1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic entry points for the idle threads and 4 * implementation of the idle task scheduling class. 5 * 6 * (NOTE: these are not related to SCHED_IDLE batch scheduled 7 * tasks which are handled in sched/fair.c ) 8 */ 9 10 /* Linker adds these: start and end of __cpuidle functions */ 11 extern char __cpuidle_text_start[], __cpuidle_text_end[]; 12 13 /** 14 * sched_idle_set_state - Record idle state for the current CPU. 15 * @idle_state: State to record. 16 */ 17 void sched_idle_set_state(struct cpuidle_state *idle_state) 18 { 19 idle_set_state(this_rq(), idle_state); 20 } 21 22 static int __read_mostly cpu_idle_force_poll; 23 24 void cpu_idle_poll_ctrl(bool enable) 25 { 26 if (enable) { 27 cpu_idle_force_poll++; 28 } else { 29 cpu_idle_force_poll--; 30 WARN_ON_ONCE(cpu_idle_force_poll < 0); 31 } 32 } 33 34 #ifdef CONFIG_GENERIC_IDLE_POLL_SETUP 35 static int __init cpu_idle_poll_setup(char *__unused) 36 { 37 cpu_idle_force_poll = 1; 38 39 return 1; 40 } 41 __setup("nohlt", cpu_idle_poll_setup); 42 43 static int __init cpu_idle_nopoll_setup(char *__unused) 44 { 45 cpu_idle_force_poll = 0; 46 47 return 1; 48 } 49 __setup("hlt", cpu_idle_nopoll_setup); 50 #endif 51 52 static noinline int __cpuidle cpu_idle_poll(void) 53 { 54 instrumentation_begin(); 55 trace_cpu_idle(0, smp_processor_id()); 56 stop_critical_timings(); 57 ct_cpuidle_enter(); 58 59 raw_local_irq_enable(); 60 while (!tif_need_resched() && 61 (cpu_idle_force_poll || tick_check_broadcast_expired())) 62 cpu_relax(); 63 raw_local_irq_disable(); 64 65 ct_cpuidle_exit(); 66 start_critical_timings(); 67 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 68 local_irq_enable(); 69 instrumentation_end(); 70 71 return 1; 72 } 73 74 /* Weak implementations for optional arch specific functions */ 75 void __weak arch_cpu_idle_prepare(void) { } 76 void __weak arch_cpu_idle_enter(void) { } 77 void __weak arch_cpu_idle_exit(void) { } 78 void __weak __noreturn arch_cpu_idle_dead(void) { while (1); } 79 void __weak arch_cpu_idle(void) 80 { 81 cpu_idle_force_poll = 1; 82 } 83 84 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE 85 DEFINE_STATIC_KEY_FALSE(arch_needs_tick_broadcast); 86 87 static inline void cond_tick_broadcast_enter(void) 88 { 89 if (static_branch_unlikely(&arch_needs_tick_broadcast)) 90 tick_broadcast_enter(); 91 } 92 93 static inline void cond_tick_broadcast_exit(void) 94 { 95 if (static_branch_unlikely(&arch_needs_tick_broadcast)) 96 tick_broadcast_exit(); 97 } 98 #else 99 static inline void cond_tick_broadcast_enter(void) { } 100 static inline void cond_tick_broadcast_exit(void) { } 101 #endif 102 103 /** 104 * default_idle_call - Default CPU idle routine. 105 * 106 * To use when the cpuidle framework cannot be used. 107 */ 108 void __cpuidle default_idle_call(void) 109 { 110 instrumentation_begin(); 111 if (!current_clr_polling_and_test()) { 112 cond_tick_broadcast_enter(); 113 trace_cpu_idle(1, smp_processor_id()); 114 stop_critical_timings(); 115 116 ct_cpuidle_enter(); 117 arch_cpu_idle(); 118 ct_cpuidle_exit(); 119 120 start_critical_timings(); 121 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 122 cond_tick_broadcast_exit(); 123 } 124 local_irq_enable(); 125 instrumentation_end(); 126 } 127 128 static int call_cpuidle_s2idle(struct cpuidle_driver *drv, 129 struct cpuidle_device *dev) 130 { 131 if (current_clr_polling_and_test()) 132 return -EBUSY; 133 134 return cpuidle_enter_s2idle(drv, dev); 135 } 136 137 static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev, 138 int next_state) 139 { 140 /* 141 * The idle task must be scheduled, it is pointless to go to idle, just 142 * update no idle residency and return. 