1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 6 #include <linux/bsearch.h> 7 8 DEFINE_MUTEX(sched_domains_mutex); 9 10 /* Protected by sched_domains_mutex: */ 11 static cpumask_var_t sched_domains_tmpmask; 12 static cpumask_var_t sched_domains_tmpmask2; 13 14 #ifdef CONFIG_SCHED_DEBUG 15 16 static int __init sched_debug_setup(char *str) 17 { 18 sched_debug_verbose = true; 19 20 return 0; 21 } 22 early_param("sched_verbose", sched_debug_setup); 23 24 static inline bool sched_debug(void) 25 { 26 return sched_debug_verbose; 27 } 28 29 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name }, 30 const struct sd_flag_debug sd_flag_debug[] = { 31 #include <linux/sched/sd_flags.h> 32 }; 33 #undef SD_FLAG 34 35 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 36 struct cpumask *groupmask) 37 { 38 struct sched_group *group = sd->groups; 39 unsigned long flags = sd->flags; 40 unsigned int idx; 41 42 cpumask_clear(groupmask); 43 44 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 45 printk(KERN_CONT "span=%*pbl level=%s\n", 46 cpumask_pr_args(sched_domain_span(sd)), sd->name); 47 48 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 49 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 50 } 51 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 52 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 53 } 54 55 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 56 unsigned int flag = BIT(idx); 57 unsigned int meta_flags = sd_flag_debug[idx].meta_flags; 58 59 if ((meta_flags & SDF_SHARED_CHILD) && sd->child && 60 !(sd->child->flags & flag)) 61 printk(KERN_ERR "ERROR: flag %s set here but not in child\n", 62 sd_flag_debug[idx].name); 63 64 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && 65 !(sd->parent->flags & flag)) 66 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", 67 sd_flag_debug[idx].name); 68 } 69 70 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 71 do { 72 if (!group) { 73 printk("\n"); 74 printk(KERN_ERR "ERROR: group is NULL\n"); 75 break; 76 } 77 78 if (cpumask_empty(sched_group_span(group))) { 79 printk(KERN_CONT "\n"); 80 printk(KERN_ERR "ERROR: empty group\n"); 81 break; 82 } 83 84 if (!(sd->flags & SD_OVERLAP) && 85 cpumask_intersects(groupmask, sched_group_span(group))) { 86 printk(KERN_CONT "\n"); 87 printk(KERN_ERR "ERROR: repeated CPUs\n"); 88 break; 89 } 90 91 cpumask_or(groupmask, groupmask, sched_group_span(group)); 92 93 printk(KERN_CONT " %d:{ span=%*pbl", 94 group->sgc->id, 95 cpumask_pr_args(sched_group_span(group))); 96 97 if ((sd->flags & SD_OVERLAP) && 98 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 99 printk(KERN_CONT " mask=%*pbl", 100 cpumask_pr_args(group_balance_mask(group))); 101 } 102 103 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 104 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 105 106 if (group == sd->groups && sd->child && 107 !cpumask_equal(sched_domain_span(sd->child), 108 sched_group_span(group))) { 109 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 110 } 111 112 printk(KERN_CONT " }"); 113 114 group = group->next; 115 116 if (group != sd->groups) 117 printk(KERN_CONT ","); 118 119 } while (group != sd->groups); 120 printk(KERN_CONT "\n"); 121 122 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 123 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 124 125 if (sd->parent && 126 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 127 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 128 return 0; 129 } 130 131 static void sched_domain_debug(struct sched_domain *sd, int cpu) 132 { 133 int level = 0; 134 135 if (!sched_debug_verbose) 136 return; 137 138 if (!sd) { 139 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 140 return; 141 } 142 143 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 144 145 for (;;) { 146 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 147 break; 148 level++; 149 sd = sd->parent; 150 if (!sd) 151 break; 152 } 153 } 154 #else /* !CONFIG_SCHED_DEBUG */ 155 156 # define sched_debug_verbose 0 157 # define sched_domain_debug(sd, cpu) do { } while (0) 158 static inline bool sched_debug(void) 159 { 160 return false; 161 } 162 #endif /* CONFIG_SCHED_DEBUG */ 163 164 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */ 165 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) | 166 static const unsigned int SD_DEGENERATE_GROUPS_MASK = 167 #include <linux/sched/sd_flags.h> 168 0; 169 #undef SD_FLAG 170 171 static int sd_degenerate(struct sched_domain *sd) 172 { 173 if (cpumask_weight(sched_domain_span(sd)) == 1) 174 return 1; 175 176 /* Following flags need at least 2 groups */ 177 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && 178 (sd->groups != sd->groups->next)) 179 return 0; 180 181 /* Following flags don't use groups */ 182 if (sd->flags & (SD_WAKE_AFFINE)) 183 return 0; 184 185 return 1; 186 } 187 188 static int 189 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 190 { 191 unsigned long cflags = sd->flags, pflags = parent->flags; 192 193 if (sd_degenerate(parent)) 194 return 1; 195 196 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 197 return 0; 198 199 /* Flags needing groups don't count if only 1 group in parent */ 200 if (parent->groups == parent->groups->next) 201 pflags &= ~SD_DEGENERATE_GROUPS_MASK; 202 203 if (~cflags & pflags) 204 return 0; 205 206 return 1; 207 } 208 209 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 210 DEFINE_STATIC_KEY_FALSE(sched_energy_present); 211 static unsigned int sysctl_sched_energy_aware = 1; 212 static DEFINE_MUTEX(sched_energy_mutex); 213 static bool sched_energy_update; 214 215 static bool sched_is_eas_possible(const struct cpumask *cpu_mask) 216 { 217 bool any_asym_capacity = false; 218 struct cpufreq_policy *policy; 219 struct cpufreq_governor *gov; 220 int i; 221 222 /* EAS is enabled for asymmetric CPU capacity topologies. */ 223 for_each_cpu(i, cpu_mask) { 224 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) { 225 any_asym_capacity = true; 226 break; 227 } 228 } 229 if (!any_asym_capacity) { 230 if (sched_debug()) { 231 pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n", 232 cpumask_pr_args(cpu_mask)); 233 } 234 return false; 235 } 236 237 /* EAS definitely does *not* handle SMT */ 238 if (sched_smt_active()) { 239 if (sched_debug()) { 240 pr_info("rd %*pbl: Checking EAS, SMT is not supported\n", 241 cpumask_pr_args(cpu_mask)); 242 } 243 return false; 244 } 245 246 if (!arch_scale_freq_invariant()) { 247 if (sched_debug()) { 248 pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported", 249 cpumask_pr_args(cpu_mask)); 250 } 251 return false; 252 } 253 254 /* Do not attempt EAS if schedutil is not being used. */ 255 for_each_cpu(i, cpu_mask) { 256 policy = cpufreq_cpu_get(i); 257 if (!policy) { 258 if (sched_debug()) { 259 pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d", 260 cpumask_pr_args(cpu_mask), i); 261 } 262 return false; 263 } 264 gov = policy->governor; 265 cpufreq_cpu_put(policy); 266 if (gov != &schedutil_gov) { 267 if (sched_debug()) { 268 pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n", 269 cpumask_pr_args(cpu_mask)); 270 } 271 return false; 272 } 273 } 274 275 return true; 276 } 277 278 void rebuild_sched_domains_energy(void) 279 { 280 mutex_lock(&sched_energy_mutex); 281 sched_energy_update = true; 282 rebuild_sched_domains(); 283 sched_energy_update = false; 284 mutex_unlock(&sched_energy_mutex); 285 } 286 287 #ifdef CONFIG_PROC_SYSCTL 288 static int sched_energy_aware_handler(const struct ctl_table *table, int write, 289 void *buffer, size_t *lenp, loff_t *ppos) 290 { 291 int ret, state; 292 293 if (write && !capable(CAP_SYS_ADMIN)) 294 return -EPERM; 295 296 if (!sched_is_eas_possible(cpu_active_mask)) { 297 if (write) { 298 return -EOPNOTSUPP; 299 } else { 300 *lenp = 0; 301 return 0; 302 } 303 } 304 305 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 306 if (!ret && write) { 307 state = static_branch_unlikely(&sched_energy_present); 308 if (state != sysctl_sched_energy_aware) 309 rebuild_sched_domains_energy(); 310 } 311 312 return ret; 313 } 314 315 static struct ctl_table sched_energy_aware_sysctls[] = { 316 { 317 .procname = "sched_energy_aware", 318 .data = &sysctl_sched_energy_aware, 319 .maxlen = sizeof(unsigned int), 320 .mode = 0644, 321 .proc_handler = sched_energy_aware_handler, 322 .extra1 = SYSCTL_ZERO, 323 .extra2 = SYSCTL_ONE, 324 }, 325 }; 326 327 static int __init sched_energy_aware_sysctl_init(void) 328 { 329 register_sysctl_init("kernel", sched_energy_aware_sysctls); 330 return 0; 331 } 332 333 late_initcall(sched_energy_aware_sysctl_init); 334 #endif 335 336 static void free_pd(struct perf_domain *pd) 337 { 338 struct perf_domain *tmp; 339 340 while (pd) { 341 tmp = pd->next; 342 kfree(pd); 343 pd = tmp; 344 } 345 } 346 347 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 348 { 349 while (pd) { 350 if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 351 return pd; 352 pd = pd->next; 353 } 354 355 return NULL; 356 } 357 358 static struct perf_domain *pd_init(int cpu) 359 { 360 struct em_perf_domain *obj = em_cpu_get(cpu); 361 struct perf_domain *pd; 362 363 if (!obj) { 364 if (sched_debug()) 365 pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 366 return NULL; 367 } 368 369 pd = kzalloc(sizeof(*pd), GFP_KERNEL); 370 if (!pd) 371 return NULL; 372 pd->em_pd = obj; 373 374 return pd; 375 } 376 377 static void perf_domain_debug(const struct cpumask *cpu_map, 378 struct perf_domain *pd) 379 { 380 if (!sched_debug() || !pd) 381 return; 382 383 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 384 385 while (pd) { 386 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", 387 cpumask_first(perf_domain_span(pd)), 388 cpumask_pr_args(perf_domain_span(pd)), 389 em_pd_nr_perf_states(pd->em_pd)); 390 pd = pd->next; 391 } 392 393 printk(KERN_CONT "\n"); 394 } 395 396 static void destroy_perf_domain_rcu(struct rcu_head *rp) 397 { 398 struct perf_domain *pd; 399 400 pd = container_of(rp, struct perf_domain, rcu); 401 free_pd(pd); 402 } 403 404 static void sched_energy_set(bool has_eas) 405 { 406 if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 407 if (sched_debug()) 408 pr_info("%s: stopping EAS\n", __func__); 409 static_branch_disable_cpuslocked(&sched_energy_present); 410 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 411 if (sched_debug()) 412 pr_info("%s: starting EAS\n", __func__); 413 static_branch_enable_cpuslocked(&sched_energy_present); 414 } 415 } 416 417 /* 418 * EAS can be used on a root domain if it meets all the following conditions: 419 * 1. an Energy Model (EM) is available; 420 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 421 * 3. no SMT is detected. 