1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/proc_fs.h> 27 #include <linux/tty.h> 28 #include <linux/binfmts.h> 29 #include <linux/coredump.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/ptrace.h> 33 #include <linux/signal.h> 34 #include <linux/signalfd.h> 35 #include <linux/ratelimit.h> 36 #include <linux/task_work.h> 37 #include <linux/capability.h> 38 #include <linux/freezer.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/nsproxy.h> 41 #include <linux/user_namespace.h> 42 #include <linux/uprobes.h> 43 #include <linux/compat.h> 44 #include <linux/cn_proc.h> 45 #include <linux/compiler.h> 46 #include <linux/posix-timers.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 #include <linux/sysctl.h> 50 #include <uapi/linux/pidfd.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/signal.h> 54 55 #include <asm/param.h> 56 #include <linux/uaccess.h> 57 #include <asm/unistd.h> 58 #include <asm/siginfo.h> 59 #include <asm/cacheflush.h> 60 #include <asm/syscall.h> /* for syscall_get_* */ 61 62 /* 63 * SLAB caches for signal bits. 64 */ 65 66 static struct kmem_cache *sigqueue_cachep; 67 68 int print_fatal_signals __read_mostly; 69 70 static void __user *sig_handler(struct task_struct *t, int sig) 71 { 72 return t->sighand->action[sig - 1].sa.sa_handler; 73 } 74 75 static inline bool sig_handler_ignored(void __user *handler, int sig) 76 { 77 /* Is it explicitly or implicitly ignored? */ 78 return handler == SIG_IGN || 79 (handler == SIG_DFL && sig_kernel_ignore(sig)); 80 } 81 82 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 83 { 84 void __user *handler; 85 86 handler = sig_handler(t, sig); 87 88 /* SIGKILL and SIGSTOP may not be sent to the global init */ 89 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 90 return true; 91 92 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 93 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 94 return true; 95 96 /* Only allow kernel generated signals to this kthread */ 97 if (unlikely((t->flags & PF_KTHREAD) && 98 (handler == SIG_KTHREAD_KERNEL) && !force)) 99 return true; 100 101 return sig_handler_ignored(handler, sig); 102 } 103 104 static bool sig_ignored(struct task_struct *t, int sig, bool force) 105 { 106 /* 107 * Blocked signals are never ignored, since the 108 * signal handler may change by the time it is 109 * unblocked. 110 */ 111 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 112 return false; 113 114 /* 115 * Tracers may want to know about even ignored signal unless it 116 * is SIGKILL which can't be reported anyway but can be ignored 117 * by SIGNAL_UNKILLABLE task. 118 */ 119 if (t->ptrace && sig != SIGKILL) 120 return false; 121 122 return sig_task_ignored(t, sig, force); 123 } 124 125 /* 126 * Re-calculate pending state from the set of locally pending 127 * signals, globally pending signals, and blocked signals. 128 */ 129 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 130 { 131 unsigned long ready; 132 long i; 133 134 switch (_NSIG_WORDS) { 135 default: 136 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 137 ready |= signal->sig[i] &~ blocked->sig[i]; 138 break; 139 140 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 141 ready |= signal->sig[2] &~ blocked->sig[2]; 142 ready |= signal->sig[1] &~ blocked->sig[1]; 143 ready |= signal->sig[0] &~ blocked->sig[0]; 144 break; 145 146 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 147 ready |= signal->sig[0] &~ blocked->sig[0]; 148 break; 149 150 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 151 } 152 return ready != 0; 153 } 154 155 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 156 157 static bool recalc_sigpending_tsk(struct task_struct *t) 158 { 159 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 160 PENDING(&t->pending, &t->blocked) || 161 PENDING(&t->signal->shared_pending, &t->blocked) || 162 cgroup_task_frozen(t)) { 163 set_tsk_thread_flag(t, TIF_SIGPENDING); 164 return true; 165 } 166 167 /* 168 * We must never clear the flag in another thread, or in current 169 * when it's possible the current syscall is returning -ERESTART*. 170 * So we don't clear it here, and only callers who know they should do. 171 */ 172 return false; 173 } 174 175 void recalc_sigpending(void) 176 { 177 if (!recalc_sigpending_tsk(current) && !freezing(current)) 178 clear_thread_flag(TIF_SIGPENDING); 179 180 } 181 EXPORT_SYMBOL(recalc_sigpending); 182 183 void calculate_sigpending(void) 184 { 185 /* Have any signals or users of TIF_SIGPENDING been delayed 186 * until after fork? 187 */ 188 spin_lock_irq(¤t->sighand->siglock); 189 set_tsk_thread_flag(current, TIF_SIGPENDING); 190 recalc_sigpending(); 191 spin_unlock_irq(¤t->sighand->siglock); 192 } 193 194 /* Given the mask, find the first available signal that should be serviced. */ 195 196 #define SYNCHRONOUS_MASK \ 197 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 198 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 199 200 int next_signal(struct sigpending *pending, sigset_t *mask) 201 { 202 unsigned long i, *s, *m, x; 203 int sig = 0; 204 205 s = pending->signal.sig; 206 m = mask->sig; 207 208 /* 209 * Handle the first word specially: it contains the 210 * synchronous signals that need to be dequeued first. 211 */ 212 x = *s &~ *m; 213 if (x) { 214 if (x & SYNCHRONOUS_MASK) 215 x &= SYNCHRONOUS_MASK; 216 sig = ffz(~x) + 1; 217 return sig; 218 } 219 220 switch (_NSIG_WORDS) { 221 default: 222 for (i = 1; i < _NSIG_WORDS; ++i) { 223 x = *++s &~ *++m; 224 if (!x) 225 continue; 226 sig = ffz(~x) + i*_NSIG_BPW + 1; 227 break; 228 } 229 break; 230 231 case 2: 232 x = s[1] &~ m[1]; 233 if (!x) 234 break; 235 sig = ffz(~x) + _NSIG_BPW + 1; 236 break; 237 238 case 1: 239 /* Nothing to do */ 240 break; 241 } 242 243 return sig; 244 } 245 246 static inline void print_dropped_signal(int sig) 247 { 248 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 249 250 if (!print_fatal_signals) 251 return; 252 253 if (!__ratelimit(&ratelimit_state)) 254 return; 255 256 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 257 current->comm, current->pid, sig); 258 } 259 260 /** 261 * task_set_jobctl_pending - set jobctl pending bits 262 * @task: target task 263 * @mask: pending bits to set 264 * 265 * Clear @mask from @task->jobctl. @mask must be subset of 266 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 267 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 268 * cleared. If @task is already being killed or exiting, this function 269 * becomes noop. 270 * 271 * CONTEXT: 272 * Must be called with @task->sighand->siglock held. 273 * 274 * RETURNS: 275 * %true if @mask is set, %false if made noop because @task was dying. 276 */ 277 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 278 { 279 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 280 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 281 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 282 283 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 284 return false; 285 286 if (mask & JOBCTL_STOP_SIGMASK) 287 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 288 289 task->jobctl |= mask; 290 return true; 291 } 292 293 /** 294 * task_clear_jobctl_trapping - clear jobctl trapping bit 295 * @task: target task 296 * 297 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 298 * Clear it and wake up the ptracer. Note that we don't need any further 299 * locking. @task->siglock guarantees that @task->parent points to the 300 * ptracer. 301 * 302 * CONTEXT: 303 * Must be called with @task->sighand->siglock held. 304 */ 305 void task_clear_jobctl_trapping(struct task_struct *task) 306 { 307 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 308 task->jobctl &= ~JOBCTL_TRAPPING; 309 smp_mb(); /* advised by wake_up_bit() */ 310 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 311 } 312 } 313 314 /** 315 * task_clear_jobctl_pending - clear jobctl pending bits 316 * @task: target task 317 * @mask: pending bits to clear 318 * 319 * Clear @mask from @task->jobctl. @mask must be subset of 320 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 321 * STOP bits are cleared together. 322 * 323 * If clearing of @mask leaves no stop or trap pending, this function calls 324 * task_clear_jobctl_trapping(). 325 * 326 * CONTEXT: 327 * Must be called with @task->sighand->siglock held. 328 */ 329 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 330 { 331 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 332 333 if (mask & JOBCTL_STOP_PENDING) 334 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 335 336 task->jobctl &= ~mask; 337 338 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 339 task_clear_jobctl_trapping(task); 340 } 341 342 /** 343 * task_participate_group_stop - participate in a group stop 344 * @task: task participating in a group stop 345 * 346 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 347 * Group stop states are cleared and the group stop count is consumed if 348 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 349 * stop, the appropriate `SIGNAL_*` flags are set. 350 * 351 * CONTEXT: 352 * Must be called with @task->sighand->siglock held. 353 * 354 * RETURNS: 355 * %true if group stop completion should be notified to the parent, %false 356 * otherwise. 357 */ 358 static bool task_participate_group_stop(struct task_struct *task) 359 { 360 struct signal_struct *sig = task->signal; 361 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 362 363 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 364 365 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 366 367 if (!consume) 368 return false; 369 370 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 371 sig->group_stop_count--; 372 373 /* 374 * Tell the caller to notify completion iff we are entering into a 375 * fresh group stop. Read comment in do_signal_stop() for details. 376 */ 377 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 378 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 379 return true; 380 } 381 return false; 382 } 383 384 void task_join_group_stop(struct task_struct *task) 385 { 386 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 387 struct signal_struct *sig = current->signal; 388 389 if (sig->group_stop_count) { 390 sig->group_stop_count++; 391 mask |= JOBCTL_STOP_CONSUME; 392 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 393 return; 394 395 /* Have the new thread join an on-going signal group stop */ 396 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 397 } 398 399 /* 400 * allocate a new signal queue record 401 * - this may be called without locks if and only if t == current, otherwise an 402 * appropriate lock must be held to stop the target task from exiting 403 */ 404 static struct sigqueue * 405 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 406 int override_rlimit, const unsigned int sigqueue_flags) 407 { 408 struct sigqueue *q = NULL; 409 struct ucounts *ucounts; 410 long sigpending; 411 412 /* 413 * Protect access to @t credentials. This can go away when all 414 * callers hold rcu read lock. 415 * 416 * NOTE! A pending signal will hold on to the user refcount, 417 * and we get/put the refcount only when the sigpending count 418 * changes from/to zero. 419 */ 420 rcu_read_lock(); 421 ucounts = task_ucounts(t); 422 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 423 rcu_read_unlock(); 424 if (!sigpending) 425 return NULL; 426 427 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 428 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 429 } else { 430 print_dropped_signal(sig); 431 } 432 433 if (unlikely(q == NULL)) { 434 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 435 } else { 436 INIT_LIST_HEAD(&q->list); 437 q->flags = sigqueue_flags; 438 q->ucounts = ucounts; 439 } 440 return q; 441 } 442 443 static void __sigqueue_free(struct sigqueue *q) 444 { 445 if (q->flags & SIGQUEUE_PREALLOC) 446 return; 447 if (q->ucounts) { 448 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 449 q->ucounts = NULL; 450 } 451 kmem_cache_free(sigqueue_cachep, q); 452 } 453 454 void flush_sigqueue(struct sigpending *queue) 455 { 456 struct sigqueue *q; 457 458 sigemptyset(&queue->signal); 459 while (!list_empty(&queue->list)) { 460 q = list_entry(queue->list.next, struct sigqueue , list); 461 list_del_init(&q->list); 462 __sigqueue_free(q); 463 } 464 } 465 466 /* 467 * Flush all pending signals for this kthread. 468 */ 469 void flush_signals(struct task_struct *t) 470 { 471 unsigned long flags; 472 473 spin_lock_irqsave(&t->sighand->siglock, flags); 474 clear_tsk_thread_flag(t, TIF_SIGPENDING); 475 flush_sigqueue(&t->pending); 476 flush_sigqueue(&t->signal->shared_pending); 477 spin_unlock_irqrestore(&t->sighand->siglock, flags); 478 } 479 EXPORT_SYMBOL(flush_signals); 480 481 #ifdef CONFIG_POSIX_TIMERS 482 static void __flush_itimer_signals(struct sigpending *pending) 483 { 484 sigset_t signal, retain; 485 struct sigqueue *q, *n; 486 487 signal = pending->signal; 488 sigemptyset(&retain); 489 490 list_for_each_entry_safe(q, n, &pending->list, list) { 491 int sig = q->info.si_signo; 492 493 if (likely(q->info.si_code != SI_TIMER)) { 494 sigaddset(&retain, sig); 495 } else { 496 sigdelset(&signal, sig); 497 list_del_init(&q->list); 498 __sigqueue_free(q); 499 } 500 } 501 502 sigorsets(&pending->signal, &signal, &retain); 503 } 504 505 void flush_itimer_signals(void) 506 { 507 struct task_struct *tsk = current; 508 unsigned long flags; 509 510 spin_lock_irqsave(&tsk->sighand->siglock, flags); 511 __flush_itimer_signals(&tsk->pending); 512 __flush_itimer_signals(&tsk->signal->shared_pending); 513 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 514 } 515 #endif 516 517 void ignore_signals(struct task_struct *t) 518 { 519 int i; 520 521 for (i = 0; i < _NSIG; ++i) 522 t->sighand->action[i].sa.sa_handler = SIG_IGN; 523 524 flush_signals(t); 525 } 526 527 /* 528 * Flush all handlers for a task. 529 */ 530 531 void 532 flush_signal_handlers(struct task_struct *t, int force_default) 533 { 534 int i; 535 struct k_sigaction *ka = &t->sighand->action[0]; 536 for (i = _NSIG ; i != 0 ; i--) { 537 if (force_default || ka->sa.sa_handler != SIG_IGN) 538 ka->sa.sa_handler = SIG_DFL; 539 ka->sa.sa_flags = 0; 540 #ifdef __ARCH_HAS_SA_RESTORER 541 ka->sa.sa_restorer = NULL; 542 #endif 543 sigemptyset(&ka->sa.sa_mask); 544 ka++; 545 } 546 } 547 548 bool unhandled_signal(struct task_struct *tsk, int sig) 549 { 550 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 551 if (is_global_init(tsk)) 552 return true; 553 554 if (handler != SIG_IGN && handler != SIG_DFL) 555 return false; 556 557 /* If dying, we handle all new signals by ignoring them */ 558 if (fatal_signal_pending(tsk)) 559 return false; 560 561 /* if ptraced, let the tracer determine */ 562 return !tsk->ptrace; 563 } 564 565 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 566 bool *resched_timer) 567 { 568 struct sigqueue *q, *first = NULL; 569 570 /* 571 * Collect the siginfo appropriate to this signal. Check if 572 * there is another siginfo for the same signal. 573 */ 574 list_for_each_entry(q, &list->list, list) { 575 if (q->info.si_signo == sig) { 576 if (first) 577 goto still_pending; 578 first = q; 579 } 580 } 581 582 sigdelset(&list->signal, sig); 583 584 if (first) { 585 still_pending: 586 list_del_init(&first->list); 587 copy_siginfo(info, &first->info); 588 589 *resched_timer = 590 (first->flags & SIGQUEUE_PREALLOC) && 591 (info->si_code == SI_TIMER) && 592 (info->si_sys_private); 593 594 __sigqueue_free(first); 595 } else { 596 /* 597 * Ok, it wasn't in the queue. This must be 598 * a fast-pathed signal or we must have been 599 * out of queue space. So zero out the info. 600 */ 601 clear_siginfo(info); 602 info->si_signo = sig; 603 info->si_errno = 0; 604 info->si_code = SI_USER; 605 info->si_pid = 0; 606 info->si_uid = 0; 607 } 608 } 609 610 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 611 kernel_siginfo_t *info, bool *resched_timer) 612 { 613 int sig = next_signal(pending, mask); 614 615 if (sig) 616 collect_signal(sig, pending, info, resched_timer); 617 return sig; 618 } 619 620 /* 621 * Dequeue a signal and return the element to the caller, which is 622 * expected to free it. 623 * 624 * All callers have to hold the siglock. 625 */ 626 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 627 kernel_siginfo_t *info, enum pid_type *type) 628 { 629 bool resched_timer = false; 630 int signr; 631 632 /* We only dequeue private signals from ourselves, we don't let 633 * signalfd steal them 634 */ 635 *type = PIDTYPE_PID; 636 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 637 if (!signr) { 638 *type = PIDTYPE_TGID; 639 signr = __dequeue_signal(&tsk->signal->shared_pending, 640 mask, info, &resched_timer); 641 #ifdef CONFIG_POSIX_TIMERS 642 /* 643 * itimer signal ? 644 * 645 * itimers are process shared and we restart periodic 646 * itimers in the signal delivery path to prevent DoS 647 * attacks in the high resolution timer case. This is 648 * compliant with the old way of self-restarting 649 * itimers, as the SIGALRM is a legacy signal and only 650 * queued once. Changing the restart behaviour to 651 * restart the timer in the signal dequeue path is 652 * reducing the timer noise on heavy loaded !highres 653 * systems too. 654 */ 655 if (unlikely(signr == SIGALRM)) { 656 struct hrtimer *tmr = &tsk->signal->real_timer; 657 658 if (!hrtimer_is_queued(tmr) && 659 tsk->signal->it_real_incr != 0) { 660 hrtimer_forward(tmr, tmr->base->get_time(), 661 tsk->signal->it_real_incr); 662 hrtimer_restart(tmr); 663 } 664 } 665 #endif 666 } 667 668 recalc_sigpending(); 669 if (!signr) 670 return 0; 671 672 if (unlikely(sig_kernel_stop(signr))) { 673 /* 674 * Set a marker that we have dequeued a stop signal. Our 675 * caller might release the siglock and then the pending 676 * stop signal it is about to process is no longer in the 677 * pending bitmasks, but must still be cleared by a SIGCONT 678 * (and overruled by a SIGKILL). So those cases clear this 679 * shared flag after we've set it. Note that this flag may 680 * remain set after the signal we return is ignored or 681 * handled. That doesn't matter because its only purpose 682 * is to alert stop-signal processing code when another 683 * processor has come along and cleared the flag. 684 */ 685 current->jobctl |= JOBCTL_STOP_DEQUEUED; 686 } 687 #ifdef CONFIG_POSIX_TIMERS 688 if (resched_timer) { 689 /* 690 * Release the siglock to ensure proper locking order 691 * of timer locks outside of siglocks. Note, we leave 692 * irqs disabled here, since the posix-timers code is 693 * about to disable them again anyway. 