143 */ 144 if (current_clr_polling_and_test()) { 145 dev->last_residency_ns = 0; 146 local_irq_enable(); 147 return -EBUSY; 148 } 149 150 /* 151 * Enter the idle state previously returned by the governor decision. 152 * This function will block until an interrupt occurs and will take 153 * care of re-enabling the local interrupts 154 */ 155 return cpuidle_enter(drv, dev, next_state); 156 } 157 158 /** 159 * cpuidle_idle_call - the main idle function 160 * 161 * NOTE: no locks or semaphores should be used here 162 * 163 * On architectures that support TIF_POLLING_NRFLAG, is called with polling 164 * set, and it returns with polling set. If it ever stops polling, it 165 * must clear the polling bit. 166 */ 167 static void cpuidle_idle_call(void) 168 { 169 struct cpuidle_device *dev = cpuidle_get_device(); 170 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); 171 int next_state, entered_state; 172 173 /* 174 * Check if the idle task must be rescheduled. If it is the 175 * case, exit the function after re-enabling the local IRQ. 176 */ 177 if (need_resched()) { 178 local_irq_enable(); 179 return; 180 } 181 182 if (cpuidle_not_available(drv, dev)) { 183 tick_nohz_idle_stop_tick(); 184 185 default_idle_call(); 186 goto exit_idle; 187 } 188 189 /* 190 * Suspend-to-idle ("s2idle") is a system state in which all user space 191 * has been frozen, all I/O devices have been suspended and the only 192 * activity happens here and in interrupts (if any). In that case bypass 193 * the cpuidle governor and go straight for the deepest idle state 194 * available. Possibly also suspend the local tick and the entire 195 * timekeeping to prevent timer interrupts from kicking us out of idle 196 * until a proper wakeup interrupt happens. 197 */ 198 199 if (idle_should_enter_s2idle() || dev->forced_idle_latency_limit_ns) { 200 u64 max_latency_ns; 201 202 if (idle_should_enter_s2idle()) { 203 204 entered_state = call_cpuidle_s2idle(drv, dev); 205 if (entered_state > 0) 206 goto exit_idle; 207 208 max_latency_ns = U64_MAX; 209 } else { 210 max_latency_ns = dev->forced_idle_latency_limit_ns; 211 } 212 213 tick_nohz_idle_stop_tick(); 214 215 next_state = cpuidle_find_deepest_state(drv, dev, max_latency_ns); 216 call_cpuidle(drv, dev, next_state); 217 } else { 218 bool stop_tick = true; 219 220 /* 221 * Ask the cpuidle framework to choose a convenient idle state. 222 */ 223 next_state = cpuidle_select(drv, dev, &stop_tick); 224 225 if (stop_tick || tick_nohz_tick_stopped()) 226 tick_nohz_idle_stop_tick(); 227 else 228 tick_nohz_idle_retain_tick(); 229 230 entered_state = call_cpuidle(drv, dev, next_state); 231 /* 232 * Give the governor an opportunity to reflect on the outcome 233 */ 234 cpuidle_reflect(dev, entered_state); 235 } 236 237 exit_idle: 238 __current_set_polling(); 239 240 /* 241 * It is up to the idle functions to re-enable local interrupts 242 */ 243 if (WARN_ON_ONCE(irqs_disabled())) 244 local_irq_enable(); 245 } 246 247 /* 248 * Generic idle loop implementation 249 * 250 * Called with polling cleared. 251 */ 252 static void do_idle(void) 253 { 254 int cpu = smp_processor_id(); 255 256 /* 257 * Check if we need to update blocked load 258 */ 259 nohz_run_idle_balance(cpu); 260 261 /* 262 * If the arch has a polling bit, we maintain an invariant: 263 * 264 * Our polling bit is clear if we're not scheduled (i.e. if rq->curr != 265 * rq->idle). This means that, if rq->idle has the polling bit set, 266 * then setting need_resched is guaranteed to cause the CPU to 267 * reschedule. 268 */ 269 270 __current_set_polling(); 271 tick_nohz_idle_enter(); 272 273 while (!need_resched()) { 274 rmb(); 275 276 /* 277 * Interrupts shouldn't be re-enabled from that point on until 278 * the CPU sleeping instruction is reached. Otherwise an interrupt 279 * may fire and queue a timer that would be ignored until the CPU 280 * wakes from the sleeping instruction. And testing need_resched() 281 * doesn't tell about pending needed timer reprogram. 