~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/signal.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  linux/kernel/signal.c
  4  *
  5  *  Copyright (C) 1991, 1992  Linus Torvalds
  6  *
  7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
  8  *
  9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
 10  *              Changes to use preallocated sigqueue structures
 11  *              to allow signals to be sent reliably.
 12  */
 13 
 14 #include <linux/slab.h>
 15 #include <linux/export.h>
 16 #include <linux/init.h>
 17 #include <linux/sched/mm.h>
 18 #include <linux/sched/user.h>
 19 #include <linux/sched/debug.h>
 20 #include <linux/sched/task.h>
 21 #include <linux/sched/task_stack.h>
 22 #include <linux/sched/cputime.h>
 23 #include <linux/file.h>
 24 #include <linux/fs.h>
 25 #include <linux/mm.h>
 26 #include <linux/proc_fs.h>
 27 #include <linux/tty.h>
 28 #include <linux/binfmts.h>
 29 #include <linux/coredump.h>
 30 #include <linux/security.h>
 31 #include <linux/syscalls.h>
 32 #include <linux/ptrace.h>
 33 #include <linux/signal.h>
 34 #include <linux/signalfd.h>
 35 #include <linux/ratelimit.h>
 36 #include <linux/task_work.h>
 37 #include <linux/capability.h>
 38 #include <linux/freezer.h>
 39 #include <linux/pid_namespace.h>
 40 #include <linux/nsproxy.h>
 41 #include <linux/user_namespace.h>
 42 #include <linux/uprobes.h>
 43 #include <linux/compat.h>
 44 #include <linux/cn_proc.h>
 45 #include <linux/compiler.h>
 46 #include <linux/posix-timers.h>
 47 #include <linux/cgroup.h>
 48 #include <linux/audit.h>
 49 #include <linux/sysctl.h>
 50 #include <uapi/linux/pidfd.h>
 51 
 52 #define CREATE_TRACE_POINTS
 53 #include <trace/events/signal.h>
 54 
 55 #include <asm/param.h>
 56 #include <linux/uaccess.h>
 57 #include <asm/unistd.h>
 58 #include <asm/siginfo.h>
 59 #include <asm/cacheflush.h>
 60 #include <asm/syscall.h>        /* for syscall_get_* */
 61 
 62 /*
 63  * SLAB caches for signal bits.
 64  */
 65 
 66 static struct kmem_cache *sigqueue_cachep;
 67 
 68 int print_fatal_signals __read_mostly;
 69 
 70 static void __user *sig_handler(struct task_struct *t, int sig)
 71 {
 72         return t->sighand->action[sig - 1].sa.sa_handler;
 73 }
 74 
 75 static inline bool sig_handler_ignored(void __user *handler, int sig)
 76 {
 77         /* Is it explicitly or implicitly ignored? */
 78         return handler == SIG_IGN ||
 79                (handler == SIG_DFL && sig_kernel_ignore(sig));
 80 }
 81 
 82 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
 83 {
 84         void __user *handler;
 85 
 86         handler = sig_handler(t, sig);
 87 
 88         /* SIGKILL and SIGSTOP may not be sent to the global init */
 89         if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
 90                 return true;
 91 
 92         if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
 93             handler == SIG_DFL && !(force && sig_kernel_only(sig)))
 94                 return true;
 95 
 96         /* Only allow kernel generated signals to this kthread */
 97         if (unlikely((t->flags & PF_KTHREAD) &&
 98                      (handler == SIG_KTHREAD_KERNEL) && !force))
 99                 return true;
100 
101         return sig_handler_ignored(handler, sig);
102 }
103 
104 static bool sig_ignored(struct task_struct *t, int sig, bool force)
105 {
106         /*
107          * Blocked signals are never ignored, since the
108          * signal handler may change by the time it is
109          * unblocked.
110          */
111         if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
112                 return false;
113 
114         /*
115          * Tracers may want to know about even ignored signal unless it
116          * is SIGKILL which can't be reported anyway but can be ignored
117          * by SIGNAL_UNKILLABLE task.
118          */
119         if (t->ptrace && sig != SIGKILL)
120                 return false;
121 
122         return sig_task_ignored(t, sig, force);
123 }
124 
125 /*
126  * Re-calculate pending state from the set of locally pending
127  * signals, globally pending signals, and blocked signals.
128  */
129 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
130 {
131         unsigned long ready;
132         long i;
133 
134         switch (_NSIG_WORDS) {
135         default:
136                 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
137                         ready |= signal->sig[i] &~ blocked->sig[i];
138                 break;
139 
140         case 4: ready  = signal->sig[3] &~ blocked->sig[3];
141                 ready |= signal->sig[2] &~ blocked->sig[2];
142                 ready |= signal->sig[1] &~ blocked->sig[1];
143                 ready |= signal->sig[0] &~ blocked->sig[0];
144                 break;
145 
146         case 2: ready  = signal->sig[1] &~ blocked->sig[1];
147                 ready |= signal->sig[0] &~ blocked->sig[0];
148                 break;
149 
150         case 1: ready  = signal->sig[0] &~ blocked->sig[0];
151         }
152         return ready != 0;
153 }
154 
155 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
156 
157 static bool recalc_sigpending_tsk(struct task_struct *t)
158 {
159         if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
160             PENDING(&t->pending, &t->blocked) ||
161             PENDING(&t->signal->shared_pending, &t->blocked) ||
162             cgroup_task_frozen(t)) {
163                 set_tsk_thread_flag(t, TIF_SIGPENDING);
164                 return true;
165         }
166 
167         /*
168          * We must never clear the flag in another thread, or in current
169          * when it's possible the current syscall is returning -ERESTART*.
170          * So we don't clear it here, and only callers who know they should do.
171          */
172         return false;
173 }
174 
175 void recalc_sigpending(void)
176 {
177         if (!recalc_sigpending_tsk(current) && !freezing(current))
178                 clear_thread_flag(TIF_SIGPENDING);
179 
180 }
181 EXPORT_SYMBOL(recalc_sigpending);
182 
183 void calculate_sigpending(void)
184 {
185         /* Have any signals or users of TIF_SIGPENDING been delayed
186          * until after fork?
187          */
188         spin_lock_irq(&current->sighand->siglock);
189         set_tsk_thread_flag(current, TIF_SIGPENDING);
190         recalc_sigpending();
191         spin_unlock_irq(&current->sighand->siglock);
192 }
193 
194 /* Given the mask, find the first available signal that should be serviced. */
195 
196 #define SYNCHRONOUS_MASK \
197         (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
198          sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
199 
200 int next_signal(struct sigpending *pending, sigset_t *mask)
201 {
202         unsigned long i, *s, *m, x;
203         int sig = 0;
204 
205         s = pending->signal.sig;
206         m = mask->sig;
207 
208         /*
209          * Handle the first word specially: it contains the
210          * synchronous signals that need to be dequeued first.
211          */
212         x = *s &~ *m;
213         if (x) {
214                 if (x & SYNCHRONOUS_MASK)
215                         x &= SYNCHRONOUS_MASK;
216                 sig = ffz(~x) + 1;
217                 return sig;
218         }
219 
220         switch (_NSIG_WORDS) {
221         default:
222                 for (i = 1; i < _NSIG_WORDS; ++i) {
223                         x = *++s &~ *++m;
224                         if (!x)
225                                 continue;
226                         sig = ffz(~x) + i*_NSIG_BPW + 1;
227                         break;
228                 }
229                 break;
230 
231         case 2:
232                 x = s[1] &~ m[1];
233                 if (!x)
234                         break;
235                 sig = ffz(~x) + _NSIG_BPW + 1;
236                 break;
237 
238         case 1:
239                 /* Nothing to do */
240                 break;
241         }
242 
243         return sig;
244 }
245 
246 static inline void print_dropped_signal(int sig)
247 {
248         static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
249 
250         if (!print_fatal_signals)
251                 return;
252 
253         if (!__ratelimit(&ratelimit_state))
254                 return;
255 
256         pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
257                                 current->comm, current->pid, sig);
258 }
259 
260 /**
261  * task_set_jobctl_pending - set jobctl pending bits
262  * @task: target task
263  * @mask: pending bits to set
264  *
265  * Clear @mask from @task->jobctl.  @mask must be subset of
266  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
267  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
268  * cleared.  If @task is already being killed or exiting, this function
269  * becomes noop.
270  *
271  * CONTEXT:
272  * Must be called with @task->sighand->siglock held.
273  *
274  * RETURNS:
275  * %true if @mask is set, %false if made noop because @task was dying.
276  */
277 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
278 {
279         BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
280                         JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
281         BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
282 
283         if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
284                 return false;
285 
286         if (mask & JOBCTL_STOP_SIGMASK)
287                 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
288 
289         task->jobctl |= mask;
290         return true;
291 }
292 
293 /**
294  * task_clear_jobctl_trapping - clear jobctl trapping bit
295  * @task: target task
296  *
297  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
298  * Clear it and wake up the ptracer.  Note that we don't need any further
299  * locking.  @task->siglock guarantees that @task->parent points to the
300  * ptracer.
301  *
302  * CONTEXT:
303  * Must be called with @task->sighand->siglock held.
304  */
305 void task_clear_jobctl_trapping(struct task_struct *task)
306 {
307         if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
308                 task->jobctl &= ~JOBCTL_TRAPPING;
309                 smp_mb();       /* advised by wake_up_bit() */
310                 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
311         }
312 }
313 
314 /**
315  * task_clear_jobctl_pending - clear jobctl pending bits
316  * @task: target task
317  * @mask: pending bits to clear
318  *
319  * Clear @mask from @task->jobctl.  @mask must be subset of
320  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
321  * STOP bits are cleared together.
322  *
323  * If clearing of @mask leaves no stop or trap pending, this function calls
324  * task_clear_jobctl_trapping().
325  *
326  * CONTEXT:
327  * Must be called with @task->sighand->siglock held.
328  */
329 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
330 {
331         BUG_ON(mask & ~JOBCTL_PENDING_MASK);
332 
333         if (mask & JOBCTL_STOP_PENDING)
334                 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
335 
336         task->jobctl &= ~mask;
337 
338         if (!(task->jobctl & JOBCTL_PENDING_MASK))
339                 task_clear_jobctl_trapping(task);
340 }
341 
342 /**
343  * task_participate_group_stop - participate in a group stop
344  * @task: task participating in a group stop
345  *
346  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
347  * Group stop states are cleared and the group stop count is consumed if
348  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
349  * stop, the appropriate `SIGNAL_*` flags are set.
350  *
351  * CONTEXT:
352  * Must be called with @task->sighand->siglock held.
353  *
354  * RETURNS:
355  * %true if group stop completion should be notified to the parent, %false
356  * otherwise.
357  */
358 static bool task_participate_group_stop(struct task_struct *task)
359 {
360         struct signal_struct *sig = task->signal;
361         bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
362 
363         WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
364 
365         task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
366 
367         if (!consume)
368                 return false;
369 
370         if (!WARN_ON_ONCE(sig->group_stop_count == 0))
371                 sig->group_stop_count--;
372 
373         /*
374          * Tell the caller to notify completion iff we are entering into a
375          * fresh group stop.  Read comment in do_signal_stop() for details.
376          */
377         if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
378                 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
379                 return true;
380         }
381         return false;
382 }
383 
384 void task_join_group_stop(struct task_struct *task)
385 {
386         unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
387         struct signal_struct *sig = current->signal;
388 
389         if (sig->group_stop_count) {
390                 sig->group_stop_count++;
391                 mask |= JOBCTL_STOP_CONSUME;
392         } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
393                 return;
394 
395         /* Have the new thread join an on-going signal group stop */
396         task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
397 }
398 
399 /*
400  * allocate a new signal queue record
401  * - this may be called without locks if and only if t == current, otherwise an
402  *   appropriate lock must be held to stop the target task from exiting
403  */
404 static struct sigqueue *
405 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
406                  int override_rlimit, const unsigned int sigqueue_flags)
407 {
408         struct sigqueue *q = NULL;
409         struct ucounts *ucounts;
410         long sigpending;
411 
412         /*
413          * Protect access to @t credentials. This can go away when all
414          * callers hold rcu read lock.
415          *
416          * NOTE! A pending signal will hold on to the user refcount,
417          * and we get/put the refcount only when the sigpending count
418          * changes from/to zero.
419          */
420         rcu_read_lock();
421         ucounts = task_ucounts(t);
422         sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
423         rcu_read_unlock();
424         if (!sigpending)
425                 return NULL;
426 
427         if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
428                 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
429         } else {
430                 print_dropped_signal(sig);
431         }
432 
433         if (unlikely(q == NULL)) {
434                 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
435         } else {
436                 INIT_LIST_HEAD(&q->list);
437                 q->flags = sigqueue_flags;
438                 q->ucounts = ucounts;
439         }
440         return q;
441 }
442 
443 static void __sigqueue_free(struct sigqueue *q)
444 {
445         if (q->flags & SIGQUEUE_PREALLOC)
446                 return;
447         if (q->ucounts) {
448                 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
449                 q->ucounts = NULL;
450         }
451         kmem_cache_free(sigqueue_cachep, q);
452 }
453 
454 void flush_sigqueue(struct sigpending *queue)
455 {
456         struct sigqueue *q;
457 
458         sigemptyset(&queue->signal);
459         while (!list_empty(&queue->list)) {
460                 q = list_entry(queue->list.next, struct sigqueue , list);
461                 list_del_init(&q->list);
462                 __sigqueue_free(q);
463         }
464 }
465 
466 /*
467  * Flush all pending signals for this kthread.
468  */
469 void flush_signals(struct task_struct *t)
470 {
471         unsigned long flags;
472 
473         spin_lock_irqsave(&t->sighand->siglock, flags);
474         clear_tsk_thread_flag(t, TIF_SIGPENDING);
475         flush_sigqueue(&t->pending);
476         flush_sigqueue(&t->signal->shared_pending);
477         spin_unlock_irqrestore(&t->sighand->siglock, flags);
478 }
479 EXPORT_SYMBOL(flush_signals);
480 
481 #ifdef CONFIG_POSIX_TIMERS
482 static void __flush_itimer_signals(struct sigpending *pending)
483 {
484         sigset_t signal, retain;
485         struct sigqueue *q, *n;
486 
487         signal = pending->signal;
488         sigemptyset(&retain);
489 
490         list_for_each_entry_safe(q, n, &pending->list, list) {
491                 int sig = q->info.si_signo;
492 
493                 if (likely(q->info.si_code != SI_TIMER)) {
494                         sigaddset(&retain, sig);
495                 } else {
496                         sigdelset(&signal, sig);
497                         list_del_init(&q->list);
498                         __sigqueue_free(q);
499                 }
500         }
501 
502         sigorsets(&pending->signal, &signal, &retain);
503 }
504 
505 void flush_itimer_signals(void)
506 {
507         struct task_struct *tsk = current;
508         unsigned long flags;
509 
510         spin_lock_irqsave(&tsk->sighand->siglock, flags);
511         __flush_itimer_signals(&tsk->pending);
512         __flush_itimer_signals(&tsk->signal->shared_pending);
513         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
514 }
515 #endif
516 
517 void ignore_signals(struct task_struct *t)
518 {
519         int i;
520 
521         for (i = 0; i < _NSIG; ++i)
522                 t->sighand->action[i].sa.sa_handler = SIG_IGN;
523 
524         flush_signals(t);
525 }
526 
527 /*
528  * Flush all handlers for a task.
529  */
530 
531 void
532 flush_signal_handlers(struct task_struct *t, int force_default)
533 {
534         int i;
535         struct k_sigaction *ka = &t->sighand->action[0];
536         for (i = _NSIG ; i != 0 ; i--) {
537                 if (force_default || ka->sa.sa_handler != SIG_IGN)
538                         ka->sa.sa_handler = SIG_DFL;
539                 ka->sa.sa_flags = 0;
540 #ifdef __ARCH_HAS_SA_RESTORER
541                 ka->sa.sa_restorer = NULL;
542 #endif
543                 sigemptyset(&ka->sa.sa_mask);
544                 ka++;
545         }
546 }
547 
548 bool unhandled_signal(struct task_struct *tsk, int sig)
549 {
550         void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
551         if (is_global_init(tsk))
552                 return true;
553 
554         if (handler != SIG_IGN && handler != SIG_DFL)
555                 return false;
556 
557         /* If dying, we handle all new signals by ignoring them */
558         if (fatal_signal_pending(tsk))
559                 return false;
560 
561         /* if ptraced, let the tracer determine */
562         return !tsk->ptrace;
563 }
564 
565 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
566                            bool *resched_timer)
567 {
568         struct sigqueue *q, *first = NULL;
569 
570         /*
571          * Collect the siginfo appropriate to this signal.  Check if
572          * there is another siginfo for the same signal.
573         */
574         list_for_each_entry(q, &list->list, list) {
575                 if (q->info.si_signo == sig) {
576                         if (first)
577                                 goto still_pending;
578                         first = q;
579                 }
580         }
581 
582         sigdelset(&list->signal, sig);
583 
584         if (first) {
585 still_pending:
586                 list_del_init(&first->list);
587                 copy_siginfo(info, &first->info);
588 
589                 *resched_timer =
590                         (first->flags & SIGQUEUE_PREALLOC) &&
591                         (info->si_code == SI_TIMER) &&
592                         (info->si_sys_private);
593 
594                 __sigqueue_free(first);
595         } else {
596                 /*
597                  * Ok, it wasn't in the queue.  This must be
598                  * a fast-pathed signal or we must have been
599                  * out of queue space.  So zero out the info.
600                  */
601                 clear_siginfo(info);
602                 info->si_signo = sig;
603                 info->si_errno = 0;
604                 info->si_code = SI_USER;
605                 info->si_pid = 0;
606                 info->si_uid = 0;
607         }
608 }
609 
610 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
611                         kernel_siginfo_t *info, bool *resched_timer)
612 {
613         int sig = next_signal(pending, mask);
614 
615         if (sig)
616                 collect_signal(sig, pending, info, resched_timer);
617         return sig;
618 }
619 
620 /*
621  * Dequeue a signal and return the element to the caller, which is
622  * expected to free it.
623  *
624  * All callers have to hold the siglock.
625  */
626 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
627                    kernel_siginfo_t *info, enum pid_type *type)
628 {
629         bool resched_timer = false;
630         int signr;
631 
632         /* We only dequeue private signals from ourselves, we don't let
633          * signalfd steal them
634          */
635         *type = PIDTYPE_PID;
636         signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
637         if (!signr) {
638                 *type = PIDTYPE_TGID;
639                 signr = __dequeue_signal(&tsk->signal->shared_pending,
640                                          mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
642                 /*
643                  * itimer signal ?
644                  *
645                  * itimers are process shared and we restart periodic
646                  * itimers in the signal delivery path to prevent DoS
647                  * attacks in the high resolution timer case. This is
648                  * compliant with the old way of self-restarting
649                  * itimers, as the SIGALRM is a legacy signal and only
650                  * queued once. Changing the restart behaviour to
651                  * restart the timer in the signal dequeue path is
652                  * reducing the timer noise on heavy loaded !highres
653                  * systems too.