422 * 4. schedutil is driving the frequency of all CPUs of the rd; 423 * 5. frequency invariance support is present; 424 */ 425 static bool build_perf_domains(const struct cpumask *cpu_map) 426 { 427 int i; 428 struct perf_domain *pd = NULL, *tmp; 429 int cpu = cpumask_first(cpu_map); 430 struct root_domain *rd = cpu_rq(cpu)->rd; 431 432 if (!sysctl_sched_energy_aware) 433 goto free; 434 435 if (!sched_is_eas_possible(cpu_map)) 436 goto free; 437 438 for_each_cpu(i, cpu_map) { 439 /* Skip already covered CPUs. */ 440 if (find_pd(pd, i)) 441 continue; 442 443 /* Create the new pd and add it to the local list. */ 444 tmp = pd_init(i); 445 if (!tmp) 446 goto free; 447 tmp->next = pd; 448 pd = tmp; 449 } 450 451 perf_domain_debug(cpu_map, pd); 452 453 /* Attach the new list of performance domains to the root domain. */ 454 tmp = rd->pd; 455 rcu_assign_pointer(rd->pd, pd); 456 if (tmp) 457 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 458 459 return !!pd; 460 461 free: 462 free_pd(pd); 463 tmp = rd->pd; 464 rcu_assign_pointer(rd->pd, NULL); 465 if (tmp) 466 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 467 468 return false; 469 } 470 #else 471 static void free_pd(struct perf_domain *pd) { } 472 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 473 474 static void free_rootdomain(struct rcu_head *rcu) 475 { 476 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 477 478 cpupri_cleanup(&rd->cpupri); 479 cpudl_cleanup(&rd->cpudl); 480 free_cpumask_var(rd->dlo_mask); 481 free_cpumask_var(rd->rto_mask); 482 free_cpumask_var(rd->online); 483 free_cpumask_var(rd->span); 484 free_pd(rd->pd); 485 kfree(rd); 486 } 487 488 void rq_attach_root(struct rq *rq, struct root_domain *rd) 489 { 490 struct root_domain *old_rd = NULL; 491 struct rq_flags rf; 492 493 rq_lock_irqsave(rq, &rf); 494 495 if (rq->rd) { 496 old_rd = rq->rd; 497 498 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 499 set_rq_offline(rq); 500 501 cpumask_clear_cpu(rq->cpu, old_rd->span); 502 503 /* 504 * If we don't want to free the old_rd yet then 505 * set old_rd to NULL to skip the freeing later 506 * in this function: 507 */ 508 if (!atomic_dec_and_test(&old_rd->refcount)) 509 old_rd = NULL; 510 } 511 512 atomic_inc(&rd->refcount); 513 rq->rd = rd; 514 515 cpumask_set_cpu(rq->cpu, rd->span); 516 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 517 set_rq_online(rq); 518 519 rq_unlock_irqrestore(rq, &rf); 520 521 if (old_rd) 522 call_rcu(&old_rd->rcu, free_rootdomain); 523 } 524 525 void sched_get_rd(struct root_domain *rd) 526 { 527 atomic_inc(&rd->refcount); 528 } 529 530 void sched_put_rd(struct root_domain *rd) 531 { 532 if (!atomic_dec_and_test(&rd->refcount)) 533 return; 534 535 call_rcu(&rd->rcu, free_rootdomain); 536 } 537 538 static int init_rootdomain(struct root_domain *rd) 539 { 540 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 541 goto out; 542 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 543 goto free_span; 544 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 545 goto free_online; 546 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 547 goto free_dlo_mask; 548 549 #ifdef HAVE_RT_PUSH_IPI 550 rd->rto_cpu = -1; 551 raw_spin_lock_init(&rd->rto_lock); 552 rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func); 553 #endif 554 555 rd->visit_gen = 0; 556 init_dl_bw(&rd->dl_bw); 557 if (cpudl_init(&rd->cpudl) != 0) 558 goto free_rto_mask; 559 560 if (cpupri_init(&rd->cpupri) != 0) 561 goto free_cpudl; 562 return 0; 563 564 free_cpudl: 565 cpudl_cleanup(&rd->cpudl); 566 free_rto_mask: 567 free_cpumask_var(rd->rto_mask); 568 free_dlo_mask: 569 free_cpumask_var(rd->dlo_mask); 570 free_online: 571 free_cpumask_var(rd->online); 572 free_span: 573 free_cpumask_var(rd->span); 574 out: 575 return -ENOMEM; 576 } 577 578 /* 579 * By default the system creates a single root-domain with all CPUs as 580 * members (mimicking the global state we have today). 581 */ 582 struct root_domain def_root_domain; 583 584 void __init init_defrootdomain(void) 585 { 586 init_rootdomain(&def_root_domain); 587 588 atomic_set(&def_root_domain.refcount, 1); 589 } 590 591 static struct root_domain *alloc_rootdomain(void) 592 { 593 struct root_domain *rd; 594 595 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 596 if (!rd) 597 return NULL; 598 599 if (init_rootdomain(rd) != 0) { 600 kfree(rd); 601 return NULL; 602 } 603 604 return rd; 605 } 606 607 static void free_sched_groups(struct sched_group *sg, int free_sgc) 608 { 609 struct sched_group *tmp, *first; 610 611 if (!sg) 612 return; 613 614 first = sg; 615 do { 616 tmp = sg->next; 617 618 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 619 kfree(sg->sgc); 620 621 if (atomic_dec_and_test(&sg->ref)) 622 kfree(sg); 623 sg = tmp; 624 } while (sg != first); 625 } 626 627 static void destroy_sched_domain(struct sched_domain *sd) 628 { 629 /* 630 * A normal sched domain may have multiple group references, an 631 * overlapping domain, having private groups, only one. Iterate, 632 * dropping group/capacity references, freeing where none remain. 633 */ 634 free_sched_groups(sd->groups, 1); 635 636 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 637 kfree(sd->shared); 638 kfree(sd); 639 } 640 641 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 642 { 643 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 644 645 while (sd) { 646 struct sched_domain *parent = sd->parent; 647 destroy_sched_domain(sd); 648 sd = parent; 649 } 650 } 651 652 static void destroy_sched_domains(struct sched_domain *sd) 653 { 654 if (sd) 655 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 656 } 657 658 /* 659 * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set 660 * (Last Level Cache Domain) for this allows us to avoid some pointer chasing 661 * select_idle_sibling(). 662 * 663 * Also keep a unique ID per domain (we use the first CPU number in the cpumask 664 * of the domain), this allows us to quickly tell if two CPUs are in the same 665 * cache domain, see cpus_share_cache(). 666 */ 667 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 668 DEFINE_PER_CPU(int, sd_llc_size); 669 DEFINE_PER_CPU(int, sd_llc_id); 670 DEFINE_PER_CPU(int, sd_share_id); 671 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 672 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 673 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 674 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 675 676 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 677 DEFINE_STATIC_KEY_FALSE(sched_cluster_active); 678 679 static void update_top_cache_domain(int cpu) 680 { 681 struct sched_domain_shared *sds = NULL; 682 struct sched_domain *sd; 683 int id = cpu; 684 int size = 1; 685 686 sd = highest_flag_domain(cpu, SD_SHARE_LLC); 687 if (sd) { 688 id = cpumask_first(sched_domain_span(sd)); 689 size = cpumask_weight(sched_domain_span(sd)); 690 sds = sd->shared; 691 } 692 693 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 694 per_cpu(sd_llc_size, cpu) = size; 695 per_cpu(sd_llc_id, cpu) = id; 696 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 697 698 sd = lowest_flag_domain(cpu, SD_CLUSTER); 699 if (sd) 700 id = cpumask_first(sched_domain_span(sd)); 701 702 /* 703 * This assignment should be placed after the sd_llc_id as 704 * we want this id equals to cluster id on cluster machines 705 * but equals to LLC id on non-Cluster machines. 706 */ 707 per_cpu(sd_share_id, cpu) = id; 708 709 sd = lowest_flag_domain(cpu, SD_NUMA); 710 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 711 712 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 713 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 714 715 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL); 716 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 717 } 718 719 /* 720 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 721 * hold the hotplug lock. 722 */ 723 static void 724 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 725 { 726 struct rq *rq = cpu_rq(cpu); 727 struct sched_domain *tmp; 728 729 /* Remove the sched domains which do not contribute to scheduling. */ 730 for (tmp = sd; tmp; ) { 731 struct sched_domain *parent = tmp->parent; 732 if (!parent) 733 break; 734 735 if (sd_parent_degenerate(tmp, parent)) { 736 tmp->parent = parent->parent; 737 738 if (parent->parent) { 739 parent->parent->child = tmp; 740 parent->parent->groups->flags = tmp->flags; 741 } 742 743 /* 744 * Transfer SD_PREFER_SIBLING down in case of a 745 * degenerate parent; the spans match for this 746 * so the property transfers. 747 */ 748 if (parent->flags & SD_PREFER_SIBLING) 749 tmp->flags |= SD_PREFER_SIBLING; 750 destroy_sched_domain(parent); 751 } else 752 tmp = tmp->parent; 753 } 754 755 if (sd && sd_degenerate(sd)) { 756 tmp = sd; 757 sd = sd->parent; 758 destroy_sched_domain(tmp); 759 if (sd) { 760 struct sched_group *sg = sd->groups; 761 762 /* 763 * sched groups hold the flags of the child sched 764 * domain for convenience. Clear such flags since 765 * the child is being destroyed. 