~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/sys.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  linux/kernel/sys.c
  4  *
  5  *  Copyright (C) 1991, 1992  Linus Torvalds
  6  */
  7 
  8 #include <linux/export.h>
  9 #include <linux/mm.h>
 10 #include <linux/mm_inline.h>
 11 #include <linux/utsname.h>
 12 #include <linux/mman.h>
 13 #include <linux/reboot.h>
 14 #include <linux/prctl.h>
 15 #include <linux/highuid.h>
 16 #include <linux/fs.h>
 17 #include <linux/kmod.h>
 18 #include <linux/ksm.h>
 19 #include <linux/perf_event.h>
 20 #include <linux/resource.h>
 21 #include <linux/kernel.h>
 22 #include <linux/workqueue.h>
 23 #include <linux/capability.h>
 24 #include <linux/device.h>
 25 #include <linux/key.h>
 26 #include <linux/times.h>
 27 #include <linux/posix-timers.h>
 28 #include <linux/security.h>
 29 #include <linux/random.h>
 30 #include <linux/suspend.h>
 31 #include <linux/tty.h>
 32 #include <linux/signal.h>
 33 #include <linux/cn_proc.h>
 34 #include <linux/getcpu.h>
 35 #include <linux/task_io_accounting_ops.h>
 36 #include <linux/seccomp.h>
 37 #include <linux/cpu.h>
 38 #include <linux/personality.h>
 39 #include <linux/ptrace.h>
 40 #include <linux/fs_struct.h>
 41 #include <linux/file.h>
 42 #include <linux/mount.h>
 43 #include <linux/gfp.h>
 44 #include <linux/syscore_ops.h>
 45 #include <linux/version.h>
 46 #include <linux/ctype.h>
 47 #include <linux/syscall_user_dispatch.h>
 48 
 49 #include <linux/compat.h>
 50 #include <linux/syscalls.h>
 51 #include <linux/kprobes.h>
 52 #include <linux/user_namespace.h>
 53 #include <linux/time_namespace.h>
 54 #include <linux/binfmts.h>
 55 
 56 #include <linux/sched.h>
 57 #include <linux/sched/autogroup.h>
 58 #include <linux/sched/loadavg.h>
 59 #include <linux/sched/stat.h>
 60 #include <linux/sched/mm.h>
 61 #include <linux/sched/coredump.h>
 62 #include <linux/sched/task.h>
 63 #include <linux/sched/cputime.h>
 64 #include <linux/rcupdate.h>
 65 #include <linux/uidgid.h>
 66 #include <linux/cred.h>
 67 
 68 #include <linux/nospec.h>
 69 
 70 #include <linux/kmsg_dump.h>
 71 /* Move somewhere else to avoid recompiling? */
 72 #include <generated/utsrelease.h>
 73 
 74 #include <linux/uaccess.h>
 75 #include <asm/io.h>
 76 #include <asm/unistd.h>
 77 
 78 #include "uid16.h"
 79 
 80 #ifndef SET_UNALIGN_CTL
 81 # define SET_UNALIGN_CTL(a, b)  (-EINVAL)
 82 #endif
 83 #ifndef GET_UNALIGN_CTL
 84 # define GET_UNALIGN_CTL(a, b)  (-EINVAL)
 85 #endif
 86 #ifndef SET_FPEMU_CTL
 87 # define SET_FPEMU_CTL(a, b)    (-EINVAL)
 88 #endif
 89 #ifndef GET_FPEMU_CTL
 90 # define GET_FPEMU_CTL(a, b)    (-EINVAL)
 91 #endif
 92 #ifndef SET_FPEXC_CTL
 93 # define SET_FPEXC_CTL(a, b)    (-EINVAL)
 94 #endif
 95 #ifndef GET_FPEXC_CTL
 96 # define GET_FPEXC_CTL(a, b)    (-EINVAL)
 97 #endif
 98 #ifndef GET_ENDIAN
 99 # define GET_ENDIAN(a, b)       (-EINVAL)
100 #endif
101 #ifndef SET_ENDIAN
102 # define SET_ENDIAN(a, b)       (-EINVAL)
103 #endif
104 #ifndef GET_TSC_CTL
105 # define GET_TSC_CTL(a)         (-EINVAL)
106 #endif
107 #ifndef SET_TSC_CTL
108 # define SET_TSC_CTL(a)         (-EINVAL)
109 #endif
110 #ifndef GET_FP_MODE
111 # define GET_FP_MODE(a)         (-EINVAL)
112 #endif
113 #ifndef SET_FP_MODE
114 # define SET_FP_MODE(a,b)       (-EINVAL)
115 #endif
116 #ifndef SVE_SET_VL
117 # define SVE_SET_VL(a)          (-EINVAL)
118 #endif
119 #ifndef SVE_GET_VL
120 # define SVE_GET_VL()           (-EINVAL)
121 #endif
122 #ifndef SME_SET_VL
123 # define SME_SET_VL(a)          (-EINVAL)
124 #endif
125 #ifndef SME_GET_VL
126 # define SME_GET_VL()           (-EINVAL)
127 #endif
128 #ifndef PAC_RESET_KEYS
129 # define PAC_RESET_KEYS(a, b)   (-EINVAL)
130 #endif
131 #ifndef PAC_SET_ENABLED_KEYS
132 # define PAC_SET_ENABLED_KEYS(a, b, c)  (-EINVAL)
133 #endif
134 #ifndef PAC_GET_ENABLED_KEYS
135 # define PAC_GET_ENABLED_KEYS(a)        (-EINVAL)
136 #endif
137 #ifndef SET_TAGGED_ADDR_CTRL
138 # define SET_TAGGED_ADDR_CTRL(a)        (-EINVAL)
139 #endif
140 #ifndef GET_TAGGED_ADDR_CTRL
141 # define GET_TAGGED_ADDR_CTRL()         (-EINVAL)
142 #endif
143 #ifndef RISCV_V_SET_CONTROL
144 # define RISCV_V_SET_CONTROL(a)         (-EINVAL)
145 #endif
146 #ifndef RISCV_V_GET_CONTROL
147 # define RISCV_V_GET_CONTROL()          (-EINVAL)
148 #endif
149 #ifndef RISCV_SET_ICACHE_FLUSH_CTX
150 # define RISCV_SET_ICACHE_FLUSH_CTX(a, b)       (-EINVAL)
151 #endif
152 #ifndef PPC_GET_DEXCR_ASPECT
153 # define PPC_GET_DEXCR_ASPECT(a, b)     (-EINVAL)
154 #endif
155 #ifndef PPC_SET_DEXCR_ASPECT
156 # define PPC_SET_DEXCR_ASPECT(a, b, c)  (-EINVAL)
157 #endif
158 
159 /*
160  * this is where the system-wide overflow UID and GID are defined, for
161  * architectures that now have 32-bit UID/GID but didn't in the past
162  */
163 
164 int overflowuid = DEFAULT_OVERFLOWUID;
165 int overflowgid = DEFAULT_OVERFLOWGID;
166 
167 EXPORT_SYMBOL(overflowuid);
168 EXPORT_SYMBOL(overflowgid);
169 
170 /*
171  * the same as above, but for filesystems which can only store a 16-bit
172  * UID and GID. as such, this is needed on all architectures
173  */
174 
175 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
176 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
177 
178 EXPORT_SYMBOL(fs_overflowuid);
179 EXPORT_SYMBOL(fs_overflowgid);
180 
181 /*
182  * Returns true if current's euid is same as p's uid or euid,
183  * or has CAP_SYS_NICE to p's user_ns.
184  *
185  * Called with rcu_read_lock, creds are safe
186  */
187 static bool set_one_prio_perm(struct task_struct *p)
188 {
189         const struct cred *cred = current_cred(), *pcred = __task_cred(p);
190 
191         if (uid_eq(pcred->uid,  cred->euid) ||
192             uid_eq(pcred->euid, cred->euid))
193                 return true;
194         if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
195                 return true;
196         return false;
197 }
198 
199 /*
200  * set the priority of a task
201  * - the caller must hold the RCU read lock
202  */
203 static int set_one_prio(struct task_struct *p, int niceval, int error)
204 {
205         int no_nice;
206 
207         if (!set_one_prio_perm(p)) {
208                 error = -EPERM;
209                 goto out;
210         }
211         if (niceval < task_nice(p) && !can_nice(p, niceval)) {
212                 error = -EACCES;
213                 goto out;
214         }
215         no_nice = security_task_setnice(p, niceval);
216         if (no_nice) {
217                 error = no_nice;
218                 goto out;
219         }
220         if (error == -ESRCH)
221                 error = 0;
222         set_user_nice(p, niceval);
223 out:
224         return error;
225 }
226 
227 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
228 {
229         struct task_struct *g, *p;
230         struct user_struct *user;
231         const struct cred *cred = current_cred();
232         int error = -EINVAL;
233         struct pid *pgrp;
234         kuid_t uid;
235 
236         if (which > PRIO_USER || which < PRIO_PROCESS)
237                 goto out;
238         if (!ccs_capable(CCS_SYS_NICE)) {
239                 error = -EPERM;
240                 goto out;
241         }
242 
243         /* normalize: avoid signed division (rounding problems) */
244         error = -ESRCH;
245         if (niceval < MIN_NICE)
246                 niceval = MIN_NICE;
247         if (niceval > MAX_NICE)
248                 niceval = MAX_NICE;
249 
250         rcu_read_lock();
251         switch (which) {
252         case PRIO_PROCESS:
253                 if (who)
254                         p = find_task_by_vpid(who);
255                 else
256                         p = current;
257                 if (p)
258                         error = set_one_prio(p, niceval, error);
259                 break;
260         case PRIO_PGRP:
261                 if (who)
262                         pgrp = find_vpid(who);
263                 else
264                         pgrp = task_pgrp(current);
265                 read_lock(&tasklist_lock);
266                 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
267                         error = set_one_prio(p, niceval, error);
268                 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
269                 read_unlock(&tasklist_lock);
270                 break;
271         case PRIO_USER:
272                 uid = make_kuid(cred->user_ns, who);
273                 user = cred->user;
274                 if (!who)
275                         uid = cred->uid;
276                 else if (!uid_eq(uid, cred->uid)) {
277                         user = find_user(uid);
278                         if (!user)
279                                 goto out_unlock;        /* No processes for this user */
280                 }
281                 for_each_process_thread(g, p) {
282                         if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
283                                 error = set_one_prio(p, niceval, error);
284                 }
285                 if (!uid_eq(uid, cred->uid))
286                         free_uid(user);         /* For find_user() */
287                 break;
288         }
289 out_unlock:
290         rcu_read_unlock();
291 out:
292         return error;
293 }
294 
295 /*
296  * Ugh. To avoid negative return values, "getpriority()" will
297  * not return the normal nice-value, but a negated value that
298  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
299  * to stay compatible.