654                  */
655                 if (unlikely(signr == SIGALRM)) {
656                         struct hrtimer *tmr = &tsk->signal->real_timer;
657 
658                         if (!hrtimer_is_queued(tmr) &&
659                             tsk->signal->it_real_incr != 0) {
660                                 hrtimer_forward(tmr, tmr->base->get_time(),
661                                                 tsk->signal->it_real_incr);
662                                 hrtimer_restart(tmr);
663                         }
664                 }
665 #endif
666         }
667 
668         recalc_sigpending();
669         if (!signr)
670                 return 0;
671 
672         if (unlikely(sig_kernel_stop(signr))) {
673                 /*
674                  * Set a marker that we have dequeued a stop signal.  Our
675                  * caller might release the siglock and then the pending
676                  * stop signal it is about to process is no longer in the
677                  * pending bitmasks, but must still be cleared by a SIGCONT
678                  * (and overruled by a SIGKILL).  So those cases clear this
679                  * shared flag after we've set it.  Note that this flag may
680                  * remain set after the signal we return is ignored or
681                  * handled.  That doesn't matter because its only purpose
682                  * is to alert stop-signal processing code when another
683                  * processor has come along and cleared the flag.
684                  */
685                 current->jobctl |= JOBCTL_STOP_DEQUEUED;
686         }
687 #ifdef CONFIG_POSIX_TIMERS
688         if (resched_timer) {
689                 /*
690                  * Release the siglock to ensure proper locking order
691                  * of timer locks outside of siglocks.  Note, we leave
692                  * irqs disabled here, since the posix-timers code is
693                  * about to disable them again anyway.
694                  */
695                 spin_unlock(&tsk->sighand->siglock);
696                 posixtimer_rearm(info);
697                 spin_lock(&tsk->sighand->siglock);
698 
699                 /* Don't expose the si_sys_private value to userspace */
700                 info->si_sys_private = 0;
701         }
702 #endif
703         return signr;
704 }
705 EXPORT_SYMBOL_GPL(dequeue_signal);
706 
707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
708 {
709         struct task_struct *tsk = current;
710         struct sigpending *pending = &tsk->pending;
711         struct sigqueue *q, *sync = NULL;
712 
713         /*
714          * Might a synchronous signal be in the queue?
715          */
716         if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
717                 return 0;
718 
719         /*
720          * Return the first synchronous signal in the queue.
721          */
722         list_for_each_entry(q, &pending->list, list) {
723                 /* Synchronous signals have a positive si_code */
724                 if ((q->info.si_code > SI_USER) &&
725                     (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
726                         sync = q;
727                         goto next;
728                 }
729         }
730         return 0;
731 next:
732         /*
733          * Check if there is another siginfo for the same signal.
734          */
735         list_for_each_entry_continue(q, &pending->list, list) {
736                 if (q->info.si_signo == sync->info.si_signo)
737                         goto still_pending;
738         }
739 
740         sigdelset(&pending->signal, sync->info.si_signo);
741         recalc_sigpending();
742 still_pending:
743         list_del_init(&sync->list);
744         copy_siginfo(info, &sync->info);
745         __sigqueue_free(sync);
746         return info->si_signo;
747 }
748 
749 /*
750  * Tell a process that it has a new active signal..
751  *
752  * NOTE! we rely on the previous spin_lock to
753  * lock interrupts for us! We can only be called with
754  * "siglock" held, and the local interrupt must
755  * have been disabled when that got acquired!
756  *
757  * No need to set need_resched since signal event passing
758  * goes through ->blocked
759  */
760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
761 {
762         lockdep_assert_held(&t->sighand->siglock);
763 
764         set_tsk_thread_flag(t, TIF_SIGPENDING);
765 
766         /*
767          * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
768          * case. We don't check t->state here because there is a race with it
769          * executing another processor and just now entering stopped state.
770          * By using wake_up_state, we ensure the process will wake up and
771          * handle its death signal.
772          */
773         if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
774                 kick_process(t);
775 }
776 
777 /*
778  * Remove signals in mask from the pending set and queue.
779  * Returns 1 if any signals were found.
780  *
781  * All callers must be holding the siglock.
782  */
783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
784 {
785         struct sigqueue *q, *n;
786         sigset_t m;
787 
788         sigandsets(&m, mask, &s->signal);
789         if (sigisemptyset(&m))
790                 return;
791 
792         sigandnsets(&s->signal, &s->signal, mask);
793         list_for_each_entry_safe(q, n, &s->list, list) {
794                 if (sigismember(mask, q->info.si_signo)) {
795                         list_del_init(&q->list);
796                         __sigqueue_free(q);
797                 }
798         }
799 }
800 
801 static inline int is_si_special(const struct kernel_siginfo *info)
802 {
803         return info <= SEND_SIG_PRIV;
804 }
805 
806 static inline bool si_fromuser(const struct kernel_siginfo *info)
807 {
808         return info == SEND_SIG_NOINFO ||
809                 (!is_si_special(info) && SI_FROMUSER(info));
810 }
811 
812 /*
813  * called with RCU read lock from check_kill_permission()
814  */
815 static bool kill_ok_by_cred(struct task_struct *t)
816 {
817         const struct cred *cred = current_cred();
818         const struct cred *tcred = __task_cred(t);
819 
820         return uid_eq(cred->euid, tcred->suid) ||
821                uid_eq(cred->euid, tcred->uid) ||
822                uid_eq(cred->uid, tcred->suid) ||
823                uid_eq(cred->uid, tcred->uid) ||
824                ns_capable(tcred->user_ns, CAP_KILL);
825 }
826 
827 /*
828  * Bad permissions for sending the signal
829  * - the caller must hold the RCU read lock
830  */
831 static int check_kill_permission(int sig, struct kernel_siginfo *info,
832                                  struct task_struct *t)
833 {
834         struct pid *sid;
835         int error;
836 
837         if (!valid_signal(sig))
838                 return -EINVAL;
839 
840         if (!si_fromuser(info))
841                 return 0;
842 
843         error = audit_signal_info(sig, t); /* Let audit system see the signal */
844         if (error)
845                 return error;
846 
847         if (!same_thread_group(current, t) &&
848             !kill_ok_by_cred(t)) {
849                 switch (sig) {
850                 case SIGCONT:
851                         sid = task_session(t);
852                         /*
853                          * We don't return the error if sid == NULL. The
854                          * task was unhashed, the caller must notice this.
855                          */
856                         if (!sid || sid == task_session(current))
857                                 break;
858                         fallthrough;
859                 default:
860                         return -EPERM;
861                 }
862         }
863 
864         return security_task_kill(t, info, sig, NULL);
865 }
866 
867 /**
868  * ptrace_trap_notify - schedule trap to notify ptracer
869  * @t: tracee wanting to notify tracer
870  *
871  * This function schedules sticky ptrace trap which is cleared on the next
872  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
873  * ptracer.
874  *
875  * If @t is running, STOP trap will be taken.  If trapped for STOP and
876  * ptracer is listening for events, tracee is woken up so that it can
877  * re-trap for the new event.  If trapped otherwise, STOP trap will be
878  * eventually taken without returning to userland after the existing traps
879  * are finished by PTRACE_CONT.
880  *
881  * CONTEXT:
882  * Must be called with @task->sighand->siglock held.
883  */
884 static void ptrace_trap_notify(struct task_struct *t)
885 {
886         WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
887         lockdep_assert_held(&t->sighand->siglock);
888 
889         task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
890         ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
891 }
892 
893 /*
894  * Handle magic process-wide effects of stop/continue signals. Unlike
895  * the signal actions, these happen immediately at signal-generation
896  * time regardless of blocking, ignoring, or handling.  This does the
897  * actual continuing for SIGCONT, but not the actual stopping for stop
898  * signals. The process stop is done as a signal action for SIG_DFL.
899  *
900  * Returns true if the signal should be actually delivered, otherwise
901  * it should be dropped.
902  */
903 static bool prepare_signal(int sig, struct task_struct *p, bool force)
904 {
905         struct signal_struct *signal = p->signal;
906         struct task_struct *t;
907         sigset_t flush;
908 
909         if (signal->flags & SIGNAL_GROUP_EXIT) {
910                 if (signal->core_state)
911                         return sig == SIGKILL;
912                 /*
913                  * The process is in the middle of dying, drop the signal.
914                  */
915                 return false;
916         } else if (sig_kernel_stop(sig)) {
917                 /*
918                  * This is a stop signal.  Remove SIGCONT from all queues.
919                  */
920                 siginitset(&flush, sigmask(SIGCONT));
921                 flush_sigqueue_mask(&flush, &signal->shared_pending);
922                 for_each_thread(p, t)
923                         flush_sigqueue_mask(&flush, &t->pending);
924         } else if (sig == SIGCONT) {
925                 unsigned int why;
926                 /*
927                  * Remove all stop signals from all queues, wake all threads.
928                  */
929                 siginitset(&flush, SIG_KERNEL_STOP_MASK);
930                 flush_sigqueue_mask(&flush, &signal->shared_pending);
931                 for_each_thread(p, t) {
932                         flush_sigqueue_mask(&flush, &t->pending);
933                         task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
934                         if (likely(!(t->ptrace & PT_SEIZED))) {
935                                 t->jobctl &= ~JOBCTL_STOPPED;
936                                 wake_up_state(t, __TASK_STOPPED);
937                         } else
938                                 ptrace_trap_notify(t);
939                 }
940 
941                 /*
942                  * Notify the parent with CLD_CONTINUED if we were stopped.
943                  *
944                  * If we were in the middle of a group stop, we pretend it
945                  * was already finished, and then continued. Since SIGCHLD
946                  * doesn't queue we report only CLD_STOPPED, as if the next
947                  * CLD_CONTINUED was dropped.
948                  */
949                 why = 0;
950                 if (signal->flags & SIGNAL_STOP_STOPPED)
951                         why |= SIGNAL_CLD_CONTINUED;
952                 else if (signal->group_stop_count)
953                         why |= SIGNAL_CLD_STOPPED;
954 
955                 if (why) {
956                         /*
957                          * The first thread which returns from do_signal_stop()
958                          * will take ->siglock, notice SIGNAL_CLD_MASK, and
959                          * notify its parent. See get_signal().
960                          */
961                         signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
962                         signal->group_stop_count = 0;
963                         signal->group_exit_code = 0;
964                 }
965         }
966 
967         return !sig_ignored(p, sig, force);
968 }
969 
970 /*
971  * Test if P wants to take SIG.  After we've checked all threads with this,
972  * it's equivalent to finding no threads not blocking SIG.  Any threads not
973  * blocking SIG were ruled out because they are not running and already
974  * have pending signals.  Such threads will dequeue from the shared queue
975  * as soon as they're available, so putting the signal on the shared queue
976  * will be equivalent to sending it to one such thread.
977  */
978 static inline bool wants_signal(int sig, struct task_struct *p)
979 {
980         if (sigismember(&p->blocked, sig))
981                 return false;
982 
983         if (p->flags & PF_EXITING)
984                 return false;
985 
986         if (sig == SIGKILL)
987                 return true;
988 
989         if (task_is_stopped_or_traced(p))
990                 return false;
991 
992         return task_curr(p) || !task_sigpending(p);
993 }
994 
995 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
996 {
997         struct signal_struct *signal = p->signal;
998         struct task_struct *t;
999 
1000         /*
1001          * Now find a thread we can wake up to take the signal off the queue.
1002          *
1003          * Try the suggested task first (may or may not be the main thread).
1004          */
1005         if (wants_signal(sig, p))
1006                 t = p;
1007         else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1008                 /*
1009                  * There is just one thread and it does not need to be woken.
1010                  * It will dequeue unblocked signals before it runs again.
1011                  */
1012                 return;
1013         else {
1014                 /*
1015                  * Otherwise try to find a suitable thread.
1016                  */
1017                 t = signal->curr_target;
1018                 while (!wants_signal(sig, t)) {
1019                         t = next_thread(t);
1020                         if (t == signal->curr_target)
1021                                 /*
1022                                  * No thread needs to be woken.
1023                                  * Any eligible threads will see
1024                                  * the signal in the queue soon.
1025                                  */
1026                                 return;
1027                 }
1028                 signal->curr_target = t;
1029         }
1030 
1031         /*
1032          * Found a killable thread.  If the signal will be fatal,
1033          * then start taking the whole group down immediately.
1034          */
1035         if (sig_fatal(p, sig) &&
1036             (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1037             !sigismember(&t->real_blocked, sig) &&
1038             (sig == SIGKILL || !p->ptrace)) {
1039                 /*
1040                  * This signal will be fatal to the whole group.
1041                  */
1042                 if (!sig_kernel_coredump(sig)) {
1043                         /*
1044                          * Start a group exit and wake everybody up.
1045                          * This way we don't have other threads
1046                          * running and doing things after a slower
1047                          * thread has the fatal signal pending.
1048                          */
1049                         signal->flags = SIGNAL_GROUP_EXIT;
1050                         signal->group_exit_code = sig;
1051                         signal->group_stop_count = 0;
1052                         __for_each_thread(signal, t) {
1053                                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054                                 sigaddset(&t->pending.signal, SIGKILL);
1055                                 signal_wake_up(t, 1);
1056                         }
1057                         return;
1058                 }
1059         }
1060 
1061         /*
1062          * The signal is already in the shared-pending queue.
1063          * Tell the chosen thread to wake up and dequeue it.
1064          */
1065         signal_wake_up(t, sig == SIGKILL);
1066         return;
1067 }
1068 
1069 static inline bool legacy_queue(struct sigpending *signals, int sig)
1070 {
1071         return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1072 }
1073 
1074 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1075                                 struct task_struct *t, enum pid_type type, bool force)
1076 {
1077         struct sigpending *pending;
1078         struct sigqueue *q;
1079         int override_rlimit;
1080         int ret = 0, result;
1081 
1082         lockdep_assert_held(&t->sighand->siglock);
1083 
1084         result = TRACE_SIGNAL_IGNORED;
1085         if (!prepare_signal(sig, t, force))
1086                 goto ret;
1087 
1088         pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1089         /*
1090          * Short-circuit ignored signals and support queuing
1091          * exactly one non-rt signal, so that we can get more
1092          * detailed information about the cause of the signal.
1093          */
1094         result = TRACE_SIGNAL_ALREADY_PENDING;
1095         if (legacy_queue(pending, sig))
1096                 goto ret;
1097 
1098         result = TRACE_SIGNAL_DELIVERED;
1099         /*
1100          * Skip useless siginfo allocation for SIGKILL and kernel threads.
1101          */
1102         if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1103                 goto out_set;
1104 
1105         /*
1106          * Real-time signals must be queued if sent by sigqueue, or
1107          * some other real-time mechanism.  It is implementation
1108          * defined whether kill() does so.  We attempt to do so, on
1109          * the principle of least surprise, but since kill is not
1110          * allowed to fail with EAGAIN when low on memory we just
1111          * make sure at least one signal gets delivered and don't
1112          * pass on the info struct.
1113          */
1114         if (sig < SIGRTMIN)
1115                 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1116         else
1117                 override_rlimit = 0;
1118 
1119         q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1120 
1121         if (q) {
1122                 list_add_tail(&q->list, &pending->list);
1123                 switch ((unsigned long) info) {
1124                 case (unsigned long) SEND_SIG_NOINFO:
1125                         clear_siginfo(&q->info);
1126                         q->info.si_signo = sig;
1127                         q->info.si_errno = 0;
1128                         q->info.si_code = SI_USER;
1129                         q->info.si_pid = task_tgid_nr_ns(current,
1130                                                         task_active_pid_ns(t));
1131                         rcu_read_lock();
1132                         q->info.si_uid =
1133                                 from_kuid_munged(task_cred_xxx(t, user_ns),
1134                                                  current_uid());
1135                         rcu_read_unlock();
1136                         break;
1137                 case (unsigned long) SEND_SIG_PRIV:
1138                         clear_siginfo(&q->info);
1139                         q->info.si_signo = sig;
1140                         q->info.si_errno = 0;
1141                         q->info.si_code = SI_KERNEL;
1142                         q->info.si_pid = 0;
1143                         q->info.si_uid = 0;
1144                         break;
1145                 default:
1146                         copy_siginfo(&q->info, info);
1147                         break;
1148                 }
1149         } else if (!is_si_special(info) &&
1150                    sig >= SIGRTMIN && info->si_code != SI_USER) {
1151                 /*
1152                  * Queue overflow, abort.  We may abort if the
1153                  * signal was rt and sent by user using something
1154                  * other than kill().
1155                  */
1156                 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1157                 ret = -EAGAIN;
1158                 goto ret;
1159         } else {
1160                 /*
1161                  * This is a silent loss of information.  We still
1162                  * send the signal, but the *info bits are lost.
1163                  */
1164                 result = TRACE_SIGNAL_LOSE_INFO;
1165         }
1166 
1167 out_set:
1168         signalfd_notify(t, sig);
1169         sigaddset(&pending->signal, sig);
1170 
1171         /* Let multiprocess signals appear after on-going forks */
1172         if (type > PIDTYPE_TGID) {
1173                 struct multiprocess_signals *delayed;
1174                 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175                         sigset_t *signal = &delayed->signal;
1176                         /* Can't queue both a stop and a continue signal */
1177                         if (sig == SIGCONT)
1178                                 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179                         else if (sig_kernel_stop(sig))
1180                                 sigdelset(signal, SIGCONT);
1181                         sigaddset(signal, sig);
1182                 }
1183         }
1184 
1185         complete_signal(sig, t, type);
1186 ret:
1187         trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1188         return ret;
1189 }
1190 
1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1192 {
1193         bool ret = false;
1194         switch (siginfo_layout(info->si_signo, info->si_code)) {
1195         case SIL_KILL:
1196         case SIL_CHLD:
1197         case SIL_RT:
1198                 ret = true;
1199                 break;
1200         case SIL_TIMER:
1201         case SIL_POLL:
1202         case SIL_FAULT:
1203         case SIL_FAULT_TRAPNO:
1204         case SIL_FAULT_MCEERR:
1205         case SIL_FAULT_BNDERR:
1206         case SIL_FAULT_PKUERR:
1207         case SIL_FAULT_PERF_EVENT:
1208         case SIL_SYS:
1209                 ret = false;
1210                 break;
1211         }
1212         return ret;
1213 }
1214 
1215 int send_signal_locked(int sig, struct kernel_siginfo *info,
1216                        struct task_struct *t, enum pid_type type)
1217 {
1218         /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1219         bool force = false;
1220 
1221         if (info == SEND_SIG_NOINFO) {
1222                 /* Force if sent from an ancestor pid namespace */
1223                 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224         } else if (info == SEND_SIG_PRIV) {
1225                 /* Don't ignore kernel generated signals */
1226                 force = true;
1227         } else if (has_si_pid_and_uid(info)) {
1228                 /* SIGKILL and SIGSTOP is special or has ids */
1229                 struct user_namespace *t_user_ns;
1230 
1231                 rcu_read_lock();
1232                 t_user_ns = task_cred_xxx(t, user_ns);
1233                 if (current_user_ns() != t_user_ns) {
1234                         kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235                         info->si_uid = from_kuid_munged(t_user_ns, uid);
1236                 }
1237                 rcu_read_unlock();
1238 
1239                 /* A kernel generated signal? */
1240                 force = (info->si_code == SI_KERNEL);
1241 
1242                 /* From an ancestor pid namespace? */
1243                 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1244                         info->si_pid = 0;
1245                         force = true;
1246                 }
1247         }
1248         return __send_signal_locked(sig, info, t, type, force);
1249 }
1250 
1251 static void print_fatal_signal(int signr)
1252 {
1253         struct pt_regs *regs = task_pt_regs(current);
1254         struct file *exe_file;
1255 
1256         exe_file = get_task_exe_file(current);
1257         if (exe_file) {
1258                 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1259                         exe_file, current->comm, signr);
1260                 fput(exe_file);
1261         } else {
1262                 pr_info("%s: potentially unexpected fatal signal %d.\n",
1263                         current->comm, signr);
1264         }
1265 
1266 #if defined(__i386__) && !defined(__arch_um__)
1267         pr_info("code at %08lx: ", regs->ip);
1268         {
1269                 int i;
1270                 for (i = 0; i < 16; i++) {
1271                         unsigned char insn;
1272 
1273                         if (get_user(insn, (unsigned char *)(regs->ip + i)))
1274                                 break;
1275                         pr_cont("%02x ", insn);
1276                 }
1277         }
1278         pr_cont("\n");
1279 #endif
1280         preempt_disable();
1281         show_regs(regs);
1282         preempt_enable();
1283 }
1284 
1285 static int __init setup_print_fatal_signals(char *str)
1286 {
1287         get_option (&str, &print_fatal_signals);
1288 
1289         return 1;
1290 }
1291 
1292 __setup("print-fatal-signals=", setup_print_fatal_signals);
1293 
1294 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1295                         enum pid_type type)
1296 {
1297         unsigned long flags;
1298         int ret = -ESRCH;
1299 
1300         if (lock_task_sighand(p, &flags)) {
1301                 ret = send_signal_locked(sig, info, p, type);
1302                 unlock_task_sighand(p, &flags);
1303         }
1304 
1305         return ret;
1306 }
1307 
1308 enum sig_handler {
1309         HANDLER_CURRENT, /* If reachable use the current handler */
1310         HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1311         HANDLER_EXIT,    /* Only visible as the process exit code */
1312 };
1313 
1314 /*
1315  * Force a signal that the process can't ignore: if necessary
1316  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1317  *
1318  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1319  * since we do not want to have a signal handler that was blocked
1320  * be invoked when user space had explicitly blocked it.