694 */ 695 spin_unlock(&tsk->sighand->siglock); 696 posixtimer_rearm(info); 697 spin_lock(&tsk->sighand->siglock); 698 699 /* Don't expose the si_sys_private value to userspace */ 700 info->si_sys_private = 0; 701 } 702 #endif 703 return signr; 704 } 705 EXPORT_SYMBOL_GPL(dequeue_signal); 706 707 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 708 { 709 struct task_struct *tsk = current; 710 struct sigpending *pending = &tsk->pending; 711 struct sigqueue *q, *sync = NULL; 712 713 /* 714 * Might a synchronous signal be in the queue? 715 */ 716 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 717 return 0; 718 719 /* 720 * Return the first synchronous signal in the queue. 721 */ 722 list_for_each_entry(q, &pending->list, list) { 723 /* Synchronous signals have a positive si_code */ 724 if ((q->info.si_code > SI_USER) && 725 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 726 sync = q; 727 goto next; 728 } 729 } 730 return 0; 731 next: 732 /* 733 * Check if there is another siginfo for the same signal. 734 */ 735 list_for_each_entry_continue(q, &pending->list, list) { 736 if (q->info.si_signo == sync->info.si_signo) 737 goto still_pending; 738 } 739 740 sigdelset(&pending->signal, sync->info.si_signo); 741 recalc_sigpending(); 742 still_pending: 743 list_del_init(&sync->list); 744 copy_siginfo(info, &sync->info); 745 __sigqueue_free(sync); 746 return info->si_signo; 747 } 748 749 /* 750 * Tell a process that it has a new active signal.. 751 * 752 * NOTE! we rely on the previous spin_lock to 753 * lock interrupts for us! We can only be called with 754 * "siglock" held, and the local interrupt must 755 * have been disabled when that got acquired! 756 * 757 * No need to set need_resched since signal event passing 758 * goes through ->blocked 759 */ 760 void signal_wake_up_state(struct task_struct *t, unsigned int state) 761 { 762 lockdep_assert_held(&t->sighand->siglock); 763 764 set_tsk_thread_flag(t, TIF_SIGPENDING); 765 766 /* 767 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 768 * case. We don't check t->state here because there is a race with it 769 * executing another processor and just now entering stopped state. 770 * By using wake_up_state, we ensure the process will wake up and 771 * handle its death signal. 772 */ 773 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 774 kick_process(t); 775 } 776 777 /* 778 * Remove signals in mask from the pending set and queue. 779 * Returns 1 if any signals were found. 780 * 781 * All callers must be holding the siglock. 782 */ 783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 784 { 785 struct sigqueue *q, *n; 786 sigset_t m; 787 788 sigandsets(&m, mask, &s->signal); 789 if (sigisemptyset(&m)) 790 return; 791 792 sigandnsets(&s->signal, &s->signal, mask); 793 list_for_each_entry_safe(q, n, &s->list, list) { 794 if (sigismember(mask, q->info.si_signo)) { 795 list_del_init(&q->list); 796 __sigqueue_free(q); 797 } 798 } 799 } 800 801 static inline int is_si_special(const struct kernel_siginfo *info) 802 { 803 return info <= SEND_SIG_PRIV; 804 } 805 806 static inline bool si_fromuser(const struct kernel_siginfo *info) 807 { 808 return info == SEND_SIG_NOINFO || 809 (!is_si_special(info) && SI_FROMUSER(info)); 810 } 811 812 /* 813 * called with RCU read lock from check_kill_permission() 814 */ 815 static bool kill_ok_by_cred(struct task_struct *t) 816 { 817 const struct cred *cred = current_cred(); 818 const struct cred *tcred = __task_cred(t); 819 820 return uid_eq(cred->euid, tcred->suid) || 821 uid_eq(cred->euid, tcred->uid) || 822 uid_eq(cred->uid, tcred->suid) || 823 uid_eq(cred->uid, tcred->uid) || 824 ns_capable(tcred->user_ns, CAP_KILL); 825 } 826 827 /* 828 * Bad permissions for sending the signal 829 * - the caller must hold the RCU read lock 830 */ 831 static int check_kill_permission(int sig, struct kernel_siginfo *info, 832 struct task_struct *t) 833 { 834 struct pid *sid; 835 int error; 836 837 if (!valid_signal(sig)) 838 return -EINVAL; 839 840 if (!si_fromuser(info)) 841 return 0; 842 843 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 844 if (error) 845 return error; 846 847 if (!same_thread_group(current, t) && 848 !kill_ok_by_cred(t)) { 849 switch (sig) { 850 case SIGCONT: 851 sid = task_session(t); 852 /* 853 * We don't return the error if sid == NULL. The 854 * task was unhashed, the caller must notice this. 855 */ 856 if (!sid || sid == task_session(current)) 857 break; 858 fallthrough; 859 default: 860 return -EPERM; 861 } 862 } 863 864 return security_task_kill(t, info, sig, NULL); 865 } 866 867 /** 868 * ptrace_trap_notify - schedule trap to notify ptracer 869 * @t: tracee wanting to notify tracer 870 * 871 * This function schedules sticky ptrace trap which is cleared on the next 872 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 873 * ptracer. 874 * 875 * If @t is running, STOP trap will be taken. If trapped for STOP and 876 * ptracer is listening for events, tracee is woken up so that it can 877 * re-trap for the new event. If trapped otherwise, STOP trap will be 878 * eventually taken without returning to userland after the existing traps 879 * are finished by PTRACE_CONT. 880 * 881 * CONTEXT: 882 * Must be called with @task->sighand->siglock held. 883 */ 884 static void ptrace_trap_notify(struct task_struct *t) 885 { 886 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 887 lockdep_assert_held(&t->sighand->siglock); 888 889 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 890 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 891 } 892 893 /* 894 * Handle magic process-wide effects of stop/continue signals. Unlike 895 * the signal actions, these happen immediately at signal-generation 896 * time regardless of blocking, ignoring, or handling. This does the 897 * actual continuing for SIGCONT, but not the actual stopping for stop 898 * signals. The process stop is done as a signal action for SIG_DFL. 899 * 900 * Returns true if the signal should be actually delivered, otherwise 901 * it should be dropped. 902 */ 903 static bool prepare_signal(int sig, struct task_struct *p, bool force) 904 { 905 struct signal_struct *signal = p->signal; 906 struct task_struct *t; 907 sigset_t flush; 908 909 if (signal->flags & SIGNAL_GROUP_EXIT) { 910 if (signal->core_state) 911 return sig == SIGKILL; 912 /* 913 * The process is in the middle of dying, drop the signal. 914 */ 915 return false; 916 } else if (sig_kernel_stop(sig)) { 917 /* 918 * This is a stop signal. Remove SIGCONT from all queues. 919 */ 920 siginitset(&flush, sigmask(SIGCONT)); 921 flush_sigqueue_mask(&flush, &signal->shared_pending); 922 for_each_thread(p, t) 923 flush_sigqueue_mask(&flush, &t->pending); 924 } else if (sig == SIGCONT) { 925 unsigned int why; 926 /* 927 * Remove all stop signals from all queues, wake all threads. 928 */ 929 siginitset(&flush, SIG_KERNEL_STOP_MASK); 930 flush_sigqueue_mask(&flush, &signal->shared_pending); 931 for_each_thread(p, t) { 932 flush_sigqueue_mask(&flush, &t->pending); 933 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 934 if (likely(!(t->ptrace & PT_SEIZED))) { 935 t->jobctl &= ~JOBCTL_STOPPED; 936 wake_up_state(t, __TASK_STOPPED); 937 } else 938 ptrace_trap_notify(t); 939 } 940 941 /* 942 * Notify the parent with CLD_CONTINUED if we were stopped. 943 * 944 * If we were in the middle of a group stop, we pretend it 945 * was already finished, and then continued. Since SIGCHLD 946 * doesn't queue we report only CLD_STOPPED, as if the next 947 * CLD_CONTINUED was dropped. 948 */ 949 why = 0; 950 if (signal->flags & SIGNAL_STOP_STOPPED) 951 why |= SIGNAL_CLD_CONTINUED; 952 else if (signal->group_stop_count) 953 why |= SIGNAL_CLD_STOPPED; 954 955 if (why) { 956 /* 957 * The first thread which returns from do_signal_stop() 958 * will take ->siglock, notice SIGNAL_CLD_MASK, and 959 * notify its parent. See get_signal(). 960 */ 961 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 962 signal->group_stop_count = 0; 963 signal->group_exit_code = 0; 964 } 965 } 966 967 return !sig_ignored(p, sig, force); 968 } 969 970 /* 971 * Test if P wants to take SIG. After we've checked all threads with this, 972 * it's equivalent to finding no threads not blocking SIG. Any threads not 973 * blocking SIG were ruled out because they are not running and already 974 * have pending signals. Such threads will dequeue from the shared queue 975 * as soon as they're available, so putting the signal on the shared queue 976 * will be equivalent to sending it to one such thread. 977 */ 978 static inline bool wants_signal(int sig, struct task_struct *p) 979 { 980 if (sigismember(&p->blocked, sig)) 981 return false; 982 983 if (p->flags & PF_EXITING) 984 return false; 985 986 if (sig == SIGKILL) 987 return true; 988 989 if (task_is_stopped_or_traced(p)) 990 return false; 991 992 return task_curr(p) || !task_sigpending(p); 993 } 994 995 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 996 { 997 struct signal_struct *signal = p->signal; 998 struct task_struct *t; 999 1000 /* 1001 * Now find a thread we can wake up to take the signal off the queue. 1002 * 1003 * Try the suggested task first (may or may not be the main thread). 1004 */ 1005 if (wants_signal(sig, p)) 1006 t = p; 1007 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1008 /* 1009 * There is just one thread and it does not need to be woken. 1010 * It will dequeue unblocked signals before it runs again. 1011 */ 1012 return; 1013 else { 1014 /* 1015 * Otherwise try to find a suitable thread. 1016 */ 1017 t = signal->curr_target; 1018 while (!wants_signal(sig, t)) { 1019 t = next_thread(t); 1020 if (t == signal->curr_target) 1021 /* 1022 * No thread needs to be woken. 1023 * Any eligible threads will see 1024 * the signal in the queue soon. 1025 */ 1026 return; 1027 } 1028 signal->curr_target = t; 1029 } 1030 1031 /* 1032 * Found a killable thread. If the signal will be fatal, 1033 * then start taking the whole group down immediately. 1034 */ 1035 if (sig_fatal(p, sig) && 1036 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1037 !sigismember(&t->real_blocked, sig) && 1038 (sig == SIGKILL || !p->ptrace)) { 1039 /* 1040 * This signal will be fatal to the whole group. 1041 */ 1042 if (!sig_kernel_coredump(sig)) { 1043 /* 1044 * Start a group exit and wake everybody up. 1045 * This way we don't have other threads 1046 * running and doing things after a slower 1047 * thread has the fatal signal pending. 1048 */ 1049 signal->flags = SIGNAL_GROUP_EXIT; 1050 signal->group_exit_code = sig; 1051 signal->group_stop_count = 0; 1052 __for_each_thread(signal, t) { 1053 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1054 sigaddset(&t->pending.signal, SIGKILL); 1055 signal_wake_up(t, 1); 1056 } 1057 return; 1058 } 1059 } 1060 1061 /* 1062 * The signal is already in the shared-pending queue. 1063 * Tell the chosen thread to wake up and dequeue it. 1064 */ 1065 signal_wake_up(t, sig == SIGKILL); 1066 return; 1067 } 1068 1069 static inline bool legacy_queue(struct sigpending *signals, int sig) 1070 { 1071 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1072 } 1073 1074 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1075 struct task_struct *t, enum pid_type type, bool force) 1076 { 1077 struct sigpending *pending; 1078 struct sigqueue *q; 1079 int override_rlimit; 1080 int ret = 0, result; 1081 1082 lockdep_assert_held(&t->sighand->siglock); 1083 1084 result = TRACE_SIGNAL_IGNORED; 1085 if (!prepare_signal(sig, t, force)) 1086 goto ret; 1087 1088 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1089 /* 1090 * Short-circuit ignored signals and support queuing 1091 * exactly one non-rt signal, so that we can get more 1092 * detailed information about the cause of the signal. 1093 */ 1094 result = TRACE_SIGNAL_ALREADY_PENDING; 1095 if (legacy_queue(pending, sig)) 1096 goto ret; 1097 1098 result = TRACE_SIGNAL_DELIVERED; 1099 /* 1100 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1101 */ 1102 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1103 goto out_set; 1104 1105 /* 1106 * Real-time signals must be queued if sent by sigqueue, or 1107 * some other real-time mechanism. It is implementation 1108 * defined whether kill() does so. We attempt to do so, on 1109 * the principle of least surprise, but since kill is not 1110 * allowed to fail with EAGAIN when low on memory we just 1111 * make sure at least one signal gets delivered and don't 1112 * pass on the info struct. 1113 */ 1114 if (sig < SIGRTMIN) 1115 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1116 else 1117 override_rlimit = 0; 1118 1119 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1120 1121 if (q) { 1122 list_add_tail(&q->list, &pending->list); 1123 switch ((unsigned long) info) { 1124 case (unsigned long) SEND_SIG_NOINFO: 1125 clear_siginfo(&q->info); 1126 q->info.si_signo = sig; 1127 q->info.si_errno = 0; 1128 q->info.si_code = SI_USER; 1129 q->info.si_pid = task_tgid_nr_ns(current, 1130 task_active_pid_ns(t)); 1131 rcu_read_lock(); 1132 q->info.si_uid = 1133 from_kuid_munged(task_cred_xxx(t, user_ns), 1134 current_uid()); 1135 rcu_read_unlock(); 1136 break; 1137 case (unsigned long) SEND_SIG_PRIV: 1138 clear_siginfo(&q->info); 1139 q->info.si_signo = sig; 1140 q->info.si_errno = 0; 1141 q->info.si_code = SI_KERNEL; 1142 q->info.si_pid = 0; 1143 q->info.si_uid = 0; 1144 break; 1145 default: 1146 copy_siginfo(&q->info, info); 1147 break; 1148 } 1149 } else if (!is_si_special(info) && 1150 sig >= SIGRTMIN && info->si_code != SI_USER) { 1151 /* 1152 * Queue overflow, abort. We may abort if the 1153 * signal was rt and sent by user using something 1154 * other than kill(). 1155 */ 1156 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1157 ret = -EAGAIN; 1158 goto ret; 1159 } else { 1160 /* 1161 * This is a silent loss of information. We still 1162 * send the signal, but the *info bits are lost. 1163 */ 1164 result = TRACE_SIGNAL_LOSE_INFO; 1165 } 1166 1167 out_set: 1168 signalfd_notify(t, sig); 1169 sigaddset(&pending->signal, sig); 1170 1171 /* Let multiprocess signals appear after on-going forks */ 1172 if (type > PIDTYPE_TGID) { 1173 struct multiprocess_signals *delayed; 1174 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1175 sigset_t *signal = &delayed->signal; 1176 /* Can't queue both a stop and a continue signal */ 1177 if (sig == SIGCONT) 1178 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1179 else if (sig_kernel_stop(sig)) 1180 sigdelset(signal, SIGCONT); 1181 sigaddset(signal, sig); 1182 } 1183 } 1184 1185 complete_signal(sig, t, type); 1186 ret: 1187 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1188 return ret; 1189 } 1190 1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1192 { 1193 bool ret = false; 1194 switch (siginfo_layout(info->si_signo, info->si_code)) { 1195 case SIL_KILL: 1196 case SIL_CHLD: 1197 case SIL_RT: 1198 ret = true; 1199 break; 1200 case SIL_TIMER: 1201 case SIL_POLL: 1202 case SIL_FAULT: 1203 case SIL_FAULT_TRAPNO: 1204 case SIL_FAULT_MCEERR: 1205 case SIL_FAULT_BNDERR: 1206 case SIL_FAULT_PKUERR: 1207 case SIL_FAULT_PERF_EVENT: 1208 case SIL_SYS: 1209 ret = false; 1210 break; 1211 } 1212 return ret; 1213 } 1214 1215 int send_signal_locked(int sig, struct kernel_siginfo *info, 1216 struct task_struct *t, enum pid_type type) 1217 { 1218 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1219 bool force = false; 1220 1221 if (info == SEND_SIG_NOINFO) { 1222 /* Force if sent from an ancestor pid namespace */ 1223 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1224 } else if (info == SEND_SIG_PRIV) { 1225 /* Don't ignore kernel generated signals */ 1226 force = true; 1227 } else if (has_si_pid_and_uid(info)) { 1228 /* SIGKILL and SIGSTOP is special or has ids */ 1229 struct user_namespace *t_user_ns; 1230 1231 rcu_read_lock(); 1232 t_user_ns = task_cred_xxx(t, user_ns); 1233 if (current_user_ns() != t_user_ns) { 1234 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1235 info->si_uid = from_kuid_munged(t_user_ns, uid); 1236 } 1237 rcu_read_unlock(); 1238 1239 /* A kernel generated signal? */ 1240 force = (info->si_code == SI_KERNEL); 1241 1242 /* From an ancestor pid namespace? */ 1243 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1244 info->si_pid = 0; 1245 force = true; 1246 } 1247 } 1248 return __send_signal_locked(sig, info, t, type, force); 1249 } 1250 1251 static void print_fatal_signal(int signr) 1252 { 1253 struct pt_regs *regs = task_pt_regs(current); 1254 struct file *exe_file; 1255 1256 exe_file = get_task_exe_file(current); 1257 if (exe_file) { 1258 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n", 1259 exe_file, current->comm, signr); 1260 fput(exe_file); 1261 } else { 1262 pr_info("%s: potentially unexpected fatal signal %d.