~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/time/alarmtimer.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Alarmtimer interface
  4  *
  5  * This interface provides a timer which is similar to hrtimers,
  6  * but triggers a RTC alarm if the box is suspend.
  7  *
  8  * This interface is influenced by the Android RTC Alarm timer
  9  * interface.
 10  *
 11  * Copyright (C) 2010 IBM Corporation
 12  *
 13  * Author: John Stultz <john.stultz@linaro.org>
 14  */
 15 #include <linux/time.h>
 16 #include <linux/hrtimer.h>
 17 #include <linux/timerqueue.h>
 18 #include <linux/rtc.h>
 19 #include <linux/sched/signal.h>
 20 #include <linux/sched/debug.h>
 21 #include <linux/alarmtimer.h>
 22 #include <linux/mutex.h>
 23 #include <linux/platform_device.h>
 24 #include <linux/posix-timers.h>
 25 #include <linux/workqueue.h>
 26 #include <linux/freezer.h>
 27 #include <linux/compat.h>
 28 #include <linux/module.h>
 29 #include <linux/time_namespace.h>
 30 
 31 #include "posix-timers.h"
 32 
 33 #define CREATE_TRACE_POINTS
 34 #include <trace/events/alarmtimer.h>
 35 
 36 /**
 37  * struct alarm_base - Alarm timer bases
 38  * @lock:               Lock for syncrhonized access to the base
 39  * @timerqueue:         Timerqueue head managing the list of events
 40  * @get_ktime:          Function to read the time correlating to the base
 41  * @get_timespec:       Function to read the namespace time correlating to the base
 42  * @base_clockid:       clockid for the base
 43  */
 44 static struct alarm_base {
 45         spinlock_t              lock;
 46         struct timerqueue_head  timerqueue;
 47         ktime_t                 (*get_ktime)(void);
 48         void                    (*get_timespec)(struct timespec64 *tp);
 49         clockid_t               base_clockid;
 50 } alarm_bases[ALARM_NUMTYPE];
 51 
 52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
 53 /* freezer information to handle clock_nanosleep triggered wakeups */
 54 static enum alarmtimer_type freezer_alarmtype;
 55 static ktime_t freezer_expires;
 56 static ktime_t freezer_delta;
 57 static DEFINE_SPINLOCK(freezer_delta_lock);
 58 #endif
 59 
 60 #ifdef CONFIG_RTC_CLASS
 61 /* rtc timer and device for setting alarm wakeups at suspend */
 62 static struct rtc_timer         rtctimer;
 63 static struct rtc_device        *rtcdev;
 64 static DEFINE_SPINLOCK(rtcdev_lock);
 65 
 66 /**
 67  * alarmtimer_get_rtcdev - Return selected rtcdevice
 68  *
 69  * This function returns the rtc device to use for wakealarms.