1321  *
1322  * We don't want to have recursive SIGSEGV's etc, for example,
1323  * that is why we also clear SIGNAL_UNKILLABLE.
1324  */
1325 static int
1326 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1327         enum sig_handler handler)
1328 {
1329         unsigned long int flags;
1330         int ret, blocked, ignored;
1331         struct k_sigaction *action;
1332         int sig = info->si_signo;
1333 
1334         spin_lock_irqsave(&t->sighand->siglock, flags);
1335         action = &t->sighand->action[sig-1];
1336         ignored = action->sa.sa_handler == SIG_IGN;
1337         blocked = sigismember(&t->blocked, sig);
1338         if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1339                 action->sa.sa_handler = SIG_DFL;
1340                 if (handler == HANDLER_EXIT)
1341                         action->sa.sa_flags |= SA_IMMUTABLE;
1342                 if (blocked)
1343                         sigdelset(&t->blocked, sig);
1344         }
1345         /*
1346          * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1347          * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1348          */
1349         if (action->sa.sa_handler == SIG_DFL &&
1350             (!t->ptrace || (handler == HANDLER_EXIT)))
1351                 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1352         ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1353         /* This can happen if the signal was already pending and blocked */
1354         if (!task_sigpending(t))
1355                 signal_wake_up(t, 0);
1356         spin_unlock_irqrestore(&t->sighand->siglock, flags);
1357 
1358         return ret;
1359 }
1360 
1361 int force_sig_info(struct kernel_siginfo *info)
1362 {
1363         return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1364 }
1365 
1366 /*
1367  * Nuke all other threads in the group.
1368  */
1369 int zap_other_threads(struct task_struct *p)
1370 {
1371         struct task_struct *t;
1372         int count = 0;
1373 
1374         p->signal->group_stop_count = 0;
1375 
1376         for_other_threads(p, t) {
1377                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1378                 count++;
1379 
1380                 /* Don't bother with already dead threads */
1381                 if (t->exit_state)
1382                         continue;
1383                 sigaddset(&t->pending.signal, SIGKILL);
1384                 signal_wake_up(t, 1);
1385         }
1386 
1387         return count;
1388 }
1389 
1390 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1391                                            unsigned long *flags)
1392 {
1393         struct sighand_struct *sighand;
1394 
1395         rcu_read_lock();
1396         for (;;) {
1397                 sighand = rcu_dereference(tsk->sighand);
1398                 if (unlikely(sighand == NULL))
1399                         break;
1400 
1401                 /*
1402                  * This sighand can be already freed and even reused, but
1403                  * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1404                  * initializes ->siglock: this slab can't go away, it has
1405                  * the same object type, ->siglock can't be reinitialized.
1406                  *
1407                  * We need to ensure that tsk->sighand is still the same
1408                  * after we take the lock, we can race with de_thread() or
1409                  * __exit_signal(). In the latter case the next iteration
1410                  * must see ->sighand == NULL.
1411                  */
1412                 spin_lock_irqsave(&sighand->siglock, *flags);
1413                 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1414                         break;
1415                 spin_unlock_irqrestore(&sighand->siglock, *flags);
1416         }
1417         rcu_read_unlock();
1418 
1419         return sighand;
1420 }
1421 
1422 #ifdef CONFIG_LOCKDEP
1423 void lockdep_assert_task_sighand_held(struct task_struct *task)
1424 {
1425         struct sighand_struct *sighand;
1426 
1427         rcu_read_lock();
1428         sighand = rcu_dereference(task->sighand);
1429         if (sighand)
1430                 lockdep_assert_held(&sighand->siglock);
1431         else
1432                 WARN_ON_ONCE(1);
1433         rcu_read_unlock();
1434 }
1435 #endif
1436 
1437 /*
1438  * send signal info to all the members of a thread group or to the
1439  * individual thread if type == PIDTYPE_PID.
1440  */
1441 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1442                         struct task_struct *p, enum pid_type type)
1443 {
1444         int ret;
1445 
1446         rcu_read_lock();
1447         ret = check_kill_permission(sig, info, p);
1448         rcu_read_unlock();
1449 
1450         if (!ret && sig)
1451                 ret = do_send_sig_info(sig, info, p, type);
1452 
1453         return ret;
1454 }
1455 
1456 /*
1457  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1458  * control characters do (^C, ^Z etc)
1459  * - the caller must hold at least a readlock on tasklist_lock
1460  */
1461 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1462 {
1463         struct task_struct *p = NULL;
1464         int ret = -ESRCH;
1465 
1466         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1467                 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1468                 /*
1469                  * If group_send_sig_info() succeeds at least once ret
1470                  * becomes 0 and after that the code below has no effect.
1471                  * Otherwise we return the last err or -ESRCH if this
1472                  * process group is empty.
1473                  */
1474                 if (ret)
1475                         ret = err;
1476         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1477 
1478         return ret;
1479 }
1480 
1481 static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1482                                 struct pid *pid, enum pid_type type)
1483 {
1484         int error = -ESRCH;
1485         struct task_struct *p;
1486 
1487         for (;;) {
1488                 rcu_read_lock();
1489                 p = pid_task(pid, PIDTYPE_PID);
1490                 if (p)
1491                         error = group_send_sig_info(sig, info, p, type);
1492                 rcu_read_unlock();
1493                 if (likely(!p || error != -ESRCH))
1494                         return error;
1495                 /*
1496                  * The task was unhashed in between, try again.  If it
1497                  * is dead, pid_task() will return NULL, if we race with
1498                  * de_thread() it will find the new leader.
1499                  */
1500         }
1501 }
1502 
1503 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1504 {
1505         return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1506 }
1507 
1508 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1509 {
1510         int error;
1511         rcu_read_lock();
1512         error = kill_pid_info(sig, info, find_vpid(pid));
1513         rcu_read_unlock();
1514         return error;
1515 }
1516 
1517 static inline bool kill_as_cred_perm(const struct cred *cred,
1518                                      struct task_struct *target)
1519 {
1520         const struct cred *pcred = __task_cred(target);
1521 
1522         return uid_eq(cred->euid, pcred->suid) ||
1523                uid_eq(cred->euid, pcred->uid) ||
1524                uid_eq(cred->uid, pcred->suid) ||
1525                uid_eq(cred->uid, pcred->uid);
1526 }
1527 
1528 /*
1529  * The usb asyncio usage of siginfo is wrong.  The glibc support
1530  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1531  * AKA after the generic fields:
1532  *      kernel_pid_t    si_pid;
1533  *      kernel_uid32_t  si_uid;
1534  *      sigval_t        si_value;
1535  *
1536  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1537  * after the generic fields is:
1538  *      void __user     *si_addr;
1539  *
1540  * This is a practical problem when there is a 64bit big endian kernel
1541  * and a 32bit userspace.  As the 32bit address will encoded in the low
1542  * 32bits of the pointer.  Those low 32bits will be stored at higher
1543  * address than appear in a 32 bit pointer.  So userspace will not
1544  * see the address it was expecting for it's completions.
1545  *
1546  * There is nothing in the encoding that can allow
1547  * copy_siginfo_to_user32 to detect this confusion of formats, so
1548  * handle this by requiring the caller of kill_pid_usb_asyncio to
1549  * notice when this situration takes place and to store the 32bit
1550  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1551  * parameter.
1552  */
1553 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1554                          struct pid *pid, const struct cred *cred)
1555 {
1556         struct kernel_siginfo info;
1557         struct task_struct *p;
1558         unsigned long flags;
1559         int ret = -EINVAL;
1560 
1561         if (!valid_signal(sig))
1562                 return ret;
1563 
1564         clear_siginfo(&info);
1565         info.si_signo = sig;
1566         info.si_errno = errno;
1567         info.si_code = SI_ASYNCIO;
1568         *((sigval_t *)&info.si_pid) = addr;
1569 
1570         rcu_read_lock();
1571         p = pid_task(pid, PIDTYPE_PID);
1572         if (!p) {
1573                 ret = -ESRCH;
1574                 goto out_unlock;
1575         }
1576         if (!kill_as_cred_perm(cred, p)) {
1577                 ret = -EPERM;
1578                 goto out_unlock;
1579         }
1580         ret = security_task_kill(p, &info, sig, cred);
1581         if (ret)
1582                 goto out_unlock;
1583 
1584         if (sig) {
1585                 if (lock_task_sighand(p, &flags)) {
1586                         ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1587                         unlock_task_sighand(p, &flags);
1588                 } else
1589                         ret = -ESRCH;
1590         }
1591 out_unlock:
1592         rcu_read_unlock();
1593         return ret;
1594 }
1595 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1596 
1597 /*
1598  * kill_something_info() interprets pid in interesting ways just like kill(2).
1599  *
1600  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1601  * is probably wrong.  Should make it like BSD or SYSV.
1602  */
1603 
1604 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1605 {
1606         int ret;
1607 
1608         if (pid > 0)
1609                 return kill_proc_info(sig, info, pid);
1610 
1611         /* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1612         if (pid == INT_MIN)
1613                 return -ESRCH;
1614 
1615         read_lock(&tasklist_lock);
1616         if (pid != -1) {
1617                 ret = __kill_pgrp_info(sig, info,
1618                                 pid ? find_vpid(-pid) : task_pgrp(current));
1619         } else {
1620                 int retval = 0, count = 0;
1621                 struct task_struct * p;
1622 
1623                 for_each_process(p) {
1624                         if (task_pid_vnr(p) > 1 &&
1625                                         !same_thread_group(p, current)) {
1626                                 int err = group_send_sig_info(sig, info, p,
1627                                                               PIDTYPE_MAX);
1628                                 ++count;
1629                                 if (err != -EPERM)
1630                                         retval = err;
1631                         }
1632                 }
1633                 ret = count ? retval : -ESRCH;
1634         }
1635         read_unlock(&tasklist_lock);
1636 
1637         return ret;
1638 }
1639 
1640 /*
1641  * These are for backward compatibility with the rest of the kernel source.
1642  */
1643 
1644 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1645 {
1646         /*
1647          * Make sure legacy kernel users don't send in bad values
1648          * (normal paths check this in check_kill_permission).
1649          */
1650         if (!valid_signal(sig))
1651                 return -EINVAL;
1652 
1653         return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1654 }
1655 EXPORT_SYMBOL(send_sig_info);
1656 
1657 #define __si_special(priv) \
1658         ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1659 
1660 int
1661 send_sig(int sig, struct task_struct *p, int priv)
1662 {
1663         return send_sig_info(sig, __si_special(priv), p);
1664 }
1665 EXPORT_SYMBOL(send_sig);
1666 
1667 void force_sig(int sig)
1668 {
1669         struct kernel_siginfo info;
1670 
1671         clear_siginfo(&info);
1672         info.si_signo = sig;
1673         info.si_errno = 0;
1674         info.si_code = SI_KERNEL;
1675         info.si_pid = 0;
1676         info.si_uid = 0;
1677         force_sig_info(&info);
1678 }
1679 EXPORT_SYMBOL(force_sig);
1680 
1681 void force_fatal_sig(int sig)
1682 {
1683         struct kernel_siginfo info;
1684 
1685         clear_siginfo(&info);
1686         info.si_signo = sig;
1687         info.si_errno = 0;
1688         info.si_code = SI_KERNEL;
1689         info.si_pid = 0;
1690         info.si_uid = 0;
1691         force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1692 }
1693 
1694 void force_exit_sig(int sig)
1695 {
1696         struct kernel_siginfo info;
1697 
1698         clear_siginfo(&info);
1699         info.si_signo = sig;
1700         info.si_errno = 0;
1701         info.si_code = SI_KERNEL;
1702         info.si_pid = 0;
1703         info.si_uid = 0;
1704         force_sig_info_to_task(&info, current, HANDLER_EXIT);
1705 }
1706 
1707 /*
1708  * When things go south during signal handling, we
1709  * will force a SIGSEGV. And if the signal that caused
1710  * the problem was already a SIGSEGV, we'll want to
1711  * make sure we don't even try to deliver the signal..
1712  */
1713 void force_sigsegv(int sig)
1714 {
1715         if (sig == SIGSEGV)
1716                 force_fatal_sig(SIGSEGV);
1717         else
1718                 force_sig(SIGSEGV);
1719 }
1720 
1721 int force_sig_fault_to_task(int sig, int code, void __user *addr,
1722                             struct task_struct *t)
1723 {
1724         struct kernel_siginfo info;
1725 
1726         clear_siginfo(&info);
1727         info.si_signo = sig;
1728         info.si_errno = 0;
1729         info.si_code  = code;
1730         info.si_addr  = addr;
1731         return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1732 }
1733 
1734 int force_sig_fault(int sig, int code, void __user *addr)
1735 {
1736         return force_sig_fault_to_task(sig, code, addr, current);
1737 }
1738 
1739 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1740 {
1741         struct kernel_siginfo info;
1742 
1743         clear_siginfo(&info);
1744         info.si_signo = sig;
1745         info.si_errno = 0;
1746         info.si_code  = code;
1747         info.si_addr  = addr;
1748         return send_sig_info(info.si_signo, &info, t);
1749 }
1750 
1751 int force_sig_mceerr(int code, void __user *addr, short lsb)
1752 {
1753         struct kernel_siginfo info;
1754 
1755         WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1756         clear_siginfo(&info);
1757         info.si_signo = SIGBUS;
1758         info.si_errno = 0;
1759         info.si_code = code;
1760         info.si_addr = addr;
1761         info.si_addr_lsb = lsb;
1762         return force_sig_info(&info);
1763 }
1764 
1765 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1766 {
1767         struct kernel_siginfo info;
1768 
1769         WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1770         clear_siginfo(&info);
1771         info.si_signo = SIGBUS;
1772         info.si_errno = 0;
1773         info.si_code = code;
1774         info.si_addr = addr;
1775         info.si_addr_lsb = lsb;
1776         return send_sig_info(info.si_signo, &info, t);
1777 }
1778 EXPORT_SYMBOL(send_sig_mceerr);
1779 
1780 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1781 {
1782         struct kernel_siginfo info;
1783 
1784         clear_siginfo(&info);
1785         info.si_signo = SIGSEGV;
1786         info.si_errno = 0;
1787         info.si_code  = SEGV_BNDERR;
1788         info.si_addr  = addr;
1789         info.si_lower = lower;
1790         info.si_upper = upper;
1791         return force_sig_info(&info);
1792 }
1793 
1794 #ifdef SEGV_PKUERR
1795 int force_sig_pkuerr(void __user *addr, u32 pkey)
1796 {
1797         struct kernel_siginfo info;
1798 
1799         clear_siginfo(&info);
1800         info.si_signo = SIGSEGV;
1801         info.si_errno = 0;
1802         info.si_code  = SEGV_PKUERR;
1803         info.si_addr  = addr;
1804         info.si_pkey  = pkey;
1805         return force_sig_info(&info);
1806 }
1807 #endif
1808 
1809 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1810 {
1811         struct kernel_siginfo info;
1812 
1813         clear_siginfo(&info);
1814         info.si_signo     = SIGTRAP;
1815         info.si_errno     = 0;
1816         info.si_code      = TRAP_PERF;
1817         info.si_addr      = addr;
1818         info.si_perf_data = sig_data;
1819         info.si_perf_type = type;
1820 
1821         /*
1822          * Signals generated by perf events should not terminate the whole
1823          * process if SIGTRAP is blocked, however, delivering the signal
1824          * asynchronously is better than not delivering at all. But tell user
1825          * space if the signal was asynchronous, so it can clearly be
1826          * distinguished from normal synchronous ones.
1827          */
1828         info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1829                                      TRAP_PERF_FLAG_ASYNC :
1830                                      0;
1831 
1832         return send_sig_info(info.si_signo, &info, current);
1833 }
1834 
1835 /**
1836  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1837  * @syscall: syscall number to send to userland
1838  * @reason: filter-supplied reason code to send to userland (via si_errno)
1839  * @force_coredump: true to trigger a coredump
1840  *
1841  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1842  */
1843 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1844 {
1845         struct kernel_siginfo info;
1846 
1847         clear_siginfo(&info);
1848         info.si_signo = SIGSYS;
1849         info.si_code = SYS_SECCOMP;
1850         info.si_call_addr = (void __user *)KSTK_EIP(current);
1851         info.si_errno = reason;
1852         info.si_arch = syscall_get_arch(current);
1853         info.si_syscall = syscall;
1854         return force_sig_info_to_task(&info, current,
1855                 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1856 }
1857 
1858 /* For the crazy architectures that include trap information in
1859  * the errno field, instead of an actual errno value.
1860  */
1861 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1862 {
1863         struct kernel_siginfo info;
1864 
1865         clear_siginfo(&info);
1866         info.si_signo = SIGTRAP;
1867         info.si_errno = errno;
1868         info.si_code  = TRAP_HWBKPT;
1869         info.si_addr  = addr;
1870         return force_sig_info(&info);
1871 }
1872 
1873 /* For the rare architectures that include trap information using
1874  * si_trapno.
1875  */
1876 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1877 {
1878         struct kernel_siginfo info;
1879 
1880         clear_siginfo(&info);
1881         info.si_signo = sig;
1882         info.si_errno = 0;
1883         info.si_code  = code;
1884         info.si_addr  = addr;
1885         info.si_trapno = trapno;
1886         return force_sig_info(&info);
1887 }
1888 
1889 /* For the rare architectures that include trap information using
1890  * si_trapno.