\n", 1263 current->comm, signr); 1264 } 1265 1266 #if defined(__i386__) && !defined(__arch_um__) 1267 pr_info("code at %08lx: ", regs->ip); 1268 { 1269 int i; 1270 for (i = 0; i < 16; i++) { 1271 unsigned char insn; 1272 1273 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1274 break; 1275 pr_cont("%02x ", insn); 1276 } 1277 } 1278 pr_cont("\n"); 1279 #endif 1280 preempt_disable(); 1281 show_regs(regs); 1282 preempt_enable(); 1283 } 1284 1285 static int __init setup_print_fatal_signals(char *str) 1286 { 1287 get_option (&str, &print_fatal_signals); 1288 1289 return 1; 1290 } 1291 1292 __setup("print-fatal-signals=", setup_print_fatal_signals); 1293 1294 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1295 enum pid_type type) 1296 { 1297 unsigned long flags; 1298 int ret = -ESRCH; 1299 1300 if (lock_task_sighand(p, &flags)) { 1301 ret = send_signal_locked(sig, info, p, type); 1302 unlock_task_sighand(p, &flags); 1303 } 1304 1305 return ret; 1306 } 1307 1308 enum sig_handler { 1309 HANDLER_CURRENT, /* If reachable use the current handler */ 1310 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1311 HANDLER_EXIT, /* Only visible as the process exit code */ 1312 }; 1313 1314 /* 1315 * Force a signal that the process can't ignore: if necessary 1316 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1317 * 1318 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1319 * since we do not want to have a signal handler that was blocked 1320 * be invoked when user space had explicitly blocked it. 1321 * 1322 * We don't want to have recursive SIGSEGV's etc, for example, 1323 * that is why we also clear SIGNAL_UNKILLABLE. 1324 */ 1325 static int 1326 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1327 enum sig_handler handler) 1328 { 1329 unsigned long int flags; 1330 int ret, blocked, ignored; 1331 struct k_sigaction *action; 1332 int sig = info->si_signo; 1333 1334 spin_lock_irqsave(&t->sighand->siglock, flags); 1335 action = &t->sighand->action[sig-1]; 1336 ignored = action->sa.sa_handler == SIG_IGN; 1337 blocked = sigismember(&t->blocked, sig); 1338 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1339 action->sa.sa_handler = SIG_DFL; 1340 if (handler == HANDLER_EXIT) 1341 action->sa.sa_flags |= SA_IMMUTABLE; 1342 if (blocked) 1343 sigdelset(&t->blocked, sig); 1344 } 1345 /* 1346 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1347 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1348 */ 1349 if (action->sa.sa_handler == SIG_DFL && 1350 (!t->ptrace || (handler == HANDLER_EXIT))) 1351 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1352 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1353 /* This can happen if the signal was already pending and blocked */ 1354 if (!task_sigpending(t)) 1355 signal_wake_up(t, 0); 1356 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1357 1358 return ret; 1359 } 1360 1361 int force_sig_info(struct kernel_siginfo *info) 1362 { 1363 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1364 } 1365 1366 /* 1367 * Nuke all other threads in the group. 1368 */ 1369 int zap_other_threads(struct task_struct *p) 1370 { 1371 struct task_struct *t; 1372 int count = 0; 1373 1374 p->signal->group_stop_count = 0; 1375 1376 for_other_threads(p, t) { 1377 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1378 count++; 1379 1380 /* Don't bother with already dead threads */ 1381 if (t->exit_state) 1382 continue; 1383 sigaddset(&t->pending.signal, SIGKILL); 1384 signal_wake_up(t, 1); 1385 } 1386 1387 return count; 1388 } 1389 1390 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1391 unsigned long *flags) 1392 { 1393 struct sighand_struct *sighand; 1394 1395 rcu_read_lock(); 1396 for (;;) { 1397 sighand = rcu_dereference(tsk->sighand); 1398 if (unlikely(sighand == NULL)) 1399 break; 1400 1401 /* 1402 * This sighand can be already freed and even reused, but 1403 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1404 * initializes ->siglock: this slab can't go away, it has 1405 * the same object type, ->siglock can't be reinitialized. 1406 * 1407 * We need to ensure that tsk->sighand is still the same 1408 * after we take the lock, we can race with de_thread() or 1409 * __exit_signal(). In the latter case the next iteration 1410 * must see ->sighand == NULL. 1411 */ 1412 spin_lock_irqsave(&sighand->siglock, *flags); 1413 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1414 break; 1415 spin_unlock_irqrestore(&sighand->siglock, *flags); 1416 } 1417 rcu_read_unlock(); 1418 1419 return sighand; 1420 } 1421 1422 #ifdef CONFIG_LOCKDEP 1423 void lockdep_assert_task_sighand_held(struct task_struct *task) 1424 { 1425 struct sighand_struct *sighand; 1426 1427 rcu_read_lock(); 1428 sighand = rcu_dereference(task->sighand); 1429 if (sighand) 1430 lockdep_assert_held(&sighand->siglock); 1431 else 1432 WARN_ON_ONCE(1); 1433 rcu_read_unlock(); 1434 } 1435 #endif 1436 1437 /* 1438 * send signal info to all the members of a thread group or to the 1439 * individual thread if type == PIDTYPE_PID. 1440 */ 1441 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1442 struct task_struct *p, enum pid_type type) 1443 { 1444 int ret; 1445 1446 rcu_read_lock(); 1447 ret = check_kill_permission(sig, info, p); 1448 rcu_read_unlock(); 1449 1450 if (!ret && sig) 1451 ret = do_send_sig_info(sig, info, p, type); 1452 1453 return ret; 1454 } 1455 1456 /* 1457 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1458 * control characters do (^C, ^Z etc) 1459 * - the caller must hold at least a readlock on tasklist_lock 1460 */ 1461 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1462 { 1463 struct task_struct *p = NULL; 1464 int ret = -ESRCH; 1465 1466 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1467 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1468 /* 1469 * If group_send_sig_info() succeeds at least once ret 1470 * becomes 0 and after that the code below has no effect. 1471 * Otherwise we return the last err or -ESRCH if this 1472 * process group is empty. 1473 */ 1474 if (ret) 1475 ret = err; 1476 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1477 1478 return ret; 1479 } 1480 1481 static int kill_pid_info_type(int sig, struct kernel_siginfo *info, 1482 struct pid *pid, enum pid_type type) 1483 { 1484 int error = -ESRCH; 1485 struct task_struct *p; 1486 1487 for (;;) { 1488 rcu_read_lock(); 1489 p = pid_task(pid, PIDTYPE_PID); 1490 if (p) 1491 error = group_send_sig_info(sig, info, p, type); 1492 rcu_read_unlock(); 1493 if (likely(!p || error != -ESRCH)) 1494 return error; 1495 /* 1496 * The task was unhashed in between, try again. If it 1497 * is dead, pid_task() will return NULL, if we race with 1498 * de_thread() it will find the new leader. 1499 */ 1500 } 1501 } 1502 1503 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1504 { 1505 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID); 1506 } 1507 1508 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1509 { 1510 int error; 1511 rcu_read_lock(); 1512 error = kill_pid_info(sig, info, find_vpid(pid)); 1513 rcu_read_unlock(); 1514 return error; 1515 } 1516 1517 static inline bool kill_as_cred_perm(const struct cred *cred, 1518 struct task_struct *target) 1519 { 1520 const struct cred *pcred = __task_cred(target); 1521 1522 return uid_eq(cred->euid, pcred->suid) || 1523 uid_eq(cred->euid, pcred->uid) || 1524 uid_eq(cred->uid, pcred->suid) || 1525 uid_eq(cred->uid, pcred->uid); 1526 } 1527 1528 /* 1529 * The usb asyncio usage of siginfo is wrong. The glibc support 1530 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1531 * AKA after the generic fields: 1532 * kernel_pid_t si_pid; 1533 * kernel_uid32_t si_uid; 1534 * sigval_t si_value; 1535 * 1536 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1537 * after the generic fields is: 1538 * void __user *si_addr; 1539 * 1540 * This is a practical problem when there is a 64bit big endian kernel 1541 * and a 32bit userspace. As the 32bit address will encoded in the low 1542 * 32bits of the pointer. Those low 32bits will be stored at higher 1543 * address than appear in a 32 bit pointer. So userspace will not 1544 * see the address it was expecting for it's completions. 1545 * 1546 * There is nothing in the encoding that can allow 1547 * copy_siginfo_to_user32 to detect this confusion of formats, so 1548 * handle this by requiring the caller of kill_pid_usb_asyncio to 1549 * notice when this situration takes place and to store the 32bit 1550 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1551 * parameter. 1552 */ 1553 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1554 struct pid *pid, const struct cred *cred) 1555 { 1556 struct kernel_siginfo info; 1557 struct task_struct *p; 1558 unsigned long flags; 1559 int ret = -EINVAL; 1560 1561 if (!valid_signal(sig)) 1562 return ret; 1563 1564 clear_siginfo(&info); 1565 info.si_signo = sig; 1566 info.si_errno = errno; 1567 info.si_code = SI_ASYNCIO; 1568 *((sigval_t *)&info.si_pid) = addr; 1569 1570 rcu_read_lock(); 1571 p = pid_task(pid, PIDTYPE_PID); 1572 if (!p) { 1573 ret = -ESRCH; 1574 goto out_unlock; 1575 } 1576 if (!kill_as_cred_perm(cred, p)) { 1577 ret = -EPERM; 1578 goto out_unlock; 1579 } 1580 ret = security_task_kill(p, &info, sig, cred); 1581 if (ret) 1582 goto out_unlock; 1583 1584 if (sig) { 1585 if (lock_task_sighand(p, &flags)) { 1586 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1587 unlock_task_sighand(p, &flags); 1588 } else 1589 ret = -ESRCH; 1590 } 1591 out_unlock: 1592 rcu_read_unlock(); 1593 return ret; 1594 } 1595 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1596 1597 /* 1598 * kill_something_info() interprets pid in interesting ways just like kill(2). 1599 * 1600 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1601 * is probably wrong. Should make it like BSD or SYSV. 1602 */ 1603 1604 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1605 { 1606 int ret; 1607 1608 if (pid > 0) 1609 return kill_proc_info(sig, info, pid); 1610 1611 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1612 if (pid == INT_MIN) 1613 return -ESRCH; 1614 1615 read_lock(&tasklist_lock); 1616 if (pid != -1) { 1617 ret = __kill_pgrp_info(sig, info, 1618 pid ? find_vpid(-pid) : task_pgrp(current)); 1619 } else { 1620 int retval = 0, count = 0; 1621 struct task_struct * p; 1622 1623 for_each_process(p) { 1624 if (task_pid_vnr(p) > 1 && 1625 !same_thread_group(p, current)) { 1626 int err = group_send_sig_info(sig, info, p, 1627 PIDTYPE_MAX); 1628 ++count; 1629 if (err != -EPERM) 1630 retval = err; 1631 } 1632 } 1633 ret = count ? retval : -ESRCH; 1634 } 1635 read_unlock(&tasklist_lock); 1636 1637 return ret; 1638 } 1639 1640 /* 1641 * These are for backward compatibility with the rest of the kernel source. 1642 */ 1643 1644 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1645 { 1646 /* 1647 * Make sure legacy kernel users don't send in bad values 1648 * (normal paths check this in check_kill_permission). 1649 */ 1650 if (!valid_signal(sig)) 1651 return -EINVAL; 1652 1653 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1654 } 1655 EXPORT_SYMBOL(send_sig_info); 1656 1657 #define __si_special(priv) \ 1658 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1659 1660 int 1661 send_sig(int sig, struct task_struct *p, int priv) 1662 { 1663 return send_sig_info(sig, __si_special(priv), p); 1664 } 1665 EXPORT_SYMBOL(send_sig); 1666 1667 void force_sig(int sig) 1668 { 1669 struct kernel_siginfo info; 1670 1671 clear_siginfo(&info); 1672 info.si_signo = sig; 1673 info.si_errno = 0; 1674 info.si_code = SI_KERNEL; 1675 info.si_pid = 0; 1676 info.si_uid = 0; 1677 force_sig_info(&info); 1678 } 1679 EXPORT_SYMBOL(force_sig); 1680 1681 void force_fatal_sig(int sig) 1682 { 1683 struct kernel_siginfo info; 1684 1685 clear_siginfo(&info); 1686 info.si_signo = sig; 1687 info.si_errno = 0; 1688 info.si_code = SI_KERNEL; 1689 info.si_pid = 0; 1690 info.si_uid = 0; 1691 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1692 } 1693 1694 void force_exit_sig(int sig) 1695 { 1696 struct kernel_siginfo info; 1697 1698 clear_siginfo(&info); 1699 info.si_signo = sig; 1700 info.si_errno = 0; 1701 info.si_code = SI_KERNEL; 1702 info.si_pid = 0; 1703 info.si_uid = 0; 1704 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1705 } 1706 1707 /* 1708 * When things go south during signal handling, we 1709 * will force a SIGSEGV. And if the signal that caused 1710 * the problem was already a SIGSEGV, we'll want to 1711 * make sure we don't even try to deliver the signal.. 1712 */ 1713 void force_sigsegv(int sig) 1714 { 1715 if (sig == SIGSEGV) 1716 force_fatal_sig(SIGSEGV); 1717 else 1718 force_sig(SIGSEGV); 1719 } 1720 1721 int force_sig_fault_to_task(int sig, int code, void __user *addr, 1722 struct task_struct *t) 1723 { 1724 struct kernel_siginfo info; 1725 1726 clear_siginfo(&info); 1727 info.si_signo = sig; 1728 info.si_errno = 0; 1729 info.si_code = code; 1730 info.si_addr = addr; 1731 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1732 } 1733 1734 int force_sig_fault(int sig, int code, void __user *addr) 1735 { 1736 return force_sig_fault_to_task(sig, code, addr, current); 1737 } 1738 1739 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t) 1740 { 1741 struct kernel_siginfo info; 1742 1743 clear_siginfo(&info); 1744 info.si_signo = sig; 1745 info.si_errno = 0; 1746 info.si_code = code; 1747 info.si_addr = addr; 1748 return send_sig_info(info.si_signo, &info, t); 1749 } 1750 1751 int force_sig_mceerr(int code, void __user *addr, short lsb) 1752 { 1753 struct kernel_siginfo info; 1754 1755 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1756 clear_siginfo(&info); 1757 info.si_signo = SIGBUS; 1758 info.si_errno = 0; 1759 info.si_code = code; 1760 info.si_addr = addr; 1761 info.si_addr_lsb = lsb; 1762 return force_sig_info(&info); 1763 } 1764 1765 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1766 { 1767 struct kernel_siginfo info; 1768 1769 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1770 clear_siginfo(&info); 1771 info.si_signo = SIGBUS; 1772 info.si_errno = 0; 1773 info.si_code = code; 1774 info.si_addr = addr; 1775 info.si_addr_lsb = lsb; 1776 return send_sig_info(info.si_signo, &info, t); 1777 } 1778 EXPORT_SYMBOL(send_sig_mceerr); 1779 1780 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1781 { 1782 struct kernel_siginfo info; 1783 1784 clear_siginfo(&info); 1785 info.si_signo = SIGSEGV; 1786 info.si_errno = 0; 1787 info.si_code = SEGV_BNDERR; 1788 info.si_addr = addr; 1789 info.si_lower = lower; 1790 info.si_upper = upper; 1791 return force_sig_info(&info); 1792 } 1793 1794 #ifdef SEGV_PKUERR 1795 int force_sig_pkuerr(void __user *addr, u32 pkey) 1796 { 1797 struct kernel_siginfo info; 1798 1799 clear_siginfo(&info); 1800 info.si_signo = SIGSEGV; 1801 info.si_errno = 0; 1802 info.si_code = SEGV_PKUERR; 1803 info.si_addr = addr; 1804 info.si_pkey = pkey; 1805 return force_sig_info(&info); 1806 } 1807 #endif 1808 1809 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1810 { 1811 struct kernel_siginfo info; 1812 1813 clear_siginfo(&info); 1814 info.si_signo = SIGTRAP; 1815 info.si_errno = 0; 1816 info.si_code = TRAP_PERF; 1817 info.si_addr = addr; 1818 info.si_perf_data = sig_data; 1819 info.si_perf_type = type; 1820 1821 /* 1822 * Signals generated by perf events should not terminate the whole 1823 * process if SIGTRAP is blocked, however, delivering the signal 1824 * asynchronously is better than not delivering at all. But tell user 1825 * space if the signal was asynchronous, so it can clearly be 1826 * distinguished from normal synchronous ones. 1827 */ 1828 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1829 TRAP_PERF_FLAG_ASYNC : 1830 0; 1831 1832 return send_sig_info(info.si_signo, &info, current); 1833 } 1834 1835 /** 1836 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1837 * @syscall: syscall number to send to userland 1838 * @reason: filter-supplied reason code to send to userland (via si_errno) 1839 * @force_coredump: true to trigger a coredump 1840 * 1841 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1842 */ 1843 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1844 { 1845 struct kernel_siginfo info; 1846 1847 clear_siginfo(&info); 1848 info.si_signo = SIGSYS; 1849 info.si_code = SYS_SECCOMP; 1850 info.si_call_addr = (void __user *)KSTK_EIP(current); 1851 info.si_errno = reason; 1852 info.si_arch = syscall_get_arch(current); 1853 info.si_syscall = syscall; 1854 return force_sig_info_to_task(&info, current, 1855 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1856 } 1857 1858 /* For the crazy architectures that include trap information in 1859 * the errno field, instead of an actual errno value. 1860 */ 1861 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1862 { 1863 struct kernel_siginfo info; 1864 1865 clear_siginfo(&info); 1866 info.si_signo = SIGTRAP; 1867 info.si_errno = errno; 1868 info.si_code = TRAP_HWBKPT; 1869 info.si_addr = addr; 1870 return force_sig_info(&info); 1871 } 1872 1873 /* For the rare architectures that include trap information using 1874 * si_trapno. 1875 */ 1876 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1877 { 1878 struct kernel_siginfo info; 1879 1880 clear_siginfo(&info); 1881 info.si_signo = sig; 1882 info.si_errno = 0; 1883 info.si_code = code; 1884 info.si_addr = addr; 1885 info.si_trapno = trapno; 1886 return force_sig_info(&info); 1887 } 1888 1889 /* For the rare architectures that include trap information using 1890 * si_trapno. 