300  */
301 SYSCALL_DEFINE2(getpriority, int, which, int, who)
302 {
303         struct task_struct *g, *p;
304         struct user_struct *user;
305         const struct cred *cred = current_cred();
306         long niceval, retval = -ESRCH;
307         struct pid *pgrp;
308         kuid_t uid;
309 
310         if (which > PRIO_USER || which < PRIO_PROCESS)
311                 return -EINVAL;
312 
313         rcu_read_lock();
314         switch (which) {
315         case PRIO_PROCESS:
316                 if (who)
317                         p = find_task_by_vpid(who);
318                 else
319                         p = current;
320                 if (p) {
321                         niceval = nice_to_rlimit(task_nice(p));
322                         if (niceval > retval)
323                                 retval = niceval;
324                 }
325                 break;
326         case PRIO_PGRP:
327                 if (who)
328                         pgrp = find_vpid(who);
329                 else
330                         pgrp = task_pgrp(current);
331                 read_lock(&tasklist_lock);
332                 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
333                         niceval = nice_to_rlimit(task_nice(p));
334                         if (niceval > retval)
335                                 retval = niceval;
336                 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
337                 read_unlock(&tasklist_lock);
338                 break;
339         case PRIO_USER:
340                 uid = make_kuid(cred->user_ns, who);
341                 user = cred->user;
342                 if (!who)
343                         uid = cred->uid;
344                 else if (!uid_eq(uid, cred->uid)) {
345                         user = find_user(uid);
346                         if (!user)
347                                 goto out_unlock;        /* No processes for this user */
348                 }
349                 for_each_process_thread(g, p) {
350                         if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
351                                 niceval = nice_to_rlimit(task_nice(p));
352                                 if (niceval > retval)
353                                         retval = niceval;
354                         }
355                 }
356                 if (!uid_eq(uid, cred->uid))
357                         free_uid(user);         /* for find_user() */
358                 break;
359         }
360 out_unlock:
361         rcu_read_unlock();
362 
363         return retval;
364 }
365 
366 /*
367  * Unprivileged users may change the real gid to the effective gid
368  * or vice versa.  (BSD-style)
369  *
370  * If you set the real gid at all, or set the effective gid to a value not
371  * equal to the real gid, then the saved gid is set to the new effective gid.
372  *
373  * This makes it possible for a setgid program to completely drop its
374  * privileges, which is often a useful assertion to make when you are doing
375  * a security audit over a program.
376  *
377  * The general idea is that a program which uses just setregid() will be
378  * 100% compatible with BSD.  A program which uses just setgid() will be
379  * 100% compatible with POSIX with saved IDs.
380  *
381  * SMP: There are not races, the GIDs are checked only by filesystem
382  *      operations (as far as semantic preservation is concerned).
383  */
384 #ifdef CONFIG_MULTIUSER
385 long __sys_setregid(gid_t rgid, gid_t egid)
386 {
387         struct user_namespace *ns = current_user_ns();
388         const struct cred *old;
389         struct cred *new;
390         int retval;
391         kgid_t krgid, kegid;
392 
393         krgid = make_kgid(ns, rgid);
394         kegid = make_kgid(ns, egid);
395 
396         if ((rgid != (gid_t) -1) && !gid_valid(krgid))
397                 return -EINVAL;
398         if ((egid != (gid_t) -1) && !gid_valid(kegid))
399                 return -EINVAL;
400 
401         new = prepare_creds();
402         if (!new)
403                 return -ENOMEM;
404         old = current_cred();
405 
406         retval = -EPERM;
407         if (rgid != (gid_t) -1) {
408                 if (gid_eq(old->gid, krgid) ||
409                     gid_eq(old->egid, krgid) ||
410                     ns_capable_setid(old->user_ns, CAP_SETGID))
411                         new->gid = krgid;
412                 else
413                         goto error;
414         }
415         if (egid != (gid_t) -1) {
416                 if (gid_eq(old->gid, kegid) ||
417                     gid_eq(old->egid, kegid) ||
418                     gid_eq(old->sgid, kegid) ||
419                     ns_capable_setid(old->user_ns, CAP_SETGID))
420                         new->egid = kegid;
421                 else
422                         goto error;
423         }
424 
425         if (rgid != (gid_t) -1 ||
426             (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
427                 new->sgid = new->egid;
428         new->fsgid = new->egid;
429 
430         retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
431         if (retval < 0)
432                 goto error;
433 
434         return commit_creds(new);
435 
436 error:
437         abort_creds(new);
438         return retval;
439 }
440 
441 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
442 {
443         return __sys_setregid(rgid, egid);
444 }
445 
446 /*
447  * setgid() is implemented like SysV w/ SAVED_IDS
448  *
449  * SMP: Same implicit races as above.
450  */
451 long __sys_setgid(gid_t gid)
452 {
453         struct user_namespace *ns = current_user_ns();
454         const struct cred *old;
455         struct cred *new;
456         int retval;
457         kgid_t kgid;
458 
459         kgid = make_kgid(ns, gid);
460         if (!gid_valid(kgid))
461                 return -EINVAL;
462 
463         new = prepare_creds();
464         if (!new)
465                 return -ENOMEM;
466         old = current_cred();
467 
468         retval = -EPERM;
469         if (ns_capable_setid(old->user_ns, CAP_SETGID))
470                 new->gid = new->egid = new->sgid = new->fsgid = kgid;
471         else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
472                 new->egid = new->fsgid = kgid;
473         else
474                 goto error;
475 
476         retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
477         if (retval < 0)
478                 goto error;
479 
480         return commit_creds(new);
481 
482 error:
483         abort_creds(new);
484         return retval;
485 }
486 
487 SYSCALL_DEFINE1(setgid, gid_t, gid)
488 {
489         return __sys_setgid(gid);
490 }
491 
492 /*
493  * change the user struct in a credentials set to match the new UID
494  */
495 static int set_user(struct cred *new)
496 {
497         struct user_struct *new_user;
498 
499         new_user = alloc_uid(new->uid);
500         if (!new_user)
501                 return -EAGAIN;
502 
503         free_uid(new->user);
504         new->user = new_user;
505         return 0;
506 }
507 
508 static void flag_nproc_exceeded(struct cred *new)
509 {
510         if (new->ucounts == current_ucounts())
511                 return;
512 
513         /*
514          * We don't fail in case of NPROC limit excess here because too many
515          * poorly written programs don't check set*uid() return code, assuming
516          * it never fails if called by root.  We may still enforce NPROC limit
517          * for programs doing set*uid()+execve() by harmlessly deferring the
518          * failure to the execve() stage.
519          */
520         if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
521                         new->user != INIT_USER)
522                 current->flags |= PF_NPROC_EXCEEDED;
523         else
524                 current->flags &= ~PF_NPROC_EXCEEDED;
525 }
526 
527 /*
528  * Unprivileged users may change the real uid to the effective uid
529  * or vice versa.  (BSD-style)
530  *
531  * If you set the real uid at all, or set the effective uid to a value not
532  * equal to the real uid, then the saved uid is set to the new effective uid.
533  *
534  * This makes it possible for a setuid program to completely drop its
535  * privileges, which is often a useful assertion to make when you are doing
536  * a security audit over a program.
537  *
538  * The general idea is that a program which uses just setreuid() will be
539  * 100% compatible with BSD.  A program which uses just setuid() will be
540  * 100% compatible with POSIX with saved IDs.
541  */
542 long __sys_setreuid(uid_t ruid, uid_t euid)
543 {
544         struct user_namespace *ns = current_user_ns();
545         const struct cred *old;
546         struct cred *new;
547         int retval;
548         kuid_t kruid, keuid;
549 
550         kruid = make_kuid(ns, ruid);
551         keuid = make_kuid(ns, euid);
552 
553         if ((ruid != (uid_t) -1) && !uid_valid(kruid))
554                 return -EINVAL;
555         if ((euid != (uid_t) -1) && !uid_valid(keuid))
556                 return -EINVAL;
557 
558         new = prepare_creds();
559         if (!new)
560                 return -ENOMEM;
561         old = current_cred();
562 
563         retval = -EPERM;
564         if (ruid != (uid_t) -1) {
565                 new->uid = kruid;
566                 if (!uid_eq(old->uid, kruid) &&
567                     !uid_eq(old->euid, kruid) &&
568                     !ns_capable_setid(old->user_ns, CAP_SETUID))
569                         goto error;
570         }
571 
572         if (euid != (uid_t) -1) {
573                 new->euid = keuid;
574                 if (!uid_eq(old->uid, keuid) &&
575                     !uid_eq(old->euid, keuid) &&
576                     !uid_eq(old->suid, keuid) &&
577                     !ns_capable_setid(old->user_ns, CAP_SETUID))
578                         goto error;
579         }
580 
581         if (!uid_eq(new->uid, old->uid)) {
582                 retval = set_user(new);
583                 if (retval < 0)
584                         goto error;
585         }
586         if (ruid != (uid_t) -1 ||
587             (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
588                 new->suid = new->euid;
589         new->fsuid = new->euid;
590 
591         retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
592         if (retval < 0)
593                 goto error;
594 
595         retval = set_cred_ucounts(new);
596         if (retval < 0)
597                 goto error;
598 
599         flag_nproc_exceeded(new);
600         return commit_creds(new);
601 
602 error:
603         abort_creds(new);
604         return retval;
605 }
606 
607 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
608 {
609         return __sys_setreuid(ruid, euid);
610 }
611 
612 /*
613  * setuid() is implemented like SysV with SAVED_IDS
614  *
615  * Note that SAVED_ID's is deficient in that a setuid root program
616  * like sendmail, for example, cannot set its uid to be a normal
617  * user and then switch back, because if you're root, setuid() sets
618  * the saved uid too.  If you don't like this, blame the bright people
619  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
620  * will allow a root program to temporarily drop privileges and be able to
621  * regain them by swapping the real and effective uid.
622  */
623 long __sys_setuid(uid_t uid)
624 {
625         struct user_namespace *ns = current_user_ns();
626         const struct cred *old;
627         struct cred *new;
628         int retval;
629         kuid_t kuid;
630 
631         kuid = make_kuid(ns, uid);
632         if (!uid_valid(kuid))
633                 return -EINVAL;
634 
635         new = prepare_creds();
636         if (!new)
637                 return -ENOMEM;
638         old = current_cred();
639 
640         retval = -EPERM;
641         if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
642                 new->suid = new->uid = kuid;
643                 if (!uid_eq(kuid, old->uid)) {
644                         retval = set_user(new);
645                         if (retval < 0)
646                                 goto error;
647                 }
648         } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
649                 goto error;
650         }
651 
652         new->fsuid = new->euid = kuid;
653 
654         retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
655         if (retval < 0)
656                 goto error;
657 
658         retval = set_cred_ucounts(new);
659         if (retval < 0)
660                 goto error;
661 
662         flag_nproc_exceeded(new);
663         return commit_creds(new);
664 
665 error:
666         abort_creds(new);
667         return retval;
668 }
669 
670 SYSCALL_DEFINE1(setuid, uid_t, uid)
671 {
672         return __sys_setuid(uid);
673 }
674 
675 
676 /*
677  * This function implements a generic ability to update ruid, euid,
678  * and suid.  This allows you to implement the 4.4 compatible seteuid().
679  */
680 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
681 {
682         struct user_namespace *ns = current_user_ns();
683         const struct cred *old;
684         struct cred *new;
685         int retval;
686         kuid_t kruid, keuid, ksuid;
687         bool ruid_new, euid_new, suid_new;
688 
689         kruid = make_kuid(ns, ruid);
690         keuid = make_kuid(ns, euid);
691         ksuid = make_kuid(ns, suid);
692 
693         if ((ruid != (uid_t) -1) && !uid_valid(kruid))
694                 return -EINVAL;
695 
696         if ((euid != (uid_t) -1) && !uid_valid(keuid))
697                 return -EINVAL;
698 
699         if ((suid != (uid_t) -1) && !uid_valid(ksuid))
700                 return -EINVAL;
701 
702         old = current_cred();
703 
704         /* check for no-op */
705         if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
706             (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
707                                     uid_eq(keuid, old->fsuid))) &&
708             (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
709                 return 0;
710 
711         ruid_new = ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
712                    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
713         euid_new = euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
714                    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
715         suid_new = suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
716                    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
717         if ((ruid_new || euid_new || suid_new) &&
718             !ns_capable_setid(old->user_ns, CAP_SETUID))
719                 return -EPERM;
720 
721         new = prepare_creds();
722         if (!new)
723                 return -ENOMEM;
724 
725         if (ruid != (uid_t) -1) {
726                 new->uid = kruid;
727                 if (!uid_eq(kruid, old->uid)) {
728                         retval = set_user(new);
729                         if (retval < 0)
730                                 goto error;
731                 }
732         }
733         if (euid != (uid_t) -1)
734                 new->euid = keuid;
735         if (suid != (uid_t) -1)
736                 new->suid = ksuid;
737         new->fsuid = new->euid;
738 
739         retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
740         if (retval < 0)
741                 goto error;
742 
743         retval = set_cred_ucounts(new);
744         if (retval < 0)
745                 goto error;
746 
747         flag_nproc_exceeded(new);
748         return commit_creds(new);
749 
750 error:
751         abort_creds(new);
752         return retval;
753 }
754 
755 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
756 {
757         return __sys_setresuid(ruid, euid, suid);
758 }
759 
760 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
761 {
762         const struct cred *cred = current_cred();
763         int retval;
764         uid_t ruid, euid, suid;
765 
766         ruid = from_kuid_munged(cred->user_ns, cred->uid);
767         euid = from_kuid_munged(cred->user_ns, cred->euid);
768         suid = from_kuid_munged(cred->user_ns, cred->suid);
769 
770         retval = put_user(ruid, ruidp);
771         if (!retval) {
772                 retval = put_user(euid, euidp);
773                 if (!retval)
774                         return put_user(suid, suidp);
775         }
776         return retval;
777 }
778 
779 /*
780  * Same as above, but for rgid, egid, sgid.