1891  */
1892 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1893                           struct task_struct *t)
1894 {
1895         struct kernel_siginfo info;
1896 
1897         clear_siginfo(&info);
1898         info.si_signo = sig;
1899         info.si_errno = 0;
1900         info.si_code  = code;
1901         info.si_addr  = addr;
1902         info.si_trapno = trapno;
1903         return send_sig_info(info.si_signo, &info, t);
1904 }
1905 
1906 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1907 {
1908         int ret;
1909         read_lock(&tasklist_lock);
1910         ret = __kill_pgrp_info(sig, info, pgrp);
1911         read_unlock(&tasklist_lock);
1912         return ret;
1913 }
1914 
1915 int kill_pgrp(struct pid *pid, int sig, int priv)
1916 {
1917         return kill_pgrp_info(sig, __si_special(priv), pid);
1918 }
1919 EXPORT_SYMBOL(kill_pgrp);
1920 
1921 int kill_pid(struct pid *pid, int sig, int priv)
1922 {
1923         return kill_pid_info(sig, __si_special(priv), pid);
1924 }
1925 EXPORT_SYMBOL(kill_pid);
1926 
1927 /*
1928  * These functions support sending signals using preallocated sigqueue
1929  * structures.  This is needed "because realtime applications cannot
1930  * afford to lose notifications of asynchronous events, like timer
1931  * expirations or I/O completions".  In the case of POSIX Timers
1932  * we allocate the sigqueue structure from the timer_create.  If this
1933  * allocation fails we are able to report the failure to the application
1934  * with an EAGAIN error.
1935  */
1936 struct sigqueue *sigqueue_alloc(void)
1937 {
1938         return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1939 }
1940 
1941 void sigqueue_free(struct sigqueue *q)
1942 {
1943         unsigned long flags;
1944         spinlock_t *lock = &current->sighand->siglock;
1945 
1946         BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1947         /*
1948          * We must hold ->siglock while testing q->list
1949          * to serialize with collect_signal() or with
1950          * __exit_signal()->flush_sigqueue().
1951          */
1952         spin_lock_irqsave(lock, flags);
1953         q->flags &= ~SIGQUEUE_PREALLOC;
1954         /*
1955          * If it is queued it will be freed when dequeued,
1956          * like the "regular" sigqueue.
1957          */
1958         if (!list_empty(&q->list))
1959                 q = NULL;
1960         spin_unlock_irqrestore(lock, flags);
1961 
1962         if (q)
1963                 __sigqueue_free(q);
1964 }
1965 
1966 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1967 {
1968         int sig = q->info.si_signo;
1969         struct sigpending *pending;
1970         struct task_struct *t;
1971         unsigned long flags;
1972         int ret, result;
1973 
1974         BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1975 
1976         ret = -1;
1977         rcu_read_lock();
1978 
1979         /*
1980          * This function is used by POSIX timers to deliver a timer signal.
1981          * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1982          * set), the signal must be delivered to the specific thread (queues
1983          * into t->pending).
1984          *
1985          * Where type is not PIDTYPE_PID, signals must be delivered to the
1986          * process. In this case, prefer to deliver to current if it is in
1987          * the same thread group as the target process, which avoids
1988          * unnecessarily waking up a potentially idle task.
1989          */
1990         t = pid_task(pid, type);
1991         if (!t)
1992                 goto ret;
1993         if (type != PIDTYPE_PID && same_thread_group(t, current))
1994                 t = current;
1995         if (!likely(lock_task_sighand(t, &flags)))
1996                 goto ret;
1997 
1998         ret = 1; /* the signal is ignored */
1999         result = TRACE_SIGNAL_IGNORED;
2000         if (!prepare_signal(sig, t, false))
2001                 goto out;
2002 
2003         ret = 0;
2004         if (unlikely(!list_empty(&q->list))) {
2005                 /*
2006                  * If an SI_TIMER entry is already queue just increment
2007                  * the overrun count.
2008                  */
2009                 BUG_ON(q->info.si_code != SI_TIMER);
2010                 q->info.si_overrun++;
2011                 result = TRACE_SIGNAL_ALREADY_PENDING;
2012                 goto out;
2013         }
2014         q->info.si_overrun = 0;
2015 
2016         signalfd_notify(t, sig);
2017         pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2018         list_add_tail(&q->list, &pending->list);
2019         sigaddset(&pending->signal, sig);
2020         complete_signal(sig, t, type);
2021         result = TRACE_SIGNAL_DELIVERED;
2022 out:
2023         trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2024         unlock_task_sighand(t, &flags);
2025 ret:
2026         rcu_read_unlock();
2027         return ret;
2028 }
2029 
2030 void do_notify_pidfd(struct task_struct *task)
2031 {
2032         struct pid *pid = task_pid(task);
2033 
2034         WARN_ON(task->exit_state == 0);
2035 
2036         __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2037                         poll_to_key(EPOLLIN | EPOLLRDNORM));
2038 }
2039 
2040 /*
2041  * Let a parent know about the death of a child.
2042  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2043  *
2044  * Returns true if our parent ignored us and so we've switched to
2045  * self-reaping.
2046  */
2047 bool do_notify_parent(struct task_struct *tsk, int sig)
2048 {
2049         struct kernel_siginfo info;
2050         unsigned long flags;
2051         struct sighand_struct *psig;
2052         bool autoreap = false;
2053         u64 utime, stime;
2054 
2055         WARN_ON_ONCE(sig == -1);
2056 
2057         /* do_notify_parent_cldstop should have been called instead.  */
2058         WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2059 
2060         WARN_ON_ONCE(!tsk->ptrace &&
2061                (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2062         /*
2063          * tsk is a group leader and has no threads, wake up the
2064          * non-PIDFD_THREAD waiters.
2065          */
2066         if (thread_group_empty(tsk))
2067                 do_notify_pidfd(tsk);
2068 
2069         if (sig != SIGCHLD) {
2070                 /*
2071                  * This is only possible if parent == real_parent.
2072                  * Check if it has changed security domain.
2073                  */
2074                 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2075                         sig = SIGCHLD;
2076         }
2077 
2078         clear_siginfo(&info);
2079         info.si_signo = sig;
2080         info.si_errno = 0;
2081         /*
2082          * We are under tasklist_lock here so our parent is tied to
2083          * us and cannot change.
2084          *
2085          * task_active_pid_ns will always return the same pid namespace
2086          * until a task passes through release_task.
2087          *
2088          * write_lock() currently calls preempt_disable() which is the
2089          * same as rcu_read_lock(), but according to Oleg, this is not
2090          * correct to rely on this
2091          */
2092         rcu_read_lock();
2093         info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2094         info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2095                                        task_uid(tsk));
2096         rcu_read_unlock();
2097 
2098         task_cputime(tsk, &utime, &stime);
2099         info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2100         info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2101 
2102         info.si_status = tsk->exit_code & 0x7f;
2103         if (tsk->exit_code & 0x80)
2104                 info.si_code = CLD_DUMPED;
2105         else if (tsk->exit_code & 0x7f)
2106                 info.si_code = CLD_KILLED;
2107         else {
2108                 info.si_code = CLD_EXITED;
2109                 info.si_status = tsk->exit_code >> 8;
2110         }
2111 
2112         psig = tsk->parent->sighand;
2113         spin_lock_irqsave(&psig->siglock, flags);
2114         if (!tsk->ptrace && sig == SIGCHLD &&
2115             (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2116              (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2117                 /*
2118                  * We are exiting and our parent doesn't care.  POSIX.1
2119                  * defines special semantics for setting SIGCHLD to SIG_IGN
2120                  * or setting the SA_NOCLDWAIT flag: we should be reaped
2121                  * automatically and not left for our parent's wait4 call.
2122                  * Rather than having the parent do it as a magic kind of
2123                  * signal handler, we just set this to tell do_exit that we
2124                  * can be cleaned up without becoming a zombie.  Note that
2125                  * we still call __wake_up_parent in this case, because a
2126                  * blocked sys_wait4 might now return -ECHILD.
2127                  *
2128                  * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2129                  * is implementation-defined: we do (if you don't want
2130                  * it, just use SIG_IGN instead).
2131                  */
2132                 autoreap = true;
2133                 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2134                         sig = 0;
2135         }
2136         /*
2137          * Send with __send_signal as si_pid and si_uid are in the
2138          * parent's namespaces.
2139          */
2140         if (valid_signal(sig) && sig)
2141                 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2142         __wake_up_parent(tsk, tsk->parent);
2143         spin_unlock_irqrestore(&psig->siglock, flags);
2144 
2145         return autoreap;
2146 }
2147 
2148 /**
2149  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2150  * @tsk: task reporting the state change
2151  * @for_ptracer: the notification is for ptracer
2152  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2153  *
2154  * Notify @tsk's parent that the stopped/continued state has changed.  If
2155  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2156  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2157  *
2158  * CONTEXT:
2159  * Must be called with tasklist_lock at least read locked.
2160  */
2161 static void do_notify_parent_cldstop(struct task_struct *tsk,
2162                                      bool for_ptracer, int why)
2163 {
2164         struct kernel_siginfo info;
2165         unsigned long flags;
2166         struct task_struct *parent;
2167         struct sighand_struct *sighand;
2168         u64 utime, stime;
2169 
2170         if (for_ptracer) {
2171                 parent = tsk->parent;
2172         } else {
2173                 tsk = tsk->group_leader;
2174                 parent = tsk->real_parent;
2175         }
2176 
2177         clear_siginfo(&info);
2178         info.si_signo = SIGCHLD;
2179         info.si_errno = 0;
2180         /*
2181          * see comment in do_notify_parent() about the following 4 lines
2182          */
2183         rcu_read_lock();
2184         info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2185         info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2186         rcu_read_unlock();
2187 
2188         task_cputime(tsk, &utime, &stime);
2189         info.si_utime = nsec_to_clock_t(utime);
2190         info.si_stime = nsec_to_clock_t(stime);
2191 
2192         info.si_code = why;
2193         switch (why) {
2194         case CLD_CONTINUED:
2195                 info.si_status = SIGCONT;
2196                 break;
2197         case CLD_STOPPED:
2198                 info.si_status = tsk->signal->group_exit_code & 0x7f;
2199                 break;
2200         case CLD_TRAPPED:
2201                 info.si_status = tsk->exit_code & 0x7f;
2202                 break;
2203         default:
2204                 BUG();
2205         }
2206 
2207         sighand = parent->sighand;
2208         spin_lock_irqsave(&sighand->siglock, flags);
2209         if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2210             !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2211                 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2212         /*
2213          * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2214          */
2215         __wake_up_parent(tsk, parent);
2216         spin_unlock_irqrestore(&sighand->siglock, flags);
2217 }
2218 
2219 /*
2220  * This must be called with current->sighand->siglock held.
2221  *
2222  * This should be the path for all ptrace stops.
2223  * We always set current->last_siginfo while stopped here.
2224  * That makes it a way to test a stopped process for
2225  * being ptrace-stopped vs being job-control-stopped.
2226  *
2227  * Returns the signal the ptracer requested the code resume
2228  * with.  If the code did not stop because the tracer is gone,
2229  * the stop signal remains unchanged unless clear_code.
2230  */
2231 static int ptrace_stop(int exit_code, int why, unsigned long message,
2232                        kernel_siginfo_t *info)
2233         __releases(&current->sighand->siglock)
2234         __acquires(&current->sighand->siglock)
2235 {
2236         bool gstop_done = false;
2237 
2238         if (arch_ptrace_stop_needed()) {
2239                 /*
2240                  * The arch code has something special to do before a
2241                  * ptrace stop.  This is allowed to block, e.g. for faults
2242                  * on user stack pages.  We can't keep the siglock while
2243                  * calling arch_ptrace_stop, so we must release it now.
2244                  * To preserve proper semantics, we must do this before
2245                  * any signal bookkeeping like checking group_stop_count.
2246                  */
2247                 spin_unlock_irq(&current->sighand->siglock);
2248                 arch_ptrace_stop();
2249                 spin_lock_irq(&current->sighand->siglock);
2250         }
2251 
2252         /*
2253          * After this point ptrace_signal_wake_up or signal_wake_up
2254          * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2255          * signal comes in.  Handle previous ptrace_unlinks and fatal
2256          * signals here to prevent ptrace_stop sleeping in schedule.
2257          */
2258         if (!current->ptrace || __fatal_signal_pending(current))
2259                 return exit_code;
2260 
2261         set_special_state(TASK_TRACED);
2262         current->jobctl |= JOBCTL_TRACED;
2263 
2264         /*
2265          * We're committing to trapping.  TRACED should be visible before
2266          * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2267          * Also, transition to TRACED and updates to ->jobctl should be
2268          * atomic with respect to siglock and should be done after the arch
2269          * hook as siglock is released and regrabbed across it.
2270          *
2271          *     TRACER                               TRACEE
2272          *
2273          *     ptrace_attach()
2274          * [L]   wait_on_bit(JOBCTL_TRAPPING)   [S] set_special_state(TRACED)
2275          *     do_wait()
2276          *       set_current_state()                smp_wmb();
2277          *       ptrace_do_wait()
2278          *         wait_task_stopped()
2279          *           task_stopped_code()
2280          * [L]         task_is_traced()         [S] task_clear_jobctl_trapping();
2281          */
2282         smp_wmb();
2283 
2284         current->ptrace_message = message;
2285         current->last_siginfo = info;
2286         current->exit_code = exit_code;
2287 
2288         /*
2289          * If @why is CLD_STOPPED, we're trapping to participate in a group
2290          * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2291          * across siglock relocks since INTERRUPT was scheduled, PENDING
2292          * could be clear now.  We act as if SIGCONT is received after
2293          * TASK_TRACED is entered - ignore it.
2294          */
2295         if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2296                 gstop_done = task_participate_group_stop(current);
2297 
2298         /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2299         task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2300         if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2301                 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2302 
2303         /* entering a trap, clear TRAPPING */
2304         task_clear_jobctl_trapping(current);
2305 
2306         spin_unlock_irq(&current->sighand->siglock);
2307         read_lock(&tasklist_lock);
2308         /*
2309          * Notify parents of the stop.
2310          *
2311          * While ptraced, there are two parents - the ptracer and
2312          * the real_parent of the group_leader.  The ptracer should
2313          * know about every stop while the real parent is only
2314          * interested in the completion of group stop.  The states
2315          * for the two don't interact with each other.  Notify
2316          * separately unless they're gonna be duplicates.
2317          */
2318         if (current->ptrace)
2319                 do_notify_parent_cldstop(current, true, why);
2320         if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2321                 do_notify_parent_cldstop(current, false, why);
2322 
2323         /*
2324          * The previous do_notify_parent_cldstop() invocation woke ptracer.
2325          * One a PREEMPTION kernel this can result in preemption requirement
2326          * which will be fulfilled after read_unlock() and the ptracer will be
2327          * put on the CPU.
2328          * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2329          * this task wait in schedule(). If this task gets preempted then it
2330          * remains enqueued on the runqueue. The ptracer will observe this and
2331          * then sleep for a delay of one HZ tick. In the meantime this task
2332          * gets scheduled, enters schedule() and will wait for the ptracer.
2333          *
2334          * This preemption point is not bad from a correctness point of
2335          * view but extends the runtime by one HZ tick time due to the
2336          * ptracer's sleep.  The preempt-disable section ensures that there
2337          * will be no preemption between unlock and schedule() and so
2338          * improving the performance since the ptracer will observe that
2339          * the tracee is scheduled out once it gets on the CPU.
2340          *
2341          * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2342          * Therefore the task can be preempted after do_notify_parent_cldstop()
2343          * before unlocking tasklist_lock so there is no benefit in doing this.
2344          *
2345          * In fact disabling preemption is harmful on PREEMPT_RT because
2346          * the spinlock_t in cgroup_enter_frozen() must not be acquired
2347          * with preemption disabled due to the 'sleeping' spinlock
2348          * substitution of RT.
2349          */
2350         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2351                 preempt_disable();
2352         read_unlock(&tasklist_lock);
2353         cgroup_enter_frozen();
2354         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2355                 preempt_enable_no_resched();
2356         schedule();
2357         cgroup_leave_frozen(true);
2358 
2359         /*
2360          * We are back.  Now reacquire the siglock before touching
2361          * last_siginfo, so that we are sure to have synchronized with
2362          * any signal-sending on another CPU that wants to examine it.
2363          */
2364         spin_lock_irq(&current->sighand->siglock);
2365         exit_code = current->exit_code;
2366         current->last_siginfo = NULL;
2367         current->ptrace_message = 0;
2368         current->exit_code = 0;
2369 
2370         /* LISTENING can be set only during STOP traps, clear it */
2371         current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2372 
2373         /*
2374          * Queued signals ignored us while we were stopped for tracing.
2375          * So check for any that we should take before resuming user mode.
2376          * This sets TIF_SIGPENDING, but never clears it.
2377          */
2378         recalc_sigpending_tsk(current);
2379         return exit_code;
2380 }
2381 
2382 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2383 {
2384         kernel_siginfo_t info;
2385 
2386         clear_siginfo(&info);
2387         info.si_signo = signr;
2388         info.si_code = exit_code;
2389         info.si_pid = task_pid_vnr(current);
2390         info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2391 
2392         /* Let the debugger run.  */
2393         return ptrace_stop(exit_code, why, message, &info);
2394 }
2395 
2396 int ptrace_notify(int exit_code, unsigned long message)
2397 {
2398         int signr;
2399 
2400         BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2401         if (unlikely(task_work_pending(current)))
2402                 task_work_run();
2403 
2404         spin_lock_irq(&current->sighand->siglock);
2405         signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2406         spin_unlock_irq(&current->sighand->siglock);
2407         return signr;
2408 }
2409 
2410 /**
2411  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2412  * @signr: signr causing group stop if initiating
2413  *
2414  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2415  * and participate in it.  If already set, participate in the existing
2416  * group stop.  If participated in a group stop (and thus slept), %true is
2417  * returned with siglock released.
2418  *
2419  * If ptraced, this function doesn't handle stop itself.  Instead,
2420  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2421  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2422  * places afterwards.
2423  *
2424  * CONTEXT:
2425  * Must be called with @current->sighand->siglock held, which is released
2426  * on %true return.
2427  *
2428  * RETURNS:
2429  * %false if group stop is already cancelled or ptrace trap is scheduled.
2430  * %true if participated in group stop.
2431  */
2432 static bool do_signal_stop(int signr)
2433         __releases(&current->sighand->siglock)
2434 {
2435         struct signal_struct *sig = current->signal;
2436 
2437         if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2438                 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2439                 struct task_struct *t;
2440 
2441                 /* signr will be recorded in task->jobctl for retries */
2442                 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2443 
2444                 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2445                     unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2446                     unlikely(sig->group_exec_task))
2447                         return false;
2448                 /*
2449                  * There is no group stop already in progress.  We must
2450                  * initiate one now.
2451                  *
2452                  * While ptraced, a task may be resumed while group stop is
2453                  * still in effect and then receive a stop signal and
2454                  * initiate another group stop.  This deviates from the
2455                  * usual behavior as two consecutive stop signals can't
2456                  * cause two group stops when !ptraced.  That is why we
2457                  * also check !task_is_stopped(t) below.
2458                  *
2459                  * The condition can be distinguished by testing whether
2460                  * SIGNAL_STOP_STOPPED is already set.  Don't generate
2461                  * group_exit_code in such case.