1891 */ 1892 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1893 struct task_struct *t) 1894 { 1895 struct kernel_siginfo info; 1896 1897 clear_siginfo(&info); 1898 info.si_signo = sig; 1899 info.si_errno = 0; 1900 info.si_code = code; 1901 info.si_addr = addr; 1902 info.si_trapno = trapno; 1903 return send_sig_info(info.si_signo, &info, t); 1904 } 1905 1906 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1907 { 1908 int ret; 1909 read_lock(&tasklist_lock); 1910 ret = __kill_pgrp_info(sig, info, pgrp); 1911 read_unlock(&tasklist_lock); 1912 return ret; 1913 } 1914 1915 int kill_pgrp(struct pid *pid, int sig, int priv) 1916 { 1917 return kill_pgrp_info(sig, __si_special(priv), pid); 1918 } 1919 EXPORT_SYMBOL(kill_pgrp); 1920 1921 int kill_pid(struct pid *pid, int sig, int priv) 1922 { 1923 return kill_pid_info(sig, __si_special(priv), pid); 1924 } 1925 EXPORT_SYMBOL(kill_pid); 1926 1927 /* 1928 * These functions support sending signals using preallocated sigqueue 1929 * structures. This is needed "because realtime applications cannot 1930 * afford to lose notifications of asynchronous events, like timer 1931 * expirations or I/O completions". In the case of POSIX Timers 1932 * we allocate the sigqueue structure from the timer_create. If this 1933 * allocation fails we are able to report the failure to the application 1934 * with an EAGAIN error. 1935 */ 1936 struct sigqueue *sigqueue_alloc(void) 1937 { 1938 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1939 } 1940 1941 void sigqueue_free(struct sigqueue *q) 1942 { 1943 unsigned long flags; 1944 spinlock_t *lock = ¤t->sighand->siglock; 1945 1946 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1947 /* 1948 * We must hold ->siglock while testing q->list 1949 * to serialize with collect_signal() or with 1950 * __exit_signal()->flush_sigqueue(). 1951 */ 1952 spin_lock_irqsave(lock, flags); 1953 q->flags &= ~SIGQUEUE_PREALLOC; 1954 /* 1955 * If it is queued it will be freed when dequeued, 1956 * like the "regular" sigqueue. 1957 */ 1958 if (!list_empty(&q->list)) 1959 q = NULL; 1960 spin_unlock_irqrestore(lock, flags); 1961 1962 if (q) 1963 __sigqueue_free(q); 1964 } 1965 1966 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1967 { 1968 int sig = q->info.si_signo; 1969 struct sigpending *pending; 1970 struct task_struct *t; 1971 unsigned long flags; 1972 int ret, result; 1973 1974 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1975 1976 ret = -1; 1977 rcu_read_lock(); 1978 1979 /* 1980 * This function is used by POSIX timers to deliver a timer signal. 1981 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1982 * set), the signal must be delivered to the specific thread (queues 1983 * into t->pending). 1984 * 1985 * Where type is not PIDTYPE_PID, signals must be delivered to the 1986 * process. In this case, prefer to deliver to current if it is in 1987 * the same thread group as the target process, which avoids 1988 * unnecessarily waking up a potentially idle task. 1989 */ 1990 t = pid_task(pid, type); 1991 if (!t) 1992 goto ret; 1993 if (type != PIDTYPE_PID && same_thread_group(t, current)) 1994 t = current; 1995 if (!likely(lock_task_sighand(t, &flags))) 1996 goto ret; 1997 1998 ret = 1; /* the signal is ignored */ 1999 result = TRACE_SIGNAL_IGNORED; 2000 if (!prepare_signal(sig, t, false)) 2001 goto out; 2002 2003 ret = 0; 2004 if (unlikely(!list_empty(&q->list))) { 2005 /* 2006 * If an SI_TIMER entry is already queue just increment 2007 * the overrun count. 2008 */ 2009 BUG_ON(q->info.si_code != SI_TIMER); 2010 q->info.si_overrun++; 2011 result = TRACE_SIGNAL_ALREADY_PENDING; 2012 goto out; 2013 } 2014 q->info.si_overrun = 0; 2015 2016 signalfd_notify(t, sig); 2017 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 2018 list_add_tail(&q->list, &pending->list); 2019 sigaddset(&pending->signal, sig); 2020 complete_signal(sig, t, type); 2021 result = TRACE_SIGNAL_DELIVERED; 2022 out: 2023 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2024 unlock_task_sighand(t, &flags); 2025 ret: 2026 rcu_read_unlock(); 2027 return ret; 2028 } 2029 2030 void do_notify_pidfd(struct task_struct *task) 2031 { 2032 struct pid *pid = task_pid(task); 2033 2034 WARN_ON(task->exit_state == 0); 2035 2036 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0, 2037 poll_to_key(EPOLLIN | EPOLLRDNORM)); 2038 } 2039 2040 /* 2041 * Let a parent know about the death of a child. 2042 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2043 * 2044 * Returns true if our parent ignored us and so we've switched to 2045 * self-reaping. 2046 */ 2047 bool do_notify_parent(struct task_struct *tsk, int sig) 2048 { 2049 struct kernel_siginfo info; 2050 unsigned long flags; 2051 struct sighand_struct *psig; 2052 bool autoreap = false; 2053 u64 utime, stime; 2054 2055 WARN_ON_ONCE(sig == -1); 2056 2057 /* do_notify_parent_cldstop should have been called instead. */ 2058 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2059 2060 WARN_ON_ONCE(!tsk->ptrace && 2061 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2062 /* 2063 * tsk is a group leader and has no threads, wake up the 2064 * non-PIDFD_THREAD waiters. 2065 */ 2066 if (thread_group_empty(tsk)) 2067 do_notify_pidfd(tsk); 2068 2069 if (sig != SIGCHLD) { 2070 /* 2071 * This is only possible if parent == real_parent. 2072 * Check if it has changed security domain. 2073 */ 2074 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2075 sig = SIGCHLD; 2076 } 2077 2078 clear_siginfo(&info); 2079 info.si_signo = sig; 2080 info.si_errno = 0; 2081 /* 2082 * We are under tasklist_lock here so our parent is tied to 2083 * us and cannot change. 2084 * 2085 * task_active_pid_ns will always return the same pid namespace 2086 * until a task passes through release_task. 2087 * 2088 * write_lock() currently calls preempt_disable() which is the 2089 * same as rcu_read_lock(), but according to Oleg, this is not 2090 * correct to rely on this 2091 */ 2092 rcu_read_lock(); 2093 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2094 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2095 task_uid(tsk)); 2096 rcu_read_unlock(); 2097 2098 task_cputime(tsk, &utime, &stime); 2099 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2100 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2101 2102 info.si_status = tsk->exit_code & 0x7f; 2103 if (tsk->exit_code & 0x80) 2104 info.si_code = CLD_DUMPED; 2105 else if (tsk->exit_code & 0x7f) 2106 info.si_code = CLD_KILLED; 2107 else { 2108 info.si_code = CLD_EXITED; 2109 info.si_status = tsk->exit_code >> 8; 2110 } 2111 2112 psig = tsk->parent->sighand; 2113 spin_lock_irqsave(&psig->siglock, flags); 2114 if (!tsk->ptrace && sig == SIGCHLD && 2115 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2116 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2117 /* 2118 * We are exiting and our parent doesn't care. POSIX.1 2119 * defines special semantics for setting SIGCHLD to SIG_IGN 2120 * or setting the SA_NOCLDWAIT flag: we should be reaped 2121 * automatically and not left for our parent's wait4 call. 2122 * Rather than having the parent do it as a magic kind of 2123 * signal handler, we just set this to tell do_exit that we 2124 * can be cleaned up without becoming a zombie. Note that 2125 * we still call __wake_up_parent in this case, because a 2126 * blocked sys_wait4 might now return -ECHILD. 2127 * 2128 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2129 * is implementation-defined: we do (if you don't want 2130 * it, just use SIG_IGN instead). 2131 */ 2132 autoreap = true; 2133 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2134 sig = 0; 2135 } 2136 /* 2137 * Send with __send_signal as si_pid and si_uid are in the 2138 * parent's namespaces. 2139 */ 2140 if (valid_signal(sig) && sig) 2141 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2142 __wake_up_parent(tsk, tsk->parent); 2143 spin_unlock_irqrestore(&psig->siglock, flags); 2144 2145 return autoreap; 2146 } 2147 2148 /** 2149 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2150 * @tsk: task reporting the state change 2151 * @for_ptracer: the notification is for ptracer 2152 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2153 * 2154 * Notify @tsk's parent that the stopped/continued state has changed. If 2155 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2156 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2157 * 2158 * CONTEXT: 2159 * Must be called with tasklist_lock at least read locked. 2160 */ 2161 static void do_notify_parent_cldstop(struct task_struct *tsk, 2162 bool for_ptracer, int why) 2163 { 2164 struct kernel_siginfo info; 2165 unsigned long flags; 2166 struct task_struct *parent; 2167 struct sighand_struct *sighand; 2168 u64 utime, stime; 2169 2170 if (for_ptracer) { 2171 parent = tsk->parent; 2172 } else { 2173 tsk = tsk->group_leader; 2174 parent = tsk->real_parent; 2175 } 2176 2177 clear_siginfo(&info); 2178 info.si_signo = SIGCHLD; 2179 info.si_errno = 0; 2180 /* 2181 * see comment in do_notify_parent() about the following 4 lines 2182 */ 2183 rcu_read_lock(); 2184 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2185 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2186 rcu_read_unlock(); 2187 2188 task_cputime(tsk, &utime, &stime); 2189 info.si_utime = nsec_to_clock_t(utime); 2190 info.si_stime = nsec_to_clock_t(stime); 2191 2192 info.si_code = why; 2193 switch (why) { 2194 case CLD_CONTINUED: 2195 info.si_status = SIGCONT; 2196 break; 2197 case CLD_STOPPED: 2198 info.si_status = tsk->signal->group_exit_code & 0x7f; 2199 break; 2200 case CLD_TRAPPED: 2201 info.si_status = tsk->exit_code & 0x7f; 2202 break; 2203 default: 2204 BUG(); 2205 } 2206 2207 sighand = parent->sighand; 2208 spin_lock_irqsave(&sighand->siglock, flags); 2209 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2210 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2211 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2212 /* 2213 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2214 */ 2215 __wake_up_parent(tsk, parent); 2216 spin_unlock_irqrestore(&sighand->siglock, flags); 2217 } 2218 2219 /* 2220 * This must be called with current->sighand->siglock held. 2221 * 2222 * This should be the path for all ptrace stops. 2223 * We always set current->last_siginfo while stopped here. 2224 * That makes it a way to test a stopped process for 2225 * being ptrace-stopped vs being job-control-stopped. 2226 * 2227 * Returns the signal the ptracer requested the code resume 2228 * with. If the code did not stop because the tracer is gone, 2229 * the stop signal remains unchanged unless clear_code. 2230 */ 2231 static int ptrace_stop(int exit_code, int why, unsigned long message, 2232 kernel_siginfo_t *info) 2233 __releases(¤t->sighand->siglock) 2234 __acquires(¤t->sighand->siglock) 2235 { 2236 bool gstop_done = false; 2237 2238 if (arch_ptrace_stop_needed()) { 2239 /* 2240 * The arch code has something special to do before a 2241 * ptrace stop. This is allowed to block, e.g. for faults 2242 * on user stack pages. We can't keep the siglock while 2243 * calling arch_ptrace_stop, so we must release it now. 2244 * To preserve proper semantics, we must do this before 2245 * any signal bookkeeping like checking group_stop_count. 2246 */ 2247 spin_unlock_irq(¤t->sighand->siglock); 2248 arch_ptrace_stop(); 2249 spin_lock_irq(¤t->sighand->siglock); 2250 } 2251 2252 /* 2253 * After this point ptrace_signal_wake_up or signal_wake_up 2254 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2255 * signal comes in. Handle previous ptrace_unlinks and fatal 2256 * signals here to prevent ptrace_stop sleeping in schedule. 2257 */ 2258 if (!current->ptrace || __fatal_signal_pending(current)) 2259 return exit_code; 2260 2261 set_special_state(TASK_TRACED); 2262 current->jobctl |= JOBCTL_TRACED; 2263 2264 /* 2265 * We're committing to trapping. TRACED should be visible before 2266 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2267 * Also, transition to TRACED and updates to ->jobctl should be 2268 * atomic with respect to siglock and should be done after the arch 2269 * hook as siglock is released and regrabbed across it. 2270 * 2271 * TRACER TRACEE 2272 * 2273 * ptrace_attach() 2274 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2275 * do_wait() 2276 * set_current_state() smp_wmb(); 2277 * ptrace_do_wait() 2278 * wait_task_stopped() 2279 * task_stopped_code() 2280 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2281 */ 2282 smp_wmb(); 2283 2284 current->ptrace_message = message; 2285 current->last_siginfo = info; 2286 current->exit_code = exit_code; 2287 2288 /* 2289 * If @why is CLD_STOPPED, we're trapping to participate in a group 2290 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2291 * across siglock relocks since INTERRUPT was scheduled, PENDING 2292 * could be clear now. We act as if SIGCONT is received after 2293 * TASK_TRACED is entered - ignore it. 2294 */ 2295 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2296 gstop_done = task_participate_group_stop(current); 2297 2298 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2299 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2300 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2301 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2302 2303 /* entering a trap, clear TRAPPING */ 2304 task_clear_jobctl_trapping(current); 2305 2306 spin_unlock_irq(¤t->sighand->siglock); 2307 read_lock(&tasklist_lock); 2308 /* 2309 * Notify parents of the stop. 2310 * 2311 * While ptraced, there are two parents - the ptracer and 2312 * the real_parent of the group_leader. The ptracer should 2313 * know about every stop while the real parent is only 2314 * interested in the completion of group stop. The states 2315 * for the two don't interact with each other. Notify 2316 * separately unless they're gonna be duplicates. 2317 */ 2318 if (current->ptrace) 2319 do_notify_parent_cldstop(current, true, why); 2320 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2321 do_notify_parent_cldstop(current, false, why); 2322 2323 /* 2324 * The previous do_notify_parent_cldstop() invocation woke ptracer. 2325 * One a PREEMPTION kernel this can result in preemption requirement 2326 * which will be fulfilled after read_unlock() and the ptracer will be 2327 * put on the CPU. 2328 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for 2329 * this task wait in schedule(). If this task gets preempted then it 2330 * remains enqueued on the runqueue. The ptracer will observe this and 2331 * then sleep for a delay of one HZ tick. In the meantime this task 2332 * gets scheduled, enters schedule() and will wait for the ptracer. 2333 * 2334 * This preemption point is not bad from a correctness point of 2335 * view but extends the runtime by one HZ tick time due to the 2336 * ptracer's sleep. The preempt-disable section ensures that there 2337 * will be no preemption between unlock and schedule() and so 2338 * improving the performance since the ptracer will observe that 2339 * the tracee is scheduled out once it gets on the CPU. 2340 * 2341 * On PREEMPT_RT locking tasklist_lock does not disable preemption. 2342 * Therefore the task can be preempted after do_notify_parent_cldstop() 2343 * before unlocking tasklist_lock so there is no benefit in doing this. 2344 * 2345 * In fact disabling preemption is harmful on PREEMPT_RT because 2346 * the spinlock_t in cgroup_enter_frozen() must not be acquired 2347 * with preemption disabled due to the 'sleeping' spinlock 2348 * substitution of RT. 2349 */ 2350 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2351 preempt_disable(); 2352 read_unlock(&tasklist_lock); 2353 cgroup_enter_frozen(); 2354 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2355 preempt_enable_no_resched(); 2356 schedule(); 2357 cgroup_leave_frozen(true); 2358 2359 /* 2360 * We are back. Now reacquire the siglock before touching 2361 * last_siginfo, so that we are sure to have synchronized with 2362 * any signal-sending on another CPU that wants to examine it. 2363 */ 2364 spin_lock_irq(¤t->sighand->siglock); 2365 exit_code = current->exit_code; 2366 current->last_siginfo = NULL; 2367 current->ptrace_message = 0; 2368 current->exit_code = 0; 2369 2370 /* LISTENING can be set only during STOP traps, clear it */ 2371 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2372 2373 /* 2374 * Queued signals ignored us while we were stopped for tracing. 2375 * So check for any that we should take before resuming user mode. 2376 * This sets TIF_SIGPENDING, but never clears it. 2377 */ 2378 recalc_sigpending_tsk(current); 2379 return exit_code; 2380 } 2381 2382 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2383 { 2384 kernel_siginfo_t info; 2385 2386 clear_siginfo(&info); 2387 info.si_signo = signr; 2388 info.si_code = exit_code; 2389 info.si_pid = task_pid_vnr(current); 2390 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2391 2392 /* Let the debugger run. */ 2393 return ptrace_stop(exit_code, why, message, &info); 2394 } 2395 2396 int ptrace_notify(int exit_code, unsigned long message) 2397 { 2398 int signr; 2399 2400 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2401 if (unlikely(task_work_pending(current))) 2402 task_work_run(); 2403 2404 spin_lock_irq(¤t->sighand->siglock); 2405 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2406 spin_unlock_irq(¤t->sighand->siglock); 2407 return signr; 2408 } 2409 2410 /** 2411 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2412 * @signr: signr causing group stop if initiating 2413 * 2414 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2415 * and participate in it. If already set, participate in the existing 2416 * group stop. If participated in a group stop (and thus slept), %true is 2417 * returned with siglock released. 2418 * 2419 * If ptraced, this function doesn't handle stop itself. Instead, 2420 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2421 * untouched. The caller must ensure that INTERRUPT trap handling takes 2422 * places afterwards. 2423 * 2424 * CONTEXT: 2425 * Must be called with @current->sighand->siglock held, which is released 2426 * on %true return. 2427 * 2428 * RETURNS: 2429 * %false if group stop is already cancelled or ptrace trap is scheduled. 