781  */
782 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
783 {
784         struct user_namespace *ns = current_user_ns();
785         const struct cred *old;
786         struct cred *new;
787         int retval;
788         kgid_t krgid, kegid, ksgid;
789         bool rgid_new, egid_new, sgid_new;
790 
791         krgid = make_kgid(ns, rgid);
792         kegid = make_kgid(ns, egid);
793         ksgid = make_kgid(ns, sgid);
794 
795         if ((rgid != (gid_t) -1) && !gid_valid(krgid))
796                 return -EINVAL;
797         if ((egid != (gid_t) -1) && !gid_valid(kegid))
798                 return -EINVAL;
799         if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
800                 return -EINVAL;
801 
802         old = current_cred();
803 
804         /* check for no-op */
805         if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
806             (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
807                                     gid_eq(kegid, old->fsgid))) &&
808             (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
809                 return 0;
810 
811         rgid_new = rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
812                    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
813         egid_new = egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
814                    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
815         sgid_new = sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
816                    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
817         if ((rgid_new || egid_new || sgid_new) &&
818             !ns_capable_setid(old->user_ns, CAP_SETGID))
819                 return -EPERM;
820 
821         new = prepare_creds();
822         if (!new)
823                 return -ENOMEM;
824 
825         if (rgid != (gid_t) -1)
826                 new->gid = krgid;
827         if (egid != (gid_t) -1)
828                 new->egid = kegid;
829         if (sgid != (gid_t) -1)
830                 new->sgid = ksgid;
831         new->fsgid = new->egid;
832 
833         retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
834         if (retval < 0)
835                 goto error;
836 
837         return commit_creds(new);
838 
839 error:
840         abort_creds(new);
841         return retval;
842 }
843 
844 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
845 {
846         return __sys_setresgid(rgid, egid, sgid);
847 }
848 
849 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
850 {
851         const struct cred *cred = current_cred();
852         int retval;
853         gid_t rgid, egid, sgid;
854 
855         rgid = from_kgid_munged(cred->user_ns, cred->gid);
856         egid = from_kgid_munged(cred->user_ns, cred->egid);
857         sgid = from_kgid_munged(cred->user_ns, cred->sgid);
858 
859         retval = put_user(rgid, rgidp);
860         if (!retval) {
861                 retval = put_user(egid, egidp);
862                 if (!retval)
863                         retval = put_user(sgid, sgidp);
864         }
865 
866         return retval;
867 }
868 
869 
870 /*
871  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
872  * is used for "access()" and for the NFS daemon (letting nfsd stay at
873  * whatever uid it wants to). It normally shadows "euid", except when
874  * explicitly set by setfsuid() or for access..
875  */
876 long __sys_setfsuid(uid_t uid)
877 {
878         const struct cred *old;
879         struct cred *new;
880         uid_t old_fsuid;
881         kuid_t kuid;
882 
883         old = current_cred();
884         old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
885 
886         kuid = make_kuid(old->user_ns, uid);
887         if (!uid_valid(kuid))
888                 return old_fsuid;
889 
890         new = prepare_creds();
891         if (!new)
892                 return old_fsuid;
893 
894         if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
895             uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
896             ns_capable_setid(old->user_ns, CAP_SETUID)) {
897                 if (!uid_eq(kuid, old->fsuid)) {
898                         new->fsuid = kuid;
899                         if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
900                                 goto change_okay;
901                 }
902         }
903 
904         abort_creds(new);
905         return old_fsuid;
906 
907 change_okay:
908         commit_creds(new);
909         return old_fsuid;
910 }
911 
912 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
913 {
914         return __sys_setfsuid(uid);
915 }
916 
917 /*
918  * Samma på svenska..
919  */
920 long __sys_setfsgid(gid_t gid)
921 {
922         const struct cred *old;
923         struct cred *new;
924         gid_t old_fsgid;
925         kgid_t kgid;
926 
927         old = current_cred();
928         old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
929 
930         kgid = make_kgid(old->user_ns, gid);
931         if (!gid_valid(kgid))
932                 return old_fsgid;
933 
934         new = prepare_creds();
935         if (!new)
936                 return old_fsgid;
937 
938         if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
939             gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
940             ns_capable_setid(old->user_ns, CAP_SETGID)) {
941                 if (!gid_eq(kgid, old->fsgid)) {
942                         new->fsgid = kgid;
943                         if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
944                                 goto change_okay;
945                 }
946         }
947 
948         abort_creds(new);
949         return old_fsgid;
950 
951 change_okay:
952         commit_creds(new);
953         return old_fsgid;
954 }
955 
956 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
957 {
958         return __sys_setfsgid(gid);
959 }
960 #endif /* CONFIG_MULTIUSER */
961 
962 /**
963  * sys_getpid - return the thread group id of the current process
964  *
965  * Note, despite the name, this returns the tgid not the pid.  The tgid and
966  * the pid are identical unless CLONE_THREAD was specified on clone() in
967  * which case the tgid is the same in all threads of the same group.
968  *
969  * This is SMP safe as current->tgid does not change.
970  */
971 SYSCALL_DEFINE0(getpid)
972 {
973         return task_tgid_vnr(current);
974 }
975 
976 /* Thread ID - the internal kernel "pid" */
977 SYSCALL_DEFINE0(gettid)
978 {
979         return task_pid_vnr(current);
980 }
981 
982 /*
983  * Accessing ->real_parent is not SMP-safe, it could
984  * change from under us. However, we can use a stale
985  * value of ->real_parent under rcu_read_lock(), see
986  * release_task()->call_rcu(delayed_put_task_struct).
987  */
988 SYSCALL_DEFINE0(getppid)
989 {
990         int pid;
991 
992         rcu_read_lock();
993         pid = task_tgid_vnr(rcu_dereference(current->real_parent));
994         rcu_read_unlock();
995 
996         return pid;
997 }
998 
999 SYSCALL_DEFINE0(getuid)
1000 {
1001         /* Only we change this so SMP safe */
1002         return from_kuid_munged(current_user_ns(), current_uid());
1003 }
1004 
1005 SYSCALL_DEFINE0(geteuid)
1006 {
1007         /* Only we change this so SMP safe */
1008         return from_kuid_munged(current_user_ns(), current_euid());
1009 }
1010 
1011 SYSCALL_DEFINE0(getgid)
1012 {
1013         /* Only we change this so SMP safe */
1014         return from_kgid_munged(current_user_ns(), current_gid());
1015 }
1016 
1017 SYSCALL_DEFINE0(getegid)
1018 {
1019         /* Only we change this so SMP safe */
1020         return from_kgid_munged(current_user_ns(), current_egid());
1021 }
1022 
1023 static void do_sys_times(struct tms *tms)
1024 {
1025         u64 tgutime, tgstime, cutime, cstime;
1026 
1027         thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1028         cutime = current->signal->cutime;
1029         cstime = current->signal->cstime;
1030         tms->tms_utime = nsec_to_clock_t(tgutime);
1031         tms->tms_stime = nsec_to_clock_t(tgstime);
1032         tms->tms_cutime = nsec_to_clock_t(cutime);
1033         tms->tms_cstime = nsec_to_clock_t(cstime);
1034 }
1035 
1036 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1037 {
1038         if (tbuf) {
1039                 struct tms tmp;
1040 
1041                 do_sys_times(&tmp);
1042                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1043                         return -EFAULT;
1044         }
1045         force_successful_syscall_return();
1046         return (long) jiffies_64_to_clock_t(get_jiffies_64());
1047 }
1048 
1049 #ifdef CONFIG_COMPAT
1050 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1051 {
1052         return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1053 }
1054 
1055 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1056 {
1057         if (tbuf) {
1058                 struct tms tms;
1059                 struct compat_tms tmp;
1060 
1061                 do_sys_times(&tms);
1062                 /* Convert our struct tms to the compat version. */
1063                 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1064                 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1065                 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1066                 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1067                 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1068                         return -EFAULT;
1069         }
1070         force_successful_syscall_return();
1071         return compat_jiffies_to_clock_t(jiffies);
1072 }
1073 #endif
1074 
1075 /*
1076  * This needs some heavy checking ...
1077  * I just haven't the stomach for it. I also don't fully
1078  * understand sessions/pgrp etc. Let somebody who does explain it.
1079  *
1080  * OK, I think I have the protection semantics right.... this is really
1081  * only important on a multi-user system anyway, to make sure one user
1082  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1083  *
1084  * !PF_FORKNOEXEC check to conform completely to POSIX.