2462                  *
2463                  * This is not necessary for SIGNAL_STOP_CONTINUED because
2464                  * an intervening stop signal is required to cause two
2465                  * continued events regardless of ptrace.
2466                  */
2467                 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2468                         sig->group_exit_code = signr;
2469 
2470                 sig->group_stop_count = 0;
2471                 if (task_set_jobctl_pending(current, signr | gstop))
2472                         sig->group_stop_count++;
2473 
2474                 for_other_threads(current, t) {
2475                         /*
2476                          * Setting state to TASK_STOPPED for a group
2477                          * stop is always done with the siglock held,
2478                          * so this check has no races.
2479                          */
2480                         if (!task_is_stopped(t) &&
2481                             task_set_jobctl_pending(t, signr | gstop)) {
2482                                 sig->group_stop_count++;
2483                                 if (likely(!(t->ptrace & PT_SEIZED)))
2484                                         signal_wake_up(t, 0);
2485                                 else
2486                                         ptrace_trap_notify(t);
2487                         }
2488                 }
2489         }
2490 
2491         if (likely(!current->ptrace)) {
2492                 int notify = 0;
2493 
2494                 /*
2495                  * If there are no other threads in the group, or if there
2496                  * is a group stop in progress and we are the last to stop,
2497                  * report to the parent.
2498                  */
2499                 if (task_participate_group_stop(current))
2500                         notify = CLD_STOPPED;
2501 
2502                 current->jobctl |= JOBCTL_STOPPED;
2503                 set_special_state(TASK_STOPPED);
2504                 spin_unlock_irq(&current->sighand->siglock);
2505 
2506                 /*
2507                  * Notify the parent of the group stop completion.  Because
2508                  * we're not holding either the siglock or tasklist_lock
2509                  * here, ptracer may attach inbetween; however, this is for
2510                  * group stop and should always be delivered to the real
2511                  * parent of the group leader.  The new ptracer will get
2512                  * its notification when this task transitions into
2513                  * TASK_TRACED.
2514                  */
2515                 if (notify) {
2516                         read_lock(&tasklist_lock);
2517                         do_notify_parent_cldstop(current, false, notify);
2518                         read_unlock(&tasklist_lock);
2519                 }
2520 
2521                 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2522                 cgroup_enter_frozen();
2523                 schedule();
2524                 return true;
2525         } else {
2526                 /*
2527                  * While ptraced, group stop is handled by STOP trap.
2528                  * Schedule it and let the caller deal with it.
2529                  */
2530                 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2531                 return false;
2532         }
2533 }
2534 
2535 /**
2536  * do_jobctl_trap - take care of ptrace jobctl traps
2537  *
2538  * When PT_SEIZED, it's used for both group stop and explicit
2539  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2540  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2541  * the stop signal; otherwise, %SIGTRAP.
2542  *
2543  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2544  * number as exit_code and no siginfo.
2545  *
2546  * CONTEXT:
2547  * Must be called with @current->sighand->siglock held, which may be
2548  * released and re-acquired before returning with intervening sleep.
2549  */
2550 static void do_jobctl_trap(void)
2551 {
2552         struct signal_struct *signal = current->signal;
2553         int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2554 
2555         if (current->ptrace & PT_SEIZED) {
2556                 if (!signal->group_stop_count &&
2557                     !(signal->flags & SIGNAL_STOP_STOPPED))
2558                         signr = SIGTRAP;
2559                 WARN_ON_ONCE(!signr);
2560                 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2561                                  CLD_STOPPED, 0);
2562         } else {
2563                 WARN_ON_ONCE(!signr);
2564                 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2565         }
2566 }
2567 
2568 /**
2569  * do_freezer_trap - handle the freezer jobctl trap
2570  *
2571  * Puts the task into frozen state, if only the task is not about to quit.
2572  * In this case it drops JOBCTL_TRAP_FREEZE.
2573  *
2574  * CONTEXT:
2575  * Must be called with @current->sighand->siglock held,
2576  * which is always released before returning.
2577  */
2578 static void do_freezer_trap(void)
2579         __releases(&current->sighand->siglock)
2580 {
2581         /*
2582          * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2583          * let's make another loop to give it a chance to be handled.
2584          * In any case, we'll return back.
2585          */
2586         if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2587              JOBCTL_TRAP_FREEZE) {
2588                 spin_unlock_irq(&current->sighand->siglock);
2589                 return;
2590         }
2591 
2592         /*
2593          * Now we're sure that there is no pending fatal signal and no
2594          * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2595          * immediately (if there is a non-fatal signal pending), and
2596          * put the task into sleep.
2597          */
2598         __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2599         clear_thread_flag(TIF_SIGPENDING);
2600         spin_unlock_irq(&current->sighand->siglock);
2601         cgroup_enter_frozen();
2602         schedule();
2603 
2604         /*
2605          * We could've been woken by task_work, run it to clear
2606          * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2607          */
2608         clear_notify_signal();
2609         if (unlikely(task_work_pending(current)))
2610                 task_work_run();
2611 }
2612 
2613 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2614 {
2615         /*
2616          * We do not check sig_kernel_stop(signr) but set this marker
2617          * unconditionally because we do not know whether debugger will
2618          * change signr. This flag has no meaning unless we are going
2619          * to stop after return from ptrace_stop(). In this case it will
2620          * be checked in do_signal_stop(), we should only stop if it was
2621          * not cleared by SIGCONT while we were sleeping. See also the
2622          * comment in dequeue_signal().
2623          */
2624         current->jobctl |= JOBCTL_STOP_DEQUEUED;
2625         signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2626 
2627         /* We're back.  Did the debugger cancel the sig?  */
2628         if (signr == 0)
2629                 return signr;
2630 
2631         /*
2632          * Update the siginfo structure if the signal has
2633          * changed.  If the debugger wanted something
2634          * specific in the siginfo structure then it should
2635          * have updated *info via PTRACE_SETSIGINFO.
2636          */
2637         if (signr != info->si_signo) {
2638                 clear_siginfo(info);
2639                 info->si_signo = signr;
2640                 info->si_errno = 0;
2641                 info->si_code = SI_USER;
2642                 rcu_read_lock();
2643                 info->si_pid = task_pid_vnr(current->parent);
2644                 info->si_uid = from_kuid_munged(current_user_ns(),
2645                                                 task_uid(current->parent));
2646                 rcu_read_unlock();
2647         }
2648 
2649         /* If the (new) signal is now blocked, requeue it.  */
2650         if (sigismember(&current->blocked, signr) ||
2651             fatal_signal_pending(current)) {
2652                 send_signal_locked(signr, info, current, type);
2653                 signr = 0;
2654         }
2655 
2656         return signr;
2657 }
2658 
2659 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2660 {
2661         switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2662         case SIL_FAULT:
2663         case SIL_FAULT_TRAPNO:
2664         case SIL_FAULT_MCEERR:
2665         case SIL_FAULT_BNDERR:
2666         case SIL_FAULT_PKUERR:
2667         case SIL_FAULT_PERF_EVENT:
2668                 ksig->info.si_addr = arch_untagged_si_addr(
2669                         ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2670                 break;
2671         case SIL_KILL:
2672         case SIL_TIMER:
2673         case SIL_POLL:
2674         case SIL_CHLD:
2675         case SIL_RT:
2676         case SIL_SYS:
2677                 break;
2678         }
2679 }
2680 
2681 bool get_signal(struct ksignal *ksig)
2682 {
2683         struct sighand_struct *sighand = current->sighand;
2684         struct signal_struct *signal = current->signal;
2685         int signr;
2686 
2687         clear_notify_signal();
2688         if (unlikely(task_work_pending(current)))
2689                 task_work_run();
2690 
2691         if (!task_sigpending(current))
2692                 return false;
2693 
2694         if (unlikely(uprobe_deny_signal()))
2695                 return false;
2696 
2697         /*
2698          * Do this once, we can't return to user-mode if freezing() == T.
2699          * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2700          * thus do not need another check after return.
2701          */
2702         try_to_freeze();
2703 
2704 relock:
2705         spin_lock_irq(&sighand->siglock);
2706 
2707         /*
2708          * Every stopped thread goes here after wakeup. Check to see if
2709          * we should notify the parent, prepare_signal(SIGCONT) encodes
2710          * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2711          */
2712         if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2713                 int why;
2714 
2715                 if (signal->flags & SIGNAL_CLD_CONTINUED)
2716                         why = CLD_CONTINUED;
2717                 else
2718                         why = CLD_STOPPED;
2719 
2720                 signal->flags &= ~SIGNAL_CLD_MASK;
2721 
2722                 spin_unlock_irq(&sighand->siglock);
2723 
2724                 /*
2725                  * Notify the parent that we're continuing.  This event is
2726                  * always per-process and doesn't make whole lot of sense
2727                  * for ptracers, who shouldn't consume the state via
2728                  * wait(2) either, but, for backward compatibility, notify
2729                  * the ptracer of the group leader too unless it's gonna be
2730                  * a duplicate.
2731                  */
2732                 read_lock(&tasklist_lock);
2733                 do_notify_parent_cldstop(current, false, why);
2734 
2735                 if (ptrace_reparented(current->group_leader))
2736                         do_notify_parent_cldstop(current->group_leader,
2737                                                 true, why);
2738                 read_unlock(&tasklist_lock);
2739 
2740                 goto relock;
2741         }
2742 
2743         for (;;) {
2744                 struct k_sigaction *ka;
2745                 enum pid_type type;
2746 
2747                 /* Has this task already been marked for death? */
2748                 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2749                      signal->group_exec_task) {
2750                         signr = SIGKILL;
2751                         sigdelset(&current->pending.signal, SIGKILL);
2752                         trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2753                                              &sighand->action[SIGKILL-1]);
2754                         recalc_sigpending();
2755                         /*
2756                          * implies do_group_exit() or return to PF_USER_WORKER,
2757                          * no need to initialize ksig->info/etc.
2758                          */
2759                         goto fatal;
2760                 }
2761 
2762                 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2763                     do_signal_stop(0))
2764                         goto relock;
2765 
2766                 if (unlikely(current->jobctl &
2767                              (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2768                         if (current->jobctl & JOBCTL_TRAP_MASK) {
2769                                 do_jobctl_trap();
2770                                 spin_unlock_irq(&sighand->siglock);
2771                         } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2772                                 do_freezer_trap();
2773 
2774                         goto relock;
2775                 }
2776 
2777                 /*
2778                  * If the task is leaving the frozen state, let's update
2779                  * cgroup counters and reset the frozen bit.
2780                  */
2781                 if (unlikely(cgroup_task_frozen(current))) {
2782                         spin_unlock_irq(&sighand->siglock);
2783                         cgroup_leave_frozen(false);
2784                         goto relock;
2785                 }
2786 
2787                 /*
2788                  * Signals generated by the execution of an instruction
2789                  * need to be delivered before any other pending signals
2790                  * so that the instruction pointer in the signal stack
2791                  * frame points to the faulting instruction.
2792                  */
2793                 type = PIDTYPE_PID;
2794                 signr = dequeue_synchronous_signal(&ksig->info);
2795                 if (!signr)
2796                         signr = dequeue_signal(current, &current->blocked,
2797                                                &ksig->info, &type);
2798 
2799                 if (!signr)
2800                         break; /* will return 0 */
2801 
2802                 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2803                     !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2804                         signr = ptrace_signal(signr, &ksig->info, type);
2805                         if (!signr)
2806                                 continue;
2807                 }
2808 
2809                 ka = &sighand->action[signr-1];
2810 
2811                 /* Trace actually delivered signals. */
2812                 trace_signal_deliver(signr, &ksig->info, ka);
2813 
2814                 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2815                         continue;
2816                 if (ka->sa.sa_handler != SIG_DFL) {
2817                         /* Run the handler.  */
2818                         ksig->ka = *ka;
2819 
2820                         if (ka->sa.sa_flags & SA_ONESHOT)
2821                                 ka->sa.sa_handler = SIG_DFL;
2822 
2823                         break; /* will return non-zero "signr" value */
2824                 }
2825 
2826                 /*
2827                  * Now we are doing the default action for this signal.
2828                  */
2829                 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2830                         continue;
2831 
2832                 /*
2833                  * Global init gets no signals it doesn't want.
2834                  * Container-init gets no signals it doesn't want from same
2835                  * container.
2836                  *
2837                  * Note that if global/container-init sees a sig_kernel_only()
2838                  * signal here, the signal must have been generated internally
2839                  * or must have come from an ancestor namespace. In either
2840                  * case, the signal cannot be dropped.
2841                  */
2842                 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2843                                 !sig_kernel_only(signr))
2844                         continue;
2845 
2846                 if (sig_kernel_stop(signr)) {
2847                         /*
2848                          * The default action is to stop all threads in
2849                          * the thread group.  The job control signals
2850                          * do nothing in an orphaned pgrp, but SIGSTOP
2851                          * always works.  Note that siglock needs to be
2852                          * dropped during the call to is_orphaned_pgrp()
2853                          * because of lock ordering with tasklist_lock.
2854                          * This allows an intervening SIGCONT to be posted.
2855                          * We need to check for that and bail out if necessary.
2856                          */
2857                         if (signr != SIGSTOP) {
2858                                 spin_unlock_irq(&sighand->siglock);
2859 
2860                                 /* signals can be posted during this window */
2861 
2862                                 if (is_current_pgrp_orphaned())
2863                                         goto relock;
2864 
2865                                 spin_lock_irq(&sighand->siglock);
2866                         }
2867 
2868                         if (likely(do_signal_stop(signr))) {
2869                                 /* It released the siglock.  */
2870                                 goto relock;
2871                         }
2872 
2873                         /*
2874                          * We didn't actually stop, due to a race
2875                          * with SIGCONT or something like that.
2876                          */
2877                         continue;
2878                 }
2879 
2880         fatal:
2881                 spin_unlock_irq(&sighand->siglock);
2882                 if (unlikely(cgroup_task_frozen(current)))
2883                         cgroup_leave_frozen(true);
2884 
2885                 /*
2886                  * Anything else is fatal, maybe with a core dump.
2887                  */
2888                 current->flags |= PF_SIGNALED;
2889 
2890                 if (sig_kernel_coredump(signr)) {
2891                         if (print_fatal_signals)
2892                                 print_fatal_signal(signr);
2893                         proc_coredump_connector(current);
2894                         /*
2895                          * If it was able to dump core, this kills all
2896                          * other threads in the group and synchronizes with
2897                          * their demise.  If we lost the race with another
2898                          * thread getting here, it set group_exit_code
2899                          * first and our do_group_exit call below will use
2900                          * that value and ignore the one we pass it.
2901                          */
2902                         do_coredump(&ksig->info);
2903                 }
2904 
2905                 /*
2906                  * PF_USER_WORKER threads will catch and exit on fatal signals
2907                  * themselves. They have cleanup that must be performed, so we
2908                  * cannot call do_exit() on their behalf. Note that ksig won't
2909                  * be properly initialized, PF_USER_WORKER's shouldn't use it.
2910                  */
2911                 if (current->flags & PF_USER_WORKER)
2912                         goto out;
2913 
2914                 /*
2915                  * Death signals, no core dump.
2916                  */
2917                 do_group_exit(signr);
2918                 /* NOTREACHED */
2919         }
2920         spin_unlock_irq(&sighand->siglock);
2921 
2922         ksig->sig = signr;
2923 
2924         if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2925                 hide_si_addr_tag_bits(ksig);
2926 out:
2927         return signr > 0;
2928 }
2929 
2930 /**
2931  * signal_delivered - called after signal delivery to update blocked signals
2932  * @ksig:               kernel signal struct
2933  * @stepping:           nonzero if debugger single-step or block-step in use
2934  *
2935  * This function should be called when a signal has successfully been
2936  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2937  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2938  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2939  */
2940 static void signal_delivered(struct ksignal *ksig, int stepping)
2941 {
2942         sigset_t blocked;
2943 
2944         /* A signal was successfully delivered, and the
2945            saved sigmask was stored on the signal frame,
2946            and will be restored by sigreturn.  So we can
2947            simply clear the restore sigmask flag.  */
2948         clear_restore_sigmask();
2949 
2950         sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2951         if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2952                 sigaddset(&blocked, ksig->sig);
2953         set_current_blocked(&blocked);
2954         if (current->sas_ss_flags & SS_AUTODISARM)
2955                 sas_ss_reset(current);
2956         if (stepping)
2957                 ptrace_notify(SIGTRAP, 0);
2958 }
2959 
2960 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2961 {
2962         if (failed)
2963                 force_sigsegv(ksig->sig);
2964         else
2965                 signal_delivered(ksig, stepping);
2966 }
2967 
2968 /*
2969  * It could be that complete_signal() picked us to notify about the
2970  * group-wide signal. Other threads should be notified now to take
2971  * the shared signals in @which since we will not.
2972  */
2973 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2974 {
2975         sigset_t retarget;
2976         struct task_struct *t;
2977 
2978         sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2979         if (sigisemptyset(&retarget))
2980                 return;
2981 
2982         for_other_threads(tsk, t) {
2983                 if (t->flags & PF_EXITING)
2984                         continue;
2985 
2986                 if (!has_pending_signals(&retarget, &t->blocked))
2987                         continue;
2988                 /* Remove the signals this thread can handle. */
2989                 sigandsets(&retarget, &retarget, &t->blocked);
2990 
2991                 if (!task_sigpending(t))
2992                         signal_wake_up(t, 0);
2993 
2994                 if (sigisemptyset(&retarget))
2995                         break;
2996         }
2997 }
2998 
2999 void exit_signals(struct task_struct *tsk)
3000 {
3001         int group_stop = 0;
3002         sigset_t unblocked;
3003 
3004         /*
3005          * @tsk is about to have PF_EXITING set - lock out users which
3006          * expect stable threadgroup.
3007          */
3008         cgroup_threadgroup_change_begin(tsk);
3009 
3010         if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3011                 sched_mm_cid_exit_signals(tsk);
3012                 tsk->flags |= PF_EXITING;
3013                 cgroup_threadgroup_change_end(tsk);
3014                 return;
3015         }
3016 
3017         spin_lock_irq(&tsk->sighand->siglock);
3018         /*
3019          * From now this task is not visible for group-wide signals,
3020          * see wants_signal(), do_signal_stop().
3021          */
3022         sched_mm_cid_exit_signals(tsk);
3023         tsk->flags |= PF_EXITING;
3024 
3025         cgroup_threadgroup_change_end(tsk);
3026 
3027         if (!task_sigpending(tsk))
3028                 goto out;
3029 
3030         unblocked = tsk->blocked;
3031         signotset(&unblocked);
3032         retarget_shared_pending(tsk, &unblocked);
3033 
3034         if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3035             task_participate_group_stop(tsk))
3036                 group_stop = CLD_STOPPED;
3037 out:
3038         spin_unlock_irq(&tsk->sighand->siglock);
3039 
3040         /*
3041          * If group stop has completed, deliver the notification.  This
3042          * should always go to the real parent of the group leader.
3043          */
3044         if (unlikely(group_stop)) {
3045                 read_lock(&tasklist_lock);
3046                 do_notify_parent_cldstop(tsk, false, group_stop);
3047                 read_unlock(&tasklist_lock);
3048         }
3049 }
3050 
3051 /*
3052  * System call entry points.