766 */ 767 do { 768 sg->flags = 0; 769 } while (sg != sd->groups); 770 771 sd->child = NULL; 772 } 773 } 774 775 sched_domain_debug(sd, cpu); 776 777 rq_attach_root(rq, rd); 778 tmp = rq->sd; 779 rcu_assign_pointer(rq->sd, sd); 780 dirty_sched_domain_sysctl(cpu); 781 destroy_sched_domains(tmp); 782 783 update_top_cache_domain(cpu); 784 } 785 786 struct s_data { 787 struct sched_domain * __percpu *sd; 788 struct root_domain *rd; 789 }; 790 791 enum s_alloc { 792 sa_rootdomain, 793 sa_sd, 794 sa_sd_storage, 795 sa_none, 796 }; 797 798 /* 799 * Return the canonical balance CPU for this group, this is the first CPU 800 * of this group that's also in the balance mask. 801 * 802 * The balance mask are all those CPUs that could actually end up at this 803 * group. See build_balance_mask(). 804 * 805 * Also see should_we_balance(). 806 */ 807 int group_balance_cpu(struct sched_group *sg) 808 { 809 return cpumask_first(group_balance_mask(sg)); 810 } 811 812 813 /* 814 * NUMA topology (first read the regular topology blurb below) 815 * 816 * Given a node-distance table, for example: 817 * 818 * node 0 1 2 3 819 * 0: 10 20 30 20 820 * 1: 20 10 20 30 821 * 2: 30 20 10 20 822 * 3: 20 30 20 10 823 * 824 * which represents a 4 node ring topology like: 825 * 826 * 0 ----- 1 827 * | | 828 * | | 829 * | | 830 * 3 ----- 2 831 * 832 * We want to construct domains and groups to represent this. The way we go 833 * about doing this is to build the domains on 'hops'. For each NUMA level we 834 * construct the mask of all nodes reachable in @level hops. 835 * 836 * For the above NUMA topology that gives 3 levels: 837 * 838 * NUMA-2 0-3 0-3 0-3 0-3 839 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 840 * 841 * NUMA-1 0-1,3 0-2 1-3 0,2-3 842 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 843 * 844 * NUMA-0 0 1 2 3 845 * 846 * 847 * As can be seen; things don't nicely line up as with the regular topology. 848 * When we iterate a domain in child domain chunks some nodes can be 849 * represented multiple times -- hence the "overlap" naming for this part of 850 * the topology. 851 * 852 * In order to minimize this overlap, we only build enough groups to cover the 853 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 854 * 855 * Because: 856 * 857 * - the first group of each domain is its child domain; this 858 * gets us the first 0-1,3 859 * - the only uncovered node is 2, who's child domain is 1-3. 860 * 861 * However, because of the overlap, computing a unique CPU for each group is 862 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 863 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 864 * end up at those groups (they would end up in group: 0-1,3). 865 * 866 * To correct this we have to introduce the group balance mask. This mask 867 * will contain those CPUs in the group that can reach this group given the 868 * (child) domain tree. 869 * 870 * With this we can once again compute balance_cpu and sched_group_capacity 871 * relations. 872 * 873 * XXX include words on how balance_cpu is unique and therefore can be 874 * used for sched_group_capacity links. 875 * 876 * 877 * Another 'interesting' topology is: 878 * 879 * node 0 1 2 3 880 * 0: 10 20 20 30 881 * 1: 20 10 20 20 882 * 2: 20 20 10 20 883 * 3: 30 20 20 10 884 * 885 * Which looks a little like: 886 * 887 * 0 ----- 1 888 * | / | 889 * | / | 890 * | / | 891 * 2 ----- 3 892 * 893 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 894 * are not. 895 * 896 * This leads to a few particularly weird cases where the sched_domain's are 897 * not of the same number for each CPU. Consider: 898 * 899 * NUMA-2 0-3 0-3 900 * groups: {0-2},{1-3} {1-3},{0-2} 901 * 902 * NUMA-1 0-2 0-3 0-3 1-3 903 * 904 * NUMA-0 0 1 2 3 905 * 906 */ 907 908 909 /* 910 * Build the balance mask; it contains only those CPUs that can arrive at this 911 * group and should be considered to continue balancing. 912 * 913 * We do this during the group creation pass, therefore the group information 914 * isn't complete yet, however since each group represents a (child) domain we 915 * can fully construct this using the sched_domain bits (which are already 916 * complete). 917 */ 918 static void 919 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 920 { 921 const struct cpumask *sg_span = sched_group_span(sg); 922 struct sd_data *sdd = sd->private; 923 struct sched_domain *sibling; 924 int i; 925 926 cpumask_clear(mask); 927 928 for_each_cpu(i, sg_span) { 929 sibling = *per_cpu_ptr(sdd->sd, i); 930 931 /* 932 * Can happen in the asymmetric case, where these siblings are 933 * unused. The mask will not be empty because those CPUs that 934 * do have the top domain _should_ span the domain. 935 */ 936 if (!sibling->child) 937 continue; 938 939 /* If we would not end up here, we can't continue from here */ 940 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 941 continue; 942 943 cpumask_set_cpu(i, mask); 944 } 945 946 /* We must not have empty masks here */ 947 WARN_ON_ONCE(cpumask_empty(mask)); 948 } 949 950 /* 951 * XXX: This creates per-node group entries; since the load-balancer will 952 * immediately access remote memory to construct this group's load-balance 953 * statistics having the groups node local is of dubious benefit. 954 */ 955 static struct sched_group * 956 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 957 { 958 struct sched_group *sg; 959 struct cpumask *sg_span; 960 961 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 962 GFP_KERNEL, cpu_to_node(cpu)); 963 964 if (!sg) 965 return NULL; 966 967 sg_span = sched_group_span(sg); 968 if (sd->child) { 969 cpumask_copy(sg_span, sched_domain_span(sd->child)); 970 sg->flags = sd->child->flags; 971 } else { 972 cpumask_copy(sg_span, sched_domain_span(sd)); 973 } 974 975 atomic_inc(&sg->ref); 976 return sg; 977 } 978 979 static void init_overlap_sched_group(struct sched_domain *sd, 980 struct sched_group *sg) 981 { 982 struct cpumask *mask = sched_domains_tmpmask2; 983 struct sd_data *sdd = sd->private; 984 struct cpumask *sg_span; 985 int cpu; 986 987 build_balance_mask(sd, sg, mask); 988 cpu = cpumask_first(mask); 989 990 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 991 if (atomic_inc_return(&sg->sgc->ref) == 1) 992 cpumask_copy(group_balance_mask(sg), mask); 993 else 994 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 995 996 /* 997 * Initialize sgc->capacity such that even if we mess up the 998 * domains and no possible iteration will get us here, we won't 999 * die on a /0 trap. 1000 */ 1001 sg_span = sched_group_span(sg); 1002 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 1003 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1004 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1005 } 1006 1007 static struct sched_domain * 1008 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling) 1009 { 1010 /* 1011 * The proper descendant would be the one whose child won't span out 1012 * of sd 1013 */ 1014 while (sibling->child && 1015 !cpumask_subset(sched_domain_span(sibling->child), 1016 sched_domain_span(sd))) 1017 sibling = sibling->child; 1018 1019 /* 1020 * As we are referencing sgc across different topology level, we need 1021 * to go down to skip those sched_domains which don't contribute to 1022 * scheduling because they will be degenerated in cpu_attach_domain 1023 */ 1024 while (sibling->child && 1025 cpumask_equal(sched_domain_span(sibling->child), 1026 sched_domain_span(sibling))) 1027 sibling = sibling->child; 1028 1029 return sibling; 1030 } 1031 1032 static int 1033 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 1034 { 1035 struct sched_group *first = NULL, *last = NULL, *sg; 1036 const struct cpumask *span = sched_domain_span(sd); 1037 struct cpumask *covered = sched_domains_tmpmask; 1038 struct sd_data *sdd = sd->private; 1039 struct sched_domain *sibling; 1040 int i; 1041 1042 cpumask_clear(covered); 1043 1044 for_each_cpu_wrap(i, span, cpu) { 1045 struct cpumask *sg_span; 1046 1047 if (cpumask_test_cpu(i, covered)) 1048 continue; 1049 1050 sibling = *per_cpu_ptr(sdd->sd, i); 1051 1052 /* 1053 * Asymmetric node setups can result in situations where the 1054 * domain tree is of unequal depth, make sure to skip domains 1055 * that already cover the entire range. 1056 * 1057 * In that case build_sched_domains() will have terminated the 1058 * iteration early and our sibling sd spans will be empty. 1059 * Domains should always include the CPU they're built on, so 1060 * check that. 1061 */ 1062 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 1063 continue; 1064 1065 /* 1066 * Usually we build sched_group by sibling's child sched_domain 1067 * But for machines whose NUMA diameter are 3 or above, we move 1068 * to build sched_group by sibling's proper descendant's child 1069 * domain because sibling's child sched_domain will span out of 1070 * the sched_domain being built as below. 