1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Pressure stall information for CPU, memory and IO 4 * 5 * Copyright (c) 2018 Facebook, Inc. 6 * Author: Johannes Weiner <hannes@cmpxchg.org> 7 * 8 * Polling support by Suren Baghdasaryan <surenb@google.com> 9 * Copyright (c) 2018 Google, Inc. 10 * 11 * When CPU, memory and IO are contended, tasks experience delays that 12 * reduce throughput and introduce latencies into the workload. Memory 13 * and IO contention, in addition, can cause a full loss of forward 14 * progress in which the CPU goes idle. 15 * 16 * This code aggregates individual task delays into resource pressure 17 * metrics that indicate problems with both workload health and 18 * resource utilization. 19 * 20 * Model 21 * 22 * The time in which a task can execute on a CPU is our baseline for 23 * productivity. Pressure expresses the amount of time in which this 24 * potential cannot be realized due to resource contention. 25 * 26 * This concept of productivity has two components: the workload and 27 * the CPU. To measure the impact of pressure on both, we define two 28 * contention states for a resource: SOME and FULL. 29 * 30 * In the SOME state of a given resource, one or more tasks are 31 * delayed on that resource. This affects the workload's ability to 32 * perform work, but the CPU may still be executing other tasks. 33 * 34 * In the FULL state of a given resource, all non-idle tasks are 35 * delayed on that resource such that nobody is advancing and the CPU 36 * goes idle. This leaves both workload and CPU unproductive. 37 * 38 * SOME = nr_delayed_tasks != 0 39 * FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0 40 * 41 * What it means for a task to be productive is defined differently 42 * for each resource. For IO, productive means a running task. For 43 * memory, productive means a running task that isn't a reclaimer. For 44 * CPU, productive means an on-CPU task. 45 * 46 * Naturally, the FULL state doesn't exist for the CPU resource at the 47 * system level, but exist at the cgroup level. At the cgroup level, 48 * FULL means all non-idle tasks in the cgroup are delayed on the CPU 49 * resource which is being used by others outside of the cgroup or 50 * throttled by the cgroup cpu.max configuration. 51 * 52 * The percentage of wall clock time spent in those compound stall 53 * states gives pressure numbers between 0 and 100 for each resource, 54 * where the SOME percentage indicates workload slowdowns and the FULL 55 * percentage indicates reduced CPU utilization: 56 * 57 * %SOME = time(SOME) / period 58 * %FULL = time(FULL) / period 59 * 60 * Multiple CPUs 61 * 62 * The more tasks and available CPUs there are, the more work can be 63 * performed concurrently. This means that the potential that can go 64 * unrealized due to resource contention *also* scales with non-idle 65 * tasks and CPUs. 66 * 67 * Consider a scenario where 257 number crunching tasks are trying to 68 * run concurrently on 256 CPUs. If we simply aggregated the task 69 * states, we would have to conclude a CPU SOME pressure number of 70 * 100%, since *somebody* is waiting on a runqueue at all 71 * times. However, that is clearly not the amount of contention the 72 * workload is experiencing: only one out of 256 possible execution 73 * threads will be contended at any given time, or about 0.4%. 74 * 75 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any 76 * given time *one* of the tasks is delayed due to a lack of memory. 77 * Again, looking purely at the task state would yield a memory FULL 78 * pressure number of 0%, since *somebody* is always making forward 79 * progress. But again this wouldn't capture the amount of execution 80 * potential lost, which is 1 out of 4 CPUs, or 25%. 81 * 82 * To calculate wasted potential (pressure) with multiple processors, 83 * we have to base our calculation on the number of non-idle tasks in 84 * conjunction with the number of available CPUs, which is the number 85 * of potential execution threads. SOME becomes then the proportion of 86 * delayed tasks to possible threads, and FULL is the share of possible 87 * threads that are unproductive due to delays: 88 * 89 * threads = min(nr_nonidle_tasks, nr_cpus) 90 * SOME = min(nr_delayed_tasks / threads, 1) 91 * FULL = (threads - min(nr_productive_tasks, threads)) / threads 92 * 93 * For the 257 number crunchers on 256 CPUs, this yields: 94 * 95 * threads = min(257, 256) 96 * SOME = min(1 / 256, 1) = 0.4% 97 * FULL = (256 - min(256, 256)) / 256 = 0% 98 * 99 * For the 1 out of 4 memory-delayed tasks, this yields: 100 * 101 * threads = min(4, 4) 102 * SOME = min(1 / 4, 1) = 25% 103 * FULL = (4 - min(3, 4)) / 4 = 25% 104 * 105 * [ Substitute nr_cpus with 1, and you can see that it's a natural 106 * extension of the single-CPU model. ] 107 * 108 * Implementation 109 * 110 * To assess the precise time spent in each such state, we would have 111 * to freeze the system on task changes and start/stop the state 112 * clocks accordingly. Obviously that doesn't scale in practice. 113 * 114 * Because the scheduler aims to distribute the compute load evenly 115 * among the available CPUs, we can track task state locally to each 116 * CPU and, at much lower frequency, extrapolate the global state for 117 * the cumulative stall times and the running averages. 118 * 119 * For each runqueue, we track: 120 * 121 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0) 122 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu]) 123 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0) 124 * 125 * and then periodically aggregate: 126 * 127 * tNONIDLE = sum(tNONIDLE[i]) 128 * 129 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE 130 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE 131 * 132 * %SOME = tSOME / period 133 * %FULL = tFULL / period 134 * 135 * This gives us an approximation of pressure that is practical 136 * cost-wise, yet way more sensitive and accurate than periodic 137 * sampling of the aggregate task states would be. 138 */ 139 140 static int psi_bug __read_mostly; 141 142 DEFINE_STATIC_KEY_FALSE(psi_disabled); 143 static DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled); 144 145 #ifdef CONFIG_PSI_DEFAULT_DISABLED 146 static bool psi_enable; 147 #else 148 static bool psi_enable = true; 149 #endif 150 static int __init setup_psi(char *str) 151 { 152 return kstrtobool(str, &psi_enable) == 0; 153 } 154 __setup("psi=", setup_psi); 155 156 /* Running averages - we need to be higher-res than loadavg */ 157 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */ 158 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */ 159 #define EXP_60s 1981 /* 1/exp(2s/60s) */ 160 #define EXP_300s 2034 /* 1/exp(2s/300s) */ 161 162 /* PSI trigger definitions */ 163 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */ 164 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */ 165 166 /* Sampling frequency in nanoseconds */ 167 static u64 psi_period __read_mostly; 168 169 /* System-level pressure and stall tracking */ 170 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu); 171 struct psi_group psi_system = { 172 .pcpu = &system_group_pcpu, 173 }; 174 175 static void psi_avgs_work(struct work_struct *work); 176 177 static void poll_timer_fn(struct timer_list *t); 178 179 static void group_init(struct psi_group *group) 180 { 181 int cpu; 182 183 group->enabled = true; 184 for_each_possible_cpu(cpu) 185 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq); 186 group->avg_last_update = sched_clock(); 187 group->avg_next_update = group->avg_last_update + psi_period; 188 mutex_init(&group->avgs_lock); 189 190 /* Init avg trigger-related members */ 191 INIT_LIST_HEAD(&group->avg_triggers); 192 memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers)); 193 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work); 194 195 /* Init rtpoll trigger-related members */ 196 atomic_set(&group->rtpoll_scheduled, 0); 197 mutex_init(&group->rtpoll_trigger_lock); 198 INIT_LIST_HEAD(&group->rtpoll_triggers); 199 group->rtpoll_min_period = U32_MAX; 200 group->rtpoll_next_update = ULLONG_MAX; 201 init_waitqueue_head(&group->rtpoll_wait); 202 timer_setup(&group->rtpoll_timer, poll_timer_fn, 0); 203 rcu_assign_pointer(group->rtpoll_task, NULL); 204 } 205 206 void __init psi_init(void) 207 { 208 if (!psi_enable) { 209 static_branch_enable(&psi_disabled); 210 static_branch_disable(&psi_cgroups_enabled); 211 return; 212 } 213 214 if (!cgroup_psi_enabled()) 215 static_branch_disable(&psi_cgroups_enabled); 216 217 psi_period = jiffies_to_nsecs(PSI_FREQ); 218 group_init(&psi_system); 219 } 220 221 static u32 test_states(unsigned int *tasks, u32 state_mask) 222 { 223 const bool oncpu = state_mask & PSI_ONCPU; 224 225 if (tasks[NR_IOWAIT]) { 226 state_mask |= BIT(PSI_IO_SOME); 227 if (!tasks[NR_RUNNING]) 228 state_mask |= BIT(PSI_IO_FULL); 229 } 230 231 if (tasks[NR_MEMSTALL]) { 232 state_mask |= BIT(PSI_MEM_SOME); 233 if (tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]) 234 state_mask |= BIT(PSI_MEM_FULL); 235 } 236 237 if (tasks[NR_RUNNING] > oncpu) 238 state_mask |= BIT(PSI_CPU_SOME); 239 240 if (tasks[NR_RUNNING] && !oncpu) 241 state_mask |= BIT(PSI_CPU_FULL); 242 243 if (tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || tasks[NR_RUNNING]) 244 state_mask |= BIT(PSI_NONIDLE); 245 246 return state_mask; 247 } 248 249 static void get_recent_times(struct psi_group *group, int cpu, 250 enum psi_aggregators aggregator, u32 *times, 251 u32 *pchanged_states) 252 { 253 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); 254 int current_cpu = raw_smp_processor_id(); 255 unsigned int tasks[NR_PSI_TASK_COUNTS]; 256 u64 now, state_start; 257 enum psi_states s; 258 unsigned int seq; 259 u32 state_mask; 260 261 *pchanged_states = 0; 262 263 /* Snapshot a coherent view of the CPU state */ 264 do { 265 seq = read_seqcount_begin(&groupc->seq); 266 now = cpu_clock(cpu); 267 memcpy(times, groupc->times, sizeof(groupc->times)); 268 state_mask = groupc->state_mask; 269 state_start = groupc->state_start; 270 if (cpu == current_cpu) 271 memcpy(tasks, groupc->tasks, sizeof(groupc->tasks)); 272 } while (read_seqcount_retry(&groupc->seq, seq)); 273 274 /* Calculate state time deltas against the previous snapshot */ 275 for (s = 0; s < NR_PSI_STATES; s++) { 276 u32 delta; 277 /* 278 * In addition to already concluded states, we also 279 * incorporate currently active states on the CPU, 280 * since states may last for many sampling periods. 281 * 282 * This way we keep our delta sampling buckets small 283 * (u32) and our reported pressure close to what's 284 * actually happening. 285 */ 286 if (state_mask & (1 << s)) 287 times[s] += now - state_start; 288 289 delta = times[s] - groupc->times_prev[aggregator][s]; 290 groupc->times_prev[aggregator][s] = times[s]; 291 292 times[s] = delta; 293 if (delta) 294 *pchanged_states |= (1 << s); 295 } 296 297 /* 298 * When collect_percpu_times() from the avgs_work, we don't want to 299 * re-arm avgs_work when all CPUs are IDLE. But the current CPU running 300 * this avgs_work is never IDLE, cause avgs_work can't be shut off. 301 * So for the current CPU, we need to re-arm avgs_work only when 302 * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs 303 * we can just check PSI_NONIDLE delta. 304 */ 305 if (current_work() == &group->avgs_work.work) { 306 bool reschedule; 307 308 if (cpu == current_cpu) 309 reschedule = tasks[NR_RUNNING] + 310 tasks[NR_IOWAIT] + 311 tasks[NR_MEMSTALL] > 1; 312 else 313 reschedule = *pchanged_states & (1 << PSI_NONIDLE); 314 315 if (reschedule) 316 *pchanged_states |= PSI_STATE_RESCHEDULE; 317 } 318 } 319 320 static void calc_avgs(unsigned long avg[3], int missed_periods, 321 u64 time, u64 period) 322 { 323 unsigned long pct; 324 325 /* Fill in zeroes for periods of no activity */ 326 if (missed_periods) { 327 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods); 328 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods); 329 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods); 330 } 331 332 /* Sample the most recent active period */ 333 pct = div_u64(time * 100, period); 334 pct *= FIXED_1; 335 avg[0] = calc_load(avg[0], EXP_10s, pct); 336 avg[1] = calc_load(avg[1], EXP_60s, pct); 337 avg[2] = calc_load(avg[2], EXP_300s, pct); 338 } 339 340 static void collect_percpu_times(struct psi_group *group, 341 enum psi_aggregators aggregator, 342 u32 *pchanged_states) 343 { 344 u64 deltas[NR_PSI_STATES - 1] = { 0, }; 345 unsigned long nonidle_total = 0; 346 u32 changed_states = 0; 347 int cpu; 348 int s; 349 350 /* 351 * Collect the per-cpu time buckets and average them into a 352 * single time sample that is normalized to wall clock time. 353 * 354 * For averaging, each CPU is weighted by its non-idle time in 355 * the sampling period. This eliminates artifacts from uneven 356 * loading, or even entirely idle CPUs. 357 */ 358 for_each_possible_cpu(cpu) { 359 u32 times[NR_PSI_STATES]; 360 u32 nonidle; 361 u32 cpu_changed_states; 362 363 get_recent_times(group, cpu, aggregator, times, 364 &cpu_changed_states); 365 changed_states |= cpu_changed_states; 366 367 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]); 368 nonidle_total += nonidle; 369 370 for (s = 0; s < PSI_NONIDLE; s++) 371 deltas[s] += (u64)times[s] * nonidle; 372 } 373 374 /* 375 * Integrate the sample into the running statistics that are 376 * reported to userspace: the cumulative stall times and the 377 * decaying averages. 