3053  */
3054 
3055 /**
3056  *  sys_restart_syscall - restart a system call
3057  */
3058 SYSCALL_DEFINE0(restart_syscall)
3059 {
3060         struct restart_block *restart = &current->restart_block;
3061         return restart->fn(restart);
3062 }
3063 
3064 long do_no_restart_syscall(struct restart_block *param)
3065 {
3066         return -EINTR;
3067 }
3068 
3069 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3070 {
3071         if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3072                 sigset_t newblocked;
3073                 /* A set of now blocked but previously unblocked signals. */
3074                 sigandnsets(&newblocked, newset, &current->blocked);
3075                 retarget_shared_pending(tsk, &newblocked);
3076         }
3077         tsk->blocked = *newset;
3078         recalc_sigpending();
3079 }
3080 
3081 /**
3082  * set_current_blocked - change current->blocked mask
3083  * @newset: new mask
3084  *
3085  * It is wrong to change ->blocked directly, this helper should be used
3086  * to ensure the process can't miss a shared signal we are going to block.
3087  */
3088 void set_current_blocked(sigset_t *newset)
3089 {
3090         sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3091         __set_current_blocked(newset);
3092 }
3093 
3094 void __set_current_blocked(const sigset_t *newset)
3095 {
3096         struct task_struct *tsk = current;
3097 
3098         /*
3099          * In case the signal mask hasn't changed, there is nothing we need
3100          * to do. The current->blocked shouldn't be modified by other task.
3101          */
3102         if (sigequalsets(&tsk->blocked, newset))
3103                 return;
3104 
3105         spin_lock_irq(&tsk->sighand->siglock);
3106         __set_task_blocked(tsk, newset);
3107         spin_unlock_irq(&tsk->sighand->siglock);
3108 }
3109 
3110 /*
3111  * This is also useful for kernel threads that want to temporarily
3112  * (or permanently) block certain signals.
3113  *
3114  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3115  * interface happily blocks "unblockable" signals like SIGKILL
3116  * and friends.
3117  */
3118 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3119 {
3120         struct task_struct *tsk = current;
3121         sigset_t newset;
3122 
3123         /* Lockless, only current can change ->blocked, never from irq */
3124         if (oldset)
3125                 *oldset = tsk->blocked;
3126 
3127         switch (how) {
3128         case SIG_BLOCK:
3129                 sigorsets(&newset, &tsk->blocked, set);
3130                 break;
3131         case SIG_UNBLOCK:
3132                 sigandnsets(&newset, &tsk->blocked, set);
3133                 break;
3134         case SIG_SETMASK:
3135                 newset = *set;
3136                 break;
3137         default:
3138                 return -EINVAL;
3139         }
3140 
3141         __set_current_blocked(&newset);
3142         return 0;
3143 }
3144 EXPORT_SYMBOL(sigprocmask);
3145 
3146 /*
3147  * The api helps set app-provided sigmasks.
3148  *
3149  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3150  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3151  *
3152  * Note that it does set_restore_sigmask() in advance, so it must be always
3153  * paired with restore_saved_sigmask_unless() before return from syscall.
3154  */
3155 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3156 {
3157         sigset_t kmask;
3158 
3159         if (!umask)
3160                 return 0;
3161         if (sigsetsize != sizeof(sigset_t))
3162                 return -EINVAL;
3163         if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3164                 return -EFAULT;
3165 
3166         set_restore_sigmask();
3167         current->saved_sigmask = current->blocked;
3168         set_current_blocked(&kmask);
3169 
3170         return 0;
3171 }
3172 
3173 #ifdef CONFIG_COMPAT
3174 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3175                             size_t sigsetsize)
3176 {
3177         sigset_t kmask;
3178 
3179         if (!umask)
3180                 return 0;
3181         if (sigsetsize != sizeof(compat_sigset_t))
3182                 return -EINVAL;
3183         if (get_compat_sigset(&kmask, umask))
3184                 return -EFAULT;
3185 
3186         set_restore_sigmask();
3187         current->saved_sigmask = current->blocked;
3188         set_current_blocked(&kmask);
3189 
3190         return 0;
3191 }
3192 #endif
3193 
3194 /**
3195  *  sys_rt_sigprocmask - change the list of currently blocked signals
3196  *  @how: whether to add, remove, or set signals
3197  *  @nset: stores pending signals
3198  *  @oset: previous value of signal mask if non-null
3199  *  @sigsetsize: size of sigset_t type
3200  */
3201 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3202                 sigset_t __user *, oset, size_t, sigsetsize)
3203 {
3204         sigset_t old_set, new_set;
3205         int error;
3206 
3207         /* XXX: Don't preclude handling different sized sigset_t's.  */
3208         if (sigsetsize != sizeof(sigset_t))
3209                 return -EINVAL;
3210 
3211         old_set = current->blocked;
3212 
3213         if (nset) {
3214                 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3215                         return -EFAULT;
3216                 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3217 
3218                 error = sigprocmask(how, &new_set, NULL);
3219                 if (error)
3220                         return error;
3221         }
3222 
3223         if (oset) {
3224                 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3225                         return -EFAULT;
3226         }
3227 
3228         return 0;
3229 }
3230 
3231 #ifdef CONFIG_COMPAT
3232 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3233                 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3234 {
3235         sigset_t old_set = current->blocked;
3236 
3237         /* XXX: Don't preclude handling different sized sigset_t's.  */
3238         if (sigsetsize != sizeof(sigset_t))
3239                 return -EINVAL;
3240 
3241         if (nset) {
3242                 sigset_t new_set;
3243                 int error;
3244                 if (get_compat_sigset(&new_set, nset))
3245                         return -EFAULT;
3246                 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3247 
3248                 error = sigprocmask(how, &new_set, NULL);
3249                 if (error)
3250                         return error;
3251         }
3252         return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3253 }
3254 #endif
3255 
3256 static void do_sigpending(sigset_t *set)
3257 {
3258         spin_lock_irq(&current->sighand->siglock);
3259         sigorsets(set, &current->pending.signal,
3260                   &current->signal->shared_pending.signal);
3261         spin_unlock_irq(&current->sighand->siglock);
3262 
3263         /* Outside the lock because only this thread touches it.  */
3264         sigandsets(set, &current->blocked, set);
3265 }
3266 
3267 /**
3268  *  sys_rt_sigpending - examine a pending signal that has been raised
3269  *                      while blocked
3270  *  @uset: stores pending signals
3271  *  @sigsetsize: size of sigset_t type or larger
3272  */
3273 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3274 {
3275         sigset_t set;
3276 
3277         if (sigsetsize > sizeof(*uset))
3278                 return -EINVAL;
3279 
3280         do_sigpending(&set);
3281 
3282         if (copy_to_user(uset, &set, sigsetsize))
3283                 return -EFAULT;
3284 
3285         return 0;
3286 }
3287 
3288 #ifdef CONFIG_COMPAT
3289 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3290                 compat_size_t, sigsetsize)
3291 {
3292         sigset_t set;
3293 
3294         if (sigsetsize > sizeof(*uset))
3295                 return -EINVAL;
3296 
3297         do_sigpending(&set);
3298 
3299         return put_compat_sigset(uset, &set, sigsetsize);
3300 }
3301 #endif
3302 
3303 static const struct {
3304         unsigned char limit, layout;
3305 } sig_sicodes[] = {
3306         [SIGILL]  = { NSIGILL,  SIL_FAULT },
3307         [SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3308         [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3309         [SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3310         [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3311 #if defined(SIGEMT)
3312         [SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3313 #endif
3314         [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3315         [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3316         [SIGSYS]  = { NSIGSYS,  SIL_SYS },
3317 };
3318 
3319 static bool known_siginfo_layout(unsigned sig, int si_code)
3320 {
3321         if (si_code == SI_KERNEL)
3322                 return true;
3323         else if ((si_code > SI_USER)) {
3324                 if (sig_specific_sicodes(sig)) {
3325                         if (si_code <= sig_sicodes[sig].limit)
3326                                 return true;
3327                 }
3328                 else if (si_code <= NSIGPOLL)
3329                         return true;
3330         }
3331         else if (si_code >= SI_DETHREAD)
3332                 return true;
3333         else if (si_code == SI_ASYNCNL)
3334                 return true;
3335         return false;
3336 }
3337 
3338 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3339 {
3340         enum siginfo_layout layout = SIL_KILL;
3341         if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3342                 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3343                     (si_code <= sig_sicodes[sig].limit)) {
3344                         layout = sig_sicodes[sig].layout;
3345                         /* Handle the exceptions */
3346                         if ((sig == SIGBUS) &&
3347                             (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3348                                 layout = SIL_FAULT_MCEERR;
3349                         else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3350                                 layout = SIL_FAULT_BNDERR;
3351 #ifdef SEGV_PKUERR
3352                         else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3353                                 layout = SIL_FAULT_PKUERR;
3354 #endif
3355                         else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3356                                 layout = SIL_FAULT_PERF_EVENT;
3357                         else if (IS_ENABLED(CONFIG_SPARC) &&
3358                                  (sig == SIGILL) && (si_code == ILL_ILLTRP))
3359                                 layout = SIL_FAULT_TRAPNO;
3360                         else if (IS_ENABLED(CONFIG_ALPHA) &&
3361                                  ((sig == SIGFPE) ||
3362                                   ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3363                                 layout = SIL_FAULT_TRAPNO;
3364                 }
3365                 else if (si_code <= NSIGPOLL)
3366                         layout = SIL_POLL;
3367         } else {
3368                 if (si_code == SI_TIMER)
3369                         layout = SIL_TIMER;
3370                 else if (si_code == SI_SIGIO)
3371                         layout = SIL_POLL;
3372                 else if (si_code < 0)
3373                         layout = SIL_RT;
3374         }
3375         return layout;
3376 }
3377 
3378 static inline char __user *si_expansion(const siginfo_t __user *info)
3379 {
3380         return ((char __user *)info) + sizeof(struct kernel_siginfo);
3381 }
3382 
3383 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3384 {
3385         char __user *expansion = si_expansion(to);
3386         if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3387                 return -EFAULT;
3388         if (clear_user(expansion, SI_EXPANSION_SIZE))
3389                 return -EFAULT;
3390         return 0;
3391 }
3392 
3393 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3394                                        const siginfo_t __user *from)
3395 {
3396         if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3397                 char __user *expansion = si_expansion(from);
3398                 char buf[SI_EXPANSION_SIZE];
3399                 int i;
3400                 /*
3401                  * An unknown si_code might need more than
3402                  * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3403                  * extra bytes are 0.  This guarantees copy_siginfo_to_user
3404                  * will return this data to userspace exactly.
3405                  */
3406                 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3407                         return -EFAULT;
3408                 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3409                         if (buf[i] != 0)
3410                                 return -E2BIG;
3411                 }
3412         }
3413         return 0;
3414 }
3415 
3416 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3417                                     const siginfo_t __user *from)
3418 {
3419         if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3420                 return -EFAULT;
3421         to->si_signo = signo;
3422         return post_copy_siginfo_from_user(to, from);
3423 }
3424 
3425 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3426 {
3427         if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3428                 return -EFAULT;
3429         return post_copy_siginfo_from_user(to, from);
3430 }
3431 
3432 #ifdef CONFIG_COMPAT
3433 /**
3434  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3435  * @to: compat siginfo destination
3436  * @from: kernel siginfo source
3437  *
3438  * Note: This function does not work properly for the SIGCHLD on x32, but
3439  * fortunately it doesn't have to.  The only valid callers for this function are
3440  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3441  * The latter does not care because SIGCHLD will never cause a coredump.
3442  */
3443 void copy_siginfo_to_external32(struct compat_siginfo *to,
3444                 const struct kernel_siginfo *from)
3445 {
3446         memset(to, 0, sizeof(*to));
3447 
3448         to->si_signo = from->si_signo;
3449         to->si_errno = from->si_errno;
3450         to->si_code  = from->si_code;
3451         switch(siginfo_layout(from->si_signo, from->si_code)) {
3452         case SIL_KILL:
3453                 to->si_pid = from->si_pid;
3454                 to->si_uid = from->si_uid;
3455                 break;
3456         case SIL_TIMER:
3457                 to->si_tid     = from->si_tid;
3458                 to->si_overrun = from->si_overrun;
3459                 to->si_int     = from->si_int;
3460                 break;
3461         case SIL_POLL:
3462                 to->si_band = from->si_band;
3463                 to->si_fd   = from->si_fd;
3464                 break;
3465         case SIL_FAULT:
3466                 to->si_addr = ptr_to_compat(from->si_addr);
3467                 break;
3468         case SIL_FAULT_TRAPNO:
3469                 to->si_addr = ptr_to_compat(from->si_addr);
3470                 to->si_trapno = from->si_trapno;
3471                 break;
3472         case SIL_FAULT_MCEERR:
3473                 to->si_addr = ptr_to_compat(from->si_addr);
3474                 to->si_addr_lsb = from->si_addr_lsb;
3475                 break;
3476         case SIL_FAULT_BNDERR:
3477                 to->si_addr = ptr_to_compat(from->si_addr);
3478                 to->si_lower = ptr_to_compat(from->si_lower);
3479                 to->si_upper = ptr_to_compat(from->si_upper);
3480                 break;
3481         case SIL_FAULT_PKUERR:
3482                 to->si_addr = ptr_to_compat(from->si_addr);
3483                 to->si_pkey = from->si_pkey;
3484                 break;
3485         case SIL_FAULT_PERF_EVENT:
3486                 to->si_addr = ptr_to_compat(from->si_addr);
3487                 to->si_perf_data = from->si_perf_data;
3488                 to->si_perf_type = from->si_perf_type;
3489                 to->si_perf_flags = from->si_perf_flags;
3490                 break;
3491         case SIL_CHLD:
3492                 to->si_pid = from->si_pid;
3493                 to->si_uid = from->si_uid;
3494                 to->si_status = from->si_status;
3495                 to->si_utime = from->si_utime;
3496                 to->si_stime = from->si_stime;
3497                 break;
3498         case SIL_RT:
3499                 to->si_pid = from->si_pid;
3500                 to->si_uid = from->si_uid;
3501                 to->si_int = from->si_int;
3502                 break;
3503         case SIL_SYS:
3504                 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3505                 to->si_syscall   = from->si_syscall;
3506                 to->si_arch      = from->si_arch;
3507                 break;
3508         }
3509 }
3510 
3511 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3512                            const struct kernel_siginfo *from)
3513 {
3514         struct compat_siginfo new;
3515 
3516         copy_siginfo_to_external32(&new, from);
3517         if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3518                 return -EFAULT;
3519         return 0;
3520 }
3521 
3522 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3523                                          const struct compat_siginfo *from)
3524 {
3525         clear_siginfo(to);
3526         to->si_signo = from->si_signo;
3527         to->si_errno = from->si_errno;
3528         to->si_code  = from->si_code;
3529         switch(siginfo_layout(from->si_signo, from->si_code)) {
3530         case SIL_KILL:
3531                 to->si_pid = from->si_pid;
3532                 to->si_uid = from->si_uid;
3533                 break;
3534         case SIL_TIMER:
3535                 to->si_tid     = from->si_tid;
3536                 to->si_overrun = from->si_overrun;
3537                 to->si_int     = from->si_int;
3538                 break;
3539         case SIL_POLL:
3540                 to->si_band = from->si_band;
3541                 to->si_fd   = from->si_fd;
3542                 break;
3543         case SIL_FAULT:
3544                 to->si_addr = compat_ptr(from->si_addr);
3545                 break;
3546         case SIL_FAULT_TRAPNO:
3547                 to->si_addr = compat_ptr(from->si_addr);
3548                 to->si_trapno = from->si_trapno;
3549                 break;
3550         case SIL_FAULT_MCEERR:
3551                 to->si_addr = compat_ptr(from->si_addr);
3552                 to->si_addr_lsb = from->si_addr_lsb;
3553                 break;
3554         case SIL_FAULT_BNDERR:
3555                 to->si_addr = compat_ptr(from->si_addr);
3556                 to->si_lower = compat_ptr(from->si_lower);
3557                 to->si_upper = compat_ptr(from->si_upper);
3558                 break;
3559         case SIL_FAULT_PKUERR:
3560                 to->si_addr = compat_ptr(from->si_addr);
3561                 to->si_pkey = from->si_pkey;
3562                 break;
3563         case SIL_FAULT_PERF_EVENT:
3564                 to->si_addr = compat_ptr(from->si_addr);
3565                 to->si_perf_data = from->si_perf_data;
3566                 to->si_perf_type = from->si_perf_type;
3567                 to->si_perf_flags = from->si_perf_flags;
3568                 break;
3569         case SIL_CHLD:
3570                 to->si_pid    = from->si_pid;
3571                 to->si_uid    = from->si_uid;
3572                 to->si_status = from->si_status;
3573 #ifdef CONFIG_X86_X32_ABI
3574                 if (in_x32_syscall()) {
3575                         to->si_utime = from->_sifields._sigchld_x32._utime;
3576                         to->si_stime = from->_sifields._sigchld_x32._stime;
3577                 } else
3578 #endif
3579                 {
3580                         to->si_utime = from->si_utime;
3581                         to->si_stime = from->si_stime;
3582                 }
3583                 break;
3584         case SIL_RT:
3585                 to->si_pid = from->si_pid;
3586                 to->si_uid = from->si_uid;
3587                 to->si_int = from->si_int;
3588                 break;
3589         case SIL_SYS:
3590                 to->si_call_addr = compat_ptr(from->si_call_addr);
3591                 to->si_syscall   = from->si_syscall;
3592                 to->si_arch      = from->si_arch;
3593                 break;
3594         }
3595         return 0;
3596 }
3597 
3598 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3599                                       const struct compat_siginfo __user *ufrom)
3600 {
3601         struct compat_siginfo from;
3602 
3603         if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3604                 return -EFAULT;
3605 
3606         from.si_signo = signo;
3607         return post_copy_siginfo_from_user32(to, &from);
3608 }
3609 
3610 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3611                              const struct compat_siginfo __user *ufrom)
3612 {
3613         struct compat_siginfo from;
3614 
3615         if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3616                 return -EFAULT;
3617 
3618         return post_copy_siginfo_from_user32(to, &from);
3619 }
3620 #endif /* CONFIG_COMPAT */
3621 
3622 /**
3623  *  do_sigtimedwait - wait for queued signals specified in @which
3624  *  @which: queued signals to wait for
3625  *  @info: if non-null, the signal's siginfo is returned here
3626  *  @ts: upper bound on process time suspension
3627  */
3628 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3629                     const struct timespec64 *ts)
3630 {
3631         ktime_t *to = NULL, timeout = KTIME_MAX;
3632         struct task_struct *tsk = current;
3633         sigset_t mask = *which;
3634         enum pid_type type;
3635         int sig, ret = 0;
3636 
3637         if (ts) {
3638                 if (!timespec64_valid(ts))
3639                         return -EINVAL;
3640                 timeout = timespec64_to_ktime(*ts);
3641                 to = &timeout;
3642         }
3643 
3644         /*
3645          * Invert the set of allowed signals to get those we want to block.
3646          */
3647         sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3648         signotset(&mask);
3649 
3650         spin_lock_irq(&tsk->sighand->siglock);
3651         sig = dequeue_signal(tsk, &mask, info, &type);
3652         if (!sig && timeout) {
3653                 /*
3654                  * None ready, temporarily unblock those we're interested
3655                  * while we are sleeping in so that we'll be awakened when
3656                  * they arrive. Unblocking is always fine, we can avoid
3657                  * set_current_blocked().