1071 * 1072 * Smallest diameter=3 topology is: 1073 * 1074 * node 0 1 2 3 1075 * 0: 10 20 30 40 1076 * 1: 20 10 20 30 1077 * 2: 30 20 10 20 1078 * 3: 40 30 20 10 1079 * 1080 * 0 --- 1 --- 2 --- 3 1081 * 1082 * NUMA-3 0-3 N/A N/A 0-3 1083 * groups: {0-2},{1-3} {1-3},{0-2} 1084 * 1085 * NUMA-2 0-2 0-3 0-3 1-3 1086 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2} 1087 * 1088 * NUMA-1 0-1 0-2 1-3 2-3 1089 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2} 1090 * 1091 * NUMA-0 0 1 2 3 1092 * 1093 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the 1094 * group span isn't a subset of the domain span. 1095 */ 1096 if (sibling->child && 1097 !cpumask_subset(sched_domain_span(sibling->child), span)) 1098 sibling = find_descended_sibling(sd, sibling); 1099 1100 sg = build_group_from_child_sched_domain(sibling, cpu); 1101 if (!sg) 1102 goto fail; 1103 1104 sg_span = sched_group_span(sg); 1105 cpumask_or(covered, covered, sg_span); 1106 1107 init_overlap_sched_group(sibling, sg); 1108 1109 if (!first) 1110 first = sg; 1111 if (last) 1112 last->next = sg; 1113 last = sg; 1114 last->next = first; 1115 } 1116 sd->groups = first; 1117 1118 return 0; 1119 1120 fail: 1121 free_sched_groups(first, 0); 1122 1123 return -ENOMEM; 1124 } 1125 1126 1127 /* 1128 * Package topology (also see the load-balance blurb in fair.c) 1129 * 1130 * The scheduler builds a tree structure to represent a number of important 1131 * topology features. By default (default_topology[]) these include: 1132 * 1133 * - Simultaneous multithreading (SMT) 1134 * - Multi-Core Cache (MC) 1135 * - Package (PKG) 1136 * 1137 * Where the last one more or less denotes everything up to a NUMA node. 1138 * 1139 * The tree consists of 3 primary data structures: 1140 * 1141 * sched_domain -> sched_group -> sched_group_capacity 1142 * ^ ^ ^ ^ 1143 * `-' `-' 1144 * 1145 * The sched_domains are per-CPU and have a two way link (parent & child) and 1146 * denote the ever growing mask of CPUs belonging to that level of topology. 1147 * 1148 * Each sched_domain has a circular (double) linked list of sched_group's, each 1149 * denoting the domains of the level below (or individual CPUs in case of the 1150 * first domain level). The sched_group linked by a sched_domain includes the 1151 * CPU of that sched_domain [*]. 1152 * 1153 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 1154 * 1155 * CPU 0 1 2 3 4 5 6 7 1156 * 1157 * PKG [ ] 1158 * MC [ ] [ ] 1159 * SMT [ ] [ ] [ ] [ ] 1160 * 1161 * - or - 1162 * 1163 * PKG 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 1164 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 1165 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 1166 * 1167 * CPU 0 1 2 3 4 5 6 7 1168 * 1169 * One way to think about it is: sched_domain moves you up and down among these 1170 * topology levels, while sched_group moves you sideways through it, at child 1171 * domain granularity. 1172 * 1173 * sched_group_capacity ensures each unique sched_group has shared storage. 1174 * 1175 * There are two related construction problems, both require a CPU that 1176 * uniquely identify each group (for a given domain): 1177 * 1178 * - The first is the balance_cpu (see should_we_balance() and the 1179 * load-balance blurb in fair.c); for each group we only want 1 CPU to 1180 * continue balancing at a higher domain. 1181 * 1182 * - The second is the sched_group_capacity; we want all identical groups 1183 * to share a single sched_group_capacity. 1184 * 1185 * Since these topologies are exclusive by construction. That is, its 1186 * impossible for an SMT thread to belong to multiple cores, and cores to 1187 * be part of multiple caches. There is a very clear and unique location 1188 * for each CPU in the hierarchy. 1189 * 1190 * Therefore computing a unique CPU for each group is trivial (the iteration 1191 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 1192 * group), we can simply pick the first CPU in each group. 1193 * 1194 * 1195 * [*] in other words, the first group of each domain is its child domain. 1196 */ 1197 1198 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1199 { 1200 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1201 struct sched_domain *child = sd->child; 1202 struct sched_group *sg; 1203 bool already_visited; 1204 1205 if (child) 1206 cpu = cpumask_first(sched_domain_span(child)); 1207 1208 sg = *per_cpu_ptr(sdd->sg, cpu); 1209 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1210 1211 /* Increase refcounts for claim_allocations: */ 1212 already_visited = atomic_inc_return(&sg->ref) > 1; 1213 /* sgc visits should follow a similar trend as sg */ 1214 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 1215 1216 /* If we have already visited that group, it's already initialized. */ 1217 if (already_visited) 1218 return sg; 1219 1220 if (child) { 1221 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1222 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 1223 sg->flags = child->flags; 1224 } else { 1225 cpumask_set_cpu(cpu, sched_group_span(sg)); 1226 cpumask_set_cpu(cpu, group_balance_mask(sg)); 1227 } 1228 1229 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 1230 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1231 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1232 1233 return sg; 1234 } 1235 1236 /* 1237 * build_sched_groups will build a circular linked list of the groups 1238 * covered by the given span, will set each group's ->cpumask correctly, 1239 * and will initialize their ->sgc. 1240 * 1241 * Assumes the sched_domain tree is fully constructed 1242 */ 1243 static int 1244 build_sched_groups(struct sched_domain *sd, int cpu) 1245 { 1246 struct sched_group *first = NULL, *last = NULL; 1247 struct sd_data *sdd = sd->private; 1248 const struct cpumask *span = sched_domain_span(sd); 1249 struct cpumask *covered; 1250 int i; 1251 1252 lockdep_assert_held(&sched_domains_mutex); 1253 covered = sched_domains_tmpmask; 1254 1255 cpumask_clear(covered); 1256 1257 for_each_cpu_wrap(i, span, cpu) { 1258 struct sched_group *sg; 1259 1260 if (cpumask_test_cpu(i, covered)) 1261 continue; 1262 1263 sg = get_group(i, sdd); 1264 1265 cpumask_or(covered, covered, sched_group_span(sg)); 1266 1267 if (!first) 1268 first = sg; 1269 if (last) 1270 last->next = sg; 1271 last = sg; 1272 } 1273 last->next = first; 1274 sd->groups = first; 1275 1276 return 0; 1277 } 1278 1279 /* 1280 * Initialize sched groups cpu_capacity. 1281 * 1282 * cpu_capacity indicates the capacity of sched group, which is used while 1283 * distributing the load between different sched groups in a sched domain. 1284 * Typically cpu_capacity for all the groups in a sched domain will be same 1285 * unless there are asymmetries in the topology. If there are asymmetries, 1286 * group having more cpu_capacity will pickup more load compared to the 1287 * group having less cpu_capacity. 1288 */ 1289 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1290 { 1291 struct sched_group *sg = sd->groups; 1292 struct cpumask *mask = sched_domains_tmpmask2; 1293 1294 WARN_ON(!sg); 1295 1296 do { 1297 int cpu, cores = 0, max_cpu = -1; 1298 1299 sg->group_weight = cpumask_weight(sched_group_span(sg)); 1300 1301 cpumask_copy(mask, sched_group_span(sg)); 1302 for_each_cpu(cpu, mask) { 1303 cores++; 1304 #ifdef CONFIG_SCHED_SMT 1305 cpumask_andnot(mask, mask, cpu_smt_mask(cpu)); 1306 #endif 1307 } 1308 sg->cores = cores; 1309 1310 if (!(sd->flags & SD_ASYM_PACKING)) 1311 goto next; 1312 1313 for_each_cpu(cpu, sched_group_span(sg)) { 1314 if (max_cpu < 0) 1315 max_cpu = cpu; 1316 else if (sched_asym_prefer(cpu, max_cpu)) 1317 max_cpu = cpu; 1318 } 1319 sg->asym_prefer_cpu = max_cpu; 1320 1321 next: 1322 sg = sg->next; 1323 } while (sg != sd->groups); 1324 1325 if (cpu != group_balance_cpu(sg)) 1326 return; 1327 1328 update_group_capacity(sd, cpu); 1329 } 1330 1331 /* 1332 * Set of available CPUs grouped by their corresponding capacities 1333 * Each list entry contains a CPU mask reflecting CPUs that share the same 1334 * capacity. 1335 * The lifespan of data is unlimited. 1336 */ 1337 LIST_HEAD(asym_cap_list); 1338 1339 /* 1340 * Verify whether there is any CPU capacity asymmetry in a given sched domain. 1341 * Provides sd_flags reflecting the asymmetry scope. 1342 */ 1343 static inline int 1344 asym_cpu_capacity_classify(const struct cpumask *sd_span, 1345 const struct cpumask *cpu_map) 1346 { 1347 struct asym_cap_data *entry; 1348 int count = 0, miss = 0; 1349 1350 /* 1351 * Count how many unique CPU capacities this domain spans across 1352 * (compare sched_domain CPUs mask with ones representing available 1353 * CPUs capacities). Take into account CPUs that might be offline: 1354 * skip those. 1355 */ 1356 list_for_each_entry(entry, &asym_cap_list, link) { 1357 if (cpumask_intersects(sd_span, cpu_capacity_span(entry))) 1358 ++count; 1359 else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry))) 1360 ++miss; 1361 } 1362 1363 WARN_ON_ONCE(!count && !list_empty(&asym_cap_list)); 1364 1365 /* No asymmetry detected */ 1366 if (count < 2) 1367 return 0; 1368 /* Some of the available CPU capacity values have not been detected */ 1369 if (miss) 1370 return SD_ASYM_CPUCAPACITY; 1371 1372 /* Full asymmetry */ 1373 return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL; 1374 1375 } 1376 1377 static void free_asym_cap_entry(struct rcu_head *head) 1378 { 1379 struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu); 1380 kfree(entry); 1381 } 1382 1383 static inline void asym_cpu_capacity_update_data(int cpu) 1384 { 1385 unsigned long capacity = arch_scale_cpu_capacity(cpu); 1386 struct asym_cap_data *insert_entry = NULL; 1387 struct asym_cap_data *entry; 1388 1389 /* 1390 * Search if capacity already exits. If not, track which the entry 1391 * where we should insert to keep the list ordered descending. 1392 */ 1393 list_for_each_entry(entry, &asym_cap_list, link) { 1394 if (capacity == entry->capacity) 1395 goto done; 1396 else if (!insert_entry && capacity > entry->capacity) 1397 insert_entry = list_prev_entry(entry, link); 1398 } 1399 1400 entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL); 1401 if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n")) 1402 return; 1403 entry->capacity = capacity; 1404 1405 /* If NULL then the new capacity is the smallest, add last. */ 1406 if (!insert_entry) 1407 list_add_tail_rcu(&entry->link, &asym_cap_list); 1408 else 1409 list_add_rcu(&entry->link, &insert_entry->link); 1410 done: 1411 __cpumask_set_cpu(cpu, cpu_capacity_span(entry)); 1412 } 1413 1414 /* 1415 * Build-up/update list of CPUs grouped by their capacities 1416 * An update requires explicit request to rebuild sched domains 1417 * with state indicating CPU topology changes. 