2430 * %true if participated in group stop. 2431 */ 2432 static bool do_signal_stop(int signr) 2433 __releases(¤t->sighand->siglock) 2434 { 2435 struct signal_struct *sig = current->signal; 2436 2437 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2438 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2439 struct task_struct *t; 2440 2441 /* signr will be recorded in task->jobctl for retries */ 2442 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2443 2444 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2445 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2446 unlikely(sig->group_exec_task)) 2447 return false; 2448 /* 2449 * There is no group stop already in progress. We must 2450 * initiate one now. 2451 * 2452 * While ptraced, a task may be resumed while group stop is 2453 * still in effect and then receive a stop signal and 2454 * initiate another group stop. This deviates from the 2455 * usual behavior as two consecutive stop signals can't 2456 * cause two group stops when !ptraced. That is why we 2457 * also check !task_is_stopped(t) below. 2458 * 2459 * The condition can be distinguished by testing whether 2460 * SIGNAL_STOP_STOPPED is already set. Don't generate 2461 * group_exit_code in such case. 2462 * 2463 * This is not necessary for SIGNAL_STOP_CONTINUED because 2464 * an intervening stop signal is required to cause two 2465 * continued events regardless of ptrace. 2466 */ 2467 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2468 sig->group_exit_code = signr; 2469 2470 sig->group_stop_count = 0; 2471 if (task_set_jobctl_pending(current, signr | gstop)) 2472 sig->group_stop_count++; 2473 2474 for_other_threads(current, t) { 2475 /* 2476 * Setting state to TASK_STOPPED for a group 2477 * stop is always done with the siglock held, 2478 * so this check has no races. 2479 */ 2480 if (!task_is_stopped(t) && 2481 task_set_jobctl_pending(t, signr | gstop)) { 2482 sig->group_stop_count++; 2483 if (likely(!(t->ptrace & PT_SEIZED))) 2484 signal_wake_up(t, 0); 2485 else 2486 ptrace_trap_notify(t); 2487 } 2488 } 2489 } 2490 2491 if (likely(!current->ptrace)) { 2492 int notify = 0; 2493 2494 /* 2495 * If there are no other threads in the group, or if there 2496 * is a group stop in progress and we are the last to stop, 2497 * report to the parent. 2498 */ 2499 if (task_participate_group_stop(current)) 2500 notify = CLD_STOPPED; 2501 2502 current->jobctl |= JOBCTL_STOPPED; 2503 set_special_state(TASK_STOPPED); 2504 spin_unlock_irq(¤t->sighand->siglock); 2505 2506 /* 2507 * Notify the parent of the group stop completion. Because 2508 * we're not holding either the siglock or tasklist_lock 2509 * here, ptracer may attach inbetween; however, this is for 2510 * group stop and should always be delivered to the real 2511 * parent of the group leader. The new ptracer will get 2512 * its notification when this task transitions into 2513 * TASK_TRACED. 2514 */ 2515 if (notify) { 2516 read_lock(&tasklist_lock); 2517 do_notify_parent_cldstop(current, false, notify); 2518 read_unlock(&tasklist_lock); 2519 } 2520 2521 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2522 cgroup_enter_frozen(); 2523 schedule(); 2524 return true; 2525 } else { 2526 /* 2527 * While ptraced, group stop is handled by STOP trap. 2528 * Schedule it and let the caller deal with it. 2529 */ 2530 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2531 return false; 2532 } 2533 } 2534 2535 /** 2536 * do_jobctl_trap - take care of ptrace jobctl traps 2537 * 2538 * When PT_SEIZED, it's used for both group stop and explicit 2539 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2540 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2541 * the stop signal; otherwise, %SIGTRAP. 2542 * 2543 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2544 * number as exit_code and no siginfo. 2545 * 2546 * CONTEXT: 2547 * Must be called with @current->sighand->siglock held, which may be 2548 * released and re-acquired before returning with intervening sleep. 2549 */ 2550 static void do_jobctl_trap(void) 2551 { 2552 struct signal_struct *signal = current->signal; 2553 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2554 2555 if (current->ptrace & PT_SEIZED) { 2556 if (!signal->group_stop_count && 2557 !(signal->flags & SIGNAL_STOP_STOPPED)) 2558 signr = SIGTRAP; 2559 WARN_ON_ONCE(!signr); 2560 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2561 CLD_STOPPED, 0); 2562 } else { 2563 WARN_ON_ONCE(!signr); 2564 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2565 } 2566 } 2567 2568 /** 2569 * do_freezer_trap - handle the freezer jobctl trap 2570 * 2571 * Puts the task into frozen state, if only the task is not about to quit. 2572 * In this case it drops JOBCTL_TRAP_FREEZE. 2573 * 2574 * CONTEXT: 2575 * Must be called with @current->sighand->siglock held, 2576 * which is always released before returning. 2577 */ 2578 static void do_freezer_trap(void) 2579 __releases(¤t->sighand->siglock) 2580 { 2581 /* 2582 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2583 * let's make another loop to give it a chance to be handled. 2584 * In any case, we'll return back. 2585 */ 2586 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2587 JOBCTL_TRAP_FREEZE) { 2588 spin_unlock_irq(¤t->sighand->siglock); 2589 return; 2590 } 2591 2592 /* 2593 * Now we're sure that there is no pending fatal signal and no 2594 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2595 * immediately (if there is a non-fatal signal pending), and 2596 * put the task into sleep. 2597 */ 2598 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2599 clear_thread_flag(TIF_SIGPENDING); 2600 spin_unlock_irq(¤t->sighand->siglock); 2601 cgroup_enter_frozen(); 2602 schedule(); 2603 2604 /* 2605 * We could've been woken by task_work, run it to clear 2606 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary. 2607 */ 2608 clear_notify_signal(); 2609 if (unlikely(task_work_pending(current))) 2610 task_work_run(); 2611 } 2612 2613 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2614 { 2615 /* 2616 * We do not check sig_kernel_stop(signr) but set this marker 2617 * unconditionally because we do not know whether debugger will 2618 * change signr. This flag has no meaning unless we are going 2619 * to stop after return from ptrace_stop(). In this case it will 2620 * be checked in do_signal_stop(), we should only stop if it was 2621 * not cleared by SIGCONT while we were sleeping. See also the 2622 * comment in dequeue_signal(). 2623 */ 2624 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2625 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2626 2627 /* We're back. Did the debugger cancel the sig? */ 2628 if (signr == 0) 2629 return signr; 2630 2631 /* 2632 * Update the siginfo structure if the signal has 2633 * changed. If the debugger wanted something 2634 * specific in the siginfo structure then it should 2635 * have updated *info via PTRACE_SETSIGINFO. 2636 */ 2637 if (signr != info->si_signo) { 2638 clear_siginfo(info); 2639 info->si_signo = signr; 2640 info->si_errno = 0; 2641 info->si_code = SI_USER; 2642 rcu_read_lock(); 2643 info->si_pid = task_pid_vnr(current->parent); 2644 info->si_uid = from_kuid_munged(current_user_ns(), 2645 task_uid(current->parent)); 2646 rcu_read_unlock(); 2647 } 2648 2649 /* If the (new) signal is now blocked, requeue it. */ 2650 if (sigismember(¤t->blocked, signr) || 2651 fatal_signal_pending(current)) { 2652 send_signal_locked(signr, info, current, type); 2653 signr = 0; 2654 } 2655 2656 return signr; 2657 } 2658 2659 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2660 { 2661 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2662 case SIL_FAULT: 2663 case SIL_FAULT_TRAPNO: 2664 case SIL_FAULT_MCEERR: 2665 case SIL_FAULT_BNDERR: 2666 case SIL_FAULT_PKUERR: 2667 case SIL_FAULT_PERF_EVENT: 2668 ksig->info.si_addr = arch_untagged_si_addr( 2669 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2670 break; 2671 case SIL_KILL: 2672 case SIL_TIMER: 2673 case SIL_POLL: 2674 case SIL_CHLD: 2675 case SIL_RT: 2676 case SIL_SYS: 2677 break; 2678 } 2679 } 2680 2681 bool get_signal(struct ksignal *ksig) 2682 { 2683 struct sighand_struct *sighand = current->sighand; 2684 struct signal_struct *signal = current->signal; 2685 int signr; 2686 2687 clear_notify_signal(); 2688 if (unlikely(task_work_pending(current))) 2689 task_work_run(); 2690 2691 if (!task_sigpending(current)) 2692 return false; 2693 2694 if (unlikely(uprobe_deny_signal())) 2695 return false; 2696 2697 /* 2698 * Do this once, we can't return to user-mode if freezing() == T. 2699 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2700 * thus do not need another check after return. 2701 */ 2702 try_to_freeze(); 2703 2704 relock: 2705 spin_lock_irq(&sighand->siglock); 2706 2707 /* 2708 * Every stopped thread goes here after wakeup. Check to see if 2709 * we should notify the parent, prepare_signal(SIGCONT) encodes 2710 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2711 */ 2712 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2713 int why; 2714 2715 if (signal->flags & SIGNAL_CLD_CONTINUED) 2716 why = CLD_CONTINUED; 2717 else 2718 why = CLD_STOPPED; 2719 2720 signal->flags &= ~SIGNAL_CLD_MASK; 2721 2722 spin_unlock_irq(&sighand->siglock); 2723 2724 /* 2725 * Notify the parent that we're continuing. This event is 2726 * always per-process and doesn't make whole lot of sense 2727 * for ptracers, who shouldn't consume the state via 2728 * wait(2) either, but, for backward compatibility, notify 2729 * the ptracer of the group leader too unless it's gonna be 2730 * a duplicate. 2731 */ 2732 read_lock(&tasklist_lock); 2733 do_notify_parent_cldstop(current, false, why); 2734 2735 if (ptrace_reparented(current->group_leader)) 2736 do_notify_parent_cldstop(current->group_leader, 2737 true, why); 2738 read_unlock(&tasklist_lock); 2739 2740 goto relock; 2741 } 2742 2743 for (;;) { 2744 struct k_sigaction *ka; 2745 enum pid_type type; 2746 2747 /* Has this task already been marked for death? */ 2748 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2749 signal->group_exec_task) { 2750 signr = SIGKILL; 2751 sigdelset(¤t->pending.signal, SIGKILL); 2752 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2753 &sighand->action[SIGKILL-1]); 2754 recalc_sigpending(); 2755 /* 2756 * implies do_group_exit() or return to PF_USER_WORKER, 2757 * no need to initialize ksig->info/etc. 2758 */ 2759 goto fatal; 2760 } 2761 2762 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2763 do_signal_stop(0)) 2764 goto relock; 2765 2766 if (unlikely(current->jobctl & 2767 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2768 if (current->jobctl & JOBCTL_TRAP_MASK) { 2769 do_jobctl_trap(); 2770 spin_unlock_irq(&sighand->siglock); 2771 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2772 do_freezer_trap(); 2773 2774 goto relock; 2775 } 2776 2777 /* 2778 * If the task is leaving the frozen state, let's update 2779 * cgroup counters and reset the frozen bit. 2780 */ 2781 if (unlikely(cgroup_task_frozen(current))) { 2782 spin_unlock_irq(&sighand->siglock); 2783 cgroup_leave_frozen(false); 2784 goto relock; 2785 } 2786 2787 /* 2788 * Signals generated by the execution of an instruction 2789 * need to be delivered before any other pending signals 2790 * so that the instruction pointer in the signal stack 2791 * frame points to the faulting instruction. 2792 */ 2793 type = PIDTYPE_PID; 2794 signr = dequeue_synchronous_signal(&ksig->info); 2795 if (!signr) 2796 signr = dequeue_signal(current, ¤t->blocked, 2797 &ksig->info, &type); 2798 2799 if (!signr) 2800 break; /* will return 0 */ 2801 2802 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2803 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2804 signr = ptrace_signal(signr, &ksig->info, type); 2805 if (!signr) 2806 continue; 2807 } 2808 2809 ka = &sighand->action[signr-1]; 2810 2811 /* Trace actually delivered signals. */ 2812 trace_signal_deliver(signr, &ksig->info, ka); 2813 2814 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2815 continue; 2816 if (ka->sa.sa_handler != SIG_DFL) { 2817 /* Run the handler. */ 2818 ksig->ka = *ka; 2819 2820 if (ka->sa.sa_flags & SA_ONESHOT) 2821 ka->sa.sa_handler = SIG_DFL; 2822 2823 break; /* will return non-zero "signr" value */ 2824 } 2825 2826 /* 2827 * Now we are doing the default action for this signal. 2828 */ 2829 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2830 continue; 2831 2832 /* 2833 * Global init gets no signals it doesn't want. 2834 * Container-init gets no signals it doesn't want from same 2835 * container. 2836 * 2837 * Note that if global/container-init sees a sig_kernel_only() 2838 * signal here, the signal must have been generated internally 2839 * or must have come from an ancestor namespace. In either 2840 * case, the signal cannot be dropped. 2841 */ 2842 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2843 !sig_kernel_only(signr)) 2844 continue; 2845 2846 if (sig_kernel_stop(signr)) { 2847 /* 2848 * The default action is to stop all threads in 2849 * the thread group. The job control signals 2850 * do nothing in an orphaned pgrp, but SIGSTOP 2851 * always works. Note that siglock needs to be 2852 * dropped during the call to is_orphaned_pgrp() 2853 * because of lock ordering with tasklist_lock. 2854 * This allows an intervening SIGCONT to be posted. 2855 * We need to check for that and bail out if necessary. 2856 */ 2857 if (signr != SIGSTOP) { 2858 spin_unlock_irq(&sighand->siglock); 2859 2860 /* signals can be posted during this window */ 2861 2862 if (is_current_pgrp_orphaned()) 2863 goto relock; 2864 2865 spin_lock_irq(&sighand->siglock); 2866 } 2867 2868 if (likely(do_signal_stop(signr))) { 2869 /* It released the siglock. */ 2870 goto relock; 2871 } 2872 2873 /* 2874 * We didn't actually stop, due to a race 2875 * with SIGCONT or something like that. 2876 */ 2877 continue; 2878 } 2879 2880 fatal: 2881 spin_unlock_irq(&sighand->siglock); 2882 if (unlikely(cgroup_task_frozen(current))) 2883 cgroup_leave_frozen(true); 2884 2885 /* 2886 * Anything else is fatal, maybe with a core dump. 2887 */ 2888 current->flags |= PF_SIGNALED; 2889 2890 if (sig_kernel_coredump(signr)) { 2891 if (print_fatal_signals) 2892 print_fatal_signal(signr); 2893 proc_coredump_connector(current); 2894 /* 2895 * If it was able to dump core, this kills all 2896 * other threads in the group and synchronizes with 2897 * their demise. If we lost the race with another 2898 * thread getting here, it set group_exit_code 2899 * first and our do_group_exit call below will use 2900 * that value and ignore the one we pass it. 2901 */ 2902 do_coredump(&ksig->info); 2903 } 2904 2905 /* 2906 * PF_USER_WORKER threads will catch and exit on fatal signals 2907 * themselves. They have cleanup that must be performed, so we 2908 * cannot call do_exit() on their behalf. Note that ksig won't 2909 * be properly initialized, PF_USER_WORKER's shouldn't use it. 2910 */ 2911 if (current->flags & PF_USER_WORKER) 2912 goto out; 2913 2914 /* 2915 * Death signals, no core dump. 2916 */ 2917 do_group_exit(signr); 2918 /* NOTREACHED */ 2919 } 2920 spin_unlock_irq(&sighand->siglock); 2921 2922 ksig->sig = signr; 2923 2924 if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2925 hide_si_addr_tag_bits(ksig); 2926 out: 2927 return signr > 0; 2928 } 2929 2930 /** 2931 * signal_delivered - called after signal delivery to update blocked signals 2932 * @ksig: kernel signal struct 2933 * @stepping: nonzero if debugger single-step or block-step in use 2934 * 2935 * This function should be called when a signal has successfully been 2936 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2937 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2938 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2939 */ 2940 static void signal_delivered(struct ksignal *ksig, int stepping) 2941 { 2942 sigset_t blocked; 2943 2944 /* A signal was successfully delivered, and the 2945 saved sigmask was stored on the signal frame, 2946 and will be restored by sigreturn. So we can 2947 simply clear the restore sigmask flag. */ 2948 clear_restore_sigmask(); 2949 2950 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2951 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2952 sigaddset(&blocked, ksig->sig); 2953 set_current_blocked(&blocked); 2954 if (current->sas_ss_flags & SS_AUTODISARM) 2955 sas_ss_reset(current); 2956 if (stepping) 2957 ptrace_notify(SIGTRAP, 0); 2958 } 2959 2960 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2961 { 2962 if (failed) 2963 force_sigsegv(ksig->sig); 2964 else 2965 signal_delivered(ksig, stepping); 2966 } 2967 2968 /* 2969 * It could be that complete_signal() picked us to notify about the 2970 * group-wide signal. Other threads should be notified now to take 2971 * the shared signals in @which since we will not. 2972 */ 2973 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2974 { 2975 sigset_t retarget; 2976 struct task_struct *t; 2977 2978 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2979 if (sigisemptyset(&retarget)) 2980 return; 2981 2982 for_other_threads(tsk, t) { 2983 if (t->flags & PF_EXITING) 2984 continue; 2985 2986 if (!has_pending_signals(&retarget, &t->blocked)) 2987 continue; 2988 /* Remove the signals this thread can handle. */ 2989 sigandsets(&retarget, &retarget, &t->blocked); 2990 2991 if (!task_sigpending(t)) 2992 signal_wake_up(t, 0); 2993 2994 if (sigisemptyset(&retarget)) 2995 break; 2996 } 2997 } 2998 2999 void exit_signals(struct task_struct *tsk) 3000 { 3001 int group_stop = 0; 3002 sigset_t unblocked; 3003 3004 /* 3005 * @tsk is about to have PF_EXITING set - lock out users which 3006 * expect stable threadgroup. 