378 * 379 * Pressure percentages are sampled at PSI_FREQ. We might be 380 * called more often when the user polls more frequently than 381 * that; we might be called less often when there is no task 382 * activity, thus no data, and clock ticks are sporadic. The 383 * below handles both. 384 */ 385 386 /* total= */ 387 for (s = 0; s < NR_PSI_STATES - 1; s++) 388 group->total[aggregator][s] += 389 div_u64(deltas[s], max(nonidle_total, 1UL)); 390 391 if (pchanged_states) 392 *pchanged_states = changed_states; 393 } 394 395 /* Trigger tracking window manipulations */ 396 static void window_reset(struct psi_window *win, u64 now, u64 value, 397 u64 prev_growth) 398 { 399 win->start_time = now; 400 win->start_value = value; 401 win->prev_growth = prev_growth; 402 } 403 404 /* 405 * PSI growth tracking window update and growth calculation routine. 406 * 407 * This approximates a sliding tracking window by interpolating 408 * partially elapsed windows using historical growth data from the 409 * previous intervals. This minimizes memory requirements (by not storing 410 * all the intermediate values in the previous window) and simplifies 411 * the calculations. It works well because PSI signal changes only in 412 * positive direction and over relatively small window sizes the growth 413 * is close to linear. 414 */ 415 static u64 window_update(struct psi_window *win, u64 now, u64 value) 416 { 417 u64 elapsed; 418 u64 growth; 419 420 elapsed = now - win->start_time; 421 growth = value - win->start_value; 422 /* 423 * After each tracking window passes win->start_value and 424 * win->start_time get reset and win->prev_growth stores 425 * the average per-window growth of the previous window. 426 * win->prev_growth is then used to interpolate additional 427 * growth from the previous window assuming it was linear. 428 */ 429 if (elapsed > win->size) 430 window_reset(win, now, value, growth); 431 else { 432 u32 remaining; 433 434 remaining = win->size - elapsed; 435 growth += div64_u64(win->prev_growth * remaining, win->size); 436 } 437 438 return growth; 439 } 440 441 static void update_triggers(struct psi_group *group, u64 now, 442 enum psi_aggregators aggregator) 443 { 444 struct psi_trigger *t; 445 u64 *total = group->total[aggregator]; 446 struct list_head *triggers; 447 u64 *aggregator_total; 448 449 if (aggregator == PSI_AVGS) { 450 triggers = &group->avg_triggers; 451 aggregator_total = group->avg_total; 452 } else { 453 triggers = &group->rtpoll_triggers; 454 aggregator_total = group->rtpoll_total; 455 } 456 457 /* 458 * On subsequent updates, calculate growth deltas and let 459 * watchers know when their specified thresholds are exceeded. 460 */ 461 list_for_each_entry(t, triggers, node) { 462 u64 growth; 463 bool new_stall; 464 465 new_stall = aggregator_total[t->state] != total[t->state]; 466 467 /* Check for stall activity or a previous threshold breach */ 468 if (!new_stall && !t->pending_event) 469 continue; 470 /* 471 * Check for new stall activity, as well as deferred 472 * events that occurred in the last window after the 473 * trigger had already fired (we want to ratelimit 474 * events without dropping any). 475 */ 476 if (new_stall) { 477 /* Calculate growth since last update */ 478 growth = window_update(&t->win, now, total[t->state]); 479 if (!t->pending_event) { 480 if (growth < t->threshold) 481 continue; 482 483 t->pending_event = true; 484 } 485 } 486 /* Limit event signaling to once per window */ 487 if (now < t->last_event_time + t->win.size) 488 continue; 489 490 /* Generate an event */ 491 if (cmpxchg(&t->event, 0, 1) == 0) { 492 if (t->of) 493 kernfs_notify(t->of->kn); 494 else 495 wake_up_interruptible(&t->event_wait); 496 } 497 t->last_event_time = now; 498 /* Reset threshold breach flag once event got generated */ 499 t->pending_event = false; 500 } 501 } 502 503 static u64 update_averages(struct psi_group *group, u64 now) 504 { 505 unsigned long missed_periods = 0; 506 u64 expires, period; 507 u64 avg_next_update; 508 int s; 509 510 /* avgX= */ 511 expires = group->avg_next_update; 512 if (now - expires >= psi_period) 513 missed_periods = div_u64(now - expires, psi_period); 514 515 /* 516 * The periodic clock tick can get delayed for various 517 * reasons, especially on loaded systems. To avoid clock 518 * drift, we schedule the clock in fixed psi_period intervals. 519 * But the deltas we sample out of the per-cpu buckets above 520 * are based on the actual time elapsing between clock ticks. 521 */ 522 avg_next_update = expires + ((1 + missed_periods) * psi_period); 523 period = now - (group->avg_last_update + (missed_periods * psi_period)); 524 group->avg_last_update = now; 525 526 for (s = 0; s < NR_PSI_STATES - 1; s++) { 527 u32 sample; 528 529 sample = group->total[PSI_AVGS][s] - group->avg_total[s]; 530 /* 531 * Due to the lockless sampling of the time buckets, 532 * recorded time deltas can slip into the next period, 533 * which under full pressure can result in samples in 534 * excess of the period length. 535 * 536 * We don't want to report non-sensical pressures in 537 * excess of 100%, nor do we want to drop such events 538 * on the floor. Instead we punt any overage into the 539 * future until pressure subsides. By doing this we 540 * don't underreport the occurring pressure curve, we 541 * just report it delayed by one period length. 542 * 543 * The error isn't cumulative. As soon as another 544 * delta slips from a period P to P+1, by definition 545 * it frees up its time T in P. 546 */ 547 if (sample > period) 548 sample = period; 549 group->avg_total[s] += sample; 550 calc_avgs(group->avg[s], missed_periods, sample, period); 551 } 552 553 return avg_next_update; 554 } 555 556 static void psi_avgs_work(struct work_struct *work) 557 { 558 struct delayed_work *dwork; 559 struct psi_group *group; 560 u32 changed_states; 561 u64 now; 562 563 dwork = to_delayed_work(work); 564 group = container_of(dwork, struct psi_group, avgs_work); 565 566 mutex_lock(&group->avgs_lock); 567 568 now = sched_clock(); 569 570 collect_percpu_times(group, PSI_AVGS, &changed_states); 571 /* 572 * If there is task activity, periodically fold the per-cpu 573 * times and feed samples into the running averages. If things 574 * are idle and there is no data to process, stop the clock. 