1418 */ 1419 static void asym_cpu_capacity_scan(void) 1420 { 1421 struct asym_cap_data *entry, *next; 1422 int cpu; 1423 1424 list_for_each_entry(entry, &asym_cap_list, link) 1425 cpumask_clear(cpu_capacity_span(entry)); 1426 1427 for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) 1428 asym_cpu_capacity_update_data(cpu); 1429 1430 list_for_each_entry_safe(entry, next, &asym_cap_list, link) { 1431 if (cpumask_empty(cpu_capacity_span(entry))) { 1432 list_del_rcu(&entry->link); 1433 call_rcu(&entry->rcu, free_asym_cap_entry); 1434 } 1435 } 1436 1437 /* 1438 * Only one capacity value has been detected i.e. this system is symmetric. 1439 * No need to keep this data around. 1440 */ 1441 if (list_is_singular(&asym_cap_list)) { 1442 entry = list_first_entry(&asym_cap_list, typeof(*entry), link); 1443 list_del_rcu(&entry->link); 1444 call_rcu(&entry->rcu, free_asym_cap_entry); 1445 } 1446 } 1447 1448 /* 1449 * Initializers for schedule domains 1450 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1451 */ 1452 1453 static int default_relax_domain_level = -1; 1454 int sched_domain_level_max; 1455 1456 static int __init setup_relax_domain_level(char *str) 1457 { 1458 if (kstrtoint(str, 0, &default_relax_domain_level)) 1459 pr_warn("Unable to set relax_domain_level\n"); 1460 1461 return 1; 1462 } 1463 __setup("relax_domain_level=", setup_relax_domain_level); 1464 1465 static void set_domain_attribute(struct sched_domain *sd, 1466 struct sched_domain_attr *attr) 1467 { 1468 int request; 1469 1470 if (!attr || attr->relax_domain_level < 0) { 1471 if (default_relax_domain_level < 0) 1472 return; 1473 request = default_relax_domain_level; 1474 } else 1475 request = attr->relax_domain_level; 1476 1477 if (sd->level >= request) { 1478 /* Turn off idle balance on this domain: */ 1479 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1480 } 1481 } 1482 1483 static void __sdt_free(const struct cpumask *cpu_map); 1484 static int __sdt_alloc(const struct cpumask *cpu_map); 1485 1486 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1487 const struct cpumask *cpu_map) 1488 { 1489 switch (what) { 1490 case sa_rootdomain: 1491 if (!atomic_read(&d->rd->refcount)) 1492 free_rootdomain(&d->rd->rcu); 1493 fallthrough; 1494 case sa_sd: 1495 free_percpu(d->sd); 1496 fallthrough; 1497 case sa_sd_storage: 1498 __sdt_free(cpu_map); 1499 fallthrough; 1500 case sa_none: 1501 break; 1502 } 1503 } 1504 1505 static enum s_alloc 1506 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1507 { 1508 memset(d, 0, sizeof(*d)); 1509 1510 if (__sdt_alloc(cpu_map)) 1511 return sa_sd_storage; 1512 d->sd = alloc_percpu(struct sched_domain *); 1513 if (!d->sd) 1514 return sa_sd_storage; 1515 d->rd = alloc_rootdomain(); 1516 if (!d->rd) 1517 return sa_sd; 1518 1519 return sa_rootdomain; 1520 } 1521 1522 /* 1523 * NULL the sd_data elements we've used to build the sched_domain and 1524 * sched_group structure so that the subsequent __free_domain_allocs() 1525 * will not free the data we're using. 1526 */ 1527 static void claim_allocations(int cpu, struct sched_domain *sd) 1528 { 1529 struct sd_data *sdd = sd->private; 1530 1531 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1532 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1533 1534 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1535 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1536 1537 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1538 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1539 1540 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1541 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1542 } 1543 1544 #ifdef CONFIG_NUMA 1545 enum numa_topology_type sched_numa_topology_type; 1546 1547 static int sched_domains_numa_levels; 1548 static int sched_domains_curr_level; 1549 1550 int sched_max_numa_distance; 1551 static int *sched_domains_numa_distance; 1552 static struct cpumask ***sched_domains_numa_masks; 1553 #endif 1554 1555 /* 1556 * SD_flags allowed in topology descriptions. 1557 * 1558 * These flags are purely descriptive of the topology and do not prescribe 1559 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1560 * function. For details, see include/linux/sched/sd_flags.h. 1561 * 1562 * SD_SHARE_CPUCAPACITY 1563 * SD_SHARE_LLC 1564 * SD_CLUSTER 1565 * SD_NUMA 1566 * 1567 * Odd one out, which beside describing the topology has a quirk also 1568 * prescribes the desired behaviour that goes along with it: 1569 * 1570 * SD_ASYM_PACKING - describes SMT quirks 1571 */ 1572 #define TOPOLOGY_SD_FLAGS \ 1573 (SD_SHARE_CPUCAPACITY | \ 1574 SD_CLUSTER | \ 1575 SD_SHARE_LLC | \ 1576 SD_NUMA | \ 1577 SD_ASYM_PACKING) 1578 1579 static struct sched_domain * 1580 sd_init(struct sched_domain_topology_level *tl, 1581 const struct cpumask *cpu_map, 1582 struct sched_domain *child, int cpu) 1583 { 1584 struct sd_data *sdd = &tl->data; 1585 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1586 int sd_id, sd_weight, sd_flags = 0; 1587 struct cpumask *sd_span; 1588 1589 #ifdef CONFIG_NUMA 1590 /* 1591 * Ugly hack to pass state to sd_numa_mask()... 1592 */ 1593 sched_domains_curr_level = tl->numa_level; 1594 #endif 1595 1596 sd_weight = cpumask_weight(tl->mask(cpu)); 1597 1598 if (tl->sd_flags) 1599 sd_flags = (*tl->sd_flags)(); 1600 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1601 "wrong sd_flags in topology description\n")) 1602 sd_flags &= TOPOLOGY_SD_FLAGS; 1603 1604 *sd = (struct sched_domain){ 1605 .min_interval = sd_weight, 1606 .max_interval = 2*sd_weight, 1607 .busy_factor = 16, 1608 .imbalance_pct = 117, 1609 1610 .cache_nice_tries = 0, 1611 1612 .flags = 1*SD_BALANCE_NEWIDLE 1613 | 1*SD_BALANCE_EXEC 1614 | 1*SD_BALANCE_FORK 1615 | 0*SD_BALANCE_WAKE 1616 | 1*SD_WAKE_AFFINE 1617 | 0*SD_SHARE_CPUCAPACITY 1618 | 0*SD_SHARE_LLC 1619 | 0*SD_SERIALIZE 1620 | 1*SD_PREFER_SIBLING 1621 | 0*SD_NUMA 1622 | sd_flags 1623 , 1624 1625 .last_balance = jiffies, 1626 .balance_interval = sd_weight, 1627 .max_newidle_lb_cost = 0, 1628 .last_decay_max_lb_cost = jiffies, 1629 .child = child, 1630 #ifdef CONFIG_SCHED_DEBUG 1631 .name = tl->name, 1632 #endif 1633 }; 1634 1635 sd_span = sched_domain_span(sd); 1636 cpumask_and(sd_span, cpu_map, tl->mask(cpu)); 1637 sd_id = cpumask_first(sd_span); 1638 1639 sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map); 1640 1641 WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) == 1642 (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY), 1643 "CPU capacity asymmetry not supported on SMT\n"); 1644 1645 /* 1646 * Convert topological properties into behaviour. 1647 */ 1648 /* Don't attempt to spread across CPUs of different capacities. */ 1649 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 1650 sd->child->flags &= ~SD_PREFER_SIBLING; 1651 1652 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1653 sd->imbalance_pct = 110; 1654 1655 } else if (sd->flags & SD_SHARE_LLC) { 1656 sd->imbalance_pct = 117; 1657 sd->cache_nice_tries = 1; 1658 1659 #ifdef CONFIG_NUMA 1660 } else if (sd->flags & SD_NUMA) { 1661 sd->cache_nice_tries = 2; 1662 1663 sd->flags &= ~SD_PREFER_SIBLING; 1664 sd->flags |= SD_SERIALIZE; 1665 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1666 sd->flags &= ~(SD_BALANCE_EXEC | 1667 SD_BALANCE_FORK | 1668 SD_WAKE_AFFINE); 1669 } 1670 1671 #endif 1672 } else { 1673 sd->cache_nice_tries = 1; 1674 } 1675 1676 /* 1677 * For all levels sharing cache; connect a sched_domain_shared 1678 * instance. 1679 */ 1680 if (sd->flags & SD_SHARE_LLC) { 1681 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1682 atomic_inc(&sd->shared->ref); 1683 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1684 } 1685 1686 sd->private = sdd; 1687 1688 return sd; 1689 } 1690 1691 /* 1692 * Topology list, bottom-up. 1693 */ 1694 static struct sched_domain_topology_level default_topology[] = { 1695 #ifdef CONFIG_SCHED_SMT 1696 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1697 #endif 1698 1699 #ifdef CONFIG_SCHED_CLUSTER 1700 { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) }, 1701 #endif 1702 1703 #ifdef CONFIG_SCHED_MC 1704 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1705 #endif 1706 { cpu_cpu_mask, SD_INIT_NAME(PKG) }, 1707 { NULL, }, 1708 }; 1709 1710 static struct sched_domain_topology_level *sched_domain_topology = 1711 default_topology; 1712 static struct sched_domain_topology_level *sched_domain_topology_saved; 1713 1714 #define for_each_sd_topology(tl) \ 1715 for (tl = sched_domain_topology; tl->mask; tl++) 1716 1717 void __init set_sched_topology(struct sched_domain_topology_level *tl) 1718 { 1719 if (WARN_ON_ONCE(sched_smp_initialized)) 1720 return; 1721 1722 sched_domain_topology = tl; 1723 sched_domain_topology_saved = NULL; 1724 } 1725 1726 #ifdef CONFIG_NUMA 1727 1728 static const struct cpumask *sd_numa_mask(int cpu) 1729 { 1730 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1731 } 1732 1733 static void sched_numa_warn(const char *str) 1734 { 1735 static int done = false; 1736 int i,j; 1737 1738 if (done) 1739 return; 1740 1741 done = true; 1742 1743 printk(KERN_WARNING "ERROR: %s\n\n", str); 1744 1745 for (i = 0; i < nr_node_ids; i++) { 1746 printk(KERN_WARNING " "); 1747 for (j = 0; j < nr_node_ids; j++) { 1748 if (!node_state(i, N_CPU) || !node_state(j, N_CPU)) 1749 printk(KERN_CONT "(%02d) ", node_distance(i,j)); 1750 else 1751 printk(KERN_CONT " %02d ", node_distance(i,j)); 1752 } 1753 printk(KERN_CONT "\n"); 1754 } 1755 printk(KERN_WARNING "\n"); 1756 } 1757 1758 bool find_numa_distance(int distance) 1759 { 1760 bool found = false; 1761 int i, *distances; 1762 1763 if (distance == node_distance(0, 0)) 1764 return true; 1765 1766 rcu_read_lock(); 1767 distances = rcu_dereference(sched_domains_numa_distance); 1768 if (!distances) 1769 goto unlock; 1770 for (i = 0; i < sched_domains_numa_levels; i++) { 1771 if (distances[i] == distance) { 1772 found = true; 1773 break; 1774 } 1775 } 1776 unlock: 1777 rcu_read_unlock(); 1778 1779 return found; 1780 } 1781 1782 #define for_each_cpu_node_but(n, nbut) \ 1783 for_each_node_state(n, N_CPU) \ 1784 if (n == nbut) \ 1785 continue; \ 1786 else 1787 1788 /* 1789 * A system can have three types of NUMA topology: 1790 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1791 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1792 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1793 * 1794 * The difference between a glueless mesh topology and a backplane 1795 * topology lies in whether communication between not directly 1796 * connected nodes goes through intermediary nodes (where programs 1797 * could run), or through backplane controllers. This affects 1798 * placement of programs. 