3658                  */
3659                 tsk->real_blocked = tsk->blocked;
3660                 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3661                 recalc_sigpending();
3662                 spin_unlock_irq(&tsk->sighand->siglock);
3663 
3664                 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3665                 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3666                                                HRTIMER_MODE_REL);
3667                 spin_lock_irq(&tsk->sighand->siglock);
3668                 __set_task_blocked(tsk, &tsk->real_blocked);
3669                 sigemptyset(&tsk->real_blocked);
3670                 sig = dequeue_signal(tsk, &mask, info, &type);
3671         }
3672         spin_unlock_irq(&tsk->sighand->siglock);
3673 
3674         if (sig)
3675                 return sig;
3676         return ret ? -EINTR : -EAGAIN;
3677 }
3678 
3679 /**
3680  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3681  *                      in @uthese
3682  *  @uthese: queued signals to wait for
3683  *  @uinfo: if non-null, the signal's siginfo is returned here
3684  *  @uts: upper bound on process time suspension
3685  *  @sigsetsize: size of sigset_t type
3686  */
3687 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3688                 siginfo_t __user *, uinfo,
3689                 const struct __kernel_timespec __user *, uts,
3690                 size_t, sigsetsize)
3691 {
3692         sigset_t these;
3693         struct timespec64 ts;
3694         kernel_siginfo_t info;
3695         int ret;
3696 
3697         /* XXX: Don't preclude handling different sized sigset_t's.  */
3698         if (sigsetsize != sizeof(sigset_t))
3699                 return -EINVAL;
3700 
3701         if (copy_from_user(&these, uthese, sizeof(these)))
3702                 return -EFAULT;
3703 
3704         if (uts) {
3705                 if (get_timespec64(&ts, uts))
3706                         return -EFAULT;
3707         }
3708 
3709         ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3710 
3711         if (ret > 0 && uinfo) {
3712                 if (copy_siginfo_to_user(uinfo, &info))
3713                         ret = -EFAULT;
3714         }
3715 
3716         return ret;
3717 }
3718 
3719 #ifdef CONFIG_COMPAT_32BIT_TIME
3720 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3721                 siginfo_t __user *, uinfo,
3722                 const struct old_timespec32 __user *, uts,
3723                 size_t, sigsetsize)
3724 {
3725         sigset_t these;
3726         struct timespec64 ts;
3727         kernel_siginfo_t info;
3728         int ret;
3729 
3730         if (sigsetsize != sizeof(sigset_t))
3731                 return -EINVAL;
3732 
3733         if (copy_from_user(&these, uthese, sizeof(these)))
3734                 return -EFAULT;
3735 
3736         if (uts) {
3737                 if (get_old_timespec32(&ts, uts))
3738                         return -EFAULT;
3739         }
3740 
3741         ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3742 
3743         if (ret > 0 && uinfo) {
3744                 if (copy_siginfo_to_user(uinfo, &info))
3745                         ret = -EFAULT;
3746         }
3747 
3748         return ret;
3749 }
3750 #endif
3751 
3752 #ifdef CONFIG_COMPAT
3753 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3754                 struct compat_siginfo __user *, uinfo,
3755                 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3756 {
3757         sigset_t s;
3758         struct timespec64 t;
3759         kernel_siginfo_t info;
3760         long ret;
3761 
3762         if (sigsetsize != sizeof(sigset_t))
3763                 return -EINVAL;
3764 
3765         if (get_compat_sigset(&s, uthese))
3766                 return -EFAULT;
3767 
3768         if (uts) {
3769                 if (get_timespec64(&t, uts))
3770                         return -EFAULT;
3771         }
3772 
3773         ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3774 
3775         if (ret > 0 && uinfo) {
3776                 if (copy_siginfo_to_user32(uinfo, &info))
3777                         ret = -EFAULT;
3778         }
3779 
3780         return ret;
3781 }
3782 
3783 #ifdef CONFIG_COMPAT_32BIT_TIME
3784 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3785                 struct compat_siginfo __user *, uinfo,
3786                 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3787 {
3788         sigset_t s;
3789         struct timespec64 t;
3790         kernel_siginfo_t info;
3791         long ret;
3792 
3793         if (sigsetsize != sizeof(sigset_t))
3794                 return -EINVAL;
3795 
3796         if (get_compat_sigset(&s, uthese))
3797                 return -EFAULT;
3798 
3799         if (uts) {
3800                 if (get_old_timespec32(&t, uts))
3801                         return -EFAULT;
3802         }
3803 
3804         ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3805 
3806         if (ret > 0 && uinfo) {
3807                 if (copy_siginfo_to_user32(uinfo, &info))
3808                         ret = -EFAULT;
3809         }
3810 
3811         return ret;
3812 }
3813 #endif
3814 #endif
3815 
3816 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3817                                  enum pid_type type)
3818 {
3819         clear_siginfo(info);
3820         info->si_signo = sig;
3821         info->si_errno = 0;
3822         info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3823         info->si_pid = task_tgid_vnr(current);
3824         info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3825 }
3826 
3827 /**
3828  *  sys_kill - send a signal to a process
3829  *  @pid: the PID of the process
3830  *  @sig: signal to be sent
3831  */
3832 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3833 {
3834         struct kernel_siginfo info;
3835         if (ccs_kill_permission(pid, sig))
3836                 return -EPERM;
3837 
3838         prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3839 
3840         return kill_something_info(sig, &info, pid);
3841 }
3842 
3843 /*
3844  * Verify that the signaler and signalee either are in the same pid namespace
3845  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3846  * namespace.
3847  */
3848 static bool access_pidfd_pidns(struct pid *pid)
3849 {
3850         struct pid_namespace *active = task_active_pid_ns(current);
3851         struct pid_namespace *p = ns_of_pid(pid);
3852 
3853         for (;;) {
3854                 if (!p)
3855                         return false;
3856                 if (p == active)
3857                         break;
3858                 p = p->parent;
3859         }
3860 
3861         return true;
3862 }
3863 
3864 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3865                 siginfo_t __user *info)
3866 {
3867 #ifdef CONFIG_COMPAT
3868         /*
3869          * Avoid hooking up compat syscalls and instead handle necessary
3870          * conversions here. Note, this is a stop-gap measure and should not be
3871          * considered a generic solution.
3872          */
3873         if (in_compat_syscall())
3874                 return copy_siginfo_from_user32(
3875                         kinfo, (struct compat_siginfo __user *)info);
3876 #endif
3877         return copy_siginfo_from_user(kinfo, info);
3878 }
3879 
3880 static struct pid *pidfd_to_pid(const struct file *file)
3881 {
3882         struct pid *pid;
3883 
3884         pid = pidfd_pid(file);
3885         if (!IS_ERR(pid))
3886                 return pid;
3887 
3888         return tgid_pidfd_to_pid(file);
3889 }
3890 
3891 #define PIDFD_SEND_SIGNAL_FLAGS                            \
3892         (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3893          PIDFD_SIGNAL_PROCESS_GROUP)
3894 
3895 /**
3896  * sys_pidfd_send_signal - Signal a process through a pidfd
3897  * @pidfd:  file descriptor of the process
3898  * @sig:    signal to send
3899  * @info:   signal info
3900  * @flags:  future flags
3901  *
3902  * Send the signal to the thread group or to the individual thread depending
3903  * on PIDFD_THREAD.
3904  * In the future extension to @flags may be used to override the default scope
3905  * of @pidfd.
3906  *
3907  * Return: 0 on success, negative errno on failure
3908  */
3909 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3910                 siginfo_t __user *, info, unsigned int, flags)
3911 {
3912         int ret;
3913         struct fd f;
3914         struct pid *pid;
3915         kernel_siginfo_t kinfo;
3916         enum pid_type type;
3917 
3918         /* Enforce flags be set to 0 until we add an extension. */
3919         if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
3920                 return -EINVAL;
3921 
3922         /* Ensure that only a single signal scope determining flag is set. */
3923         if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
3924                 return -EINVAL;
3925 
3926         f = fdget(pidfd);
3927         if (!f.file)
3928                 return -EBADF;
3929 
3930         /* Is this a pidfd? */
3931         pid = pidfd_to_pid(f.file);
3932         if (IS_ERR(pid)) {
3933                 ret = PTR_ERR(pid);
3934                 goto err;
3935         }
3936 
3937         ret = -EINVAL;
3938         if (!access_pidfd_pidns(pid))
3939                 goto err;
3940 
3941         {
3942                 struct task_struct *task;
3943                 int id = 0;
3944 
3945                 rcu_read_lock();
3946                 task = pid_task(pid, PIDTYPE_PID);
3947                 if (task)
3948                         id = task_pid_vnr(task);
3949                 rcu_read_unlock();
3950                 if (task && ccs_kill_permission(id, sig)) {
3951                         ret = -EPERM;
3952                         goto err;
3953                 }
3954         }
3955 
3956         switch (flags) {
3957         case 0:
3958                 /* Infer scope from the type of pidfd. */
3959                 if (f.file->f_flags & PIDFD_THREAD)
3960                         type = PIDTYPE_PID;
3961                 else
3962                         type = PIDTYPE_TGID;
3963                 break;
3964         case PIDFD_SIGNAL_THREAD:
3965                 type = PIDTYPE_PID;
3966                 break;
3967         case PIDFD_SIGNAL_THREAD_GROUP:
3968                 type = PIDTYPE_TGID;
3969                 break;
3970         case PIDFD_SIGNAL_PROCESS_GROUP:
3971                 type = PIDTYPE_PGID;
3972                 break;
3973         }
3974 
3975         if (info) {
3976                 ret = copy_siginfo_from_user_any(&kinfo, info);
3977                 if (unlikely(ret))
3978                         goto err;
3979 
3980                 ret = -EINVAL;
3981                 if (unlikely(sig != kinfo.si_signo))
3982                         goto err;
3983 
3984                 /* Only allow sending arbitrary signals to yourself. */
3985                 ret = -EPERM;
3986                 if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
3987                     (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3988                         goto err;
3989         } else {
3990                 prepare_kill_siginfo(sig, &kinfo, type);
3991         }
3992 
3993         if (type == PIDTYPE_PGID)
3994                 ret = kill_pgrp_info(sig, &kinfo, pid);
3995         else
3996                 ret = kill_pid_info_type(sig, &kinfo, pid, type);
3997 err:
3998         fdput(f);
3999         return ret;
4000 }
4001 
4002 static int
4003 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
4004 {
4005         struct task_struct *p;
4006         int error = -ESRCH;
4007 
4008         rcu_read_lock();
4009         p = find_task_by_vpid(pid);
4010         if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
4011                 error = check_kill_permission(sig, info, p);
4012                 /*
4013                  * The null signal is a permissions and process existence
4014                  * probe.  No signal is actually delivered.
4015                  */
4016                 if (!error && sig) {
4017                         error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
4018                         /*
4019                          * If lock_task_sighand() failed we pretend the task
4020                          * dies after receiving the signal. The window is tiny,
4021                          * and the signal is private anyway.
4022                          */
4023                         if (unlikely(error == -ESRCH))
4024                                 error = 0;
4025                 }
4026         }
4027         rcu_read_unlock();
4028 
4029         return error;
4030 }
4031 
4032 static int do_tkill(pid_t tgid, pid_t pid, int sig)
4033 {
4034         struct kernel_siginfo info;
4035 
4036         prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4037 
4038         return do_send_specific(tgid, pid, sig, &info);
4039 }
4040 
4041 /**
4042  *  sys_tgkill - send signal to one specific thread
4043  *  @tgid: the thread group ID of the thread
4044  *  @pid: the PID of the thread
4045  *  @sig: signal to be sent
4046  *
4047  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4048  *  exists but it's not belonging to the target process anymore. This
4049  *  method solves the problem of threads exiting and PIDs getting reused.
4050  */
4051 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4052 {
4053         /* This is only valid for single tasks */
4054         if (pid <= 0 || tgid <= 0)
4055                 return -EINVAL;
4056         if (ccs_tgkill_permission(tgid, pid, sig))
4057                 return -EPERM;
4058 
4059         return do_tkill(tgid, pid, sig);
4060 }
4061 
4062 /**
4063  *  sys_tkill - send signal to one specific task
4064  *  @pid: the PID of the task
4065  *  @sig: signal to be sent
4066  *
4067  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4068  */
4069 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4070 {
4071         /* This is only valid for single tasks */
4072         if (pid <= 0)
4073                 return -EINVAL;
4074         if (ccs_tkill_permission(pid, sig))
4075                 return -EPERM;
4076 
4077         return do_tkill(0, pid, sig);
4078 }
4079 
4080 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4081 {
4082         /* Not even root can pretend to send signals from the kernel.
4083          * Nor can they impersonate a kill()/tgkill(), which adds source info.
4084          */
4085         if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4086             (task_pid_vnr(current) != pid))
4087                 return -EPERM;
4088         if (ccs_sigqueue_permission(pid, sig))
4089                 return -EPERM;
4090 
4091         /* POSIX.1b doesn't mention process groups.  */
4092         return kill_proc_info(sig, info, pid);
4093 }
4094 
4095 /**
4096  *  sys_rt_sigqueueinfo - send signal information to a signal
4097  *  @pid: the PID of the thread
4098  *  @sig: signal to be sent
4099  *  @uinfo: signal info to be sent
4100  */
4101 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4102                 siginfo_t __user *, uinfo)
4103 {
4104         kernel_siginfo_t info;
4105         int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4106         if (unlikely(ret))
4107                 return ret;
4108         return do_rt_sigqueueinfo(pid, sig, &info);
4109 }
4110 
4111 #ifdef CONFIG_COMPAT
4112 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4113                         compat_pid_t, pid,
4114                         int, sig,
4115                         struct compat_siginfo __user *, uinfo)
4116 {
4117         kernel_siginfo_t info;
4118         int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4119         if (unlikely(ret))
4120                 return ret;
4121         return do_rt_sigqueueinfo(pid, sig, &info);
4122 }
4123 #endif
4124 
4125 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4126 {
4127         /* This is only valid for single tasks */
4128         if (pid <= 0 || tgid <= 0)
4129                 return -EINVAL;
4130 
4131         /* Not even root can pretend to send signals from the kernel.
4132          * Nor can they impersonate a kill()/tgkill(), which adds source info.
4133          */
4134         if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4135             (task_pid_vnr(current) != pid))
4136                 return -EPERM;
4137         if (ccs_tgsigqueue_permission(tgid, pid, sig))
4138                 return -EPERM;
4139 
4140         return do_send_specific(tgid, pid, sig, info);
4141 }
4142 
4143 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4144                 siginfo_t __user *, uinfo)
4145 {
4146         kernel_siginfo_t info;
4147         int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4148         if (unlikely(ret))
4149                 return ret;
4150         return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4151 }
4152 
4153 #ifdef CONFIG_COMPAT
4154 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4155                         compat_pid_t, tgid,
4156                         compat_pid_t, pid,
4157                         int, sig,
4158                         struct compat_siginfo __user *, uinfo)
4159 {
4160         kernel_siginfo_t info;
4161         int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4162         if (unlikely(ret))
4163                 return ret;
4164         return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4165 }
4166 #endif
4167 
4168 /*
4169  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4170  */
4171 void kernel_sigaction(int sig, __sighandler_t action)
4172 {
4173         spin_lock_irq(&current->sighand->siglock);
4174         current->sighand->action[sig - 1].sa.sa_handler = action;
4175         if (action == SIG_IGN) {
4176                 sigset_t mask;
4177 
4178                 sigemptyset(&mask);
4179                 sigaddset(&mask, sig);
4180 
4181                 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4182                 flush_sigqueue_mask(&mask, &current->pending);
4183                 recalc_sigpending();
4184         }
4185         spin_unlock_irq(&current->sighand->siglock);
4186 }
4187 EXPORT_SYMBOL(kernel_sigaction);
4188 
4189 void __weak sigaction_compat_abi(struct k_sigaction *act,
4190                 struct k_sigaction *oact)
4191 {
4192 }
4193 
4194 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4195 {
4196         struct task_struct *p = current, *t;
4197         struct k_sigaction *k;
4198         sigset_t mask;
4199 
4200         if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4201                 return -EINVAL;
4202 
4203         k = &p->sighand->action[sig-1];
4204 
4205         spin_lock_irq(&p->sighand->siglock);
4206         if (k->sa.sa_flags & SA_IMMUTABLE) {
4207                 spin_unlock_irq(&p->sighand->siglock);
4208                 return -EINVAL;
4209         }
4210         if (oact)
4211                 *oact = *k;
4212 
4213         /*
4214          * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4215          * e.g. by having an architecture use the bit in their uapi.
4216          */
4217         BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4218 
4219         /*
4220          * Clear unknown flag bits in order to allow userspace to detect missing
4221          * support for flag bits and to allow the kernel to use non-uapi bits
4222          * internally.
4223          */
4224         if (act)
4225                 act->sa.sa_flags &= UAPI_SA_FLAGS;
4226         if (oact)
4227                 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4228 
4229         sigaction_compat_abi(act, oact);
4230 
4231         if (act) {
4232                 sigdelsetmask(&act->sa.sa_mask,
4233                               sigmask(SIGKILL) | sigmask(SIGSTOP));
4234                 *k = *act;
4235                 /*
4236                  * POSIX 3.3.1.3:
4237                  *  "Setting a signal action to SIG_IGN for a signal that is
4238                  *   pending shall cause the pending signal to be discarded,
4239                  *   whether or not it is blocked."
4240                  *
4241                  *  "Setting a signal action to SIG_DFL for a signal that is
4242                  *   pending and whose default action is to ignore the signal
4243                  *   (for example, SIGCHLD), shall cause the pending signal to
4244                  *   be discarded, whether or not it is blocked"
4245                  */
4246                 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4247                         sigemptyset(&mask);
4248                         sigaddset(&mask, sig);
4249                         flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4250                         for_each_thread(p, t)
4251                                 flush_sigqueue_mask(&mask, &t->pending);
4252                 }
4253         }
4254 
4255         spin_unlock_irq(&p->sighand->siglock);
4256         return 0;
4257 }
4258 
4259 #ifdef CONFIG_DYNAMIC_SIGFRAME
4260 static inline void sigaltstack_lock(void)
4261         __acquires(&current->sighand->siglock)
4262 {
4263         spin_lock_irq(&current->sighand->siglock);
4264 }
4265 
4266 static inline void sigaltstack_unlock(void)
4267         __releases(&current->sighand->siglock)
4268 {
4269         spin_unlock_irq(&current->sighand->siglock);
4270 }
4271 #else
4272 static inline void sigaltstack_lock(void) { }
4273 static inline void sigaltstack_unlock(void) { }
4274 #endif
4275 
4276 static int
4277 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4278                 size_t min_ss_size)
4279 {
4280         struct task_struct *t = current;
4281         int ret = 0;
4282 
4283         if (oss) {
4284                 memset(oss, 0, sizeof(stack_t));
4285                 oss->ss_sp = (void __user *) t->sas_ss_sp;
4286                 oss->ss_size = t->sas_ss_size;
4287                 oss->ss_flags = sas_ss_flags(sp) |
4288                         (current->sas_ss_flags & SS_FLAG_BITS);
4289         }
4290 
4291         if (ss) {
4292                 void __user *ss_sp = ss->ss_sp;
4293                 size_t ss_size = ss->ss_size;
4294                 unsigned ss_flags = ss->ss_flags;
4295                 int ss_mode;
4296 
4297                 if (unlikely(on_sig_stack(sp)))
4298                         return -EPERM;
4299 
4300                 ss_mode = ss_flags & ~SS_FLAG_BITS;
4301                 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4302                                 ss_mode != 0))
4303                         return -EINVAL;
4304 
4305                 /*
4306                  * Return before taking any locks if no actual
4307                  * sigaltstack changes were requested.