575 * Once restarted, we'll catch up the running averages in one 576 * go - see calc_avgs() and missed_periods. 577 */ 578 if (now >= group->avg_next_update) { 579 update_triggers(group, now, PSI_AVGS); 580 group->avg_next_update = update_averages(group, now); 581 } 582 583 if (changed_states & PSI_STATE_RESCHEDULE) { 584 schedule_delayed_work(dwork, nsecs_to_jiffies( 585 group->avg_next_update - now) + 1); 586 } 587 588 mutex_unlock(&group->avgs_lock); 589 } 590 591 static void init_rtpoll_triggers(struct psi_group *group, u64 now) 592 { 593 struct psi_trigger *t; 594 595 list_for_each_entry(t, &group->rtpoll_triggers, node) 596 window_reset(&t->win, now, 597 group->total[PSI_POLL][t->state], 0); 598 memcpy(group->rtpoll_total, group->total[PSI_POLL], 599 sizeof(group->rtpoll_total)); 600 group->rtpoll_next_update = now + group->rtpoll_min_period; 601 } 602 603 /* Schedule rtpolling if it's not already scheduled or forced. */ 604 static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay, 605 bool force) 606 { 607 struct task_struct *task; 608 609 /* 610 * atomic_xchg should be called even when !force to provide a 611 * full memory barrier (see the comment inside psi_rtpoll_work). 612 */ 613 if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force) 614 return; 615 616 rcu_read_lock(); 617 618 task = rcu_dereference(group->rtpoll_task); 619 /* 620 * kworker might be NULL in case psi_trigger_destroy races with 621 * psi_task_change (hotpath) which can't use locks 622 */ 623 if (likely(task)) 624 mod_timer(&group->rtpoll_timer, jiffies + delay); 625 else 626 atomic_set(&group->rtpoll_scheduled, 0); 627 628 rcu_read_unlock(); 629 } 630 631 static void psi_rtpoll_work(struct psi_group *group) 632 { 633 bool force_reschedule = false; 634 u32 changed_states; 635 u64 now; 636 637 mutex_lock(&group->rtpoll_trigger_lock); 638 639 now = sched_clock(); 640 641 if (now > group->rtpoll_until) { 642 /* 643 * We are either about to start or might stop rtpolling if no 644 * state change was recorded. Resetting rtpoll_scheduled leaves 645 * a small window for psi_group_change to sneak in and schedule 646 * an immediate rtpoll_work before we get to rescheduling. One 647 * potential extra wakeup at the end of the rtpolling window 648 * should be negligible and rtpoll_next_update still keeps 649 * updates correctly on schedule. 650 */ 651 atomic_set(&group->rtpoll_scheduled, 0); 652 /* 653 * A task change can race with the rtpoll worker that is supposed to 654 * report on it. To avoid missing events, ensure ordering between 655 * rtpoll_scheduled and the task state accesses, such that if the 656 * rtpoll worker misses the state update, the task change is 657 * guaranteed to reschedule the rtpoll worker: 658 * 659 * rtpoll worker: 660 * atomic_set(rtpoll_scheduled, 0) 661 * smp_mb() 662 * LOAD states 663 * 664 * task change: 665 * STORE states 666 * if atomic_xchg(rtpoll_scheduled, 1) == 0: 667 * schedule rtpoll worker 668 * 669 * The atomic_xchg() implies a full barrier. 670 */ 671 smp_mb(); 672 } else { 673 /* The rtpolling window is not over, keep rescheduling */ 674 force_reschedule = true; 675 } 676 677 678 collect_percpu_times(group, PSI_POLL, &changed_states); 679 680 if (changed_states & group->rtpoll_states) { 681 /* Initialize trigger windows when entering rtpolling mode */ 682 if (now > group->rtpoll_until) 683 init_rtpoll_triggers(group, now); 684 685 /* 686 * Keep the monitor active for at least the duration of the 687 * minimum tracking window as long as monitor states are 688 * changing. 689 */ 690 group->rtpoll_until = now + 691 group->rtpoll_min_period * UPDATES_PER_WINDOW; 692 } 693 694 if (now > group->rtpoll_until) { 695 group->rtpoll_next_update = ULLONG_MAX; 696 goto out; 697 } 698 699 if (now >= group->rtpoll_next_update) { 700 if (changed_states & group->rtpoll_states) { 701 update_triggers(group, now, PSI_POLL); 702 memcpy(group->rtpoll_total, group->total[PSI_POLL], 703 sizeof(group->rtpoll_total)); 704 } 705 group->rtpoll_next_update = now + group->rtpoll_min_period; 706 } 707 708 psi_schedule_rtpoll_work(group, 709 nsecs_to_jiffies(group->rtpoll_next_update - now) + 1, 710 force_reschedule); 711 712 out: 713 mutex_unlock(&group->rtpoll_trigger_lock); 714 } 715 716 static int psi_rtpoll_worker(void *data) 717 { 718 struct psi_group *group = (struct psi_group *)data; 719 720 sched_set_fifo_low(current); 721 722 while (true) { 723 wait_event_interruptible(group->rtpoll_wait, 724 atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) || 725 kthread_should_stop()); 726 if (kthread_should_stop()) 727 break; 728 729 psi_rtpoll_work(group); 730 } 731 return 0; 732 } 733 734 static void poll_timer_fn(struct timer_list *t) 735 { 736 struct psi_group *group = from_timer(group, t, rtpoll_timer); 737 738 atomic_set(&group->rtpoll_wakeup, 1); 739 wake_up_interruptible(&group->rtpoll_wait); 740 } 741 742 static void record_times(struct psi_group_cpu *groupc, u64 now) 743 { 744 u32 delta; 745 746 delta = now - groupc->state_start; 747 groupc->state_start = now; 748 749 if (groupc->state_mask & (1 << PSI_IO_SOME)) { 750 groupc->times[PSI_IO_SOME] += delta; 751 if (groupc->state_mask & (1 << PSI_IO_FULL)) 752 groupc->times[PSI_IO_FULL] += delta; 753 } 754 755 if (groupc->state_mask & (1 << PSI_MEM_SOME)) { 756 groupc->times[PSI_MEM_SOME] += delta; 757 if (groupc->state_mask & (1 << PSI_MEM_FULL)) 758 groupc->times[PSI_MEM_FULL] += delta; 759 } 760 761 if (groupc->state_mask & (1 << PSI_CPU_SOME)) { 762 groupc->times[PSI_CPU_SOME] += delta; 763 if (groupc->state_mask & (1 << PSI_CPU_FULL)) 764 groupc->times[PSI_CPU_FULL] += delta; 765 } 766 767 if (groupc->state_mask & (1 << PSI_NONIDLE)) 768 groupc->times[PSI_NONIDLE] += delta; 769 } 770 771 static void psi_group_change(struct psi_group *group, int cpu, 772 unsigned int clear, unsigned int set, 773 bool wake_clock) 774 { 775 struct psi_group_cpu *groupc; 776 unsigned int t, m; 777 u32 state_mask; 778 u64 now; 779 780 lockdep_assert_rq_held(cpu_rq(cpu)); 781 groupc = per_cpu_ptr(group->pcpu, cpu); 782 783 /* 784 * First we update the task counts according to the state 785 * change requested through the @clear and @set bits. 786 * 787 * Then if the cgroup PSI stats accounting enabled, we 788 * assess the aggregate resource states this CPU's tasks 789 * have been in since the last change, and account any 790 * SOME and FULL time these may have resulted in. 791 */ 792 write_seqcount_begin(&groupc->seq); 793 now = cpu_clock(cpu); 794 795 /* 796 * Start with TSK_ONCPU, which doesn't have a corresponding 797 * task count - it's just a boolean flag directly encoded in 798 * the state mask. Clear, set, or carry the current state if 799 * no changes are requested. 