282 * 283 * Several cases to consider: 284 * 285 * - SLEEP-UNTIL-PENDING-INTERRUPT based instructions such as 286 * "wfi" or "mwait" are fine because they can be entered with 287 * interrupt disabled. 288 * 289 * - sti;mwait() couple is fine because the interrupts are 290 * re-enabled only upon the execution of mwait, leaving no gap 291 * in-between. 292 * 293 * - ROLLBACK based idle handlers with the sleeping instruction 294 * called with interrupts enabled are NOT fine. In this scheme 295 * when the interrupt detects it has interrupted an idle handler, 296 * it rolls back to its beginning which performs the 297 * need_resched() check before re-executing the sleeping 298 * instruction. This can leak a pending needed timer reprogram. 299 * If such a scheme is really mandatory due to the lack of an 300 * appropriate CPU sleeping instruction, then a FAST-FORWARD 301 * must instead be applied: when the interrupt detects it has 302 * interrupted an idle handler, it must resume to the end of 303 * this idle handler so that the generic idle loop is iterated 304 * again to reprogram the tick. 305 */ 306 local_irq_disable(); 307 308 if (cpu_is_offline(cpu)) { 309 cpuhp_report_idle_dead(); 310 arch_cpu_idle_dead(); 311 } 312 313 arch_cpu_idle_enter(); 314 rcu_nocb_flush_deferred_wakeup(); 315 316 /* 317 * In poll mode we re-enable interrupts and spin. Also if we 318 * detected in the wakeup from idle path that the tick 319 * broadcast device expired for us, we don't want to go deep 320 * idle as we know that the IPI is going to arrive right away. 321 */ 322 if (cpu_idle_force_poll || tick_check_broadcast_expired()) { 323 tick_nohz_idle_restart_tick(); 324 cpu_idle_poll(); 325 } else { 326 cpuidle_idle_call(); 327 } 328 arch_cpu_idle_exit(); 329 } 330 331 /* 332 * Since we fell out of the loop above, we know TIF_NEED_RESCHED must 333 * be set, propagate it into PREEMPT_NEED_RESCHED. 334 * 335 * This is required because for polling idle loops we will not have had 336 * an IPI to fold the state for us. 337 */ 338 preempt_set_need_resched(); 339 tick_nohz_idle_exit(); 340 __current_clr_polling(); 341 342 /* 343 * We promise to call sched_ttwu_pending() and reschedule if 344 * need_resched() is set while polling is set. That means that clearing 345 * polling needs to be visible before doing these things. 346 */ 347 smp_mb__after_atomic(); 348 349 /* 350 * RCU relies on this call to be done outside of an RCU read-side 351 * critical section. 352 */ 353 flush_smp_call_function_queue(); 354 schedule_idle(); 355 356 if (unlikely(klp_patch_pending(current))) 357 klp_update_patch_state(current); 358 } 359 360 bool cpu_in_idle(unsigned long pc) 361 { 362 return pc >= (unsigned long)__cpuidle_text_start && 363 pc < (unsigned long)__cpuidle_text_end; 364 } 365 366 struct idle_timer { 367 struct hrtimer timer; 368 int done; 369 }; 370 371 static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer) 372 { 373 struct idle_timer *it = container_of(timer, struct idle_timer, timer); 374 375 WRITE_ONCE(it->done, 1); 376 set_tsk_need_resched(current); 377 378 return HRTIMER_NORESTART; 379 } 380 381 void play_idle_precise(u64 duration_ns, u64 latency_ns) 382 { 383 struct idle_timer it; 384 385 /* 386 * Only FIFO tasks can disable the tick since they don't need the forced 387 * preemption. 388 */ 389 WARN_ON_ONCE(current->policy != SCHED_FIFO); 390 WARN_ON_ONCE(current->nr_cpus_allowed != 1); 391 WARN_ON_ONCE(!(current->flags & PF_KTHREAD)); 392 WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY)); 393 WARN_ON_ONCE(!duration_ns); 394 WARN_ON_ONCE(current->mm); 395 396 rcu_sleep_check(); 397 preempt_disable(); 398 current->flags |= PF_IDLE; 399 cpuidle_use_deepest_state(latency_ns); 400 401 it.done = 0; 402 hrtimer_init_on_stack(&it.