1799 * 1800 * The type of topology can be discerned with the following tests: 1801 * - If the maximum distance between any nodes is 1 hop, the system 1802 * is directly connected. 1803 * - If for two nodes A and B, located N > 1 hops away from each other, 1804 * there is an intermediary node C, which is < N hops away from both 1805 * nodes A and B, the system is a glueless mesh. 1806 */ 1807 static void init_numa_topology_type(int offline_node) 1808 { 1809 int a, b, c, n; 1810 1811 n = sched_max_numa_distance; 1812 1813 if (sched_domains_numa_levels <= 2) { 1814 sched_numa_topology_type = NUMA_DIRECT; 1815 return; 1816 } 1817 1818 for_each_cpu_node_but(a, offline_node) { 1819 for_each_cpu_node_but(b, offline_node) { 1820 /* Find two nodes furthest removed from each other. */ 1821 if (node_distance(a, b) < n) 1822 continue; 1823 1824 /* Is there an intermediary node between a and b? */ 1825 for_each_cpu_node_but(c, offline_node) { 1826 if (node_distance(a, c) < n && 1827 node_distance(b, c) < n) { 1828 sched_numa_topology_type = 1829 NUMA_GLUELESS_MESH; 1830 return; 1831 } 1832 } 1833 1834 sched_numa_topology_type = NUMA_BACKPLANE; 1835 return; 1836 } 1837 } 1838 1839 pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n"); 1840 sched_numa_topology_type = NUMA_DIRECT; 1841 } 1842 1843 1844 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS) 1845 1846 void sched_init_numa(int offline_node) 1847 { 1848 struct sched_domain_topology_level *tl; 1849 unsigned long *distance_map; 1850 int nr_levels = 0; 1851 int i, j; 1852 int *distances; 1853 struct cpumask ***masks; 1854 1855 /* 1856 * O(nr_nodes^2) de-duplicating selection sort -- in order to find the 1857 * unique distances in the node_distance() table. 1858 */ 1859 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL); 1860 if (!distance_map) 1861 return; 1862 1863 bitmap_zero(distance_map, NR_DISTANCE_VALUES); 1864 for_each_cpu_node_but(i, offline_node) { 1865 for_each_cpu_node_but(j, offline_node) { 1866 int distance = node_distance(i, j); 1867 1868 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) { 1869 sched_numa_warn("Invalid distance value range"); 1870 bitmap_free(distance_map); 1871 return; 1872 } 1873 1874 bitmap_set(distance_map, distance, 1); 1875 } 1876 } 1877 /* 1878 * We can now figure out how many unique distance values there are and 1879 * allocate memory accordingly. 1880 */ 1881 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES); 1882 1883 distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL); 1884 if (!distances) { 1885 bitmap_free(distance_map); 1886 return; 1887 } 1888 1889 for (i = 0, j = 0; i < nr_levels; i++, j++) { 1890 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j); 1891 distances[i] = j; 1892 } 1893 rcu_assign_pointer(sched_domains_numa_distance, distances); 1894 1895 bitmap_free(distance_map); 1896 1897 /* 1898 * 'nr_levels' contains the number of unique distances 1899 * 1900 * The sched_domains_numa_distance[] array includes the actual distance 1901 * numbers. 1902 */ 1903 1904 /* 1905 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1906 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1907 * the array will contain less then 'nr_levels' members. This could be 1908 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1909 * in other functions. 1910 * 1911 * We reset it to 'nr_levels' at the end of this function. 1912 */ 1913 sched_domains_numa_levels = 0; 1914 1915 masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL); 1916 if (!masks) 1917 return; 1918 1919 /* 1920 * Now for each level, construct a mask per node which contains all 1921 * CPUs of nodes that are that many hops away from us. 1922 */ 1923 for (i = 0; i < nr_levels; i++) { 1924 masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1925 if (!masks[i]) 1926 return; 1927 1928 for_each_cpu_node_but(j, offline_node) { 1929 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1930 int k; 1931 1932 if (!mask) 1933 return; 1934 1935 masks[i][j] = mask; 1936 1937 for_each_cpu_node_but(k, offline_node) { 1938 if (sched_debug() && (node_distance(j, k) != node_distance(k, j))) 1939 sched_numa_warn("Node-distance not symmetric"); 1940 1941 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1942 continue; 1943 1944 cpumask_or(mask, mask, cpumask_of_node(k)); 1945 } 1946 } 1947 } 1948 rcu_assign_pointer(sched_domains_numa_masks, masks); 1949 1950 /* Compute default topology size */ 1951 for (i = 0; sched_domain_topology[i].mask; i++); 1952 1953 tl = kzalloc((i + nr_levels + 1) * 1954 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1955 if (!tl) 1956 return; 1957 1958 /* 1959 * Copy the default topology bits.. 1960 */ 1961 for (i = 0; sched_domain_topology[i].mask; i++) 1962 tl[i] = sched_domain_topology[i]; 1963 1964 /* 1965 * Add the NUMA identity distance, aka single NODE. 1966 */ 1967 tl[i++] = (struct sched_domain_topology_level){ 1968 .mask = sd_numa_mask, 1969 .numa_level = 0, 1970 SD_INIT_NAME(NODE) 1971 }; 1972 1973 /* 1974 * .. and append 'j' levels of NUMA goodness. 1975 */ 1976 for (j = 1; j < nr_levels; i++, j++) { 1977 tl[i] = (struct sched_domain_topology_level){ 1978 .mask = sd_numa_mask, 1979 .sd_flags = cpu_numa_flags, 1980 .flags = SDTL_OVERLAP, 1981 .numa_level = j, 1982 SD_INIT_NAME(NUMA) 1983 }; 1984 } 1985 1986 sched_domain_topology_saved = sched_domain_topology; 1987 sched_domain_topology = tl; 1988 1989 sched_domains_numa_levels = nr_levels; 1990 WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]); 1991 1992 init_numa_topology_type(offline_node); 1993 } 1994 1995 1996 static void sched_reset_numa(void) 1997 { 1998 int nr_levels, *distances; 1999 struct cpumask ***masks; 2000 2001 nr_levels = sched_domains_numa_levels; 2002 sched_domains_numa_levels = 0; 2003 sched_max_numa_distance = 0; 2004 sched_numa_topology_type = NUMA_DIRECT; 2005 distances = sched_domains_numa_distance; 2006 rcu_assign_pointer(sched_domains_numa_distance, NULL); 2007 masks = sched_domains_numa_masks; 2008 rcu_assign_pointer(sched_domains_numa_masks, NULL); 2009 if (distances || masks) { 2010 int i, j; 2011 2012 synchronize_rcu(); 2013 kfree(distances); 2014 for (i = 0; i < nr_levels && masks; i++) { 2015 if (!masks[i]) 2016 continue; 2017 for_each_node(j) 2018 kfree(masks[i][j]); 2019 kfree(masks[i]); 2020 } 2021 kfree(masks); 2022 } 2023 if (sched_domain_topology_saved) { 2024 kfree(sched_domain_topology); 2025 sched_domain_topology = sched_domain_topology_saved; 2026 sched_domain_topology_saved = NULL; 2027 } 2028 } 2029 2030 /* 2031 * Call with hotplug lock held 2032 */ 2033 void sched_update_numa(int cpu, bool online) 2034 { 2035 int node; 2036 2037 node = cpu_to_node(cpu); 2038 /* 2039 * Scheduler NUMA topology is updated when the first CPU of a 2040 * node is onlined or the last CPU of a node is offlined. 2041 */ 2042 if (cpumask_weight(cpumask_of_node(node)) != 1) 2043 return; 2044 2045 sched_reset_numa(); 2046 sched_init_numa(online ? NUMA_NO_NODE : node); 2047 } 2048 2049 void sched_domains_numa_masks_set(unsigned int cpu) 2050 { 2051 int node = cpu_to_node(cpu); 2052 int i, j; 2053 2054 for (i = 0; i < sched_domains_numa_levels; i++) { 2055 for (j = 0; j < nr_node_ids; j++) { 2056 if (!node_state(j, N_CPU)) 2057 continue; 2058 2059 /* Set ourselves in the remote node's masks */ 2060 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 2061 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 2062 } 2063 } 2064 } 2065 2066 void sched_domains_numa_masks_clear(unsigned int cpu) 2067 { 2068 int i, j; 2069 2070 for (i = 0; i < sched_domains_numa_levels; i++) { 2071 for (j = 0; j < nr_node_ids; j++) { 2072 if (sched_domains_numa_masks[i][j]) 2073 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 2074 } 2075 } 2076 } 2077 2078 /* 2079 * sched_numa_find_closest() - given the NUMA topology, find the cpu 2080 * closest to @cpu from @cpumask. 2081 * cpumask: cpumask to find a cpu from 2082 * cpu: cpu to be close to 2083 * 2084 * returns: cpu, or nr_cpu_ids when nothing found. 