800 */ 801 if (unlikely(clear & TSK_ONCPU)) { 802 state_mask = 0; 803 clear &= ~TSK_ONCPU; 804 } else if (unlikely(set & TSK_ONCPU)) { 805 state_mask = PSI_ONCPU; 806 set &= ~TSK_ONCPU; 807 } else { 808 state_mask = groupc->state_mask & PSI_ONCPU; 809 } 810 811 /* 812 * The rest of the state mask is calculated based on the task 813 * counts. Update those first, then construct the mask. 814 */ 815 for (t = 0, m = clear; m; m &= ~(1 << t), t++) { 816 if (!(m & (1 << t))) 817 continue; 818 if (groupc->tasks[t]) { 819 groupc->tasks[t]--; 820 } else if (!psi_bug) { 821 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n", 822 cpu, t, groupc->tasks[0], 823 groupc->tasks[1], groupc->tasks[2], 824 groupc->tasks[3], clear, set); 825 psi_bug = 1; 826 } 827 } 828 829 for (t = 0; set; set &= ~(1 << t), t++) 830 if (set & (1 << t)) 831 groupc->tasks[t]++; 832 833 if (!group->enabled) { 834 /* 835 * On the first group change after disabling PSI, conclude 836 * the current state and flush its time. This is unlikely 837 * to matter to the user, but aggregation (get_recent_times) 838 * may have already incorporated the live state into times_prev; 839 * avoid a delta sample underflow when PSI is later re-enabled. 840 */ 841 if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE))) 842 record_times(groupc, now); 843 844 groupc->state_mask = state_mask; 845 846 write_seqcount_end(&groupc->seq); 847 return; 848 } 849 850 state_mask = test_states(groupc->tasks, state_mask); 851 852 /* 853 * Since we care about lost potential, a memstall is FULL 854 * when there are no other working tasks, but also when 855 * the CPU is actively reclaiming and nothing productive 856 * could run even if it were runnable. So when the current 857 * task in a cgroup is in_memstall, the corresponding groupc 858 * on that cpu is in PSI_MEM_FULL state. 859 */ 860 if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall)) 861 state_mask |= (1 << PSI_MEM_FULL); 862 863 record_times(groupc, now); 864 865 groupc->state_mask = state_mask; 866 867 write_seqcount_end(&groupc->seq); 868 869 if (state_mask & group->rtpoll_states) 870 psi_schedule_rtpoll_work(group, 1, false); 871 872 if (wake_clock && !delayed_work_pending(&group->avgs_work)) 873 schedule_delayed_work(&group->avgs_work, PSI_FREQ); 874 } 875 876 static inline struct psi_group *task_psi_group(struct task_struct *task) 877 { 878 #ifdef CONFIG_CGROUPS 879 if (static_branch_likely(&psi_cgroups_enabled)) 880 return cgroup_psi(task_dfl_cgroup(task)); 881 #endif 882 return &psi_system; 883 } 884 885 static void psi_flags_change(struct task_struct *task, int clear, int set) 886 { 887 if (((task->psi_flags & set) || 888 (task->psi_flags & clear) != clear) && 889 !psi_bug) { 890 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n", 891 task->pid, task->comm, task_cpu(task), 892 task->psi_flags, clear, set); 893 psi_bug = 1; 894 } 895 896 task->psi_flags &= ~clear; 897 task->psi_flags |= set; 898 } 899 900 void psi_task_change(struct task_struct *task, int clear, int set) 901 { 902 int cpu = task_cpu(task); 903 struct psi_group *group; 904 905 if (!task->pid) 906 return; 907 908 psi_flags_change(task, clear, set); 909 910 group = task_psi_group(task); 911 do { 912 psi_group_change(group, cpu, clear, set, true); 913 } while ((group = group->parent)); 914 } 915 916 void psi_task_switch(struct task_struct *prev, struct task_struct *next, 917 bool sleep) 918 { 919 struct psi_group *group, *common = NULL; 920 int cpu = task_cpu(prev); 921 922 if (next->pid) { 923 psi_flags_change(next, 0, TSK_ONCPU); 924 /* 925 * Set TSK_ONCPU on @next's cgroups. If @next shares any 926 * ancestors with @prev, those will already have @prev's 927 * TSK_ONCPU bit set, and we can stop the iteration there. 928 */ 929 group = task_psi_group(next); 930 do { 931 if (per_cpu_ptr(group->pcpu, cpu)->state_mask & 932 PSI_ONCPU) { 933 common = group; 934 break; 935 } 936 937 psi_group_change(group, cpu, 0, TSK_ONCPU, true); 938 } while ((group = group->parent)); 939 } 940 941 if (prev->pid) { 942 int clear = TSK_ONCPU, set = 0; 943 bool wake_clock = true; 944 945 /* 946 * When we're going to sleep, psi_dequeue() lets us 947 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and 948 * TSK_IOWAIT here, where we can combine it with 949 * TSK_ONCPU and save walking common ancestors twice. 950 */ 951 if (sleep) { 952 clear |= TSK_RUNNING; 953 if (prev->in_memstall) 954 clear |= TSK_MEMSTALL_RUNNING; 955 if (prev->in_iowait) 956 set |= TSK_IOWAIT; 957 958 /* 959 * Periodic aggregation shuts off if there is a period of no 960 * task changes, so we wake it back up if necessary. However, 961 * don't do this if the task change is the aggregation worker 962 * itself going to sleep, or we'll ping-pong forever. 963 */ 964 if (unlikely((prev->flags & PF_WQ_WORKER) && 965 wq_worker_last_func(prev) == psi_avgs_work)) 966 wake_clock = false; 967 } 968 969 psi_flags_change(prev, clear, set); 970 971 group = task_psi_group(prev); 972 do { 973 if (group == common) 974 break; 975 psi_group_change(group, cpu, clear, set, wake_clock); 976 } while ((group = group->parent)); 977 978 /* 979 * TSK_ONCPU is handled up to the common ancestor. If there are 980 * any other differences between the two tasks (e.g. prev goes 981 * to sleep, or only one task is memstall), finish propagating 982 * those differences all the way up to the root. 983 */ 984 if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) { 985 clear &= ~TSK_ONCPU; 986 for (; group; group = group->parent) 987 psi_group_change(group, cpu, clear, set, wake_clock); 988 } 989 } 990 } 991 992 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 993 void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev) 994 { 995 int cpu = task_cpu(curr); 996 struct psi_group *group; 997 struct psi_group_cpu *groupc; 998 s64 delta; 999 u64 irq; 1000 1001 if (static_branch_likely(&psi_disabled)) 1002 return; 1003 1004 if (!curr->pid) 1005 return; 1006 1007 lockdep_assert_rq_held(rq); 1008 group = task_psi_group(curr); 1009 if (prev && task_psi_group(prev) == group) 1010 return; 1011 1012 irq = irq_time_read(cpu); 1013 delta = (s64)(irq - rq->psi_irq_time); 1014 if (delta < 0) 1015 return; 1016 rq->psi_irq_time = irq; 1017 1018 do { 1019 u64 now; 1020 1021 if (!group->enabled) 1022 continue; 1023 1024 groupc = per_cpu_ptr(group->pcpu, cpu); 1025 1026 write_seqcount_begin(&groupc->seq); 1027 now = cpu_clock(cpu); 1028 1029 record_times(groupc, now); 1030 groupc->times[PSI_IRQ_FULL] += delta; 1031 1032 write_seqcount_end(&groupc->seq); 1033 1034 if (group->rtpoll_states & (1 << PSI_IRQ_FULL)) 1035 psi_schedule_rtpoll_work(group, 1, false); 1036 } while ((group = group->parent)); 1037 } 1038 #endif 1039 1040 /** 1041 * psi_memstall_enter - mark the beginning of a memory stall section 1042 * @flags: flags to handle nested sections 1043 * 1044 * Marks the calling task as being stalled due to a lack of memory, 1045 * such as waiting for a refault or performing reclaim. 1046 */ 1047 void psi_memstall_enter(unsigned long *flags) 1048 { 1049 struct rq_flags rf; 1050 struct rq *rq; 1051 1052 if (static_branch_likely(&psi_disabled)) 1053 return; 1054 1055 *flags = current->in_memstall; 1056 if (*flags) 1057 return; 1058 /* 1059 * in_memstall setting & accounting needs to be atomic wrt 1060 * changes to the task's scheduling state, otherwise we can 1061 * race with CPU migration. 1062 */ 1063 rq = this_rq_lock_irq(&rf); 1064 1065 current->in_memstall = 1; 1066 psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING); 1067 1068 rq_unlock_irq(rq, &rf); 1069 } 1070 EXPORT_SYMBOL_GPL(psi_memstall_enter); 1071 1072 /** 1073 * psi_memstall_leave - mark the end of an memory stall section 1074 * @flags: flags to handle nested memdelay sections 1075 * 1076 * Marks the calling task as no longer stalled due to lack of memory. 1077 */ 1078 void psi_memstall_leave(unsigned long *flags) 1079 { 1080 struct rq_flags rf; 1081 struct rq *rq; 1082 1083 if (static_branch_likely(&psi_disabled)) 1084 return; 1085 1086 if (*flags) 1087 return; 1088 /* 1089 * in_memstall clearing & accounting needs to be atomic wrt 1090 * changes to the task's scheduling state, otherwise we could 1091 * race with CPU migration. 1092 */ 1093 rq = this_rq_lock_irq(&rf); 1094 1095 current->in_memstall = 0; 1096 psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0); 1097 1098 rq_unlock_irq(rq, &rf); 1099 } 1100 EXPORT_SYMBOL_GPL(psi_memstall_leave); 1101 1102 #ifdef CONFIG_CGROUPS 1103 int psi_cgroup_alloc(struct cgroup *cgroup) 1104 { 1105 if (!static_branch_likely(&psi_cgroups_enabled)) 1106 return 0; 1107 1108 cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL); 1109 if (!cgroup->psi) 1110 return -ENOMEM; 1111 1112 cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu); 1113 if (!cgroup->psi->pcpu) { 1114 kfree(cgroup->psi); 1115 return -ENOMEM; 1116 } 1117 group_init(cgroup->psi); 1118 cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup)); 1119 return 0; 1120 } 1121 1122 void psi_cgroup_free(struct cgroup *cgroup) 1123 { 1124 if (!static_branch_likely(&psi_cgroups_enabled)) 1125 return; 1126 1127 cancel_delayed_work_sync(&cgroup->psi->avgs_work); 1128 free_percpu(cgroup->psi->pcpu); 1129 /* All triggers must be removed by now */ 1130 WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n"); 1131 kfree(cgroup->psi); 1132 } 1133 1134 /** 1135 * cgroup_move_task - move task to a different cgroup 1136 * @task: the task 1137 * @to: the target css_set 1138 * 1139 * Move task to a new cgroup and safely migrate its associated stall 1140 * state between the different groups. 1141 * 1142 * This function acquires the task's rq lock to lock out concurrent 1143 * changes to the task's scheduling state and - in case the task is 1144 * running - concurrent changes to its stall state. 1145 */ 1146 void cgroup_move_task(struct task_struct *task, struct css_set *to) 1147 { 1148 unsigned int task_flags; 1149 struct rq_flags rf; 1150 struct rq *rq; 1151 1152 if (!static_branch_likely(&psi_cgroups_enabled)) { 1153 /* 1154 * Lame to do this here, but the scheduler cannot be locked 1155 * from the outside, so we move cgroups from inside sched/. 1156 */ 1157 rcu_assign_pointer(task->cgroups, to); 1158 return; 1159 } 1160 1161 rq = task_rq_lock(task, &rf); 1162 1163 /* 1164 * We may race with schedule() dropping the rq lock between 1165 * deactivating prev and switching to next. Because the psi 1166 * updates from the deactivation are deferred to the switch 1167 * callback to save cgroup tree updates, the task's scheduling 1168 * state here is not coherent with its psi state: 1169 * 1170 * schedule() cgroup_move_task() 1171 * rq_lock() 1172 * deactivate_task() 1173 * p->on_rq = 0 1174 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates 1175 * pick_next_task() 1176 * rq_unlock() 1177 * rq_lock() 1178 * psi_task_change() // old cgroup 1179 * task->cgroups = to 1180 * psi_task_change() // new cgroup 1181 * rq_unlock() 1182 * rq_lock() 1183 * psi_sched_switch() // does deferred updates in new cgroup 1184 * 1185 * Don't rely on the scheduling state. Use psi_flags instead. 1186 */ 1187 task_flags = task->psi_flags; 1188 1189 if (task_flags) 1190 psi_task_change(task, task_flags, 0); 1191 1192 /* See comment above */ 1193 rcu_assign_pointer(task->cgroups, to); 1194 1195 if (task_flags) 1196 psi_task_change(task, 0, task_flags); 1197 1198 task_rq_unlock(rq, task, &rf); 1199 } 1200 1201 void psi_cgroup_restart(struct psi_group *group) 1202 { 1203 int cpu; 1204 1205 /* 1206 * After we disable psi_group->enabled, we don't actually 1207 * stop percpu tasks accounting in each psi_group_cpu, 1208 * instead only stop test_states() loop, record_times() 1209 * and averaging worker, see psi_group_change() for details. 1210 * 1211 * When disable cgroup PSI, this function has nothing to sync 1212 * since cgroup pressure files are hidden and percpu psi_group_cpu 1213 * would see !psi_group->enabled and only do task accounting. 1214 * 1215 * When re-enable cgroup PSI, this function use psi_group_change() 1216 * to get correct state mask from test_states() loop on tasks[], 1217 * and restart groupc->state_start from now, use .clear = .set = 0 1218 * here since no task status really changed. 