1085  */
1086 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1087 {
1088         struct task_struct *p;
1089         struct task_struct *group_leader = current->group_leader;
1090         struct pid *pgrp;
1091         int err;
1092 
1093         if (!pid)
1094                 pid = task_pid_vnr(group_leader);
1095         if (!pgid)
1096                 pgid = pid;
1097         if (pgid < 0)
1098                 return -EINVAL;
1099         rcu_read_lock();
1100 
1101         /* From this point forward we keep holding onto the tasklist lock
1102          * so that our parent does not change from under us. -DaveM
1103          */
1104         write_lock_irq(&tasklist_lock);
1105 
1106         err = -ESRCH;
1107         p = find_task_by_vpid(pid);
1108         if (!p)
1109                 goto out;
1110 
1111         err = -EINVAL;
1112         if (!thread_group_leader(p))
1113                 goto out;
1114 
1115         if (same_thread_group(p->real_parent, group_leader)) {
1116                 err = -EPERM;
1117                 if (task_session(p) != task_session(group_leader))
1118                         goto out;
1119                 err = -EACCES;
1120                 if (!(p->flags & PF_FORKNOEXEC))
1121                         goto out;
1122         } else {
1123                 err = -ESRCH;
1124                 if (p != group_leader)
1125                         goto out;
1126         }
1127 
1128         err = -EPERM;
1129         if (p->signal->leader)
1130                 goto out;
1131 
1132         pgrp = task_pid(p);
1133         if (pgid != pid) {
1134                 struct task_struct *g;
1135 
1136                 pgrp = find_vpid(pgid);
1137                 g = pid_task(pgrp, PIDTYPE_PGID);
1138                 if (!g || task_session(g) != task_session(group_leader))
1139                         goto out;
1140         }
1141 
1142         err = security_task_setpgid(p, pgid);
1143         if (err)
1144                 goto out;
1145 
1146         if (task_pgrp(p) != pgrp)
1147                 change_pid(p, PIDTYPE_PGID, pgrp);
1148 
1149         err = 0;
1150 out:
1151         /* All paths lead to here, thus we are safe. -DaveM */
1152         write_unlock_irq(&tasklist_lock);
1153         rcu_read_unlock();
1154         return err;
1155 }
1156 
1157 static int do_getpgid(pid_t pid)
1158 {
1159         struct task_struct *p;
1160         struct pid *grp;
1161         int retval;
1162 
1163         rcu_read_lock();
1164         if (!pid)
1165                 grp = task_pgrp(current);
1166         else {
1167                 retval = -ESRCH;
1168                 p = find_task_by_vpid(pid);
1169                 if (!p)
1170                         goto out;
1171                 grp = task_pgrp(p);
1172                 if (!grp)
1173                         goto out;
1174 
1175                 retval = security_task_getpgid(p);
1176                 if (retval)
1177                         goto out;
1178         }
1179         retval = pid_vnr(grp);
1180 out:
1181         rcu_read_unlock();
1182         return retval;
1183 }
1184 
1185 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1186 {
1187         return do_getpgid(pid);
1188 }
1189 
1190 #ifdef __ARCH_WANT_SYS_GETPGRP
1191 
1192 SYSCALL_DEFINE0(getpgrp)
1193 {
1194         return do_getpgid(0);
1195 }
1196 
1197 #endif
1198 
1199 SYSCALL_DEFINE1(getsid, pid_t, pid)
1200 {
1201         struct task_struct *p;
1202         struct pid *sid;
1203         int retval;
1204 
1205         rcu_read_lock();
1206         if (!pid)
1207                 sid = task_session(current);
1208         else {
1209                 retval = -ESRCH;
1210                 p = find_task_by_vpid(pid);
1211                 if (!p)
1212                         goto out;
1213                 sid = task_session(p);
1214                 if (!sid)
1215                         goto out;
1216 
1217                 retval = security_task_getsid(p);
1218                 if (retval)
1219                         goto out;
1220         }
1221         retval = pid_vnr(sid);
1222 out:
1223         rcu_read_unlock();
1224         return retval;
1225 }
1226 
1227 static void set_special_pids(struct pid *pid)
1228 {
1229         struct task_struct *curr = current->group_leader;
1230 
1231         if (task_session(curr) != pid)
1232                 change_pid(curr, PIDTYPE_SID, pid);
1233 
1234         if (task_pgrp(curr) != pid)
1235                 change_pid(curr, PIDTYPE_PGID, pid);
1236 }
1237 
1238 int ksys_setsid(void)
1239 {
1240         struct task_struct *group_leader = current->group_leader;
1241         struct pid *sid = task_pid(group_leader);
1242         pid_t session = pid_vnr(sid);
1243         int err = -EPERM;
1244 
1245         write_lock_irq(&tasklist_lock);
1246         /* Fail if I am already a session leader */
1247         if (group_leader->signal->leader)
1248                 goto out;
1249 
1250         /* Fail if a process group id already exists that equals the
1251          * proposed session id.
1252          */
1253         if (pid_task(sid, PIDTYPE_PGID))
1254                 goto out;
1255 
1256         group_leader->signal->leader = 1;
1257         set_special_pids(sid);
1258 
1259         proc_clear_tty(group_leader);
1260 
1261         err = session;
1262 out:
1263         write_unlock_irq(&tasklist_lock);
1264         if (err > 0) {
1265                 proc_sid_connector(group_leader);
1266                 sched_autogroup_create_attach(group_leader);
1267         }
1268         return err;
1269 }
1270 
1271 SYSCALL_DEFINE0(setsid)
1272 {
1273         return ksys_setsid();
1274 }
1275 
1276 DECLARE_RWSEM(uts_sem);
1277 
1278 #ifdef COMPAT_UTS_MACHINE
1279 #define override_architecture(name) \
1280         (personality(current->personality) == PER_LINUX32 && \
1281          copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1282                       sizeof(COMPAT_UTS_MACHINE)))
1283 #else
1284 #define override_architecture(name)     0
1285 #endif
1286 
1287 /*
1288  * Work around broken programs that cannot handle "Linux 3.0".
1289  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1290  * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1291  * 2.6.60.
1292  */
1293 static int override_release(char __user *release, size_t len)
1294 {
1295         int ret = 0;
1296 
1297         if (current->personality & UNAME26) {
1298                 const char *rest = UTS_RELEASE;
1299                 char buf[65] = { 0 };
1300                 int ndots = 0;
1301                 unsigned v;
1302                 size_t copy;
1303 
1304                 while (*rest) {
1305                         if (*rest == '.' && ++ndots >= 3)
1306                                 break;
1307                         if (!isdigit(*rest) && *rest != '.')
1308                                 break;
1309                         rest++;
1310                 }
1311                 v = LINUX_VERSION_PATCHLEVEL + 60;
1312                 copy = clamp_t(size_t, len, 1, sizeof(buf));
1313                 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1314                 ret = copy_to_user(release, buf, copy + 1);
1315         }
1316         return ret;
1317 }
1318 
1319 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1320 {
1321         struct new_utsname tmp;
1322 
1323         down_read(&uts_sem);
1324         memcpy(&tmp, utsname(), sizeof(tmp));
1325         up_read(&uts_sem);
1326         if (copy_to_user(name, &tmp, sizeof(tmp)))
1327                 return -EFAULT;
1328 
1329         if (override_release(name->release, sizeof(name->release)))
1330                 return -EFAULT;
1331         if (override_architecture(name))
1332                 return -EFAULT;
1333         return 0;
1334 }
1335 
1336 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1337 /*
1338  * Old cruft
1339  */
1340 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1341 {
1342         struct old_utsname tmp;
1343 
1344         if (!name)
1345                 return -EFAULT;
1346 
1347         down_read(&uts_sem);
1348         memcpy(&tmp, utsname(), sizeof(tmp));
1349         up_read(&uts_sem);
1350         if (copy_to_user(name, &tmp, sizeof(tmp)))
1351                 return -EFAULT;
1352 
1353         if (override_release(name->release, sizeof(name->release)))
1354                 return -EFAULT;
1355         if (override_architecture(name))
1356                 return -EFAULT;
1357         return 0;
1358 }
1359 
1360 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1361 {
1362         struct oldold_utsname tmp;
1363 
1364         if (!name)
1365                 return -EFAULT;
1366 
1367         memset(&tmp, 0, sizeof(tmp));
1368 
1369         down_read(&uts_sem);
1370         memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1371         memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1372         memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1373         memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1374         memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1375         up_read(&uts_sem);
1376         if (copy_to_user(name, &tmp, sizeof(tmp)))
1377                 return -EFAULT;
1378 
1379         if (override_architecture(name))
1380                 return -EFAULT;
1381         if (override_release(name->release, sizeof(name->release)))
1382                 return -EFAULT;
1383         return 0;
1384 }
1385 #endif
1386 
1387 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1388 {
1389         int errno;
1390         char tmp[__NEW_UTS_LEN];
1391 
1392         if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1393                 return -EPERM;
1394 
1395         if (len < 0 || len > __NEW_UTS_LEN)
1396                 return -EINVAL;
1397         if (!ccs_capable(CCS_SYS_SETHOSTNAME))
1398                 return -EPERM;
1399         errno = -EFAULT;
1400         if (!copy_from_user(tmp, name, len)) {
1401                 struct new_utsname *u;
1402 
1403                 add_device_randomness(tmp, len);
1404                 down_write(&uts_sem);
1405                 u = utsname();
1406                 memcpy(u->nodename, tmp, len);
1407                 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1408                 errno = 0;
1409                 uts_proc_notify(UTS_PROC_HOSTNAME);
1410                 up_write(&uts_sem);
1411         }
1412         return errno;
1413 }
1414 
1415 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1416 
1417 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1418 {
1419         int i;
1420         struct new_utsname *u;
1421         char tmp[__NEW_UTS_LEN + 1];
1422 
1423         if (len < 0)
1424                 return -EINVAL;
1425         down_read(&uts_sem);
1426         u = utsname();
1427         i = 1 + strlen(u->nodename);
1428         if (i > len)
1429                 i = len;
1430         memcpy(tmp, u->nodename, i);
1431         up_read(&uts_sem);
1432         if (copy_to_user(name, tmp, i))
1433                 return -EFAULT;
1434         return 0;
1435 }
1436 
1437 #endif
1438 
1439 /*
1440  * Only setdomainname; getdomainname can be implemented by calling
1441  * uname()
1442  */
1443 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1444 {
1445         int errno;
1446         char tmp[__NEW_UTS_LEN];
1447 
1448         if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1449                 return -EPERM;
1450         if (len < 0 || len > __NEW_UTS_LEN)
1451                 return -EINVAL;
1452         if (!ccs_capable(CCS_SYS_SETHOSTNAME))
1453                 return -EPERM;
1454 
1455         errno = -EFAULT;
1456         if (!copy_from_user(tmp, name, len)) {
1457                 struct new_utsname *u;
1458 
1459                 add_device_randomness(tmp, len);
1460                 down_write(&uts_sem);
1461                 u = utsname();
1462                 memcpy(u->domainname, tmp, len);
1463                 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1464                 errno = 0;
1465                 uts_proc_notify(UTS_PROC_DOMAINNAME);
1466                 up_write(&uts_sem);
1467         }
1468         return errno;
1469 }
1470 
1471 /* make sure you are allowed to change @tsk limits before calling this */
1472 static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1473                       struct rlimit *new_rlim, struct rlimit *old_rlim)
1474 {
1475         struct rlimit *rlim;
1476         int retval = 0;
1477 
1478         if (resource >= RLIM_NLIMITS)
1479                 return -EINVAL;
1480         resource = array_index_nospec(resource, RLIM_NLIMITS);
1481 
1482         if (new_rlim) {
1483                 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1484                         return -EINVAL;
1485                 if (resource == RLIMIT_NOFILE &&
1486                                 new_rlim->rlim_max > sysctl_nr_open)
1487                         return -EPERM;
1488         }
1489 
1490         /* Holding a refcount on tsk protects tsk->signal from disappearing. */
1491         rlim = tsk->signal->rlim + resource;
1492         task_lock(tsk->group_leader);
1493         if (new_rlim) {
1494                 /*
1495                  * Keep the capable check against init_user_ns until cgroups can
1496                  * contain all limits.
1497                  */
1498                 if (new_rlim->rlim_max > rlim->rlim_max &&
1499                                 !capable(CAP_SYS_RESOURCE))
1500                         retval = -EPERM;
1501                 if (!retval)
1502                         retval = security_task_setrlimit(tsk, resource, new_rlim);
1503         }
1504         if (!retval) {
1505                 if (old_rlim)
1506                         *old_rlim = *rlim;
1507                 if (new_rlim)
1508                         *rlim = *new_rlim;
1509         }
1510         task_unlock(tsk->group_leader);
1511 
1512         /*
1513          * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1514          * infinite. In case of RLIM_INFINITY the posix CPU timer code
1515          * ignores the rlimit.
1516          */
1517         if (!retval && new_rlim && resource == RLIMIT_CPU &&
1518             new_rlim->rlim_cur != RLIM_INFINITY &&
1519             IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1520                 /*
1521                  * update_rlimit_cpu can fail if the task is exiting, but there
1522                  * may be other tasks in the thread group that are not exiting,
1523                  * and they need their cpu timers adjusted.
1524                  *
1525                  * The group_leader is the last task to be released, so if we
1526                  * cannot update_rlimit_cpu on it, then the entire process is
1527                  * exiting and we do not need to update at all.