4308                  */
4309                 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4310                     t->sas_ss_size == ss_size &&
4311                     t->sas_ss_flags == ss_flags)
4312                         return 0;
4313 
4314                 sigaltstack_lock();
4315                 if (ss_mode == SS_DISABLE) {
4316                         ss_size = 0;
4317                         ss_sp = NULL;
4318                 } else {
4319                         if (unlikely(ss_size < min_ss_size))
4320                                 ret = -ENOMEM;
4321                         if (!sigaltstack_size_valid(ss_size))
4322                                 ret = -ENOMEM;
4323                 }
4324                 if (!ret) {
4325                         t->sas_ss_sp = (unsigned long) ss_sp;
4326                         t->sas_ss_size = ss_size;
4327                         t->sas_ss_flags = ss_flags;
4328                 }
4329                 sigaltstack_unlock();
4330         }
4331         return ret;
4332 }
4333 
4334 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4335 {
4336         stack_t new, old;
4337         int err;
4338         if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4339                 return -EFAULT;
4340         err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4341                               current_user_stack_pointer(),
4342                               MINSIGSTKSZ);
4343         if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4344                 err = -EFAULT;
4345         return err;
4346 }
4347 
4348 int restore_altstack(const stack_t __user *uss)
4349 {
4350         stack_t new;
4351         if (copy_from_user(&new, uss, sizeof(stack_t)))
4352                 return -EFAULT;
4353         (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4354                              MINSIGSTKSZ);
4355         /* squash all but EFAULT for now */
4356         return 0;
4357 }
4358 
4359 int __save_altstack(stack_t __user *uss, unsigned long sp)
4360 {
4361         struct task_struct *t = current;
4362         int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4363                 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4364                 __put_user(t->sas_ss_size, &uss->ss_size);
4365         return err;
4366 }
4367 
4368 #ifdef CONFIG_COMPAT
4369 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4370                                  compat_stack_t __user *uoss_ptr)
4371 {
4372         stack_t uss, uoss;
4373         int ret;
4374 
4375         if (uss_ptr) {
4376                 compat_stack_t uss32;
4377                 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4378                         return -EFAULT;
4379                 uss.ss_sp = compat_ptr(uss32.ss_sp);
4380                 uss.ss_flags = uss32.ss_flags;
4381                 uss.ss_size = uss32.ss_size;
4382         }
4383         ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4384                              compat_user_stack_pointer(),
4385                              COMPAT_MINSIGSTKSZ);
4386         if (ret >= 0 && uoss_ptr)  {
4387                 compat_stack_t old;
4388                 memset(&old, 0, sizeof(old));
4389                 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4390                 old.ss_flags = uoss.ss_flags;
4391                 old.ss_size = uoss.ss_size;
4392                 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4393                         ret = -EFAULT;
4394         }
4395         return ret;
4396 }
4397 
4398 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4399                         const compat_stack_t __user *, uss_ptr,
4400                         compat_stack_t __user *, uoss_ptr)
4401 {
4402         return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4403 }
4404 
4405 int compat_restore_altstack(const compat_stack_t __user *uss)
4406 {
4407         int err = do_compat_sigaltstack(uss, NULL);
4408         /* squash all but -EFAULT for now */
4409         return err == -EFAULT ? err : 0;
4410 }
4411 
4412 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4413 {
4414         int err;
4415         struct task_struct *t = current;
4416         err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4417                          &uss->ss_sp) |
4418                 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4419                 __put_user(t->sas_ss_size, &uss->ss_size);
4420         return err;
4421 }
4422 #endif
4423 
4424 #ifdef __ARCH_WANT_SYS_SIGPENDING
4425 
4426 /**
4427  *  sys_sigpending - examine pending signals
4428  *  @uset: where mask of pending signal is returned
4429  */
4430 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4431 {
4432         sigset_t set;
4433 
4434         if (sizeof(old_sigset_t) > sizeof(*uset))
4435                 return -EINVAL;
4436 
4437         do_sigpending(&set);
4438 
4439         if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4440                 return -EFAULT;
4441 
4442         return 0;
4443 }
4444 
4445 #ifdef CONFIG_COMPAT
4446 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4447 {
4448         sigset_t set;
4449 
4450         do_sigpending(&set);
4451 
4452         return put_user(set.sig[0], set32);
4453 }
4454 #endif
4455 
4456 #endif
4457 
4458 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4459 /**
4460  *  sys_sigprocmask - examine and change blocked signals
4461  *  @how: whether to add, remove, or set signals
4462  *  @nset: signals to add or remove (if non-null)
4463  *  @oset: previous value of signal mask if non-null
4464  *
4465  * Some platforms have their own version with special arguments;
4466  * others support only sys_rt_sigprocmask.
4467  */
4468 
4469 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4470                 old_sigset_t __user *, oset)
4471 {
4472         old_sigset_t old_set, new_set;
4473         sigset_t new_blocked;
4474 
4475         old_set = current->blocked.sig[0];
4476 
4477         if (nset) {
4478                 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4479                         return -EFAULT;
4480 
4481                 new_blocked = current->blocked;
4482 
4483                 switch (how) {
4484                 case SIG_BLOCK:
4485                         sigaddsetmask(&new_blocked, new_set);
4486                         break;
4487                 case SIG_UNBLOCK:
4488                         sigdelsetmask(&new_blocked, new_set);
4489                         break;
4490                 case SIG_SETMASK:
4491                         new_blocked.sig[0] = new_set;
4492                         break;
4493                 default:
4494                         return -EINVAL;
4495                 }
4496 
4497                 set_current_blocked(&new_blocked);
4498         }
4499 
4500         if (oset) {
4501                 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4502                         return -EFAULT;
4503         }
4504 
4505         return 0;
4506 }
4507 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4508 
4509 #ifndef CONFIG_ODD_RT_SIGACTION
4510 /**
4511  *  sys_rt_sigaction - alter an action taken by a process
4512  *  @sig: signal to be sent
4513  *  @act: new sigaction
4514  *  @oact: used to save the previous sigaction
4515  *  @sigsetsize: size of sigset_t type
4516  */
4517 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4518                 const struct sigaction __user *, act,
4519                 struct sigaction __user *, oact,
4520                 size_t, sigsetsize)
4521 {
4522         struct k_sigaction new_sa, old_sa;
4523         int ret;
4524 
4525         /* XXX: Don't preclude handling different sized sigset_t's.  */
4526         if (sigsetsize != sizeof(sigset_t))
4527                 return -EINVAL;
4528 
4529         if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4530                 return -EFAULT;
4531 
4532         ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4533         if (ret)
4534                 return ret;
4535 
4536         if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4537                 return -EFAULT;
4538 
4539         return 0;
4540 }
4541 #ifdef CONFIG_COMPAT
4542 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4543                 const struct compat_sigaction __user *, act,
4544                 struct compat_sigaction __user *, oact,
4545                 compat_size_t, sigsetsize)
4546 {
4547         struct k_sigaction new_ka, old_ka;
4548 #ifdef __ARCH_HAS_SA_RESTORER
4549         compat_uptr_t restorer;
4550 #endif
4551         int ret;
4552 
4553         /* XXX: Don't preclude handling different sized sigset_t's.  */
4554         if (sigsetsize != sizeof(compat_sigset_t))
4555                 return -EINVAL;
4556 
4557         if (act) {
4558                 compat_uptr_t handler;
4559                 ret = get_user(handler, &act->sa_handler);
4560                 new_ka.sa.sa_handler = compat_ptr(handler);
4561 #ifdef __ARCH_HAS_SA_RESTORER
4562                 ret |= get_user(restorer, &act->sa_restorer);
4563                 new_ka.sa.sa_restorer = compat_ptr(restorer);
4564 #endif
4565                 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4566                 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4567                 if (ret)
4568                         return -EFAULT;
4569         }
4570 
4571         ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4572         if (!ret && oact) {
4573                 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4574                                &oact->sa_handler);
4575                 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4576                                          sizeof(oact->sa_mask));
4577                 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4578 #ifdef __ARCH_HAS_SA_RESTORER
4579                 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4580                                 &oact->sa_restorer);
4581 #endif
4582         }
4583         return ret;
4584 }
4585 #endif
4586 #endif /* !CONFIG_ODD_RT_SIGACTION */
4587 
4588 #ifdef CONFIG_OLD_SIGACTION
4589 SYSCALL_DEFINE3(sigaction, int, sig,
4590                 const struct old_sigaction __user *, act,
4591                 struct old_sigaction __user *, oact)
4592 {
4593         struct k_sigaction new_ka, old_ka;
4594         int ret;
4595 
4596         if (act) {
4597                 old_sigset_t mask;
4598                 if (!access_ok(act, sizeof(*act)) ||
4599                     __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4600                     __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4601                     __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4602                     __get_user(mask, &act->sa_mask))
4603                         return -EFAULT;
4604 #ifdef __ARCH_HAS_KA_RESTORER
4605                 new_ka.ka_restorer = NULL;
4606 #endif
4607                 siginitset(&new_ka.sa.sa_mask, mask);
4608         }
4609 
4610         ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4611 
4612         if (!ret && oact) {
4613                 if (!access_ok(oact, sizeof(*oact)) ||
4614                     __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4615                     __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4616                     __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4617                     __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4618                         return -EFAULT;
4619         }
4620 
4621         return ret;
4622 }
4623 #endif
4624 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4625 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4626                 const struct compat_old_sigaction __user *, act,
4627                 struct compat_old_sigaction __user *, oact)
4628 {
4629         struct k_sigaction new_ka, old_ka;
4630         int ret;
4631         compat_old_sigset_t mask;
4632         compat_uptr_t handler, restorer;
4633 
4634         if (act) {
4635                 if (!access_ok(act, sizeof(*act)) ||
4636                     __get_user(handler, &act->sa_handler) ||
4637                     __get_user(restorer, &act->sa_restorer) ||
4638                     __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4639                     __get_user(mask, &act->sa_mask))
4640                         return -EFAULT;
4641 
4642 #ifdef __ARCH_HAS_KA_RESTORER
4643                 new_ka.ka_restorer = NULL;
4644 #endif
4645                 new_ka.sa.sa_handler = compat_ptr(handler);
4646                 new_ka.sa.sa_restorer = compat_ptr(restorer);
4647                 siginitset(&new_ka.sa.sa_mask, mask);
4648         }
4649 
4650         ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4651 
4652         if (!ret && oact) {
4653                 if (!access_ok(oact, sizeof(*oact)) ||
4654                     __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4655                                &oact->sa_handler) ||
4656                     __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4657                                &oact->sa_restorer) ||
4658                     __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4659                     __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4660                         return -EFAULT;
4661         }
4662         return ret;
4663 }
4664 #endif
4665 
4666 #ifdef CONFIG_SGETMASK_SYSCALL
4667 
4668 /*
4669  * For backwards compatibility.  Functionality superseded by sigprocmask.
4670  */
4671 SYSCALL_DEFINE0(sgetmask)
4672 {
4673         /* SMP safe */
4674         return current->blocked.sig[0];
4675 }
4676 
4677 SYSCALL_DEFINE1(ssetmask, int, newmask)
4678 {
4679         int old = current->blocked.sig[0];
4680         sigset_t newset;
4681 
4682         siginitset(&newset, newmask);
4683         set_current_blocked(&newset);
4684 
4685         return old;
4686 }
4687 #endif /* CONFIG_SGETMASK_SYSCALL */
4688 
4689 #ifdef __ARCH_WANT_SYS_SIGNAL
4690 /*
4691  * For backwards compatibility.  Functionality superseded by sigaction.
4692  */
4693 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4694 {
4695         struct k_sigaction new_sa, old_sa;
4696         int ret;
4697 
4698         new_sa.sa.sa_handler = handler;
4699         new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4700         sigemptyset(&new_sa.sa.sa_mask);
4701 
4702         ret = do_sigaction(sig, &new_sa, &old_sa);
4703 
4704         return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4705 }
4706 #endif /* __ARCH_WANT_SYS_SIGNAL */
4707 
4708 #ifdef __ARCH_WANT_SYS_PAUSE
4709 
4710 SYSCALL_DEFINE0(pause)
4711 {
4712         while (!signal_pending(current)) {
4713                 __set_current_state(TASK_INTERRUPTIBLE);
4714                 schedule();
4715         }
4716         return -ERESTARTNOHAND;
4717 }
4718 
4719 #endif
4720 
4721 static int sigsuspend(sigset_t *set)
4722 {
4723         current->saved_sigmask = current->blocked;
4724         set_current_blocked(set);
4725 
4726         while (!signal_pending(current)) {
4727                 __set_current_state(TASK_INTERRUPTIBLE);
4728                 schedule();
4729         }
4730         set_restore_sigmask();
4731         return -ERESTARTNOHAND;
4732 }
4733 
4734 /**
4735  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4736  *      @unewset value until a signal is received
4737  *  @unewset: new signal mask value
4738  *  @sigsetsize: size of sigset_t type
4739  */
4740 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4741 {
4742         sigset_t newset;
4743 
4744         /* XXX: Don't preclude handling different sized sigset_t's.  */
4745         if (sigsetsize != sizeof(sigset_t))
4746                 return -EINVAL;
4747 
4748         if (copy_from_user(&newset, unewset, sizeof(newset)))
4749                 return -EFAULT;
4750         return sigsuspend(&newset);
4751 }
4752  
4753 #ifdef CONFIG_COMPAT
4754 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4755 {
4756         sigset_t newset;
4757 
4758         /* XXX: Don't preclude handling different sized sigset_t's.  */
4759         if (sigsetsize != sizeof(sigset_t))
4760                 return -EINVAL;
4761 
4762         if (get_compat_sigset(&newset, unewset))
4763                 return -EFAULT;
4764         return sigsuspend(&newset);
4765 }
4766 #endif
4767 
4768 #ifdef CONFIG_OLD_SIGSUSPEND
4769 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4770 {
4771         sigset_t blocked;
4772         siginitset(&blocked, mask);
4773         return sigsuspend(&blocked);
4774 }
4775 #endif
4776 #ifdef CONFIG_OLD_SIGSUSPEND3
4777 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4778 {
4779         sigset_t blocked;
4780         siginitset(&blocked, mask);
4781         return sigsuspend(&blocked);
4782 }
4783 #endif
4784 
4785 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4786 {
4787         return NULL;
4788 }
4789 
4790 static inline void siginfo_buildtime_checks(void)
4791 {
4792         BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4793 
4794         /* Verify the offsets in the two siginfos match */
4795 #define CHECK_OFFSET(field) \
4796         BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4797 
4798         /* kill */
4799         CHECK_OFFSET(si_pid);
4800         CHECK_OFFSET(si_uid);
4801 
4802         /* timer */
4803         CHECK_OFFSET(si_tid);
4804         CHECK_OFFSET(si_overrun);
4805         CHECK_OFFSET(si_value);
4806 
4807         /* rt */
4808         CHECK_OFFSET(si_pid);
4809         CHECK_OFFSET(si_uid);
4810         CHECK_OFFSET(si_value);
4811 
4812         /* sigchld */
4813         CHECK_OFFSET(si_pid);
4814         CHECK_OFFSET(si_uid);
4815         CHECK_OFFSET(si_status);
4816         CHECK_OFFSET(si_utime);
4817         CHECK_OFFSET(si_stime);
4818 
4819         /* sigfault */
4820         CHECK_OFFSET(si_addr);
4821         CHECK_OFFSET(si_trapno);
4822         CHECK_OFFSET(si_addr_lsb);
4823         CHECK_OFFSET(si_lower);
4824         CHECK_OFFSET(si_upper);
4825         CHECK_OFFSET(si_pkey);
4826         CHECK_OFFSET(si_perf_data);
4827         CHECK_OFFSET(si_perf_type);
4828         CHECK_OFFSET(si_perf_flags);
4829 
4830         /* sigpoll */
4831         CHECK_OFFSET(si_band);
4832         CHECK_OFFSET(si_fd);
4833 
4834         /* sigsys */
4835         CHECK_OFFSET(si_call_addr);
4836         CHECK_OFFSET(si_syscall);
4837         CHECK_OFFSET(si_arch);
4838 #undef CHECK_OFFSET
4839 
4840         /* usb asyncio */
4841         BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4842                      offsetof(struct siginfo, si_addr));
4843         if (sizeof(int) == sizeof(void __user *)) {
4844                 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4845                              sizeof(void __user *));
4846         } else {
4847                 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4848                               sizeof_field(struct siginfo, si_uid)) !=
4849                              sizeof(void __user *));
4850                 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4851                              offsetof(struct siginfo, si_uid));
4852         }
4853 #ifdef CONFIG_COMPAT
4854         BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4855                      offsetof(struct compat_siginfo, si_addr));
4856         BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4857                      sizeof(compat_uptr_t));
4858         BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4859                      sizeof_field(struct siginfo, si_pid));
4860 #endif
4861 }
4862 
4863 #if defined(CONFIG_SYSCTL)
4864 static struct ctl_table signal_debug_table[] = {
4865 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4866         {
4867                 .procname       = "exception-trace",
4868                 .data           = &show_unhandled_signals,
4869                 .maxlen         = sizeof(int),
4870                 .mode           = 0644,
4871                 .proc_handler   = proc_dointvec
4872         },
4873 #endif
4874 };
4875 
4876 static int __init init_signal_sysctls(void)
4877 {
4878         register_sysctl_init("debug", signal_debug_table);
4879         return 0;
4880 }
4881 early_initcall(init_signal_sysctls);
4882 #endif /* CONFIG_SYSCTL */
4883 
4884 void __init signals_init(void)
4885 {
4886         siginfo_buildtime_checks();
4887 
4888         sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4889 }
4890 
4891 #ifdef CONFIG_KGDB_KDB
4892 #include <linux/kdb.h>
4893 /*
4894  * kdb_send_sig - Allows kdb to send signals without exposing
4895  * signal internals.  This function checks if the required locks are
4896  * available before calling the main signal code, to avoid kdb
4897  * deadlocks.
4898  */
4899 void kdb_send_sig(struct task_struct *t, int sig)
4900 {
4901         static struct task_struct *kdb_prev_t;
4902         int new_t, ret;
4903         if (!spin_trylock(&t->sighand->siglock)) {
4904                 kdb_printf("Can't do kill command now.\n"
4905                            "The sigmask lock is held somewhere else in "
4906                            "kernel, try again later\n");
4907                 return;
4908         }
4909         new_t = kdb_prev_t != t;
4910         kdb_prev_t = t;
4911         if (!task_is_running(t) && new_t) {
4912                 spin_unlock(&t->sighand->siglock);
4913                 kdb_printf("Process is not RUNNING, sending a signal from "
4914                            "kdb risks deadlock\n"
4915                            "on the run queue locks. "
4916                            "The signal has _not_ been sent.\n"
4917                            "Reissue the kill command if you want to risk "
4918                            "the deadlock.\n");
4919                 return;
4920         }
4921         ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4922         spin_unlock(&t->sighand->siglock);
4923         if (ret)
4924                 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4925                            sig, t->pid);
4926         else
4927                 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4928 }
4929 #endif  /* CONFIG_KGDB_KDB */
4930 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php