mask); 929 930 *offset = n + 1; 931 932 if (n < nr_cpu_ids) 933 return (void *)(unsigned long)(n + 2); 934 935 return NULL; 936 } 937 938 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 939 { 940 (*offset)++; 941 return sched_debug_start(file, offset); 942 } 943 944 static void sched_debug_stop(struct seq_file *file, void *data) 945 { 946 } 947 948 static const struct seq_operations sched_debug_sops = { 949 .start = sched_debug_start, 950 .next = sched_debug_next, 951 .stop = sched_debug_stop, 952 .show = sched_debug_show, 953 }; 954 955 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F)) 956 #define __P(F) __PS(#F, F) 957 #define P(F) __PS(#F, p->F) 958 #define PM(F, M) __PS(#F, p->F & (M)) 959 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F))) 960 #define __PN(F) __PSN(#F, F) 961 #define PN(F) __PSN(#F, p->F) 962 963 964 #ifdef CONFIG_NUMA_BALANCING 965 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 966 unsigned long tpf, unsigned long gsf, unsigned long gpf) 967 { 968 SEQ_printf(m, "numa_faults node=%d ", node); 969 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf); 970 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf); 971 } 972 #endif 973 974 975 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 976 { 977 #ifdef CONFIG_NUMA_BALANCING 978 if (p->mm) 979 P(mm->numa_scan_seq); 980 981 P(numa_pages_migrated); 982 P(numa_preferred_nid); 983 P(total_numa_faults); 984 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 985 task_node(p), task_numa_group_id(p)); 986 show_numa_stats(p, m); 987 #endif 988 } 989 990 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, 991 struct seq_file *m) 992 { 993 unsigned long nr_switches; 994 995 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), 996 get_nr_threads(p)); 997 SEQ_printf(m, 998 "---------------------------------------------------------" 999 "----------\n"); 1000 1001 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->stats.F)) 1002 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F)) 1003 1004 PN(se.exec_start); 1005 PN(se.vruntime); 1006 PN(se.sum_exec_runtime); 1007 1008 nr_switches = p->nvcsw + p->nivcsw; 1009 1010 P(se.nr_migrations); 1011 1012 if (schedstat_enabled()) { 1013 u64 avg_atom, avg_per_cpu; 1014 1015 PN_SCHEDSTAT(sum_sleep_runtime); 1016 PN_SCHEDSTAT(sum_block_runtime); 1017 PN_SCHEDSTAT(wait_start); 1018 PN_SCHEDSTAT(sleep_start); 1019 PN_SCHEDSTAT(block_start); 1020 PN_SCHEDSTAT(sleep_max); 1021 PN_SCHEDSTAT(block_max); 1022 PN_SCHEDSTAT(exec_max); 1023 PN_SCHEDSTAT(slice_max); 1024 PN_SCHEDSTAT(wait_max); 1025 PN_SCHEDSTAT(wait_sum); 1026 P_SCHEDSTAT(wait_count); 1027 PN_SCHEDSTAT(iowait_sum); 1028 P_SCHEDSTAT(iowait_count); 1029 P_SCHEDSTAT(nr_migrations_cold); 1030 P_SCHEDSTAT(nr_failed_migrations_affine); 1031 P_SCHEDSTAT(nr_failed_migrations_running); 1032 P_SCHEDSTAT(nr_failed_migrations_hot); 1033 P_SCHEDSTAT(nr_forced_migrations); 1034 P_SCHEDSTAT(nr_wakeups); 1035 P_SCHEDSTAT(nr_wakeups_sync); 1036 P_SCHEDSTAT(nr_wakeups_migrate); 1037 P_SCHEDSTAT(nr_wakeups_local); 1038 P_SCHEDSTAT(nr_wakeups_remote); 1039 P_SCHEDSTAT(nr_wakeups_affine); 1040 P_SCHEDSTAT(nr_wakeups_affine_attempts); 1041 P_SCHEDSTAT(nr_wakeups_passive); 1042 P_SCHEDSTAT(nr_wakeups_idle); 1043 1044 avg_atom = p->se.sum_exec_runtime; 1045 if (nr_switches) 1046 avg_atom = div64_ul(avg_atom, nr_switches); 1047 else 1048 avg_atom = -1LL; 1049 1050 avg_per_cpu = p->se.sum_exec_runtime; 1051 if (p->se.nr_migrations) { 1052 avg_per_cpu = div64_u64(avg_per_cpu, 1053 p->se.nr_migrations); 1054 } else { 1055 avg_per_cpu = -1LL; 1056 } 1057 1058 __PN(avg_atom); 1059 __PN(avg_per_cpu); 1060 1061 #ifdef CONFIG_SCHED_CORE 1062 PN_SCHEDSTAT(core_forceidle_sum); 1063 #endif 1064 } 1065 1066 __P(nr_switches); 1067 __PS("nr_voluntary_switches", p->nvcsw); 1068 __PS("nr_involuntary_switches", p->nivcsw); 1069 1070 P(se.load.weight); 1071 #ifdef CONFIG_SMP 1072 P(se.avg.load_sum); 1073 P(se.avg.runnable_sum); 1074 P(se.avg.util_sum); 1075 P(se.avg.load_avg); 1076 P(se.avg.runnable_avg); 1077 P(se.avg.util_avg); 1078 P(se.avg.last_update_time); 1079 PM(se.avg.util_est, ~UTIL_AVG_UNCHANGED); 1080 #endif 1081 #ifdef CONFIG_UCLAMP_TASK 1082 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value); 1083 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value); 1084 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN)); 1085 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX)); 1086 #endif 1087 P(policy); 1088 P(prio); 1089 if (task_has_dl_policy(p)) { 1090 P(dl.runtime); 1091 P(dl.deadline); 1092 } 1093 #undef PN_SCHEDSTAT 1094 #undef P_SCHEDSTAT 1095 1096 { 1097 unsigned int this_cpu = raw_smp_processor_id(); 1098 u64 t0, t1; 1099 1100 t0 = cpu_clock(this_cpu); 1101 t1 = cpu_clock(this_cpu); 1102 __PS("clock-delta", t1-t0); 1103 } 1104 1105 sched_show_numa(p, m); 1106 } 1107 1108 void proc_sched_set_task(struct task_struct *p) 1109 { 1110 #ifdef CONFIG_SCHEDSTATS 1111 memset(&p->stats, 0, sizeof(p->stats)); 1112 #endif 1113 } 1114 1115 void resched_latency_warn(int cpu, u64 latency) 1116 { 1117 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1); 1118 1119 WARN(__ratelimit(&latency_check_ratelimit), 1120 "sched: CPU %d need_resched set for > %llu ns (%d ticks) " 1121 "without schedule\n", 1122 cpu, latency, cpu_rq(cpu)->ticks_without_resched); 1123 } 1124
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.