1528                  */
1529                 update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1530         }
1531 
1532         return retval;
1533 }
1534 
1535 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1536 {
1537         struct rlimit value;
1538         int ret;
1539 
1540         ret = do_prlimit(current, resource, NULL, &value);
1541         if (!ret)
1542                 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1543 
1544         return ret;
1545 }
1546 
1547 #ifdef CONFIG_COMPAT
1548 
1549 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1550                        struct compat_rlimit __user *, rlim)
1551 {
1552         struct rlimit r;
1553         struct compat_rlimit r32;
1554 
1555         if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1556                 return -EFAULT;
1557 
1558         if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1559                 r.rlim_cur = RLIM_INFINITY;
1560         else
1561                 r.rlim_cur = r32.rlim_cur;
1562         if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1563                 r.rlim_max = RLIM_INFINITY;
1564         else
1565                 r.rlim_max = r32.rlim_max;
1566         return do_prlimit(current, resource, &r, NULL);
1567 }
1568 
1569 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1570                        struct compat_rlimit __user *, rlim)
1571 {
1572         struct rlimit r;
1573         int ret;
1574 
1575         ret = do_prlimit(current, resource, NULL, &r);
1576         if (!ret) {
1577                 struct compat_rlimit r32;
1578                 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1579                         r32.rlim_cur = COMPAT_RLIM_INFINITY;
1580                 else
1581                         r32.rlim_cur = r.rlim_cur;
1582                 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1583                         r32.rlim_max = COMPAT_RLIM_INFINITY;
1584                 else
1585                         r32.rlim_max = r.rlim_max;
1586 
1587                 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1588                         return -EFAULT;
1589         }
1590         return ret;
1591 }
1592 
1593 #endif
1594 
1595 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1596 
1597 /*
1598  *      Back compatibility for getrlimit. Needed for some apps.
1599  */
1600 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1601                 struct rlimit __user *, rlim)
1602 {
1603         struct rlimit x;
1604         if (resource >= RLIM_NLIMITS)
1605                 return -EINVAL;
1606 
1607         resource = array_index_nospec(resource, RLIM_NLIMITS);
1608         task_lock(current->group_leader);
1609         x = current->signal->rlim[resource];
1610         task_unlock(current->group_leader);
1611         if (x.rlim_cur > 0x7FFFFFFF)
1612                 x.rlim_cur = 0x7FFFFFFF;
1613         if (x.rlim_max > 0x7FFFFFFF)
1614                 x.rlim_max = 0x7FFFFFFF;
1615         return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1616 }
1617 
1618 #ifdef CONFIG_COMPAT
1619 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1620                        struct compat_rlimit __user *, rlim)
1621 {
1622         struct rlimit r;
1623 
1624         if (resource >= RLIM_NLIMITS)
1625                 return -EINVAL;
1626 
1627         resource = array_index_nospec(resource, RLIM_NLIMITS);
1628         task_lock(current->group_leader);
1629         r = current->signal->rlim[resource];
1630         task_unlock(current->group_leader);
1631         if (r.rlim_cur > 0x7FFFFFFF)
1632                 r.rlim_cur = 0x7FFFFFFF;
1633         if (r.rlim_max > 0x7FFFFFFF)
1634                 r.rlim_max = 0x7FFFFFFF;
1635 
1636         if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1637             put_user(r.rlim_max, &rlim->rlim_max))
1638                 return -EFAULT;
1639         return 0;
1640 }
1641 #endif
1642 
1643 #endif
1644 
1645 static inline bool rlim64_is_infinity(__u64 rlim64)
1646 {
1647 #if BITS_PER_LONG < 64
1648         return rlim64 >= ULONG_MAX;
1649 #else
1650         return rlim64 == RLIM64_INFINITY;
1651 #endif
1652 }
1653 
1654 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1655 {
1656         if (rlim->rlim_cur == RLIM_INFINITY)
1657                 rlim64->rlim_cur = RLIM64_INFINITY;
1658         else
1659                 rlim64->rlim_cur = rlim->rlim_cur;
1660         if (rlim->rlim_max == RLIM_INFINITY)
1661                 rlim64->rlim_max = RLIM64_INFINITY;
1662         else
1663                 rlim64->rlim_max = rlim->rlim_max;
1664 }
1665 
1666 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1667 {
1668         if (rlim64_is_infinity(rlim64->rlim_cur))
1669                 rlim->rlim_cur = RLIM_INFINITY;
1670         else
1671                 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1672         if (rlim64_is_infinity(rlim64->rlim_max))
1673                 rlim->rlim_max = RLIM_INFINITY;
1674         else
1675                 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1676 }
1677 
1678 /* rcu lock must be held */
1679 static int check_prlimit_permission(struct task_struct *task,
1680                                     unsigned int flags)
1681 {
1682         const struct cred *cred = current_cred(), *tcred;
1683         bool id_match;
1684 
1685         if (current == task)
1686                 return 0;
1687 
1688         tcred = __task_cred(task);
1689         id_match = (uid_eq(cred->uid, tcred->euid) &&
1690                     uid_eq(cred->uid, tcred->suid) &&
1691                     uid_eq(cred->uid, tcred->uid)  &&
1692                     gid_eq(cred->gid, tcred->egid) &&
1693                     gid_eq(cred->gid, tcred->sgid) &&
1694                     gid_eq(cred->gid, tcred->gid));
1695         if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1696                 return -EPERM;
1697 
1698         return security_task_prlimit(cred, tcred, flags);
1699 }
1700 
1701 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1702                 const struct rlimit64 __user *, new_rlim,
1703                 struct rlimit64 __user *, old_rlim)
1704 {
1705         struct rlimit64 old64, new64;
1706         struct rlimit old, new;
1707         struct task_struct *tsk;
1708         unsigned int checkflags = 0;
1709         int ret;
1710 
1711         if (old_rlim)
1712                 checkflags |= LSM_PRLIMIT_READ;
1713 
1714         if (new_rlim) {
1715                 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1716                         return -EFAULT;
1717                 rlim64_to_rlim(&new64, &new);
1718                 checkflags |= LSM_PRLIMIT_WRITE;
1719         }
1720 
1721         rcu_read_lock();
1722         tsk = pid ? find_task_by_vpid(pid) : current;
1723         if (!tsk) {
1724                 rcu_read_unlock();
1725                 return -ESRCH;
1726         }
1727         ret = check_prlimit_permission(tsk, checkflags);
1728         if (ret) {
1729                 rcu_read_unlock();
1730                 return ret;
1731         }
1732         get_task_struct(tsk);
1733         rcu_read_unlock();
1734 
1735         ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1736                         old_rlim ? &old : NULL);
1737 
1738         if (!ret && old_rlim) {
1739                 rlim_to_rlim64(&old, &old64);
1740                 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1741                         ret = -EFAULT;
1742         }
1743 
1744         put_task_struct(tsk);
1745         return ret;
1746 }
1747 
1748 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1749 {
1750         struct rlimit new_rlim;
1751 
1752         if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1753                 return -EFAULT;
1754         return do_prlimit(current, resource, &new_rlim, NULL);
1755 }
1756 
1757 /*
1758  * It would make sense to put struct rusage in the task_struct,
1759  * except that would make the task_struct be *really big*.  After
1760  * task_struct gets moved into malloc'ed memory, it would
1761  * make sense to do this.  It will make moving the rest of the information
1762  * a lot simpler!  (Which we're not doing right now because we're not
1763  * measuring them yet).
1764  *
1765  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1766  * races with threads incrementing their own counters.  But since word
1767  * reads are atomic, we either get new values or old values and we don't
1768  * care which for the sums.  We always take the siglock to protect reading
1769  * the c* fields from p->signal from races with exit.c updating those
1770  * fields when reaping, so a sample either gets all the additions of a
1771  * given child after it's reaped, or none so this sample is before reaping.
1772  *
1773  * Locking:
1774  * We need to take the siglock for CHILDEREN, SELF and BOTH
1775  * for  the cases current multithreaded, non-current single threaded
1776  * non-current multithreaded.  Thread traversal is now safe with
1777  * the siglock held.
1778  * Strictly speaking, we donot need to take the siglock if we are current and
1779  * single threaded,  as no one else can take our signal_struct away, no one
1780  * else can  reap the  children to update signal->c* counters, and no one else
1781  * can race with the signal-> fields. If we do not take any lock, the
1782  * signal-> fields could be read out of order while another thread was just
1783  * exiting. So we should  place a read memory barrier when we avoid the lock.
1784  * On the writer side,  write memory barrier is implied in  __exit_signal
1785  * as __exit_signal releases  the siglock spinlock after updating the signal->
1786  * fields. But we don't do this yet to keep things simple.
1787  *
1788  */
1789 
1790 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1791 {
1792         r->ru_nvcsw += t->nvcsw;
1793         r->ru_nivcsw += t->nivcsw;
1794         r->ru_minflt += t->min_flt;
1795         r->ru_majflt += t->maj_flt;
1796         r->ru_inblock += task_io_get_inblock(t);
1797         r->ru_oublock += task_io_get_oublock(t);
1798 }
1799 
1800 void getrusage(struct task_struct *p, int who, struct rusage *r)
1801 {
1802         struct task_struct *t;
1803         unsigned long flags;
1804         u64 tgutime, tgstime, utime, stime;
1805         unsigned long maxrss;
1806         struct mm_struct *mm;
1807         struct signal_struct *sig = p->signal;
1808         unsigned int seq = 0;
1809 
1810 retry:
1811         memset(r, 0, sizeof(*r));
1812         utime = stime = 0;
1813         maxrss = 0;
1814 
1815         if (who == RUSAGE_THREAD) {
1816                 task_cputime_adjusted(current, &utime, &stime);
1817                 accumulate_thread_rusage(p, r);
1818                 maxrss = sig->maxrss;
1819                 goto out_thread;
1820         }
1821 
1822         flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
1823 
1824         switch (who) {
1825         case RUSAGE_BOTH:
1826         case RUSAGE_CHILDREN:
1827                 utime = sig->cutime;
1828                 stime = sig->cstime;
1829                 r->ru_nvcsw = sig->cnvcsw;
1830                 r->ru_nivcsw = sig->cnivcsw;
1831                 r->ru_minflt = sig->cmin_flt;
1832                 r->ru_majflt = sig->cmaj_flt;
1833                 r->ru_inblock = sig->cinblock;
1834                 r->ru_oublock = sig->coublock;
1835                 maxrss = sig->cmaxrss;
1836 
1837                 if (who == RUSAGE_CHILDREN)
1838                         break;
1839                 fallthrough;
1840 
1841         case RUSAGE_SELF:
1842                 r->ru_nvcsw += sig->nvcsw;
1843                 r->ru_nivcsw += sig->nivcsw;
1844                 r->ru_minflt += sig->min_flt;
1845                 r->ru_majflt += sig->maj_flt;
1846                 r->ru_inblock += sig->inblock;
1847                 r->ru_oublock += sig->oublock;
1848                 if (maxrss < sig->maxrss)
1849                         maxrss = sig->maxrss;
1850 
1851                 rcu_read_lock();
1852                 __for_each_thread(sig, t)
1853                         accumulate_thread_rusage(t, r);
1854                 rcu_read_unlock();
1855 
1856                 break;
1857 
1858         default:
1859                 BUG();
1860         }
1861 
1862         if (need_seqretry(&sig->stats_lock, seq)) {
1863                 seq = 1;
1864                 goto retry;
1865         }
1866         done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1867 
1868         if (who == RUSAGE_CHILDREN)
1869                 goto out_children;
1870 
1871         thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1872         utime += tgutime;
1873         stime += tgstime;
1874 
1875 out_thread:
1876         mm = get_task_mm(p);
1877         if (mm) {
1878                 setmax_mm_hiwater_rss(&maxrss, mm);
1879                 mmput(mm);
1880         }
1881 
1882 out_children:
1883         r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1884         r->ru_utime = ns_to_kernel_old_timeval(utime);
1885         r->ru_stime = ns_to_kernel_old_timeval(stime);
1886 }
1887 
1888 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1889 {
1890         struct rusage r;
1891 
1892         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1893             who != RUSAGE_THREAD)
1894                 return -EINVAL;
1895 
1896         getrusage(current, who, &r);
1897         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1898 }
1899 
1900 #ifdef CONFIG_COMPAT
1901 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1902 {
1903         struct rusage r;
1904 
1905         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1906             who != RUSAGE_THREAD)
1907                 return -EINVAL;
1908 
1909         getrusage(current, who, &r);
1910         return put_compat_rusage(&r, ru);
1911 }
1912 #endif
1913 
1914 SYSCALL_DEFINE1(umask, int, mask)
1915 {
1916         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1917         return mask;
1918 }
1919 
1920 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1921 {
1922         struct fd exe;
1923         struct inode *inode;
1924         int err;
1925 
1926         exe = fdget(fd);
1927         if (!exe.file)
1928                 return -EBADF;
1929 
1930         inode = file_inode(exe.file);
1931 
1932         /*
1933          * Because the original mm->exe_file points to executable file, make
1934          * sure that this one is executable as well, to avoid breaking an
1935          * overall picture.