3007 */ 3008 cgroup_threadgroup_change_begin(tsk); 3009 3010 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 3011 sched_mm_cid_exit_signals(tsk); 3012 tsk->flags |= PF_EXITING; 3013 cgroup_threadgroup_change_end(tsk); 3014 return; 3015 } 3016 3017 spin_lock_irq(&tsk->sighand->siglock); 3018 /* 3019 * From now this task is not visible for group-wide signals, 3020 * see wants_signal(), do_signal_stop(). 3021 */ 3022 sched_mm_cid_exit_signals(tsk); 3023 tsk->flags |= PF_EXITING; 3024 3025 cgroup_threadgroup_change_end(tsk); 3026 3027 if (!task_sigpending(tsk)) 3028 goto out; 3029 3030 unblocked = tsk->blocked; 3031 signotset(&unblocked); 3032 retarget_shared_pending(tsk, &unblocked); 3033 3034 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3035 task_participate_group_stop(tsk)) 3036 group_stop = CLD_STOPPED; 3037 out: 3038 spin_unlock_irq(&tsk->sighand->siglock); 3039 3040 /* 3041 * If group stop has completed, deliver the notification. This 3042 * should always go to the real parent of the group leader. 3043 */ 3044 if (unlikely(group_stop)) { 3045 read_lock(&tasklist_lock); 3046 do_notify_parent_cldstop(tsk, false, group_stop); 3047 read_unlock(&tasklist_lock); 3048 } 3049 } 3050 3051 /* 3052 * System call entry points. 3053 */ 3054 3055 /** 3056 * sys_restart_syscall - restart a system call 3057 */ 3058 SYSCALL_DEFINE0(restart_syscall) 3059 { 3060 struct restart_block *restart = ¤t->restart_block; 3061 return restart->fn(restart); 3062 } 3063 3064 long do_no_restart_syscall(struct restart_block *param) 3065 { 3066 return -EINTR; 3067 } 3068 3069 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3070 { 3071 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3072 sigset_t newblocked; 3073 /* A set of now blocked but previously unblocked signals. */ 3074 sigandnsets(&newblocked, newset, ¤t->blocked); 3075 retarget_shared_pending(tsk, &newblocked); 3076 } 3077 tsk->blocked = *newset; 3078 recalc_sigpending(); 3079 } 3080 3081 /** 3082 * set_current_blocked - change current->blocked mask 3083 * @newset: new mask 3084 * 3085 * It is wrong to change ->blocked directly, this helper should be used 3086 * to ensure the process can't miss a shared signal we are going to block. 3087 */ 3088 void set_current_blocked(sigset_t *newset) 3089 { 3090 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3091 __set_current_blocked(newset); 3092 } 3093 3094 void __set_current_blocked(const sigset_t *newset) 3095 { 3096 struct task_struct *tsk = current; 3097 3098 /* 3099 * In case the signal mask hasn't changed, there is nothing we need 3100 * to do. The current->blocked shouldn't be modified by other task. 3101 */ 3102 if (sigequalsets(&tsk->blocked, newset)) 3103 return; 3104 3105 spin_lock_irq(&tsk->sighand->siglock); 3106 __set_task_blocked(tsk, newset); 3107 spin_unlock_irq(&tsk->sighand->siglock); 3108 } 3109 3110 /* 3111 * This is also useful for kernel threads that want to temporarily 3112 * (or permanently) block certain signals. 3113 * 3114 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3115 * interface happily blocks "unblockable" signals like SIGKILL 3116 * and friends. 3117 */ 3118 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3119 { 3120 struct task_struct *tsk = current; 3121 sigset_t newset; 3122 3123 /* Lockless, only current can change ->blocked, never from irq */ 3124 if (oldset) 3125 *oldset = tsk->blocked; 3126 3127 switch (how) { 3128 case SIG_BLOCK: 3129 sigorsets(&newset, &tsk->blocked, set); 3130 break; 3131 case SIG_UNBLOCK: 3132 sigandnsets(&newset, &tsk->blocked, set); 3133 break; 3134 case SIG_SETMASK: 3135 newset = *set; 3136 break; 3137 default: 3138 return -EINVAL; 3139 } 3140 3141 __set_current_blocked(&newset); 3142 return 0; 3143 } 3144 EXPORT_SYMBOL(sigprocmask); 3145 3146 /* 3147 * The api helps set app-provided sigmasks. 3148 * 3149 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3150 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3151 * 3152 * Note that it does set_restore_sigmask() in advance, so it must be always 3153 * paired with restore_saved_sigmask_unless() before return from syscall. 3154 */ 3155 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3156 { 3157 sigset_t kmask; 3158 3159 if (!umask) 3160 return 0; 3161 if (sigsetsize != sizeof(sigset_t)) 3162 return -EINVAL; 3163 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3164 return -EFAULT; 3165 3166 set_restore_sigmask(); 3167 current->saved_sigmask = current->blocked; 3168 set_current_blocked(&kmask); 3169 3170 return 0; 3171 } 3172 3173 #ifdef CONFIG_COMPAT 3174 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3175 size_t sigsetsize) 3176 { 3177 sigset_t kmask; 3178 3179 if (!umask) 3180 return 0; 3181 if (sigsetsize != sizeof(compat_sigset_t)) 3182 return -EINVAL; 3183 if (get_compat_sigset(&kmask, umask)) 3184 return -EFAULT; 3185 3186 set_restore_sigmask(); 3187 current->saved_sigmask = current->blocked; 3188 set_current_blocked(&kmask); 3189 3190 return 0; 3191 } 3192 #endif 3193 3194 /** 3195 * sys_rt_sigprocmask - change the list of currently blocked signals 3196 * @how: whether to add, remove, or set signals 3197 * @nset: stores pending signals 3198 * @oset: previous value of signal mask if non-null 3199 * @sigsetsize: size of sigset_t type 3200 */ 3201 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3202 sigset_t __user *, oset, size_t, sigsetsize) 3203 { 3204 sigset_t old_set, new_set; 3205 int error; 3206 3207 /* XXX: Don't preclude handling different sized sigset_t's. */ 3208 if (sigsetsize != sizeof(sigset_t)) 3209 return -EINVAL; 3210 3211 old_set = current->blocked; 3212 3213 if (nset) { 3214 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3215 return -EFAULT; 3216 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3217 3218 error = sigprocmask(how, &new_set, NULL); 3219 if (error) 3220 return error; 3221 } 3222 3223 if (oset) { 3224 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3225 return -EFAULT; 3226 } 3227 3228 return 0; 3229 } 3230 3231 #ifdef CONFIG_COMPAT 3232 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3233 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3234 { 3235 sigset_t old_set = current->blocked; 3236 3237 /* XXX: Don't preclude handling different sized sigset_t's. */ 3238 if (sigsetsize != sizeof(sigset_t)) 3239 return -EINVAL; 3240 3241 if (nset) { 3242 sigset_t new_set; 3243 int error; 3244 if (get_compat_sigset(&new_set, nset)) 3245 return -EFAULT; 3246 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3247 3248 error = sigprocmask(how, &new_set, NULL); 3249 if (error) 3250 return error; 3251 } 3252 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3253 } 3254 #endif 3255 3256 static void do_sigpending(sigset_t *set) 3257 { 3258 spin_lock_irq(¤t->sighand->siglock); 3259 sigorsets(set, ¤t->pending.signal, 3260 ¤t->signal->shared_pending.signal); 3261 spin_unlock_irq(¤t->sighand->siglock); 3262 3263 /* Outside the lock because only this thread touches it. */ 3264 sigandsets(set, ¤t->blocked, set); 3265 } 3266 3267 /** 3268 * sys_rt_sigpending - examine a pending signal that has been raised 3269 * while blocked 3270 * @uset: stores pending signals 3271 * @sigsetsize: size of sigset_t type or larger 3272 */ 3273 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3274 { 3275 sigset_t set; 3276 3277 if (sigsetsize > sizeof(*uset)) 3278 return -EINVAL; 3279 3280 do_sigpending(&set); 3281 3282 if (copy_to_user(uset, &set, sigsetsize)) 3283 return -EFAULT; 3284 3285 return 0; 3286 } 3287 3288 #ifdef CONFIG_COMPAT 3289 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3290 compat_size_t, sigsetsize) 3291 { 3292 sigset_t set; 3293 3294 if (sigsetsize > sizeof(*uset)) 3295 return -EINVAL; 3296 3297 do_sigpending(&set); 3298 3299 return put_compat_sigset(uset, &set, sigsetsize); 3300 } 3301 #endif 3302 3303 static const struct { 3304 unsigned char limit, layout; 3305 } sig_sicodes[] = { 3306 [SIGILL] = { NSIGILL, SIL_FAULT }, 3307 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3308 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3309 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3310 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3311 #if defined(SIGEMT) 3312 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3313 #endif 3314 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3315 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3316 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3317 }; 3318 3319 static bool known_siginfo_layout(unsigned sig, int si_code) 3320 { 3321 if (si_code == SI_KERNEL) 3322 return true; 3323 else if ((si_code > SI_USER)) { 3324 if (sig_specific_sicodes(sig)) { 3325 if (si_code <= sig_sicodes[sig].limit) 3326 return true; 3327 } 3328 else if (si_code <= NSIGPOLL) 3329 return true; 3330 } 3331 else if (si_code >= SI_DETHREAD) 3332 return true; 3333 else if (si_code == SI_ASYNCNL) 3334 return true; 3335 return false; 3336 } 3337 3338 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3339 { 3340 enum siginfo_layout layout = SIL_KILL; 3341 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3342 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3343 (si_code <= sig_sicodes[sig].limit)) { 3344 layout = sig_sicodes[sig].layout; 3345 /* Handle the exceptions */ 3346 if ((sig == SIGBUS) && 3347 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3348 layout = SIL_FAULT_MCEERR; 3349 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3350 layout = SIL_FAULT_BNDERR; 3351 #ifdef SEGV_PKUERR 3352 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3353 layout = SIL_FAULT_PKUERR; 3354 #endif 3355 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3356 layout = SIL_FAULT_PERF_EVENT; 3357 else if (IS_ENABLED(CONFIG_SPARC) && 3358 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3359 layout = SIL_FAULT_TRAPNO; 3360 else if (IS_ENABLED(CONFIG_ALPHA) && 3361 ((sig == SIGFPE) || 3362 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3363 layout = SIL_FAULT_TRAPNO; 3364 } 3365 else if (si_code <= NSIGPOLL) 3366 layout = SIL_POLL; 3367 } else { 3368 if (si_code == SI_TIMER) 3369 layout = SIL_TIMER; 3370 else if (si_code == SI_SIGIO) 3371 layout = SIL_POLL; 3372 else if (si_code < 0) 3373 layout = SIL_RT; 3374 } 3375 return layout; 3376 } 3377 3378 static inline char __user *si_expansion(const siginfo_t __user *info) 3379 { 3380 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3381 } 3382 3383 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3384 { 3385 char __user *expansion = si_expansion(to); 3386 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3387 return -EFAULT; 3388 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3389 return -EFAULT; 3390 return 0; 3391 } 3392 3393 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3394 const siginfo_t __user *from) 3395 { 3396 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3397 char __user *expansion = si_expansion(from); 3398 char buf[SI_EXPANSION_SIZE]; 3399 int i; 3400 /* 3401 * An unknown si_code might need more than 3402 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3403 * extra bytes are 0. This guarantees copy_siginfo_to_user 3404 * will return this data to userspace exactly. 3405 */ 3406 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3407 return -EFAULT; 3408 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3409 if (buf[i] != 0) 3410 return -E2BIG; 3411 } 3412 } 3413 return 0; 3414 } 3415 3416 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3417 const siginfo_t __user *from) 3418 { 3419 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3420 return -EFAULT; 3421 to->si_signo = signo; 3422 return post_copy_siginfo_from_user(to, from); 3423 } 3424 3425 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3426 { 3427 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3428 return -EFAULT; 3429 return post_copy_siginfo_from_user(to, from); 3430 } 3431 3432 #ifdef CONFIG_COMPAT 3433 /** 3434 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3435 * @to: compat siginfo destination 3436 * @from: kernel siginfo source 3437 * 3438 * Note: This function does not work properly for the SIGCHLD on x32, but 3439 * fortunately it doesn't have to. The only valid callers for this function are 3440 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3441 * The latter does not care because SIGCHLD will never cause a coredump. 3442 */ 3443 void copy_siginfo_to_external32(struct compat_siginfo *to, 3444 const struct kernel_siginfo *from) 3445 { 3446 memset(to, 0, sizeof(*to)); 3447 3448 to->si_signo = from->si_signo; 3449 to->si_errno = from->si_errno; 3450 to->si_code = from->si_code; 3451 switch(siginfo_layout(from->si_signo, from->si_code)) { 3452 case SIL_KILL: 3453 to->si_pid = from->si_pid; 3454 to->si_uid = from->si_uid; 3455 break; 3456 case SIL_TIMER: 3457 to->si_tid = from->si_tid; 3458 to->si_overrun = from->si_overrun; 3459 to->si_int = from->si_int; 3460 break; 3461 case SIL_POLL: 3462 to->si_band = from->si_band; 3463 to->si_fd = from->si_fd; 3464 break; 3465 case SIL_FAULT: 3466 to->si_addr = ptr_to_compat(from->si_addr); 3467 break; 3468 case SIL_FAULT_TRAPNO: 3469 to->si_addr = ptr_to_compat(from->si_addr); 3470 to->si_trapno = from->si_trapno; 3471 break; 3472 case SIL_FAULT_MCEERR: 3473 to->si_addr = ptr_to_compat(from->si_addr); 3474 to->si_addr_lsb = from->si_addr_lsb; 3475 break; 3476 case SIL_FAULT_BNDERR: 3477 to->si_addr = ptr_to_compat(from->si_addr); 3478 to->si_lower = ptr_to_compat(from->si_lower); 3479 to->si_upper = ptr_to_compat(from->si_upper); 3480 break; 3481 case SIL_FAULT_PKUERR: 3482 to->si_addr = ptr_to_compat(from->si_addr); 3483 to->si_pkey = from->si_pkey; 3484 break; 3485 case SIL_FAULT_PERF_EVENT: 3486 to->si_addr = ptr_to_compat(from->si_addr); 3487 to->si_perf_data = from->si_perf_data; 3488 to->si_perf_type = from->si_perf_type; 3489 to->si_perf_flags = from->si_perf_flags; 3490 break; 3491 case SIL_CHLD: 3492 to->si_pid = from->si_pid; 3493 to->si_uid = from->si_uid; 3494 to->si_status = from->si_status; 3495 to->si_utime = from->si_utime; 3496 to->si_stime = from->si_stime; 3497 break; 3498 case SIL_RT: 3499 to->si_pid = from->si_pid; 3500 to->si_uid = from->si_uid; 3501 to->si_int = from->si_int; 3502 break; 3503 case SIL_SYS: 3504 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3505 to->si_syscall = from->si_syscall; 3506 to->si_arch = from->si_arch; 3507 break; 3508 } 3509 } 3510 3511 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3512 const struct kernel_siginfo *from) 3513 { 3514 struct compat_siginfo new; 3515 3516 copy_siginfo_to_external32(&new, from); 3517 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3518 return -EFAULT; 3519 return 0; 3520 } 3521 3522 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3523 const struct compat_siginfo *from) 3524 { 3525 clear_siginfo(to); 3526 to->si_signo = from->si_signo; 3527 to->si_errno = from->si_errno; 3528 to->si_code = from->si_code; 3529 switch(siginfo_layout(from->si_signo, from->si_code)) { 3530 case SIL_KILL: 3531 to->si_pid = from->si_pid; 3532 to->si_uid = from->si_uid; 3533 break; 3534 case SIL_TIMER: 3535 to->si_tid = from->si_tid; 3536 to->si_overrun = from->si_overrun; 3537 to->si_int = from->si_int; 3538 break; 3539 case SIL_POLL: 3540 to->si_band = from->si_band; 3541 to->si_fd = from->si_fd; 3542 break; 3543 case SIL_FAULT: 3544 to->si_addr = compat_ptr(from->si_addr); 3545 break; 3546 case SIL_FAULT_TRAPNO: 3547 to->si_addr = compat_ptr(from->si_addr); 3548 to->si_trapno = from->si_trapno; 3549 break; 3550 case SIL_FAULT_MCEERR: 3551 to->si_addr = compat_ptr(from->si_addr); 3552 to->si_addr_lsb = from->si_addr_lsb; 3553 break; 3554 case SIL_FAULT_BNDERR: 3555 to->si_addr = compat_ptr(from->si_addr); 3556 to->si_lower = compat_ptr(from->si_lower); 3557 to->si_upper = compat_ptr(from->si_upper); 3558 break; 3559 case SIL_FAULT_PKUERR: 3560 to->si_addr = compat_ptr(from->si_addr); 3561 to->si_pkey = from->si_pkey; 3562 break; 3563 case SIL_FAULT_PERF_EVENT: 3564 to->si_addr = compat_ptr(from->si_addr); 3565 to->si_perf_data = from->si_perf_data; 3566 to->si_perf_type = from->si_perf_type; 3567 to->si_perf_flags = from->si_perf_flags; 3568 break; 3569 case SIL_CHLD: 3570 to->si_pid = from->si_pid; 3571 to->si_uid = from->si_uid; 3572 to->si_status = from->si_status; 3573 #ifdef CONFIG_X86_X32_ABI 3574 if (in_x32_syscall()) { 3575 to->si_utime = from->_sifields._sigchld_x32._utime; 3576 to->si_stime = from->_sifields._sigchld_x32._stime; 3577 } else 3578 #endif 3579 { 3580 to->si_utime = from->si_utime; 3581 to->si_stime = from->si_stime; 3582 } 3583 break; 3584 case SIL_RT: 3585 to->si_pid = from->si_pid; 3586 to->si_uid = from->si_uid; 3587 to->si_int = from->si_int; 3588 break; 3589 case SIL_SYS: 3590 to->si_call_addr = compat_ptr(from->si_call_addr); 3591 to->si_syscall = from->si_syscall; 3592 to->si_arch = from->si_arch; 3593 break; 3594 } 3595 return 0; 3596 } 3597 3598 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3599 const struct compat_siginfo __user *ufrom) 3600 { 3601 struct compat_siginfo from; 3602 3603 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3604 return -EFAULT; 3605 3606 from.si_signo = signo; 3607 return post_copy_siginfo_from_user32(to, &from); 3608 } 3609 3610 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3611 const struct compat_siginfo __user *ufrom) 3612 { 3613 struct compat_siginfo from; 3614 3615 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3616 return -EFAULT; 3617 3618 return post_copy_siginfo_from_user32(to, &from); 3619 } 3620 #endif /* CONFIG_COMPAT */ 3621 3622 /** 3623 * do_sigtimedwait - wait for queued signals specified in @which 3624 * @which: queued signals to wait for 3625 * @info: if non-null, the signal's siginfo is returned here 3626 * @ts: upper bound on process time suspension 3627 */ 3628 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3629 const struct timespec64 *ts) 3630 { 3631 ktime_t *to = NULL, timeout = KTIME_MAX; 3632 struct task_struct *tsk = current; 3633 sigset_t mask = *which; 3634 enum pid_type type; 3635 int sig, ret = 0; 3636 3637 if (ts) { 3638 if (!timespec64_valid(ts)) 3639 return -EINVAL; 3640 timeout = timespec64_to_ktime(*ts); 3641 to = &timeout; 3642 } 3643 3644 /* 3645 * Invert the set of allowed signals to get those we want to block. 