1219 */ 1220 if (!group->enabled) 1221 return; 1222 1223 for_each_possible_cpu(cpu) { 1224 struct rq *rq = cpu_rq(cpu); 1225 struct rq_flags rf; 1226 1227 rq_lock_irq(rq, &rf); 1228 psi_group_change(group, cpu, 0, 0, true); 1229 rq_unlock_irq(rq, &rf); 1230 } 1231 } 1232 #endif /* CONFIG_CGROUPS */ 1233 1234 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) 1235 { 1236 bool only_full = false; 1237 int full; 1238 u64 now; 1239 1240 if (static_branch_likely(&psi_disabled)) 1241 return -EOPNOTSUPP; 1242 1243 /* Update averages before reporting them */ 1244 mutex_lock(&group->avgs_lock); 1245 now = sched_clock(); 1246 collect_percpu_times(group, PSI_AVGS, NULL); 1247 if (now >= group->avg_next_update) 1248 group->avg_next_update = update_averages(group, now); 1249 mutex_unlock(&group->avgs_lock); 1250 1251 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1252 only_full = res == PSI_IRQ; 1253 #endif 1254 1255 for (full = 0; full < 2 - only_full; full++) { 1256 unsigned long avg[3] = { 0, }; 1257 u64 total = 0; 1258 int w; 1259 1260 /* CPU FULL is undefined at the system level */ 1261 if (!(group == &psi_system && res == PSI_CPU && full)) { 1262 for (w = 0; w < 3; w++) 1263 avg[w] = group->avg[res * 2 + full][w]; 1264 total = div_u64(group->total[PSI_AVGS][res * 2 + full], 1265 NSEC_PER_USEC); 1266 } 1267 1268 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", 1269 full || only_full ? "full" : "some", 1270 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), 1271 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), 1272 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), 1273 total); 1274 } 1275 1276 return 0; 1277 } 1278 1279 struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf, 1280 enum psi_res res, struct file *file, 1281 struct kernfs_open_file *of) 1282 { 1283 struct psi_trigger *t; 1284 enum psi_states state; 1285 u32 threshold_us; 1286 bool privileged; 1287 u32 window_us; 1288 1289 if (static_branch_likely(&psi_disabled)) 1290 return ERR_PTR(-EOPNOTSUPP); 1291 1292 /* 1293 * Checking the privilege here on file->f_cred implies that a privileged user 1294 * could open the file and delegate the write to an unprivileged one. 1295 */ 1296 privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE); 1297 1298 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2) 1299 state = PSI_IO_SOME + res * 2; 1300 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2) 1301 state = PSI_IO_FULL + res * 2; 1302 else 1303 return ERR_PTR(-EINVAL); 1304 1305 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1306 if (res == PSI_IRQ && --state != PSI_IRQ_FULL) 1307 return ERR_PTR(-EINVAL); 1308 #endif 1309 1310 if (state >= PSI_NONIDLE) 1311 return ERR_PTR(-EINVAL); 1312 1313 if (window_us == 0 || window_us > WINDOW_MAX_US) 1314 return ERR_PTR(-EINVAL); 1315 1316 /* 1317 * Unprivileged users can only use 2s windows so that averages aggregation 1318 * work is used, and no RT threads need to be spawned. 1319 */ 1320 if (!privileged && window_us % 2000000) 1321 return ERR_PTR(-EINVAL); 1322 1323 /* Check threshold */ 1324 if (threshold_us == 0 || threshold_us > window_us) 1325 return ERR_PTR(-EINVAL); 1326 1327 t = kmalloc(sizeof(*t), GFP_KERNEL); 1328 if (!t) 1329 return ERR_PTR(-ENOMEM); 1330 1331 t->group = group; 1332 t->state = state; 1333 t->threshold = threshold_us * NSEC_PER_USEC; 1334 t->win.size = window_us * NSEC_PER_USEC; 1335 window_reset(&t->win, sched_clock(), 1336 group->total[PSI_POLL][t->state], 0); 1337 1338 t->event = 0; 1339 t->last_event_time = 0; 1340 t->of = of; 1341 if (!of) 1342 init_waitqueue_head(&t->event_wait); 1343 t->pending_event = false; 1344 t->aggregator = privileged ? PSI_POLL : PSI_AVGS; 1345 1346 if (privileged) { 1347 mutex_lock(&group->rtpoll_trigger_lock); 1348 1349 if (!rcu_access_pointer(group->rtpoll_task)) { 1350 struct task_struct *task; 1351 1352 task = kthread_create(psi_rtpoll_worker, group, "psimon"); 1353 if (IS_ERR(task)) { 1354 kfree(t); 1355 mutex_unlock(&group->rtpoll_trigger_lock); 1356 return ERR_CAST(task); 1357 } 1358 atomic_set(&group->rtpoll_wakeup, 0); 1359 wake_up_process(task); 1360 rcu_assign_pointer(group->rtpoll_task, task); 1361 } 1362 1363 list_add(&t->node, &group->rtpoll_triggers); 1364 group->rtpoll_min_period = min(group->rtpoll_min_period, 1365 div_u64(t->win.size, UPDATES_PER_WINDOW)); 1366 group->rtpoll_nr_triggers[t->state]++; 1367 group->rtpoll_states |= (1 << t->state); 1368 1369 mutex_unlock(&group->rtpoll_trigger_lock); 1370 } else { 1371 mutex_lock(&group->avgs_lock); 1372 1373 list_add(&t->node, &group->avg_triggers); 1374 group->avg_nr_triggers[t->state]++; 1375 1376 mutex_unlock(&group->avgs_lock); 1377 } 1378 return t; 1379 } 1380 1381 void psi_trigger_destroy(struct psi_trigger *t) 1382 { 1383 struct psi_group *group; 1384 struct task_struct *task_to_destroy = NULL; 1385 1386 /* 1387 * We do not check psi_disabled since it might have been disabled after 1388 * the trigger got created. 1389 */ 1390 if (!t) 1391 return; 1392 1393 group = t->group; 1394 /* 1395 * Wakeup waiters to stop polling and clear the queue to prevent it from 1396 * being accessed later. Can happen if cgroup is deleted from under a 1397 * polling process. 1398 */ 1399 if (t->of) 1400 kernfs_notify(t->of->kn); 1401 else 1402 wake_up_interruptible(&t->event_wait); 1403 1404 if (t->aggregator == PSI_AVGS) { 1405 mutex_lock(&group->avgs_lock); 1406 if (!list_empty(&t->node)) { 1407 list_del(&t->node); 1408 group->avg_nr_triggers[t->state]--; 1409 } 1410 mutex_unlock(&group->avgs_lock); 1411 } else { 1412 mutex_lock(&group->rtpoll_trigger_lock); 1413 if (!list_empty(&t->node)) { 1414 struct psi_trigger *tmp; 1415 u64 period = ULLONG_MAX; 1416 1417 list_del(&t->node); 1418 group->rtpoll_nr_triggers[t->state]--; 1419 if (!group->rtpoll_nr_triggers[t->state]) 1420 group->rtpoll_states &= ~(1 << t->state); 1421 /* 1422 * Reset min update period for the remaining triggers 1423 * iff the destroying trigger had the min window size. 1424 */ 1425 if (group->rtpoll_min_period == div_u64(t->win.size, UPDATES_PER_WINDOW)) { 1426 list_for_each_entry(tmp, &group->rtpoll_triggers, node) 1427 period = min(period, div_u64(tmp->win.size, 1428 UPDATES_PER_WINDOW)); 1429 group->rtpoll_min_period = period; 1430 } 1431 /* Destroy rtpoll_task when the last trigger is destroyed */ 1432 if (group->rtpoll_states == 0) { 1433 group->rtpoll_until = 0; 1434 task_to_destroy = rcu_dereference_protected( 1435 group->rtpoll_task, 1436 