1936          */
1937         err = -EACCES;
1938         if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1939                 goto exit;
1940 
1941         err = file_permission(exe.file, MAY_EXEC);
1942         if (err)
1943                 goto exit;
1944 
1945         err = replace_mm_exe_file(mm, exe.file);
1946 exit:
1947         fdput(exe);
1948         return err;
1949 }
1950 
1951 /*
1952  * Check arithmetic relations of passed addresses.
1953  *
1954  * WARNING: we don't require any capability here so be very careful
1955  * in what is allowed for modification from userspace.
1956  */
1957 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1958 {
1959         unsigned long mmap_max_addr = TASK_SIZE;
1960         int error = -EINVAL, i;
1961 
1962         static const unsigned char offsets[] = {
1963                 offsetof(struct prctl_mm_map, start_code),
1964                 offsetof(struct prctl_mm_map, end_code),
1965                 offsetof(struct prctl_mm_map, start_data),
1966                 offsetof(struct prctl_mm_map, end_data),
1967                 offsetof(struct prctl_mm_map, start_brk),
1968                 offsetof(struct prctl_mm_map, brk),
1969                 offsetof(struct prctl_mm_map, start_stack),
1970                 offsetof(struct prctl_mm_map, arg_start),
1971                 offsetof(struct prctl_mm_map, arg_end),
1972                 offsetof(struct prctl_mm_map, env_start),
1973                 offsetof(struct prctl_mm_map, env_end),
1974         };
1975 
1976         /*
1977          * Make sure the members are not somewhere outside
1978          * of allowed address space.
1979          */
1980         for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1981                 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1982 
1983                 if ((unsigned long)val >= mmap_max_addr ||
1984                     (unsigned long)val < mmap_min_addr)
1985                         goto out;
1986         }
1987 
1988         /*
1989          * Make sure the pairs are ordered.
1990          */
1991 #define __prctl_check_order(__m1, __op, __m2)                           \
1992         ((unsigned long)prctl_map->__m1 __op                            \
1993          (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1994         error  = __prctl_check_order(start_code, <, end_code);
1995         error |= __prctl_check_order(start_data,<=, end_data);
1996         error |= __prctl_check_order(start_brk, <=, brk);
1997         error |= __prctl_check_order(arg_start, <=, arg_end);
1998         error |= __prctl_check_order(env_start, <=, env_end);
1999         if (error)
2000                 goto out;
2001 #undef __prctl_check_order
2002 
2003         error = -EINVAL;
2004 
2005         /*
2006          * Neither we should allow to override limits if they set.
2007          */
2008         if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
2009                               prctl_map->start_brk, prctl_map->end_data,
2010                               prctl_map->start_data))
2011                         goto out;
2012 
2013         error = 0;
2014 out:
2015         return error;
2016 }
2017 
2018 #ifdef CONFIG_CHECKPOINT_RESTORE
2019 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
2020 {
2021         struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
2022         unsigned long user_auxv[AT_VECTOR_SIZE];
2023         struct mm_struct *mm = current->mm;
2024         int error;
2025 
2026         BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2027         BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2028 
2029         if (opt == PR_SET_MM_MAP_SIZE)
2030                 return put_user((unsigned int)sizeof(prctl_map),
2031                                 (unsigned int __user *)addr);
2032 
2033         if (data_size != sizeof(prctl_map))
2034                 return -EINVAL;
2035 
2036         if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2037                 return -EFAULT;
2038 
2039         error = validate_prctl_map_addr(&prctl_map);
2040         if (error)
2041                 return error;
2042 
2043         if (prctl_map.auxv_size) {
2044                 /*
2045                  * Someone is trying to cheat the auxv vector.
2046                  */
2047                 if (!prctl_map.auxv ||
2048                                 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2049                         return -EINVAL;
2050 
2051                 memset(user_auxv, 0, sizeof(user_auxv));
2052                 if (copy_from_user(user_auxv,
2053                                    (const void __user *)prctl_map.auxv,
2054                                    prctl_map.auxv_size))
2055                         return -EFAULT;
2056 
2057                 /* Last entry must be AT_NULL as specification requires */
2058                 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2059                 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2060         }
2061 
2062         if (prctl_map.exe_fd != (u32)-1) {
2063                 /*
2064                  * Check if the current user is checkpoint/restore capable.
2065                  * At the time of this writing, it checks for CAP_SYS_ADMIN
2066                  * or CAP_CHECKPOINT_RESTORE.
2067                  * Note that a user with access to ptrace can masquerade an
2068                  * arbitrary program as any executable, even setuid ones.
2069                  * This may have implications in the tomoyo subsystem.
2070                  */
2071                 if (!checkpoint_restore_ns_capable(current_user_ns()))
2072                         return -EPERM;
2073 
2074                 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2075                 if (error)
2076                         return error;
2077         }
2078 
2079         /*
2080          * arg_lock protects concurrent updates but we still need mmap_lock for
2081          * read to exclude races with sys_brk.
2082          */
2083         mmap_read_lock(mm);
2084 
2085         /*
2086          * We don't validate if these members are pointing to
2087          * real present VMAs because application may have correspond
2088          * VMAs already unmapped and kernel uses these members for statistics
2089          * output in procfs mostly, except
2090          *
2091          *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2092          *    for VMAs when updating these members so anything wrong written
2093          *    here cause kernel to swear at userspace program but won't lead
2094          *    to any problem in kernel itself
2095          */
2096 
2097         spin_lock(&mm->arg_lock);
2098         mm->start_code  = prctl_map.start_code;
2099         mm->end_code    = prctl_map.end_code;
2100         mm->start_data  = prctl_map.start_data;
2101         mm->end_data    = prctl_map.end_data;
2102         mm->start_brk   = prctl_map.start_brk;
2103         mm->brk         = prctl_map.brk;
2104         mm->start_stack = prctl_map.start_stack;
2105         mm->arg_start   = prctl_map.arg_start;
2106         mm->arg_end     = prctl_map.arg_end;
2107         mm->env_start   = prctl_map.env_start;
2108         mm->env_end     = prctl_map.env_end;
2109         spin_unlock(&mm->arg_lock);
2110 
2111         /*
2112          * Note this update of @saved_auxv is lockless thus
2113          * if someone reads this member in procfs while we're
2114          * updating -- it may get partly updated results. It's
2115          * known and acceptable trade off: we leave it as is to
2116          * not introduce additional locks here making the kernel
2117          * more complex.
2118          */
2119         if (prctl_map.auxv_size)
2120                 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2121 
2122         mmap_read_unlock(mm);
2123         return 0;
2124 }
2125 #endif /* CONFIG_CHECKPOINT_RESTORE */
2126 
2127 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2128                           unsigned long len)
2129 {
2130         /*
2131          * This doesn't move the auxiliary vector itself since it's pinned to
2132          * mm_struct, but it permits filling the vector with new values.  It's
2133          * up to the caller to provide sane values here, otherwise userspace
2134          * tools which use this vector might be unhappy.
2135          */
2136         unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2137 
2138         if (len > sizeof(user_auxv))
2139                 return -EINVAL;
2140 
2141         if (copy_from_user(user_auxv, (const void __user *)addr, len))
2142                 return -EFAULT;
2143 
2144         /* Make sure the last entry is always AT_NULL */
2145         user_auxv[AT_VECTOR_SIZE - 2] = 0;
2146         user_auxv[AT_VECTOR_SIZE - 1] = 0;
2147 
2148         BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2149 
2150         task_lock(current);
2151         memcpy(mm->saved_auxv, user_auxv, len);
2152         task_unlock(current);
2153 
2154         return 0;
2155 }
2156 
2157 static int prctl_set_mm(int opt, unsigned long addr,
2158                         unsigned long arg4, unsigned long arg5)
2159 {
2160         struct mm_struct *mm = current->mm;
2161         struct prctl_mm_map prctl_map = {
2162                 .auxv = NULL,
2163                 .auxv_size = 0,
2164                 .exe_fd = -1,
2165         };
2166         struct vm_area_struct *vma;
2167         int error;
2168 
2169         if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2170                               opt != PR_SET_MM_MAP &&
2171                               opt != PR_SET_MM_MAP_SIZE)))
2172                 return -EINVAL;
2173 
2174 #ifdef CONFIG_CHECKPOINT_RESTORE
2175         if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2176                 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2177 #endif
2178 
2179         if (!capable(CAP_SYS_RESOURCE))
2180                 return -EPERM;
2181 
2182         if (opt == PR_SET_MM_EXE_FILE)
2183                 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2184 
2185         if (opt == PR_SET_MM_AUXV)
2186                 return prctl_set_auxv(mm, addr, arg4);
2187 
2188         if (addr >= TASK_SIZE || addr < mmap_min_addr)
2189                 return -EINVAL;
2190 
2191         error = -EINVAL;
2192 
2193         /*
2194          * arg_lock protects concurrent updates of arg boundaries, we need
2195          * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2196          * validation.
2197          */
2198         mmap_read_lock(mm);
2199         vma = find_vma(mm, addr);
2200 
2201         spin_lock(&mm->arg_lock);
2202         prctl_map.start_code    = mm->start_code;
2203         prctl_map.end_code      = mm->end_code;
2204         prctl_map.start_data    = mm->start_data;
2205         prctl_map.end_data      = mm->end_data;
2206         prctl_map.start_brk     = mm->start_brk;
2207         prctl_map.brk           = mm->brk;
2208         prctl_map.start_stack   = mm->start_stack;
2209         prctl_map.arg_start     = mm->arg_start;
2210         prctl_map.arg_end       = mm->arg_end;
2211         prctl_map.env_start     = mm->env_start;
2212         prctl_map.env_end       = mm->env_end;
2213 
2214         switch (opt) {
2215         case PR_SET_MM_START_CODE:
2216                 prctl_map.start_code = addr;
2217                 break;
2218         case PR_SET_MM_END_CODE:
2219                 prctl_map.end_code = addr;
2220                 break;
2221         case PR_SET_MM_START_DATA:
2222                 prctl_map.start_data = addr;
2223                 break;
2224         case PR_SET_MM_END_DATA:
2225                 prctl_map.end_data = addr;
2226                 break;
2227         case PR_SET_MM_START_STACK:
2228                 prctl_map.start_stack = addr;
2229                 break;
2230         case PR_SET_MM_START_BRK:
2231                 prctl_map.start_brk = addr;
2232                 break;
2233         case PR_SET_MM_BRK:
2234                 prctl_map.brk = addr;
2235                 break;
2236         case PR_SET_MM_ARG_START:
2237                 prctl_map.arg_start = addr;
2238                 break;
2239         case PR_SET_MM_ARG_END:
2240                 prctl_map.arg_end = addr;
2241                 break;
2242         case PR_SET_MM_ENV_START:
2243                 prctl_map.env_start = addr;
2244                 break;
2245         case PR_SET_MM_ENV_END:
2246                 prctl_map.env_end = addr;
2247                 break;
2248         default:
2249                 goto out;
2250         }
2251 
2252         error = validate_prctl_map_addr(&prctl_map);
2253         if (error)
2254                 goto out;
2255 
2256         switch (opt) {
2257         /*
2258          * If command line arguments and environment
2259          * are placed somewhere else on stack, we can
2260          * set them up here, ARG_START/END to setup
2261          * command line arguments and ENV_START/END
2262          * for environment.