3646 */ 3647 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3648 signotset(&mask); 3649 3650 spin_lock_irq(&tsk->sighand->siglock); 3651 sig = dequeue_signal(tsk, &mask, info, &type); 3652 if (!sig && timeout) { 3653 /* 3654 * None ready, temporarily unblock those we're interested 3655 * while we are sleeping in so that we'll be awakened when 3656 * they arrive. Unblocking is always fine, we can avoid 3657 * set_current_blocked(). 3658 */ 3659 tsk->real_blocked = tsk->blocked; 3660 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3661 recalc_sigpending(); 3662 spin_unlock_irq(&tsk->sighand->siglock); 3663 3664 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3665 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3666 HRTIMER_MODE_REL); 3667 spin_lock_irq(&tsk->sighand->siglock); 3668 __set_task_blocked(tsk, &tsk->real_blocked); 3669 sigemptyset(&tsk->real_blocked); 3670 sig = dequeue_signal(tsk, &mask, info, &type); 3671 } 3672 spin_unlock_irq(&tsk->sighand->siglock); 3673 3674 if (sig) 3675 return sig; 3676 return ret ? -EINTR : -EAGAIN; 3677 } 3678 3679 /** 3680 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3681 * in @uthese 3682 * @uthese: queued signals to wait for 3683 * @uinfo: if non-null, the signal's siginfo is returned here 3684 * @uts: upper bound on process time suspension 3685 * @sigsetsize: size of sigset_t type 3686 */ 3687 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3688 siginfo_t __user *, uinfo, 3689 const struct __kernel_timespec __user *, uts, 3690 size_t, sigsetsize) 3691 { 3692 sigset_t these; 3693 struct timespec64 ts; 3694 kernel_siginfo_t info; 3695 int ret; 3696 3697 /* XXX: Don't preclude handling different sized sigset_t's. */ 3698 if (sigsetsize != sizeof(sigset_t)) 3699 return -EINVAL; 3700 3701 if (copy_from_user(&these, uthese, sizeof(these))) 3702 return -EFAULT; 3703 3704 if (uts) { 3705 if (get_timespec64(&ts, uts)) 3706 return -EFAULT; 3707 } 3708 3709 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3710 3711 if (ret > 0 && uinfo) { 3712 if (copy_siginfo_to_user(uinfo, &info)) 3713 ret = -EFAULT; 3714 } 3715 3716 return ret; 3717 } 3718 3719 #ifdef CONFIG_COMPAT_32BIT_TIME 3720 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3721 siginfo_t __user *, uinfo, 3722 const struct old_timespec32 __user *, uts, 3723 size_t, sigsetsize) 3724 { 3725 sigset_t these; 3726 struct timespec64 ts; 3727 kernel_siginfo_t info; 3728 int ret; 3729 3730 if (sigsetsize != sizeof(sigset_t)) 3731 return -EINVAL; 3732 3733 if (copy_from_user(&these, uthese, sizeof(these))) 3734 return -EFAULT; 3735 3736 if (uts) { 3737 if (get_old_timespec32(&ts, uts)) 3738 return -EFAULT; 3739 } 3740 3741 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3742 3743 if (ret > 0 && uinfo) { 3744 if (copy_siginfo_to_user(uinfo, &info)) 3745 ret = -EFAULT; 3746 } 3747 3748 return ret; 3749 } 3750 #endif 3751 3752 #ifdef CONFIG_COMPAT 3753 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3754 struct compat_siginfo __user *, uinfo, 3755 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3756 { 3757 sigset_t s; 3758 struct timespec64 t; 3759 kernel_siginfo_t info; 3760 long ret; 3761 3762 if (sigsetsize != sizeof(sigset_t)) 3763 return -EINVAL; 3764 3765 if (get_compat_sigset(&s, uthese)) 3766 return -EFAULT; 3767 3768 if (uts) { 3769 if (get_timespec64(&t, uts)) 3770 return -EFAULT; 3771 } 3772 3773 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3774 3775 if (ret > 0 && uinfo) { 3776 if (copy_siginfo_to_user32(uinfo, &info)) 3777 ret = -EFAULT; 3778 } 3779 3780 return ret; 3781 } 3782 3783 #ifdef CONFIG_COMPAT_32BIT_TIME 3784 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3785 struct compat_siginfo __user *, uinfo, 3786 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3787 { 3788 sigset_t s; 3789 struct timespec64 t; 3790 kernel_siginfo_t info; 3791 long ret; 3792 3793 if (sigsetsize != sizeof(sigset_t)) 3794 return -EINVAL; 3795 3796 if (get_compat_sigset(&s, uthese)) 3797 return -EFAULT; 3798 3799 if (uts) { 3800 if (get_old_timespec32(&t, uts)) 3801 return -EFAULT; 3802 } 3803 3804 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3805 3806 if (ret > 0 && uinfo) { 3807 if (copy_siginfo_to_user32(uinfo, &info)) 3808 ret = -EFAULT; 3809 } 3810 3811 return ret; 3812 } 3813 #endif 3814 #endif 3815 3816 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info, 3817 enum pid_type type) 3818 { 3819 clear_siginfo(info); 3820 info->si_signo = sig; 3821 info->si_errno = 0; 3822 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER; 3823 info->si_pid = task_tgid_vnr(current); 3824 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3825 } 3826 3827 /** 3828 * sys_kill - send a signal to a process 3829 * @pid: the PID of the process 3830 * @sig: signal to be sent 3831 */ 3832 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3833 { 3834 struct kernel_siginfo info; 3835 if (ccs_kill_permission(pid, sig)) 3836 return -EPERM; 3837 3838 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID); 3839 3840 return kill_something_info(sig, &info, pid); 3841 } 3842 3843 /* 3844 * Verify that the signaler and signalee either are in the same pid namespace 3845 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3846 * namespace. 3847 */ 3848 static bool access_pidfd_pidns(struct pid *pid) 3849 { 3850 struct pid_namespace *active = task_active_pid_ns(current); 3851 struct pid_namespace *p = ns_of_pid(pid); 3852 3853 for (;;) { 3854 if (!p) 3855 return false; 3856 if (p == active) 3857 break; 3858 p = p->parent; 3859 } 3860 3861 return true; 3862 } 3863 3864 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3865 siginfo_t __user *info) 3866 { 3867 #ifdef CONFIG_COMPAT 3868 /* 3869 * Avoid hooking up compat syscalls and instead handle necessary 3870 * conversions here. Note, this is a stop-gap measure and should not be 3871 * considered a generic solution. 3872 */ 3873 if (in_compat_syscall()) 3874 return copy_siginfo_from_user32( 3875 kinfo, (struct compat_siginfo __user *)info); 3876 #endif 3877 return copy_siginfo_from_user(kinfo, info); 3878 } 3879 3880 static struct pid *pidfd_to_pid(const struct file *file) 3881 { 3882 struct pid *pid; 3883 3884 pid = pidfd_pid(file); 3885 if (!IS_ERR(pid)) 3886 return pid; 3887 3888 return tgid_pidfd_to_pid(file); 3889 } 3890 3891 #define PIDFD_SEND_SIGNAL_FLAGS \ 3892 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \ 3893 PIDFD_SIGNAL_PROCESS_GROUP) 3894 3895 /** 3896 * sys_pidfd_send_signal - Signal a process through a pidfd 3897 * @pidfd: file descriptor of the process 3898 * @sig: signal to send 3899 * @info: signal info 3900 * @flags: future flags 3901 * 3902 * Send the signal to the thread group or to the individual thread depending 3903 * on PIDFD_THREAD. 3904 * In the future extension to @flags may be used to override the default scope 3905 * of @pidfd. 3906 * 3907 * Return: 0 on success, negative errno on failure 3908 */ 3909 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3910 siginfo_t __user *, info, unsigned int, flags) 3911 { 3912 int ret; 3913 struct fd f; 3914 struct pid *pid; 3915 kernel_siginfo_t kinfo; 3916 enum pid_type type; 3917 3918 /* Enforce flags be set to 0 until we add an extension. */ 3919 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS) 3920 return -EINVAL; 3921 3922 /* Ensure that only a single signal scope determining flag is set. */ 3923 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1) 3924 return -EINVAL; 3925 3926 f = fdget(pidfd); 3927 if (!f.file) 3928 return -EBADF; 3929 3930 /* Is this a pidfd? */ 3931 pid = pidfd_to_pid(f.file); 3932 if (IS_ERR(pid)) { 3933 ret = PTR_ERR(pid); 3934 goto err; 3935 } 3936 3937 ret = -EINVAL; 3938 if (!access_pidfd_pidns(pid)) 3939 goto err; 3940 3941 { 3942 struct task_struct *task; 3943 int id = 0; 3944 3945 rcu_read_lock(); 3946 task = pid_task(pid, PIDTYPE_PID); 3947 if (task) 3948 id = task_pid_vnr(task); 3949 rcu_read_unlock(); 3950 if (task && ccs_kill_permission(id, sig)) { 3951 ret = -EPERM; 3952 goto err; 3953 } 3954 } 3955 3956 switch (flags) { 3957 case 0: 3958 /* Infer scope from the type of pidfd. */ 3959 if (f.file->f_flags & PIDFD_THREAD) 3960 type = PIDTYPE_PID; 3961 else 3962 type = PIDTYPE_TGID; 3963 break; 3964 case PIDFD_SIGNAL_THREAD: 3965 type = PIDTYPE_PID; 3966 break; 3967 case PIDFD_SIGNAL_THREAD_GROUP: 3968 type = PIDTYPE_TGID; 3969 break; 3970 case PIDFD_SIGNAL_PROCESS_GROUP: 3971 type = PIDTYPE_PGID; 3972 break; 3973 } 3974 3975 if (info) { 3976 ret = copy_siginfo_from_user_any(&kinfo, info); 3977 if (unlikely(ret)) 3978 goto err; 3979 3980 ret = -EINVAL; 3981 if (unlikely(sig != kinfo.si_signo)) 3982 goto err; 3983 3984 /* Only allow sending arbitrary signals to yourself. */ 3985 ret = -EPERM; 3986 if ((task_pid(current) != pid || type > PIDTYPE_TGID) && 3987 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3988 goto err; 3989 } else { 3990 prepare_kill_siginfo(sig, &kinfo, type); 3991 } 3992 3993 if (type == PIDTYPE_PGID) 3994 ret = kill_pgrp_info(sig, &kinfo, pid); 3995 else 3996 ret = kill_pid_info_type(sig, &kinfo, pid, type); 3997 err: 3998 fdput(f); 3999 return ret; 4000 } 4001 4002 static int 4003 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 4004 { 4005 struct task_struct *p; 4006 int error = -ESRCH; 4007 4008 rcu_read_lock(); 4009 p = find_task_by_vpid(pid); 4010 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 4011 error = check_kill_permission(sig, info, p); 4012 /* 4013 * The null signal is a permissions and process existence 4014 * probe. No signal is actually delivered. 4015 */ 4016 if (!error && sig) { 4017 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 4018 /* 4019 * If lock_task_sighand() failed we pretend the task 4020 * dies after receiving the signal. The window is tiny, 4021 * and the signal is private anyway. 4022 */ 4023 if (unlikely(error == -ESRCH)) 4024 error = 0; 4025 } 4026 } 4027 rcu_read_unlock(); 4028 4029 return error; 4030 } 4031 4032 static int do_tkill(pid_t tgid, pid_t pid, int sig) 4033 { 4034 struct kernel_siginfo info; 4035 4036 prepare_kill_siginfo(sig, &info, PIDTYPE_PID); 4037 4038 return do_send_specific(tgid, pid, sig, &info); 4039 } 4040 4041 /** 4042 * sys_tgkill - send signal to one specific thread 4043 * @tgid: the thread group ID of the thread 4044 * @pid: the PID of the thread 4045 * @sig: signal to be sent 4046 * 4047 * This syscall also checks the @tgid and returns -ESRCH even if the PID 4048 * exists but it's not belonging to the target process anymore. This 4049 * method solves the problem of threads exiting and PIDs getting reused. 4050 */ 4051 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 4052 { 4053 /* This is only valid for single tasks */ 4054 if (pid <= 0 || tgid <= 0) 4055 return -EINVAL; 4056 if (ccs_tgkill_permission(tgid, pid, sig)) 4057 return -EPERM; 4058 4059 return do_tkill(tgid, pid, sig); 4060 } 4061 4062 /** 4063 * sys_tkill - send signal to one specific task 4064 * @pid: the PID of the task 4065 * @sig: signal to be sent 4066 * 4067 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4068 */ 4069 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4070 { 4071 /* This is only valid for single tasks */ 4072 if (pid <= 0) 4073 return -EINVAL; 4074 if (ccs_tkill_permission(pid, sig)) 4075 return -EPERM; 4076 4077 return do_tkill(0, pid, sig); 4078 } 4079 4080 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4081 { 4082 /* Not even root can pretend to send signals from the kernel. 4083 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4084 */ 4085 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4086 (task_pid_vnr(current) != pid)) 4087 return -EPERM; 4088 if (ccs_sigqueue_permission(pid, sig)) 4089 return -EPERM; 4090 4091 /* POSIX.1b doesn't mention process groups. */ 4092 return kill_proc_info(sig, info, pid); 4093 } 4094 4095 /** 4096 * sys_rt_sigqueueinfo - send signal information to a signal 4097 * @pid: the PID of the thread 4098 * @sig: signal to be sent 4099 * @uinfo: signal info to be sent 4100 */ 4101 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4102 siginfo_t __user *, uinfo) 4103 { 4104 kernel_siginfo_t info; 4105 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4106 if (unlikely(ret)) 4107 return ret; 4108 return do_rt_sigqueueinfo(pid, sig, &info); 4109 } 4110 4111 #ifdef CONFIG_COMPAT 4112 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4113 compat_pid_t, pid, 4114 int, sig, 4115 struct compat_siginfo __user *, uinfo) 4116 { 4117 kernel_siginfo_t info; 4118 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4119 if (unlikely(ret)) 4120 return ret; 4121 return do_rt_sigqueueinfo(pid, sig, &info); 4122 } 4123 #endif 4124 4125 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4126 { 4127 /* This is only valid for single tasks */ 4128 if (pid <= 0 || tgid <= 0) 4129 return -EINVAL; 4130 4131 /* Not even root can pretend to send signals from the kernel. 4132 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4133 */ 4134 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4135 (task_pid_vnr(current) != pid)) 4136 return -EPERM; 4137 if (ccs_tgsigqueue_permission(tgid, pid, sig)) 4138 return -EPERM; 4139 4140 return do_send_specific(tgid, pid, sig, info); 4141 } 4142 4143 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4144 siginfo_t __user *, uinfo) 4145 { 4146 kernel_siginfo_t info; 4147 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4148 if (unlikely(ret)) 4149 return ret; 4150 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4151 } 4152 4153 #ifdef CONFIG_COMPAT 4154 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4155 compat_pid_t, tgid, 4156 compat_pid_t, pid, 4157 int, sig, 4158 struct compat_siginfo __user *, uinfo) 4159 { 4160 kernel_siginfo_t info; 4161 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4162 if (unlikely(ret)) 4163 return ret; 4164 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4165 } 4166 #endif 4167 4168 /* 4169 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4170 */ 4171 void kernel_sigaction(int sig, __sighandler_t action) 4172 { 4173 spin_lock_irq(¤t->sighand->siglock); 4174 current->sighand->action[sig - 1].sa.sa_handler = action; 4175 if (action == SIG_IGN) { 4176 sigset_t mask; 4177 4178 sigemptyset(&mask); 4179 sigaddset(&mask, sig); 4180 4181 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4182 flush_sigqueue_mask(&mask, ¤t->pending); 4183 recalc_sigpending(); 4184 } 4185 spin_unlock_irq(¤t->sighand->siglock); 4186 } 4187 EXPORT_SYMBOL(kernel_sigaction); 4188 4189 void __weak sigaction_compat_abi(struct k_sigaction *act, 4190 struct k_sigaction *oact) 4191 { 4192 } 4193 4194 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4195 { 4196 struct task_struct *p = current, *t; 4197 struct k_sigaction *k; 4198 sigset_t mask; 4199 4200 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4201 return -EINVAL; 4202 4203 k = &p->sighand->action[sig-1]; 4204 4205 spin_lock_irq(&p->sighand->siglock); 4206 if (k->sa.sa_flags & SA_IMMUTABLE) { 4207 spin_unlock_irq(&p->sighand->siglock); 4208 return -EINVAL; 4209 } 4210 if (oact) 4211 *oact = *k; 4212 4213 /* 4214 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4215 * e.g. by having an architecture use the bit in their uapi. 4216 */ 4217 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4218 4219 /* 4220 * Clear unknown flag bits in order to allow userspace to detect missing 4221 * support for flag bits and to allow the kernel to use non-uapi bits 4222 * internally. 4223 */ 4224 if (act) 4225 act->sa.sa_flags &= UAPI_SA_FLAGS; 4226 if (oact) 4227 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4228 4229 sigaction_compat_abi(act, oact); 4230 4231 if (act) { 4232 sigdelsetmask(&act->sa.sa_mask, 4233 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4234 *k = *act; 4235 /* 4236 * POSIX 3.3.1.3: 4237 * "Setting a signal action to SIG_IGN for a signal that is 4238 * pending shall cause the pending signal to be discarded, 4239 * whether or not it is blocked." 4240 * 4241 * "Setting a signal action to SIG_DFL for a signal that is 4242 * pending and whose default action is to ignore the signal 4243 * (for example, SIGCHLD), shall cause the pending signal to 4244 * be discarded, whether or not it is blocked" 4245 */ 4246 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4247 sigemptyset(&mask); 4248 sigaddset(&mask, sig); 4249 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4250 for_each_thread(p, t) 4251 flush_sigqueue_mask(&mask, &t->pending); 4252 } 4253 } 4254 4255 spin_unlock_irq(&p->sighand->siglock); 4256 return 0; 4257 } 4258 4259 #ifdef CONFIG_DYNAMIC_SIGFRAME 4260 static inline void sigaltstack_lock(void) 4261 __acquires(¤t->sighand->siglock) 4262 { 4263 spin_lock_irq(¤t->sighand->siglock); 4264 } 4265 4266 static inline void sigaltstack_unlock(void) 4267 __releases(¤t->sighand->siglock) 4268 { 4269 spin_unlock_irq(¤t->sighand->siglock); 4270 } 4271 #else 4272 static inline void sigaltstack_lock(void) { } 4273 static inline void sigaltstack_unlock(void) { } 4274 #endif 4275 4276 static int 4277 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4278 size_t min_ss_size) 4279 { 4280 struct task_struct *t = current; 4281 int ret = 0; 4282 4283 if (oss) { 4284 memset(oss, 0, sizeof(stack_t)); 4285 oss->ss_sp = (void __user *) t->sas_ss_sp; 4286 oss->ss_size = t->sas_ss_size; 4287 oss->ss_flags = sas_ss_flags(sp) | 4288 (current->sas_ss_flags & SS_FLAG_BITS); 4289 } 4290 4291 if (ss) { 4292 void __user *ss_sp = ss->ss_sp; 4293 size_t ss_size = ss->ss_size; 4294 unsigned ss_flags = ss->ss_flags; 4295 int ss_mode; 4296 4297 if (unlikely(on_sig_stack(sp))) 4298 return -EPERM; 4299 4300 ss_mode = ss_flags & ~SS_FLAG_BITS; 4301 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4302 ss_mode != 0)) 4303 return -EINVAL; 4304 4305 /* 4306 * Return before taking any locks if no actual 4307 * sigaltstack changes were requested. 