2085 */ 2086 int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 2087 { 2088 int i, j = cpu_to_node(cpu), found = nr_cpu_ids; 2089 struct cpumask ***masks; 2090 2091 rcu_read_lock(); 2092 masks = rcu_dereference(sched_domains_numa_masks); 2093 if (!masks) 2094 goto unlock; 2095 for (i = 0; i < sched_domains_numa_levels; i++) { 2096 if (!masks[i][j]) 2097 break; 2098 cpu = cpumask_any_and(cpus, masks[i][j]); 2099 if (cpu < nr_cpu_ids) { 2100 found = cpu; 2101 break; 2102 } 2103 } 2104 unlock: 2105 rcu_read_unlock(); 2106 2107 return found; 2108 } 2109 2110 struct __cmp_key { 2111 const struct cpumask *cpus; 2112 struct cpumask ***masks; 2113 int node; 2114 int cpu; 2115 int w; 2116 }; 2117 2118 static int hop_cmp(const void *a, const void *b) 2119 { 2120 struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b; 2121 struct __cmp_key *k = (struct __cmp_key *)a; 2122 2123 if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu) 2124 return 1; 2125 2126 if (b == k->masks) { 2127 k->w = 0; 2128 return 0; 2129 } 2130 2131 prev_hop = *((struct cpumask ***)b - 1); 2132 k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]); 2133 if (k->w <= k->cpu) 2134 return 0; 2135 2136 return -1; 2137 } 2138 2139 /** 2140 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU 2141 * from @cpus to @cpu, taking into account distance 2142 * from a given @node. 2143 * @cpus: cpumask to find a cpu from 2144 * @cpu: CPU to start searching 2145 * @node: NUMA node to order CPUs by distance 2146 * 2147 * Return: cpu, or nr_cpu_ids when nothing found. 2148 */ 2149 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node) 2150 { 2151 struct __cmp_key k = { .cpus = cpus, .cpu = cpu }; 2152 struct cpumask ***hop_masks; 2153 int hop, ret = nr_cpu_ids; 2154 2155 if (node == NUMA_NO_NODE) 2156 return cpumask_nth_and(cpu, cpus, cpu_online_mask); 2157 2158 rcu_read_lock(); 2159 2160 /* CPU-less node entries are uninitialized in sched_domains_numa_masks */ 2161 node = numa_nearest_node(node, N_CPU); 2162 k.node = node; 2163 2164 k.masks = rcu_dereference(sched_domains_numa_masks); 2165 if (!k.masks) 2166 goto unlock; 2167 2168 hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp); 2169 hop = hop_masks - k.masks; 2170 2171 ret = hop ? 2172 cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) : 2173 cpumask_nth_and(cpu, cpus, k.masks[0][node]); 2174 unlock: 2175 rcu_read_unlock(); 2176 return ret; 2177 } 2178 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu); 2179 2180 /** 2181 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from 2182 * @node 2183 * @node: The node to count hops from. 2184 * @hops: Include CPUs up to that many hops away. 0 means local node. 2185 * 2186 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from 2187 * @node, an error value otherwise. 2188 * 2189 * Requires rcu_lock to be held. Returned cpumask is only valid within that 2190 * read-side section, copy it if required beyond that. 2191 * 2192 * Note that not all hops are equal in distance; see sched_init_numa() for how 2193 * distances and masks are handled. 2194 * Also note that this is a reflection of sched_domains_numa_masks, which may change 2195 * during the lifetime of the system (offline nodes are taken out of the masks). 2196 */ 2197 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops) 2198 { 2199 struct cpumask ***masks; 2200 2201 if (node >= nr_node_ids || hops >= sched_domains_numa_levels) 2202 return ERR_PTR(-EINVAL); 2203 2204 masks = rcu_dereference(sched_domains_numa_masks); 2205 if (!masks) 2206 return ERR_PTR(-EBUSY); 2207 2208 return masks[hops][node]; 2209 } 2210 EXPORT_SYMBOL_GPL(sched_numa_hop_mask); 2211 2212 #endif /* CONFIG_NUMA */ 2213 2214 static int __sdt_alloc(const struct cpumask *cpu_map) 2215 { 2216 struct sched_domain_topology_level *tl; 2217 int j; 2218 2219 for_each_sd_topology(tl) { 2220 struct sd_data *sdd = &tl->data; 2221 2222 sdd->sd = alloc_percpu(struct sched_domain *); 2223 if (!sdd->sd) 2224 return -ENOMEM; 2225 2226 sdd->sds = alloc_percpu(struct sched_domain_shared *); 2227 if (!sdd->sds) 2228 return -ENOMEM; 2229 2230 sdd->sg = alloc_percpu(struct sched_group *); 2231 if (!sdd->sg) 2232 return -ENOMEM; 2233 2234 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 2235 if (!sdd->sgc) 2236 return -ENOMEM; 2237 2238 for_each_cpu(j, cpu_map) { 2239 struct sched_domain *sd; 2240 struct sched_domain_shared *sds; 2241 struct sched_group *sg; 2242 struct sched_group_capacity *sgc; 2243 2244 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 2245 GFP_KERNEL, cpu_to_node(j)); 2246 if (!sd) 2247 return -ENOMEM; 2248 2249 *per_cpu_ptr(sdd->sd, j) = sd; 2250 2251 sds = kzalloc_node(sizeof(struct sched_domain_shared), 2252 GFP_KERNEL, cpu_to_node(j)); 2253 if (!sds) 2254 return -ENOMEM; 2255 2256 *per_cpu_ptr(sdd->sds, j) = sds; 2257 2258 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 2259 GFP_KERNEL, cpu_to_node(j)); 2260 if (!sg) 2261 return -ENOMEM; 2262 2263 sg->next = sg; 2264 2265 *per_cpu_ptr(sdd->sg, j) = sg; 2266 2267 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 2268 GFP_KERNEL, cpu_to_node(j)); 2269 if (!sgc) 2270 return -ENOMEM; 2271 2272 #ifdef CONFIG_SCHED_DEBUG 2273 sgc->id = j; 2274 #endif 2275 2276 *per_cpu_ptr(sdd->sgc, j) = sgc; 2277 } 2278 } 2279 2280 return 0; 2281 } 2282 2283 static void __sdt_free(const struct cpumask *cpu_map) 2284 { 2285 struct sched_domain_topology_level *tl; 2286 int j; 2287 2288 for_each_sd_topology(tl) { 2289 struct sd_data *sdd = &tl->data; 2290 2291 for_each_cpu(j, cpu_map) { 2292 struct sched_domain *sd; 2293 2294 if (sdd->sd) { 2295 sd = *per_cpu_ptr(sdd->sd, j); 2296 if (sd && (sd->flags & SD_OVERLAP)) 2297 free_sched_groups(sd->groups, 0); 2298 kfree(*per_cpu_ptr(sdd->sd, j)); 2299 } 2300 2301 if (sdd->sds) 2302 kfree(*per_cpu_ptr(sdd->sds, j)); 2303 if (sdd->sg) 2304 kfree(*per_cpu_ptr(sdd->sg, j)); 2305 if (sdd->sgc) 2306 kfree(*per_cpu_ptr(sdd->sgc, j)); 2307 } 2308 free_percpu(sdd->sd); 2309 sdd->sd = NULL; 2310 free_percpu(sdd->sds); 2311 sdd->sds = NULL; 2312 free_percpu(sdd->sg); 2313 sdd->sg = NULL; 2314 free_percpu(sdd->sgc); 2315 sdd->sgc = NULL; 2316 } 2317 } 2318 2319 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 2320 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 2321 struct sched_domain *child, int cpu) 2322 { 2323 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 2324 2325 if (child) { 2326 sd->level = child->level + 1; 2327 sched_domain_level_max = max(sched_domain_level_max, sd->level); 2328 child->parent = sd; 2329 2330 if (!cpumask_subset(sched_domain_span(child), 2331 sched_domain_span(sd))) { 2332 pr_err("BUG: arch topology borken\n"); 2333 #ifdef CONFIG_SCHED_DEBUG 2334 pr_err(" the %s domain not a subset of the %s domain\n", 2335 child->name, sd->name); 2336 #endif 2337 /* Fixup, ensure @sd has at least @child CPUs. */ 2338 cpumask_or(sched_domain_span(sd), 2339 sched_domain_span(sd), 2340 sched_domain_span(child)); 2341 } 2342 2343 } 2344 set_domain_attribute(sd, attr); 2345 2346 return sd; 2347 } 2348 2349 /* 2350 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 2351 * any two given CPUs at this (non-NUMA) topology level. 2352 */ 2353 static bool topology_span_sane(struct sched_domain_topology_level *tl, 2354 const struct cpumask *cpu_map, int cpu) 2355 { 2356 int i = cpu + 1; 2357 2358 /* NUMA levels are allowed to overlap */ 2359 if (tl->flags & SDTL_OVERLAP) 2360 return true; 2361 2362 /* 2363 * Non-NUMA levels cannot partially overlap - they must be either 2364 * completely equal or completely disjoint. Otherwise we can end up 2365 * breaking the sched_group lists - i.e. a later get_group() pass 2366 * breaks the linking done for an earlier span. 2367 */ 2368 for_each_cpu_from(i, cpu_map) { 2369 /* 2370 * We should 'and' all those masks with 'cpu_map' to exactly 2371 * match the topology we're about to build, but that can only 2372 * remove CPUs, which only lessens our ability to detect 2373 * overlaps 2374 */ 2375 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 2376 cpumask_intersects(tl->mask(cpu), tl->mask(i))) 2377 return false; 2378 } 2379 2380 return true; 2381 } 2382 2383 /* 2384 * Build sched domains for a given set of CPUs and attach the sched domains 2385 * to the individual CPUs 2386 */ 2387 static int 2388 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 2389 { 2390 enum s_alloc alloc_state = sa_none; 2391 struct sched_domain *sd; 2392 struct s_data d; 2393 struct rq *rq = NULL; 2394 int i, ret = -ENOMEM; 2395 bool has_asym = false; 2396 bool has_cluster = false; 2397 2398 if (WARN_ON(cpumask_empty(cpu_map))) 2399 goto error; 2400 2401 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 2402 if (alloc_state != sa_rootdomain) 2403 goto error; 2404 2405 /* Set up domains for CPUs specified by the cpu_map: */ 2406 for_each_cpu(i, cpu_map) { 2407 struct sched_domain_topology_level *tl; 2408 2409 sd = NULL; 2410 for_each_sd_topology(tl) { 2411 2412 if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2413 goto error; 2414 2415 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 2416 2417 has_asym |= sd->flags & SD_ASYM_CPUCAPACITY; 2418 2419 if (tl == sched_domain_topology) 2420 *per_cpu_ptr(d.sd, i) = sd; 2421 if (tl->flags & SDTL_OVERLAP) 2422 sd->flags |= SD_OVERLAP; 2423 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2424 break; 2425 } 2426 } 2427 2428 /* Build the groups for the domains */ 2429 for_each_cpu(i, cpu_map) { 2430 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2431 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2432 if (sd->flags & SD_OVERLAP) { 2433 if (build_overlap_sched_groups(sd, i)) 2434 goto error; 2435 } else { 2436 if (build_sched_groups(sd, i)) 2437 goto error; 2438 } 2439 } 2440 } 2441 2442 /* 2443 * Calculate an allowed NUMA imbalance such that LLCs do not get 2444 * imbalanced. 2445 */ 2446 for_each_cpu(i, cpu_map) { 2447 unsigned int imb = 0; 2448 unsigned int imb_span = 1; 2449 2450 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2451 struct sched_domain *child = sd->child; 2452 2453 if (!(sd->flags & SD_SHARE_LLC) && child && 2454 (child->flags & SD_SHARE_LLC)) { 2455 struct sched_domain __rcu *top_p; 2456 unsigned int nr_llcs; 2457 2458 /* 2459 * For a single LLC per node, allow an 2460 * imbalance up to 12.5% of the node. This is 2461 * arbitrary cutoff based two factors -- SMT and 2462 * memory channels. For SMT-2, the intent is to 2463 * avoid premature sharing of HT resources but 2464 * SMT-4 or SMT-8 *may* benefit from a different 2465 * cutoff. For memory channels, this is a very 2466 * rough estimate of how many channels may be 2467 * active and is based on recent CPUs with 2468 * many cores. 