2263          */
2264         case PR_SET_MM_START_STACK:
2265         case PR_SET_MM_ARG_START:
2266         case PR_SET_MM_ARG_END:
2267         case PR_SET_MM_ENV_START:
2268         case PR_SET_MM_ENV_END:
2269                 if (!vma) {
2270                         error = -EFAULT;
2271                         goto out;
2272                 }
2273         }
2274 
2275         mm->start_code  = prctl_map.start_code;
2276         mm->end_code    = prctl_map.end_code;
2277         mm->start_data  = prctl_map.start_data;
2278         mm->end_data    = prctl_map.end_data;
2279         mm->start_brk   = prctl_map.start_brk;
2280         mm->brk         = prctl_map.brk;
2281         mm->start_stack = prctl_map.start_stack;
2282         mm->arg_start   = prctl_map.arg_start;
2283         mm->arg_end     = prctl_map.arg_end;
2284         mm->env_start   = prctl_map.env_start;
2285         mm->env_end     = prctl_map.env_end;
2286 
2287         error = 0;
2288 out:
2289         spin_unlock(&mm->arg_lock);
2290         mmap_read_unlock(mm);
2291         return error;
2292 }
2293 
2294 #ifdef CONFIG_CHECKPOINT_RESTORE
2295 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2296 {
2297         return put_user(me->clear_child_tid, tid_addr);
2298 }
2299 #else
2300 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2301 {
2302         return -EINVAL;
2303 }
2304 #endif
2305 
2306 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2307 {
2308         /*
2309          * If task has has_child_subreaper - all its descendants
2310          * already have these flag too and new descendants will
2311          * inherit it on fork, skip them.
2312          *
2313          * If we've found child_reaper - skip descendants in
2314          * it's subtree as they will never get out pidns.
2315          */
2316         if (p->signal->has_child_subreaper ||
2317             is_child_reaper(task_pid(p)))
2318                 return 0;
2319 
2320         p->signal->has_child_subreaper = 1;
2321         return 1;
2322 }
2323 
2324 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2325 {
2326         return -EINVAL;
2327 }
2328 
2329 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2330                                     unsigned long ctrl)
2331 {
2332         return -EINVAL;
2333 }
2334 
2335 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2336 
2337 #ifdef CONFIG_ANON_VMA_NAME
2338 
2339 #define ANON_VMA_NAME_MAX_LEN           80
2340 #define ANON_VMA_NAME_INVALID_CHARS     "\\`$[]"
2341 
2342 static inline bool is_valid_name_char(char ch)
2343 {
2344         /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2345         return ch > 0x1f && ch < 0x7f &&
2346                 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2347 }
2348 
2349 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2350                          unsigned long size, unsigned long arg)
2351 {
2352         struct mm_struct *mm = current->mm;
2353         const char __user *uname;
2354         struct anon_vma_name *anon_name = NULL;
2355         int error;
2356 
2357         switch (opt) {
2358         case PR_SET_VMA_ANON_NAME:
2359                 uname = (const char __user *)arg;
2360                 if (uname) {
2361                         char *name, *pch;
2362 
2363                         name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2364                         if (IS_ERR(name))
2365                                 return PTR_ERR(name);
2366 
2367                         for (pch = name; *pch != '\0'; pch++) {
2368                                 if (!is_valid_name_char(*pch)) {
2369                                         kfree(name);
2370                                         return -EINVAL;
2371                                 }
2372                         }
2373                         /* anon_vma has its own copy */
2374                         anon_name = anon_vma_name_alloc(name);
2375                         kfree(name);
2376                         if (!anon_name)
2377                                 return -ENOMEM;
2378 
2379                 }
2380 
2381                 mmap_write_lock(mm);
2382                 error = madvise_set_anon_name(mm, addr, size, anon_name);
2383                 mmap_write_unlock(mm);
2384                 anon_vma_name_put(anon_name);
2385                 break;
2386         default:
2387                 error = -EINVAL;
2388         }
2389 
2390         return error;
2391 }
2392 
2393 #else /* CONFIG_ANON_VMA_NAME */
2394 static int prctl_set_vma(unsigned long opt, unsigned long start,
2395                          unsigned long size, unsigned long arg)
2396 {
2397         return -EINVAL;
2398 }
2399 #endif /* CONFIG_ANON_VMA_NAME */
2400 
2401 static inline unsigned long get_current_mdwe(void)
2402 {
2403         unsigned long ret = 0;
2404 
2405         if (test_bit(MMF_HAS_MDWE, &current->mm->flags))
2406                 ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2407         if (test_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags))
2408                 ret |= PR_MDWE_NO_INHERIT;
2409 
2410         return ret;
2411 }
2412 
2413 static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2414                                  unsigned long arg4, unsigned long arg5)
2415 {
2416         unsigned long current_bits;
2417 
2418         if (arg3 || arg4 || arg5)
2419                 return -EINVAL;
2420 
2421         if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2422                 return -EINVAL;
2423 
2424         /* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2425         if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2426                 return -EINVAL;
2427 
2428         /*
2429          * EOPNOTSUPP might be more appropriate here in principle, but
2430          * existing userspace depends on EINVAL specifically.
2431          */
2432         if (!arch_memory_deny_write_exec_supported())
2433                 return -EINVAL;
2434 
2435         current_bits = get_current_mdwe();
2436         if (current_bits && current_bits != bits)
2437                 return -EPERM; /* Cannot unset the flags */
2438 
2439         if (bits & PR_MDWE_NO_INHERIT)
2440                 set_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags);
2441         if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2442                 set_bit(MMF_HAS_MDWE, &current->mm->flags);
2443 
2444         return 0;
2445 }
2446 
2447 static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2448                                  unsigned long arg4, unsigned long arg5)
2449 {
2450         if (arg2 || arg3 || arg4 || arg5)
2451                 return -EINVAL;
2452         return get_current_mdwe();
2453 }
2454 
2455 static int prctl_get_auxv(void __user *addr, unsigned long len)
2456 {
2457         struct mm_struct *mm = current->mm;
2458         unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2459 
2460         if (size && copy_to_user(addr, mm->saved_auxv, size))
2461                 return -EFAULT;
2462         return sizeof(mm->saved_auxv);
2463 }
2464 
2465 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2466                 unsigned long, arg4, unsigned long, arg5)
2467 {
2468         struct task_struct *me = current;
2469         unsigned char comm[sizeof(me->comm)];
2470         long error;
2471 
2472         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2473         if (error != -ENOSYS)
2474                 return error;
2475 
2476         error = 0;
2477         switch (option) {
2478         case PR_SET_PDEATHSIG:
2479                 if (!valid_signal(arg2)) {
2480                         error = -EINVAL;
2481                         break;
2482                 }
2483                 me->pdeath_signal = arg2;
2484                 break;
2485         case PR_GET_PDEATHSIG:
2486                 error = put_user(me->pdeath_signal, (int __user *)arg2);
2487                 break;
2488         case PR_GET_DUMPABLE:
2489                 error = get_dumpable(me->mm);
2490                 break;
2491         case PR_SET_DUMPABLE:
2492                 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2493                         error = -EINVAL;
2494                         break;
2495                 }
2496                 set_dumpable(me->mm, arg2);
2497                 break;
2498 
2499         case PR_SET_UNALIGN:
2500                 error = SET_UNALIGN_CTL(me, arg2);
2501                 break;
2502         case PR_GET_UNALIGN:
2503                 error = GET_UNALIGN_CTL(me, arg2);
2504                 break;
2505         case PR_SET_FPEMU:
2506                 error = SET_FPEMU_CTL(me, arg2);
2507                 break;
2508         case PR_GET_FPEMU:
2509                 error = GET_FPEMU_CTL(me, arg2);
2510                 break;
2511         case PR_SET_FPEXC:
2512                 error = SET_FPEXC_CTL(me, arg2);
2513                 break;
2514         case PR_GET_FPEXC:
2515                 error = GET_FPEXC_CTL(me, arg2);
2516                 break;
2517         case PR_GET_TIMING:
2518                 error = PR_TIMING_STATISTICAL;
2519                 break;
2520         case PR_SET_TIMING:
2521                 if (arg2 != PR_TIMING_STATISTICAL)
2522                         error = -EINVAL;
2523                 break;
2524         case PR_SET_NAME:
2525                 comm[sizeof(me->comm) - 1] = 0;
2526                 if (strncpy_from_user(comm, (char __user *)arg2,
2527                                       sizeof(me->comm) - 1) < 0)
2528                         return -EFAULT;
2529                 set_task_comm(me, comm);
2530                 proc_comm_connector(me);
2531                 break;
2532         case PR_GET_NAME:
2533                 get_task_comm(comm, me);
2534                 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2535                         return -EFAULT;
2536                 break;
2537         case PR_GET_ENDIAN:
2538                 error = GET_ENDIAN(me, arg2);
2539                 break;
2540         case PR_SET_ENDIAN:
2541                 error = SET_ENDIAN(me, arg2);
2542                 break;
2543         case PR_GET_SECCOMP:
2544                 error = prctl_get_seccomp();
2545                 break;
2546         case PR_SET_SECCOMP:
2547                 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2548                 break;
2549         case PR_GET_TSC:
2550                 error = GET_TSC_CTL(arg2);
2551                 break;
2552         case PR_SET_TSC:
2553                 error = SET_TSC_CTL(arg2);
2554                 break;
2555         case PR_TASK_PERF_EVENTS_DISABLE:
2556                 error = perf_event_task_disable();
2557                 break;
2558         case PR_TASK_PERF_EVENTS_ENABLE:
2559                 error = perf_event_task_enable();
2560                 break;
2561         case PR_GET_TIMERSLACK:
2562                 if (current->timer_slack_ns > ULONG_MAX)
2563                         error = ULONG_MAX;
2564                 else
2565                         error = current->timer_slack_ns;
2566                 break;
2567         case PR_SET_TIMERSLACK:
2568                 if (arg2 <= 0)
2569                         current->timer_slack_ns =
2570                                         current->default_timer_slack_ns;
2571                 else
2572                         current->timer_slack_ns = arg2;
2573                 break;
2574         case PR_MCE_KILL:
2575                 if (arg4 | arg5)
2576                         return -EINVAL;
2577                 switch (arg2) {
2578                 case PR_MCE_KILL_CLEAR:
2579                         if (arg3 != 0)
2580                                 return -EINVAL;
2581                         current->flags &= ~PF_MCE_PROCESS;
2582                         break;
2583                 case PR_MCE_KILL_SET:
2584                         current->flags |= PF_MCE_PROCESS;
2585                         if (arg3 == PR_MCE_KILL_EARLY)
2586                                 current->flags |= PF_MCE_EARLY;
2587                         else if (arg3 == PR_MCE_KILL_LATE)
2588                                 current->flags &= ~PF_MCE_EARLY;
2589                         else if (arg3 == PR_MCE_KILL_DEFAULT)
2590                                 current->flags &=
2591                                                 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2592                         else
2593                                 return -EINVAL;
2594                         break;
2595                 default:
2596                         return -EINVAL;
2597                 }
2598                 break;
2599         case PR_MCE_KILL_GET:
2600                 if (arg2 | arg3 | arg4 | arg5)
2601                         return -EINVAL;
2602                 if (current->flags & PF_MCE_PROCESS)
2603                         error = (current->flags & PF_MCE_EARLY) ?