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 403 it.timer.function = idle_inject_timer_fn; 404 hrtimer_start(&it.timer, ns_to_ktime(duration_ns), 405 HRTIMER_MODE_REL_PINNED_HARD); 406 407 while (!READ_ONCE(it.done)) 408 do_idle(); 409 410 cpuidle_use_deepest_state(0); 411 current->flags &= ~PF_IDLE; 412 413 preempt_fold_need_resched(); 414 preempt_enable(); 415 } 416 EXPORT_SYMBOL_GPL(play_idle_precise); 417 418 void cpu_startup_entry(enum cpuhp_state state) 419 { 420 current->flags |= PF_IDLE; 421 arch_cpu_idle_prepare(); 422 cpuhp_online_idle(state); 423 while (1) 424 do_idle(); 425 } 426 427 /* 428 * idle-task scheduling class. 429 */ 430 431 #ifdef CONFIG_SMP 432 static int 433 select_task_rq_idle(struct task_struct *p, int cpu, int flags) 434 { 435 return task_cpu(p); /* IDLE tasks as never migrated */ 436 } 437 438 static int 439 balance_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 440 { 441 return WARN_ON_ONCE(1); 442 } 443 #endif 444 445 /* 446 * Idle tasks are unconditionally rescheduled: 447 */ 448 static void wakeup_preempt_idle(struct rq *rq, struct task_struct *p, int flags) 449 { 450 resched_curr(rq); 451 } 452 453 static void put_prev_task_idle(struct rq *rq, struct task_struct *prev) 454 { 455 } 456 457 static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first) 458 { 459 update_idle_core(rq); 460 schedstat_inc(rq->sched_goidle); 461 } 462 463 #ifdef CONFIG_SMP 464 static struct task_struct *pick_task_idle(struct rq *rq) 465 { 466 return rq->idle; 467 } 468 #endif 469 470 struct task_struct *pick_next_task_idle(struct rq *rq) 471 { 472 struct task_struct *next = rq->idle; 473 474 set_next_task_idle(rq, next, true); 475 476 return next; 477 } 478 479 /* 480 * It is not legal to sleep in the idle task - print a warning 481 * message if some code attempts to do it: 482 */ 483 static void 484 dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags) 485 { 486 raw_spin_rq_unlock_irq(rq); 487 printk(KERN_ERR "bad: scheduling from the idle thread!\n"); 488 dump_stack(); 489 raw_spin_rq_lock_irq(rq); 490 } 491 492 /* 493 * scheduler tick hitting a task of our scheduling class. 494 * 495 * NOTE: This function can be called remotely by the tick offload that 496 * goes along full dynticks. Therefore no local assumption can be made 497 * and everything must be accessed through the @rq and @curr passed in 498 * parameters. 499 */ 500 static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued) 501 { 502 } 503 504 static void switched_to_idle(struct rq *rq, struct task_struct *p) 505 { 506 BUG(); 507 } 508 509 static void 510 prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio) 511 { 512 BUG(); 513 } 514 515 static void update_curr_idle(struct rq *rq) 516 { 517 } 518 519 /* 520 * Simple, special scheduling class for the per-CPU idle tasks: 521 */ 522 DEFINE_SCHED_CLASS(idle) = { 523 524 /* no enqueue/yield_task for idle tasks */ 525 526 /* dequeue is not valid, we print a debug message there: */ 527 .dequeue_task = dequeue_task_idle, 528 529 .wakeup_preempt = wakeup_preempt_idle, 530 531 .pick_next_task = pick_next_task_idle, 532 .put_prev_task = put_prev_task_idle, 533 .set_next_task = set_next_task_idle, 534 535 #ifdef CONFIG_SMP 536 .balance = balance_idle, 537 .pick_task = pick_task_idle, 538 .select_task_rq = select_task_rq_idle, 539 .set_cpus_allowed = set_cpus_allowed_common, 540 #endif 541 542 .task_tick = task_tick_idle, 543 544 .prio_changed = prio_changed_idle, 545 .switched_to = switched_to_idle, 546 .update_curr = update_curr_idle, 547 }; 548
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.