2469 * 2470 * For multiple LLCs, allow an imbalance 2471 * until multiple tasks would share an LLC 2472 * on one node while LLCs on another node 2473 * remain idle. This assumes that there are 2474 * enough logical CPUs per LLC to avoid SMT 2475 * factors and that there is a correlation 2476 * between LLCs and memory channels. 2477 */ 2478 nr_llcs = sd->span_weight / child->span_weight; 2479 if (nr_llcs == 1) 2480 imb = sd->span_weight >> 3; 2481 else 2482 imb = nr_llcs; 2483 imb = max(1U, imb); 2484 sd->imb_numa_nr = imb; 2485 2486 /* Set span based on the first NUMA domain. */ 2487 top_p = sd->parent; 2488 while (top_p && !(top_p->flags & SD_NUMA)) { 2489 top_p = top_p->parent; 2490 } 2491 imb_span = top_p ? top_p->span_weight : sd->span_weight; 2492 } else { 2493 int factor = max(1U, (sd->span_weight / imb_span)); 2494 2495 sd->imb_numa_nr = imb * factor; 2496 } 2497 } 2498 } 2499 2500 /* Calculate CPU capacity for physical packages and nodes */ 2501 for (i = nr_cpumask_bits-1; i >= 0; i--) { 2502 if (!cpumask_test_cpu(i, cpu_map)) 2503 continue; 2504 2505 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2506 claim_allocations(i, sd); 2507 init_sched_groups_capacity(i, sd); 2508 } 2509 } 2510 2511 /* Attach the domains */ 2512 rcu_read_lock(); 2513 for_each_cpu(i, cpu_map) { 2514 rq = cpu_rq(i); 2515 sd = *per_cpu_ptr(d.sd, i); 2516 2517 cpu_attach_domain(sd, d.rd, i); 2518 2519 if (lowest_flag_domain(i, SD_CLUSTER)) 2520 has_cluster = true; 2521 } 2522 rcu_read_unlock(); 2523 2524 if (has_asym) 2525 static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2526 2527 if (has_cluster) 2528 static_branch_inc_cpuslocked(&sched_cluster_active); 2529 2530 if (rq && sched_debug_verbose) 2531 pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map)); 2532 2533 ret = 0; 2534 error: 2535 __free_domain_allocs(&d, alloc_state, cpu_map); 2536 2537 return ret; 2538 } 2539 2540 /* Current sched domains: */ 2541 static cpumask_var_t *doms_cur; 2542 2543 /* Number of sched domains in 'doms_cur': */ 2544 static int ndoms_cur; 2545 2546 /* Attributes of custom domains in 'doms_cur' */ 2547 static struct sched_domain_attr *dattr_cur; 2548 2549 /* 2550 * Special case: If a kmalloc() of a doms_cur partition (array of 2551 * cpumask) fails, then fallback to a single sched domain, 2552 * as determined by the single cpumask fallback_doms. 2553 */ 2554 static cpumask_var_t fallback_doms; 2555 2556 /* 2557 * arch_update_cpu_topology lets virtualized architectures update the 2558 * CPU core maps. It is supposed to return 1 if the topology changed 2559 * or 0 if it stayed the same. 2560 */ 2561 int __weak arch_update_cpu_topology(void) 2562 { 2563 return 0; 2564 } 2565 2566 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2567 { 2568 int i; 2569 cpumask_var_t *doms; 2570 2571 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2572 if (!doms) 2573 return NULL; 2574 for (i = 0; i < ndoms; i++) { 2575 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2576 free_sched_domains(doms, i); 2577 return NULL; 2578 } 2579 } 2580 return doms; 2581 } 2582 2583 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2584 { 2585 unsigned int i; 2586 for (i = 0; i < ndoms; i++) 2587 free_cpumask_var(doms[i]); 2588 kfree(doms); 2589 } 2590 2591 /* 2592 * Set up scheduler domains and groups. For now this just excludes isolated 2593 * CPUs, but could be used to exclude other special cases in the future. 2594 */ 2595 int __init sched_init_domains(const struct cpumask *cpu_map) 2596 { 2597 int err; 2598 2599 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 2600 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 2601 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 2602 2603 arch_update_cpu_topology(); 2604 asym_cpu_capacity_scan(); 2605 ndoms_cur = 1; 2606 doms_cur = alloc_sched_domains(ndoms_cur); 2607 if (!doms_cur) 2608 doms_cur = &fallback_doms; 2609 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN)); 2610 err = build_sched_domains(doms_cur[0], NULL); 2611 2612 return err; 2613 } 2614 2615 /* 2616 * Detach sched domains from a group of CPUs specified in cpu_map 2617 * These CPUs will now be attached to the NULL domain 2618 */ 2619 static void detach_destroy_domains(const struct cpumask *cpu_map) 2620 { 2621 unsigned int cpu = cpumask_any(cpu_map); 2622 int i; 2623 2624 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2625 static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2626 2627 if (static_branch_unlikely(&sched_cluster_active)) 2628 static_branch_dec_cpuslocked(&sched_cluster_active); 2629 2630 rcu_read_lock(); 2631 for_each_cpu(i, cpu_map) 2632 cpu_attach_domain(NULL, &def_root_domain, i); 2633 rcu_read_unlock(); 2634 } 2635 2636 /* handle null as "default" */ 2637 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2638 struct sched_domain_attr *new, int idx_new) 2639 { 2640 struct sched_domain_attr tmp; 2641 2642 /* Fast path: */ 2643 if (!new && !cur) 2644 return 1; 2645 2646 tmp = SD_ATTR_INIT; 2647 2648 return !memcmp(cur ? (cur + idx_cur) : &tmp, 2649 new ? (new + idx_new) : &tmp, 2650 sizeof(struct sched_domain_attr)); 2651 } 2652 2653 /* 2654 * Partition sched domains as specified by the 'ndoms_new' 2655 * cpumasks in the array doms_new[] of cpumasks. This compares 2656 * doms_new[] to the current sched domain partitioning, doms_cur[]. 2657 * It destroys each deleted domain and builds each new domain. 2658 * 2659 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2660 * The masks don't intersect (don't overlap.) We should setup one 2661 * sched domain for each mask. CPUs not in any of the cpumasks will 2662 * not be load balanced. If the same cpumask appears both in the 2663 * current 'doms_cur' domains and in the new 'doms_new', we can leave 2664 * it as it is. 2665 * 2666 * The passed in 'doms_new' should be allocated using 2667 * alloc_sched_domains. This routine takes ownership of it and will 2668 * free_sched_domains it when done with it. If the caller failed the 2669 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2670 * and partition_sched_domains() will fallback to the single partition 2671 * 'fallback_doms', it also forces the domains to be rebuilt. 2672 * 2673 * If doms_new == NULL it will be replaced with cpu_online_mask. 2674 * ndoms_new == 0 is a special case for destroying existing domains, 2675 * and it will not create the default domain. 2676 * 2677 * Call with hotplug lock and sched_domains_mutex held 2678 */ 2679 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2680 struct sched_domain_attr *dattr_new) 2681 { 2682 bool __maybe_unused has_eas = false; 2683 int i, j, n; 2684 int new_topology; 2685 2686 lockdep_assert_held(&sched_domains_mutex); 2687 2688 /* Let the architecture update CPU core mappings: */ 2689 new_topology = arch_update_cpu_topology(); 2690 /* Trigger rebuilding CPU capacity asymmetry data */ 2691 if (new_topology) 2692 asym_cpu_capacity_scan(); 2693 2694 if (!doms_new) { 2695 WARN_ON_ONCE(dattr_new); 2696 n = 0; 2697 doms_new = alloc_sched_domains(1); 2698 if (doms_new) { 2699 n = 1; 2700 cpumask_and(doms_new[0], cpu_active_mask, 2701 housekeeping_cpumask(HK_TYPE_DOMAIN)); 2702 } 2703 } else { 2704 n = ndoms_new; 2705 } 2706 2707 /* Destroy deleted domains: */ 2708 for (i = 0; i < ndoms_cur; i++) { 2709 for (j = 0; j < n && !new_topology; j++) { 2710 if (cpumask_equal(doms_cur[i], doms_new[j]) && 2711 dattrs_equal(dattr_cur, i, dattr_new, j)) { 2712 struct root_domain *rd; 2713 2714 /* 2715 * This domain won't be destroyed and as such 2716 * its dl_bw->total_bw needs to be cleared. It 2717 * will be recomputed in function 2718 * update_tasks_root_domain(). 2719 */ 2720 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2721 dl_clear_root_domain(rd); 2722 goto match1; 2723 } 2724 } 2725 /* No match - a current sched domain not in new doms_new[] */ 2726 detach_destroy_domains(doms_cur[i]); 2727 match1: 2728 ; 2729 } 2730 2731 n = ndoms_cur; 2732 if (!doms_new) { 2733 n = 0; 2734 doms_new = &fallback_doms; 2735 cpumask_and(doms_new[0], cpu_active_mask, 2736 housekeeping_cpumask(HK_TYPE_DOMAIN)); 2737 } 2738 2739 /* Build new domains: */ 2740 for (i = 0; i < ndoms_new; i++) { 2741 for (j = 0; j < n && !new_topology; j++) { 2742 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2743 dattrs_equal(dattr_new, i, dattr_cur, j)) 2744 goto match2; 2745 } 2746 /* No match - add a new doms_new */ 2747 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2748 match2: 2749 ; 2750 } 2751 2752 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2753 /* Build perf domains: */ 2754 for (i = 0; i < ndoms_new; i++) { 2755 for (j = 0; j < n && !sched_energy_update; j++) { 2756 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2757 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 2758 has_eas = true; 2759 goto match3; 2760 } 2761 } 2762 /* No match - add perf domains for a new rd */ 2763 has_eas |= build_perf_domains(doms_new[i]); 2764 match3: 2765 ; 2766 } 2767 sched_energy_set(has_eas); 2768 #endif 2769 2770 /* Remember the new sched domains: */ 2771 if (doms_cur != &fallback_doms) 2772 free_sched_domains(doms_cur, ndoms_cur); 2773 2774 kfree(dattr_cur); 2775 doms_cur = doms_new; 2776 dattr_cur = dattr_new; 2777 ndoms_cur = ndoms_new; 2778 2779 update_sched_domain_debugfs(); 2780 } 2781 2782 /* 2783 * Call with hotplug lock held 2784 */ 2785 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2786 struct sched_domain_attr *dattr_new) 2787 { 2788 mutex_lock(&sched_domains_mutex); 2789 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2790 mutex_unlock(&sched_domains_mutex); 2791 } 2792
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.