2604                                 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2605                 else
2606                         error = PR_MCE_KILL_DEFAULT;
2607                 break;
2608         case PR_SET_MM:
2609                 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2610                 break;
2611         case PR_GET_TID_ADDRESS:
2612                 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2613                 break;
2614         case PR_SET_CHILD_SUBREAPER:
2615                 me->signal->is_child_subreaper = !!arg2;
2616                 if (!arg2)
2617                         break;
2618 
2619                 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2620                 break;
2621         case PR_GET_CHILD_SUBREAPER:
2622                 error = put_user(me->signal->is_child_subreaper,
2623                                  (int __user *)arg2);
2624                 break;
2625         case PR_SET_NO_NEW_PRIVS:
2626                 if (arg2 != 1 || arg3 || arg4 || arg5)
2627                         return -EINVAL;
2628 
2629                 task_set_no_new_privs(current);
2630                 break;
2631         case PR_GET_NO_NEW_PRIVS:
2632                 if (arg2 || arg3 || arg4 || arg5)
2633                         return -EINVAL;
2634                 return task_no_new_privs(current) ? 1 : 0;
2635         case PR_GET_THP_DISABLE:
2636                 if (arg2 || arg3 || arg4 || arg5)
2637                         return -EINVAL;
2638                 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2639                 break;
2640         case PR_SET_THP_DISABLE:
2641                 if (arg3 || arg4 || arg5)
2642                         return -EINVAL;
2643                 if (mmap_write_lock_killable(me->mm))
2644                         return -EINTR;
2645                 if (arg2)
2646                         set_bit(MMF_DISABLE_THP, &me->mm->flags);
2647                 else
2648                         clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2649                 mmap_write_unlock(me->mm);
2650                 break;
2651         case PR_MPX_ENABLE_MANAGEMENT:
2652         case PR_MPX_DISABLE_MANAGEMENT:
2653                 /* No longer implemented: */
2654                 return -EINVAL;
2655         case PR_SET_FP_MODE:
2656                 error = SET_FP_MODE(me, arg2);
2657                 break;
2658         case PR_GET_FP_MODE:
2659                 error = GET_FP_MODE(me);
2660                 break;
2661         case PR_SVE_SET_VL:
2662                 error = SVE_SET_VL(arg2);
2663                 break;
2664         case PR_SVE_GET_VL:
2665                 error = SVE_GET_VL();
2666                 break;
2667         case PR_SME_SET_VL:
2668                 error = SME_SET_VL(arg2);
2669                 break;
2670         case PR_SME_GET_VL:
2671                 error = SME_GET_VL();
2672                 break;
2673         case PR_GET_SPECULATION_CTRL:
2674                 if (arg3 || arg4 || arg5)
2675                         return -EINVAL;
2676                 error = arch_prctl_spec_ctrl_get(me, arg2);
2677                 break;
2678         case PR_SET_SPECULATION_CTRL:
2679                 if (arg4 || arg5)
2680                         return -EINVAL;
2681                 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2682                 break;
2683         case PR_PAC_RESET_KEYS:
2684                 if (arg3 || arg4 || arg5)
2685                         return -EINVAL;
2686                 error = PAC_RESET_KEYS(me, arg2);
2687                 break;
2688         case PR_PAC_SET_ENABLED_KEYS:
2689                 if (arg4 || arg5)
2690                         return -EINVAL;
2691                 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2692                 break;
2693         case PR_PAC_GET_ENABLED_KEYS:
2694                 if (arg2 || arg3 || arg4 || arg5)
2695                         return -EINVAL;
2696                 error = PAC_GET_ENABLED_KEYS(me);
2697                 break;
2698         case PR_SET_TAGGED_ADDR_CTRL:
2699                 if (arg3 || arg4 || arg5)
2700                         return -EINVAL;
2701                 error = SET_TAGGED_ADDR_CTRL(arg2);
2702                 break;
2703         case PR_GET_TAGGED_ADDR_CTRL:
2704                 if (arg2 || arg3 || arg4 || arg5)
2705                         return -EINVAL;
2706                 error = GET_TAGGED_ADDR_CTRL();
2707                 break;
2708         case PR_SET_IO_FLUSHER:
2709                 if (!capable(CAP_SYS_RESOURCE))
2710                         return -EPERM;
2711 
2712                 if (arg3 || arg4 || arg5)
2713                         return -EINVAL;
2714 
2715                 if (arg2 == 1)
2716                         current->flags |= PR_IO_FLUSHER;
2717                 else if (!arg2)
2718                         current->flags &= ~PR_IO_FLUSHER;
2719                 else
2720                         return -EINVAL;
2721                 break;
2722         case PR_GET_IO_FLUSHER:
2723                 if (!capable(CAP_SYS_RESOURCE))
2724                         return -EPERM;
2725 
2726                 if (arg2 || arg3 || arg4 || arg5)
2727                         return -EINVAL;
2728 
2729                 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2730                 break;
2731         case PR_SET_SYSCALL_USER_DISPATCH:
2732                 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2733                                                   (char __user *) arg5);
2734                 break;
2735 #ifdef CONFIG_SCHED_CORE
2736         case PR_SCHED_CORE:
2737                 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2738                 break;
2739 #endif
2740         case PR_SET_MDWE:
2741                 error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2742                 break;
2743         case PR_GET_MDWE:
2744                 error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2745                 break;
2746         case PR_PPC_GET_DEXCR:
2747                 if (arg3 || arg4 || arg5)
2748                         return -EINVAL;
2749                 error = PPC_GET_DEXCR_ASPECT(me, arg2);
2750                 break;
2751         case PR_PPC_SET_DEXCR:
2752                 if (arg4 || arg5)
2753                         return -EINVAL;
2754                 error = PPC_SET_DEXCR_ASPECT(me, arg2, arg3);
2755                 break;
2756         case PR_SET_VMA:
2757                 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2758                 break;
2759         case PR_GET_AUXV:
2760                 if (arg4 || arg5)
2761                         return -EINVAL;
2762                 error = prctl_get_auxv((void __user *)arg2, arg3);
2763                 break;
2764 #ifdef CONFIG_KSM
2765         case PR_SET_MEMORY_MERGE:
2766                 if (arg3 || arg4 || arg5)
2767                         return -EINVAL;
2768                 if (mmap_write_lock_killable(me->mm))
2769                         return -EINTR;
2770 
2771                 if (arg2)
2772                         error = ksm_enable_merge_any(me->mm);
2773                 else
2774                         error = ksm_disable_merge_any(me->mm);
2775                 mmap_write_unlock(me->mm);
2776                 break;
2777         case PR_GET_MEMORY_MERGE:
2778                 if (arg2 || arg3 || arg4 || arg5)
2779                         return -EINVAL;
2780 
2781                 error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2782                 break;
2783 #endif
2784         case PR_RISCV_V_SET_CONTROL:
2785                 error = RISCV_V_SET_CONTROL(arg2);
2786                 break;
2787         case PR_RISCV_V_GET_CONTROL:
2788                 error = RISCV_V_GET_CONTROL();
2789                 break;
2790         case PR_RISCV_SET_ICACHE_FLUSH_CTX:
2791                 error = RISCV_SET_ICACHE_FLUSH_CTX(arg2, arg3);
2792                 break;
2793         default:
2794                 error = -EINVAL;
2795                 break;
2796         }
2797         return error;
2798 }
2799 
2800 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2801                 struct getcpu_cache __user *, unused)
2802 {
2803         int err = 0;
2804         int cpu = raw_smp_processor_id();
2805 
2806         if (cpup)
2807                 err |= put_user(cpu, cpup);
2808         if (nodep)
2809                 err |= put_user(cpu_to_node(cpu), nodep);
2810         return err ? -EFAULT : 0;
2811 }
2812 
2813 /**
2814  * do_sysinfo - fill in sysinfo struct
2815  * @info: pointer to buffer to fill
2816  */
2817 static int do_sysinfo(struct sysinfo *info)
2818 {
2819         unsigned long mem_total, sav_total;
2820         unsigned int mem_unit, bitcount;
2821         struct timespec64 tp;
2822 
2823         memset(info, 0, sizeof(struct sysinfo));
2824 
2825         ktime_get_boottime_ts64(&tp);
2826         timens_add_boottime(&tp);
2827         info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2828 
2829         get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2830 
2831         info->procs = nr_threads;
2832 
2833         si_meminfo(info);
2834         si_swapinfo(info);
2835 
2836         /*
2837          * If the sum of all the available memory (i.e. ram + swap)
2838          * is less than can be stored in a 32 bit unsigned long then
2839          * we can be binary compatible with 2.2.x kernels.  If not,
2840          * well, in that case 2.2.x was broken anyways...
2841          *
2842          *  -Erik Andersen <andersee@debian.org>
2843          */
2844 
2845         mem_total = info->totalram + info->totalswap;
2846         if (mem_total < info->totalram || mem_total < info->totalswap)
2847                 goto out;
2848         bitcount = 0;
2849         mem_unit = info->mem_unit;
2850         while (mem_unit > 1) {
2851                 bitcount++;
2852                 mem_unit >>= 1;
2853                 sav_total = mem_total;
2854                 mem_total <<= 1;
2855                 if (mem_total < sav_total)
2856                         goto out;
2857         }
2858 
2859         /*
2860          * If mem_total did not overflow, multiply all memory values by
2861          * info->mem_unit and set it to 1.  This leaves things compatible
2862          * with 2.2.x, and also retains compatibility with earlier 2.4.x
2863          * kernels...
2864          */
2865 
2866         info->mem_unit = 1;
2867         info->totalram <<= bitcount;
2868         info->freeram <<= bitcount;
2869         info->sharedram <<= bitcount;
2870         info->bufferram <<= bitcount;
2871         info->totalswap <<= bitcount;
2872         info->freeswap <<= bitcount;
2873         info->totalhigh <<= bitcount;
2874         info->freehigh <<= bitcount;
2875 
2876 out:
2877         return 0;
2878 }
2879 
2880 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2881 {
2882         struct sysinfo val;
2883 
2884         do_sysinfo(&val);
2885 
2886         if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2887                 return -EFAULT;
2888 
2889         return 0;
2890 }
2891 
2892 #ifdef CONFIG_COMPAT
2893 struct compat_sysinfo {
2894         s32 uptime;
2895         u32 loads[3];
2896         u32 totalram;
2897         u32 freeram;
2898         u32 sharedram;
2899         u32 bufferram;
2900         u32 totalswap;
2901         u32 freeswap;
2902         u16 procs;
2903         u16 pad;
2904         u32 totalhigh;
2905         u32 freehigh;
2906         u32 mem_unit;
2907         char _f[20-2*sizeof(u32)-sizeof(int)];
2908 };
2909 
2910 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2911 {
2912         struct sysinfo s;
2913         struct compat_sysinfo s_32;
2914 
2915         do_sysinfo(&s);
2916 
2917         /* Check to see if any memory value is too large for 32-bit and scale
2918          *  down if needed
2919          */
2920         if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2921                 int bitcount = 0;
2922 
2923                 while (s.mem_unit < PAGE_SIZE) {
2924                         s.mem_unit <<= 1;
2925                         bitcount++;
2926                 }
2927 
2928                 s.totalram >>= bitcount;
2929                 s.freeram >>= bitcount;
2930                 s.sharedram >>= bitcount;
2931                 s.bufferram >>= bitcount;
2932                 s.totalswap >>= bitcount;
2933                 s.freeswap >>= bitcount;
2934                 s.totalhigh >>= bitcount;
2935                 s.freehigh >>= bitcount;
2936         }
2937 
2938         memset(&s_32, 0, sizeof(s_32));
2939         s_32.uptime = s.uptime;
2940         s_32.loads[0] = s.loads[0];
2941         s_32.loads[1] = s.loads[1];
2942         s_32.loads[2] = s.loads[2];
2943         s_32.totalram = s.totalram;
2944         s_32.freeram = s.freeram;
2945         s_32.sharedram = s.sharedram;
2946         s_32.bufferram = s.bufferram;
2947         s_32.totalswap = s.totalswap;
2948         s_32.freeswap = s.freeswap;
2949         s_32.procs = s.procs;
2950         s_32.totalhigh = s.totalhigh;
2951         s_32.freehigh = s.freehigh;
2952         s_32.mem_unit = s.mem_unit;
2953         if (copy_to_user(info, &s_32, sizeof(s_32)))
2954                 return -EFAULT;
2955         return 0;
2956 }
2957 #endif /* CONFIG_COMPAT */
2958 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php