4308 */ 4309 if (t->sas_ss_sp == (unsigned long)ss_sp && 4310 t->sas_ss_size == ss_size && 4311 t->sas_ss_flags == ss_flags) 4312 return 0; 4313 4314 sigaltstack_lock(); 4315 if (ss_mode == SS_DISABLE) { 4316 ss_size = 0; 4317 ss_sp = NULL; 4318 } else { 4319 if (unlikely(ss_size < min_ss_size)) 4320 ret = -ENOMEM; 4321 if (!sigaltstack_size_valid(ss_size)) 4322 ret = -ENOMEM; 4323 } 4324 if (!ret) { 4325 t->sas_ss_sp = (unsigned long) ss_sp; 4326 t->sas_ss_size = ss_size; 4327 t->sas_ss_flags = ss_flags; 4328 } 4329 sigaltstack_unlock(); 4330 } 4331 return ret; 4332 } 4333 4334 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4335 { 4336 stack_t new, old; 4337 int err; 4338 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4339 return -EFAULT; 4340 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4341 current_user_stack_pointer(), 4342 MINSIGSTKSZ); 4343 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4344 err = -EFAULT; 4345 return err; 4346 } 4347 4348 int restore_altstack(const stack_t __user *uss) 4349 { 4350 stack_t new; 4351 if (copy_from_user(&new, uss, sizeof(stack_t))) 4352 return -EFAULT; 4353 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4354 MINSIGSTKSZ); 4355 /* squash all but EFAULT for now */ 4356 return 0; 4357 } 4358 4359 int __save_altstack(stack_t __user *uss, unsigned long sp) 4360 { 4361 struct task_struct *t = current; 4362 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4363 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4364 __put_user(t->sas_ss_size, &uss->ss_size); 4365 return err; 4366 } 4367 4368 #ifdef CONFIG_COMPAT 4369 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4370 compat_stack_t __user *uoss_ptr) 4371 { 4372 stack_t uss, uoss; 4373 int ret; 4374 4375 if (uss_ptr) { 4376 compat_stack_t uss32; 4377 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4378 return -EFAULT; 4379 uss.ss_sp = compat_ptr(uss32.ss_sp); 4380 uss.ss_flags = uss32.ss_flags; 4381 uss.ss_size = uss32.ss_size; 4382 } 4383 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4384 compat_user_stack_pointer(), 4385 COMPAT_MINSIGSTKSZ); 4386 if (ret >= 0 && uoss_ptr) { 4387 compat_stack_t old; 4388 memset(&old, 0, sizeof(old)); 4389 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4390 old.ss_flags = uoss.ss_flags; 4391 old.ss_size = uoss.ss_size; 4392 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4393 ret = -EFAULT; 4394 } 4395 return ret; 4396 } 4397 4398 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4399 const compat_stack_t __user *, uss_ptr, 4400 compat_stack_t __user *, uoss_ptr) 4401 { 4402 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4403 } 4404 4405 int compat_restore_altstack(const compat_stack_t __user *uss) 4406 { 4407 int err = do_compat_sigaltstack(uss, NULL); 4408 /* squash all but -EFAULT for now */ 4409 return err == -EFAULT ? err : 0; 4410 } 4411 4412 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4413 { 4414 int err; 4415 struct task_struct *t = current; 4416 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4417 &uss->ss_sp) | 4418 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4419 __put_user(t->sas_ss_size, &uss->ss_size); 4420 return err; 4421 } 4422 #endif 4423 4424 #ifdef __ARCH_WANT_SYS_SIGPENDING 4425 4426 /** 4427 * sys_sigpending - examine pending signals 4428 * @uset: where mask of pending signal is returned 4429 */ 4430 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4431 { 4432 sigset_t set; 4433 4434 if (sizeof(old_sigset_t) > sizeof(*uset)) 4435 return -EINVAL; 4436 4437 do_sigpending(&set); 4438 4439 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4440 return -EFAULT; 4441 4442 return 0; 4443 } 4444 4445 #ifdef CONFIG_COMPAT 4446 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4447 { 4448 sigset_t set; 4449 4450 do_sigpending(&set); 4451 4452 return put_user(set.sig[0], set32); 4453 } 4454 #endif 4455 4456 #endif 4457 4458 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4459 /** 4460 * sys_sigprocmask - examine and change blocked signals 4461 * @how: whether to add, remove, or set signals 4462 * @nset: signals to add or remove (if non-null) 4463 * @oset: previous value of signal mask if non-null 4464 * 4465 * Some platforms have their own version with special arguments; 4466 * others support only sys_rt_sigprocmask. 4467 */ 4468 4469 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4470 old_sigset_t __user *, oset) 4471 { 4472 old_sigset_t old_set, new_set; 4473 sigset_t new_blocked; 4474 4475 old_set = current->blocked.sig[0]; 4476 4477 if (nset) { 4478 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4479 return -EFAULT; 4480 4481 new_blocked = current->blocked; 4482 4483 switch (how) { 4484 case SIG_BLOCK: 4485 sigaddsetmask(&new_blocked, new_set); 4486 break; 4487 case SIG_UNBLOCK: 4488 sigdelsetmask(&new_blocked, new_set); 4489 break; 4490 case SIG_SETMASK: 4491 new_blocked.sig[0] = new_set; 4492 break; 4493 default: 4494 return -EINVAL; 4495 } 4496 4497 set_current_blocked(&new_blocked); 4498 } 4499 4500 if (oset) { 4501 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4502 return -EFAULT; 4503 } 4504 4505 return 0; 4506 } 4507 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4508 4509 #ifndef CONFIG_ODD_RT_SIGACTION 4510 /** 4511 * sys_rt_sigaction - alter an action taken by a process 4512 * @sig: signal to be sent 4513 * @act: new sigaction 4514 * @oact: used to save the previous sigaction 4515 * @sigsetsize: size of sigset_t type 4516 */ 4517 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4518 const struct sigaction __user *, act, 4519 struct sigaction __user *, oact, 4520 size_t, sigsetsize) 4521 { 4522 struct k_sigaction new_sa, old_sa; 4523 int ret; 4524 4525 /* XXX: Don't preclude handling different sized sigset_t's. */ 4526 if (sigsetsize != sizeof(sigset_t)) 4527 return -EINVAL; 4528 4529 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4530 return -EFAULT; 4531 4532 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4533 if (ret) 4534 return ret; 4535 4536 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4537 return -EFAULT; 4538 4539 return 0; 4540 } 4541 #ifdef CONFIG_COMPAT 4542 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4543 const struct compat_sigaction __user *, act, 4544 struct compat_sigaction __user *, oact, 4545 compat_size_t, sigsetsize) 4546 { 4547 struct k_sigaction new_ka, old_ka; 4548 #ifdef __ARCH_HAS_SA_RESTORER 4549 compat_uptr_t restorer; 4550 #endif 4551 int ret; 4552 4553 /* XXX: Don't preclude handling different sized sigset_t's. */ 4554 if (sigsetsize != sizeof(compat_sigset_t)) 4555 return -EINVAL; 4556 4557 if (act) { 4558 compat_uptr_t handler; 4559 ret = get_user(handler, &act->sa_handler); 4560 new_ka.sa.sa_handler = compat_ptr(handler); 4561 #ifdef __ARCH_HAS_SA_RESTORER 4562 ret |= get_user(restorer, &act->sa_restorer); 4563 new_ka.sa.sa_restorer = compat_ptr(restorer); 4564 #endif 4565 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4566 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4567 if (ret) 4568 return -EFAULT; 4569 } 4570 4571 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4572 if (!ret && oact) { 4573 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4574 &oact->sa_handler); 4575 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4576 sizeof(oact->sa_mask)); 4577 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4578 #ifdef __ARCH_HAS_SA_RESTORER 4579 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4580 &oact->sa_restorer); 4581 #endif 4582 } 4583 return ret; 4584 } 4585 #endif 4586 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4587 4588 #ifdef CONFIG_OLD_SIGACTION 4589 SYSCALL_DEFINE3(sigaction, int, sig, 4590 const struct old_sigaction __user *, act, 4591 struct old_sigaction __user *, oact) 4592 { 4593 struct k_sigaction new_ka, old_ka; 4594 int ret; 4595 4596 if (act) { 4597 old_sigset_t mask; 4598 if (!access_ok(act, sizeof(*act)) || 4599 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4600 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4601 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4602 __get_user(mask, &act->sa_mask)) 4603 return -EFAULT; 4604 #ifdef __ARCH_HAS_KA_RESTORER 4605 new_ka.ka_restorer = NULL; 4606 #endif 4607 siginitset(&new_ka.sa.sa_mask, mask); 4608 } 4609 4610 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4611 4612 if (!ret && oact) { 4613 if (!access_ok(oact, sizeof(*oact)) || 4614 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4615 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4616 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4617 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4618 return -EFAULT; 4619 } 4620 4621 return ret; 4622 } 4623 #endif 4624 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4625 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4626 const struct compat_old_sigaction __user *, act, 4627 struct compat_old_sigaction __user *, oact) 4628 { 4629 struct k_sigaction new_ka, old_ka; 4630 int ret; 4631 compat_old_sigset_t mask; 4632 compat_uptr_t handler, restorer; 4633 4634 if (act) { 4635 if (!access_ok(act, sizeof(*act)) || 4636 __get_user(handler, &act->sa_handler) || 4637 __get_user(restorer, &act->sa_restorer) || 4638 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4639 __get_user(mask, &act->sa_mask)) 4640 return -EFAULT; 4641 4642 #ifdef __ARCH_HAS_KA_RESTORER 4643 new_ka.ka_restorer = NULL; 4644 #endif 4645 new_ka.sa.sa_handler = compat_ptr(handler); 4646 new_ka.sa.sa_restorer = compat_ptr(restorer); 4647 siginitset(&new_ka.sa.sa_mask, mask); 4648 } 4649 4650 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4651 4652 if (!ret && oact) { 4653 if (!access_ok(oact, sizeof(*oact)) || 4654 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4655 &oact->sa_handler) || 4656 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4657 &oact->sa_restorer) || 4658 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4659 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4660 return -EFAULT; 4661 } 4662 return ret; 4663 } 4664 #endif 4665 4666 #ifdef CONFIG_SGETMASK_SYSCALL 4667 4668 /* 4669 * For backwards compatibility. Functionality superseded by sigprocmask. 4670 */ 4671 SYSCALL_DEFINE0(sgetmask) 4672 { 4673 /* SMP safe */ 4674 return current->blocked.sig[0]; 4675 } 4676 4677 SYSCALL_DEFINE1(ssetmask, int, newmask) 4678 { 4679 int old = current->blocked.sig[0]; 4680 sigset_t newset; 4681 4682 siginitset(&newset, newmask); 4683 set_current_blocked(&newset); 4684 4685 return old; 4686 } 4687 #endif /* CONFIG_SGETMASK_SYSCALL */ 4688 4689 #ifdef __ARCH_WANT_SYS_SIGNAL 4690 /* 4691 * For backwards compatibility. Functionality superseded by sigaction. 4692 */ 4693 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4694 { 4695 struct k_sigaction new_sa, old_sa; 4696 int ret; 4697 4698 new_sa.sa.sa_handler = handler; 4699 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4700 sigemptyset(&new_sa.sa.sa_mask); 4701 4702 ret = do_sigaction(sig, &new_sa, &old_sa); 4703 4704 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4705 } 4706 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4707 4708 #ifdef __ARCH_WANT_SYS_PAUSE 4709 4710 SYSCALL_DEFINE0(pause) 4711 { 4712 while (!signal_pending(current)) { 4713 __set_current_state(TASK_INTERRUPTIBLE); 4714 schedule(); 4715 } 4716 return -ERESTARTNOHAND; 4717 } 4718 4719 #endif 4720 4721 static int sigsuspend(sigset_t *set) 4722 { 4723 current->saved_sigmask = current->blocked; 4724 set_current_blocked(set); 4725 4726 while (!signal_pending(current)) { 4727 __set_current_state(TASK_INTERRUPTIBLE); 4728 schedule(); 4729 } 4730 set_restore_sigmask(); 4731 return -ERESTARTNOHAND; 4732 } 4733 4734 /** 4735 * sys_rt_sigsuspend - replace the signal mask for a value with the 4736 * @unewset value until a signal is received 4737 * @unewset: new signal mask value 4738 * @sigsetsize: size of sigset_t type 4739 */ 4740 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4741 { 4742 sigset_t newset; 4743 4744 /* XXX: Don't preclude handling different sized sigset_t's. */ 4745 if (sigsetsize != sizeof(sigset_t)) 4746 return -EINVAL; 4747 4748 if (copy_from_user(&newset, unewset, sizeof(newset))) 4749 return -EFAULT; 4750 return sigsuspend(&newset); 4751 } 4752 4753 #ifdef CONFIG_COMPAT 4754 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4755 { 4756 sigset_t newset; 4757 4758 /* XXX: Don't preclude handling different sized sigset_t's. */ 4759 if (sigsetsize != sizeof(sigset_t)) 4760 return -EINVAL; 4761 4762 if (get_compat_sigset(&newset, unewset)) 4763 return -EFAULT; 4764 return sigsuspend(&newset); 4765 } 4766 #endif 4767 4768 #ifdef CONFIG_OLD_SIGSUSPEND 4769 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4770 { 4771 sigset_t blocked; 4772 siginitset(&blocked, mask); 4773 return sigsuspend(&blocked); 4774 } 4775 #endif 4776 #ifdef CONFIG_OLD_SIGSUSPEND3 4777 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4778 { 4779 sigset_t blocked; 4780 siginitset(&blocked, mask); 4781 return sigsuspend(&blocked); 4782 } 4783 #endif 4784 4785 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4786 { 4787 return NULL; 4788 } 4789 4790 static inline void siginfo_buildtime_checks(void) 4791 { 4792 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4793 4794 /* Verify the offsets in the two siginfos match */ 4795 #define CHECK_OFFSET(field) \ 4796 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4797 4798 /* kill */ 4799 CHECK_OFFSET(si_pid); 4800 CHECK_OFFSET(si_uid); 4801 4802 /* timer */ 4803 CHECK_OFFSET(si_tid); 4804 CHECK_OFFSET(si_overrun); 4805 CHECK_OFFSET(si_value); 4806 4807 /* rt */ 4808 CHECK_OFFSET(si_pid); 4809 CHECK_OFFSET(si_uid); 4810 CHECK_OFFSET(si_value); 4811 4812 /* sigchld */ 4813 CHECK_OFFSET(si_pid); 4814 CHECK_OFFSET(si_uid); 4815 CHECK_OFFSET(si_status); 4816 CHECK_OFFSET(si_utime); 4817 CHECK_OFFSET(si_stime); 4818 4819 /* sigfault */ 4820 CHECK_OFFSET(si_addr); 4821 CHECK_OFFSET(si_trapno); 4822 CHECK_OFFSET(si_addr_lsb); 4823 CHECK_OFFSET(si_lower); 4824 CHECK_OFFSET(si_upper); 4825 CHECK_OFFSET(si_pkey); 4826 CHECK_OFFSET(si_perf_data); 4827 CHECK_OFFSET(si_perf_type); 4828 CHECK_OFFSET(si_perf_flags); 4829 4830 /* sigpoll */ 4831 CHECK_OFFSET(si_band); 4832 CHECK_OFFSET(si_fd); 4833 4834 /* sigsys */ 4835 CHECK_OFFSET(si_call_addr); 4836 CHECK_OFFSET(si_syscall); 4837 CHECK_OFFSET(si_arch); 4838 #undef CHECK_OFFSET 4839 4840 /* usb asyncio */ 4841 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4842 offsetof(struct siginfo, si_addr)); 4843 if (sizeof(int) == sizeof(void __user *)) { 4844 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4845 sizeof(void __user *)); 4846 } else { 4847 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4848 sizeof_field(struct siginfo, si_uid)) != 4849 sizeof(void __user *)); 4850 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4851 offsetof(struct siginfo, si_uid)); 4852 } 4853 #ifdef CONFIG_COMPAT 4854 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4855 offsetof(struct compat_siginfo, si_addr)); 4856 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4857 sizeof(compat_uptr_t)); 4858 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4859 sizeof_field(struct siginfo, si_pid)); 4860 #endif 4861 } 4862 4863 #if defined(CONFIG_SYSCTL) 4864 static struct ctl_table signal_debug_table[] = { 4865 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4866 { 4867 .procname = "exception-trace", 4868 .data = &show_unhandled_signals, 4869 .maxlen = sizeof(int), 4870 .mode = 0644, 4871 .proc_handler = proc_dointvec 4872 }, 4873 #endif 4874 }; 4875 4876 static int __init init_signal_sysctls(void) 4877 { 4878 register_sysctl_init("debug", signal_debug_table); 4879 return 0; 4880 } 4881 early_initcall(init_signal_sysctls); 4882 #endif /* CONFIG_SYSCTL */ 4883 4884 void __init signals_init(void) 4885 { 4886 siginfo_buildtime_checks(); 4887 4888 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4889 } 4890 4891 #ifdef CONFIG_KGDB_KDB 4892 #include <linux/kdb.h> 4893 /* 4894 * kdb_send_sig - Allows kdb to send signals without exposing 4895 * signal internals. This function checks if the required locks are 4896 * available before calling the main signal code, to avoid kdb 4897 * deadlocks. 4898 */ 4899 void kdb_send_sig(struct task_struct *t, int sig) 4900 { 4901 static struct task_struct *kdb_prev_t; 4902 int new_t, ret; 4903 if (!spin_trylock(&t->sighand->siglock)) { 4904 kdb_printf("Can't do kill command now.\n" 4905 "The sigmask lock is held somewhere else in " 4906 "kernel, try again later\n"); 4907 return; 4908 } 4909 new_t = kdb_prev_t != t; 4910 kdb_prev_t = t; 4911 if (!task_is_running(t) && new_t) { 4912 spin_unlock(&t->sighand->siglock); 4913 kdb_printf("Process is not RUNNING, sending a signal from " 4914 "kdb risks deadlock\n" 4915 "on the run queue locks. " 4916 "The signal has _not_ been sent.\n" 4917 "Reissue the kill command if you want to risk " 4918 "the deadlock.\n"); 4919 return; 4920 } 4921 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4922 spin_unlock(&t->sighand->siglock); 4923 if (ret) 4924 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4925 sig, t->pid); 4926 else 4927 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4928 } 4929 #endif /* CONFIG_KGDB_KDB */ 4930
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.