lockdep_is_held(&group->rtpoll_trigger_lock)); 1437 rcu_assign_pointer(group->rtpoll_task, NULL); 1438 del_timer(&group->rtpoll_timer); 1439 } 1440 } 1441 mutex_unlock(&group->rtpoll_trigger_lock); 1442 } 1443 1444 /* 1445 * Wait for psi_schedule_rtpoll_work RCU to complete its read-side 1446 * critical section before destroying the trigger and optionally the 1447 * rtpoll_task. 1448 */ 1449 synchronize_rcu(); 1450 /* 1451 * Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent 1452 * a deadlock while waiting for psi_rtpoll_work to acquire 1453 * rtpoll_trigger_lock 1454 */ 1455 if (task_to_destroy) { 1456 /* 1457 * After the RCU grace period has expired, the worker 1458 * can no longer be found through group->rtpoll_task. 1459 */ 1460 kthread_stop(task_to_destroy); 1461 atomic_set(&group->rtpoll_scheduled, 0); 1462 } 1463 kfree(t); 1464 } 1465 1466 __poll_t psi_trigger_poll(void **trigger_ptr, 1467 struct file *file, poll_table *wait) 1468 { 1469 __poll_t ret = DEFAULT_POLLMASK; 1470 struct psi_trigger *t; 1471 1472 if (static_branch_likely(&psi_disabled)) 1473 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1474 1475 t = smp_load_acquire(trigger_ptr); 1476 if (!t) 1477 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1478 1479 if (t->of) 1480 kernfs_generic_poll(t->of, wait); 1481 else 1482 poll_wait(file, &t->event_wait, wait); 1483 1484 if (cmpxchg(&t->event, 1, 0) == 1) 1485 ret |= EPOLLPRI; 1486 1487 return ret; 1488 } 1489 1490 #ifdef CONFIG_PROC_FS 1491 static int psi_io_show(struct seq_file *m, void *v) 1492 { 1493 return psi_show(m, &psi_system, PSI_IO); 1494 } 1495 1496 static int psi_memory_show(struct seq_file *m, void *v) 1497 { 1498 return psi_show(m, &psi_system, PSI_MEM); 1499 } 1500 1501 static int psi_cpu_show(struct seq_file *m, void *v) 1502 { 1503 return psi_show(m, &psi_system, PSI_CPU); 1504 } 1505 1506 static int psi_io_open(struct inode *inode, struct file *file) 1507 { 1508 return single_open(file, psi_io_show, NULL); 1509 } 1510 1511 static int psi_memory_open(struct inode *inode, struct file *file) 1512 { 1513 return single_open(file, psi_memory_show, NULL); 1514 } 1515 1516 static int psi_cpu_open(struct inode *inode, struct file *file) 1517 { 1518 return single_open(file, psi_cpu_show, NULL); 1519 } 1520 1521 static ssize_t psi_write(struct file *file, const char __user *user_buf, 1522 size_t nbytes, enum psi_res res) 1523 { 1524 char buf[32]; 1525 size_t buf_size; 1526 struct seq_file *seq; 1527 struct psi_trigger *new; 1528 1529 if (static_branch_likely(&psi_disabled)) 1530 return -EOPNOTSUPP; 1531 1532 if (!nbytes) 1533 return -EINVAL; 1534 1535 buf_size = min(nbytes, sizeof(buf)); 1536 if (copy_from_user(buf, user_buf, buf_size)) 1537 return -EFAULT; 1538 1539 buf[buf_size - 1] = '\0'; 1540 1541 seq = file->private_data; 1542 1543 /* Take seq->lock to protect seq->private from concurrent writes */ 1544 mutex_lock(&seq->lock); 1545 1546 /* Allow only one trigger per file descriptor */ 1547 if (seq->private) { 1548 mutex_unlock(&seq->lock); 1549 return -EBUSY; 1550 } 1551 1552 new = psi_trigger_create(&psi_system, buf, res, file, NULL); 1553 if (IS_ERR(new)) { 1554 mutex_unlock(&seq->lock); 1555 return PTR_ERR(new); 1556 } 1557 1558 smp_store_release(&seq->private, new); 1559 mutex_unlock(&seq->lock); 1560 1561 return nbytes; 1562 } 1563 1564 static ssize_t psi_io_write(struct file *file, const char __user *user_buf, 1565 size_t nbytes, loff_t *ppos) 1566 { 1567 return psi_write(file, user_buf, nbytes, PSI_IO); 1568 } 1569 1570 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf, 1571 size_t nbytes, loff_t *ppos) 1572 { 1573 return psi_write(file, user_buf, nbytes, PSI_MEM); 1574 } 1575 1576 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf, 1577 size_t nbytes, loff_t *ppos) 1578 { 1579 return psi_write(file, user_buf, nbytes, PSI_CPU); 1580 } 1581 1582 static __poll_t psi_fop_poll(struct file *file, poll_table *wait) 1583 { 1584 struct seq_file *seq = file->private_data; 1585 1586 return psi_trigger_poll(&seq->private, file, wait); 1587 } 1588 1589 static int psi_fop_release(struct inode *inode, struct file *file) 1590 { 1591 struct seq_file *seq = file->private_data; 1592 1593 psi_trigger_destroy(seq->private); 1594 return single_release(inode, file); 1595 } 1596 1597 static const struct proc_ops psi_io_proc_ops = { 1598 .proc_open = psi_io_open, 1599 .proc_read = seq_read, 1600 .proc_lseek = seq_lseek, 1601 .proc_write = psi_io_write, 1602 .proc_poll = psi_fop_poll, 1603 .proc_release = psi_fop_release, 1604 }; 1605 1606 static const struct proc_ops psi_memory_proc_ops = { 1607 .proc_open = psi_memory_open, 1608 .proc_read = seq_read, 1609 .proc_lseek = seq_lseek, 1610 .proc_write = psi_memory_write, 1611 .proc_poll = psi_fop_poll, 1612 .proc_release = psi_fop_release, 1613 }; 1614 1615 static const struct proc_ops psi_cpu_proc_ops = { 1616 .proc_open = psi_cpu_open, 1617 .proc_read = seq_read, 1618 .proc_lseek = seq_lseek, 1619 .proc_write = psi_cpu_write, 1620 .proc_poll = psi_fop_poll, 1621 .proc_release = psi_fop_release, 1622 }; 1623 1624 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1625 static int psi_irq_show(struct seq_file *m, void *v) 1626 { 1627 return psi_show(m, &psi_system, PSI_IRQ); 1628 } 1629 1630 static int psi_irq_open(struct inode *inode, struct file *file) 1631 { 1632 return single_open(file, psi_irq_show, NULL); 1633 } 1634 1635 static ssize_t psi_irq_write(struct file *file, const char __user *user_buf, 1636 size_t nbytes, loff_t *ppos) 1637 { 1638 return psi_write(file, user_buf, nbytes, PSI_IRQ); 1639 } 1640 1641 static const struct proc_ops psi_irq_proc_ops = { 1642 .proc_open = psi_irq_open, 1643 .proc_read = seq_read, 1644 .proc_lseek = seq_lseek, 1645 .proc_write = psi_irq_write, 1646 .proc_poll = psi_fop_poll, 1647 .proc_release = psi_fop_release, 1648 }; 1649 #endif 1650 1651 static int __init psi_proc_init(void) 1652 { 1653 if (psi_enable) { 1654 proc_mkdir("pressure", NULL); 1655 proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops); 1656 proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops); 1657 proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops); 1658 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1659 proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops); 1660 #endif 1661 } 1662 return 0; 1663 } 1664 module_init(psi_proc_init); 1665 1666 #endif /* CONFIG_PROC_FS */ 1667
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.