 70  */
 71 struct rtc_device *alarmtimer_get_rtcdev(void)
 72 {
 73         unsigned long flags;
 74         struct rtc_device *ret;
 75 
 76         spin_lock_irqsave(&rtcdev_lock, flags);
 77         ret = rtcdev;
 78         spin_unlock_irqrestore(&rtcdev_lock, flags);
 79 
 80         return ret;
 81 }
 82 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
 83 
 84 static int alarmtimer_rtc_add_device(struct device *dev)
 85 {
 86         unsigned long flags;
 87         struct rtc_device *rtc = to_rtc_device(dev);
 88         struct platform_device *pdev;
 89         int ret = 0;
 90 
 91         if (rtcdev)
 92                 return -EBUSY;
 93 
 94         if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
 95                 return -1;
 96         if (!device_may_wakeup(rtc->dev.parent))
 97                 return -1;
 98 
 99         pdev = platform_device_register_data(dev, "alarmtimer",
100                                              PLATFORM_DEVID_AUTO, NULL, 0);
101         if (!IS_ERR(pdev))
102                 device_init_wakeup(&pdev->dev, true);
103 
104         spin_lock_irqsave(&rtcdev_lock, flags);
105         if (!IS_ERR(pdev) && !rtcdev) {
106                 if (!try_module_get(rtc->owner)) {
107                         ret = -1;
108                         goto unlock;
109                 }
110 
111                 rtcdev = rtc;
112                 /* hold a reference so it doesn't go away */
113                 get_device(dev);
114                 pdev = NULL;
115         } else {
116                 ret = -1;
117         }
118 unlock:
119         spin_unlock_irqrestore(&rtcdev_lock, flags);
120 
121         platform_device_unregister(pdev);
122 
123         return ret;
124 }
125 
126 static inline void alarmtimer_rtc_timer_init(void)
127 {
128         rtc_timer_init(&rtctimer, NULL, NULL);
129 }
130 
131 static struct class_interface alarmtimer_rtc_interface = {
132         .add_dev = &alarmtimer_rtc_add_device,
133 };
134 
135 static int alarmtimer_rtc_interface_setup(void)
136 {
137         alarmtimer_rtc_interface.class = &rtc_class;
138         return class_interface_register(&alarmtimer_rtc_interface);
139 }
140 static void alarmtimer_rtc_interface_remove(void)
141 {
142         class_interface_unregister(&alarmtimer_rtc_interface);
143 }
144 #else
145 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
146 static inline void alarmtimer_rtc_interface_remove(void) { }
147 static inline void alarmtimer_rtc_timer_init(void) { }
148 #endif
149 
150 /**
151  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
152  * @base: pointer to the base where the timer is being run
153  * @alarm: pointer to alarm being enqueued.
154  *
155  * Adds alarm to a alarm_base timerqueue
156  *
157  * Must hold base->lock when calling.
158  */
159 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
160 {
161         if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
162                 timerqueue_del(&base->timerqueue, &alarm->node);
163 
164         timerqueue_add(&base->timerqueue, &alarm->node);
165         alarm->state |= ALARMTIMER_STATE_ENQUEUED;
166 }
167 
168 /**
169  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
170  * @base: pointer to the base where the timer is running
171  * @alarm: pointer to alarm being removed
172  *
173  * Removes alarm to a alarm_base timerqueue
174  *
175  * Must hold base->lock when calling.
176  */
177 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
178 {
179         if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
180                 return;
181 
182         timerqueue_del(&base->timerqueue, &alarm->node);
183         alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
184 }
185 
186 
187 /**
188  * alarmtimer_fired - Handles alarm hrtimer being fired.
189  * @timer: pointer to hrtimer being run
190  *
191  * When a alarm timer fires, this runs through the timerqueue to
192  * see which alarms expired, and runs those. If there are more alarm
193  * timers queued for the future, we set the hrtimer to fire when
194  * the next future alarm timer expires.
195  */
196 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
197 {
198         struct alarm *alarm = container_of(timer, struct alarm, timer);
199         struct alarm_base *base = &alarm_bases[alarm->type];
200         unsigned long flags;
201         int ret = HRTIMER_NORESTART;
202         int restart = ALARMTIMER_NORESTART;
203 
204         spin_lock_irqsave(&base->lock, flags);
205         alarmtimer_dequeue(base, alarm);
206         spin_unlock_irqrestore(&base->lock, flags);
207 
208         if (alarm->function)
209                 restart = alarm->function(alarm, base->get_ktime());
210 
211         spin_lock_irqsave(&base->lock, flags);
212         if (restart != ALARMTIMER_NORESTART) {
213                 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
214                 alarmtimer_enqueue(base, alarm);
215                 ret = HRTIMER_RESTART;
216         }
217         spin_unlock_irqrestore(&base->lock, flags);
218 
219         trace_alarmtimer_fired(alarm, base->get_ktime());
220         return ret;
221 
222 }
223 
224 ktime_t alarm_expires_remaining(const struct alarm *alarm)
225 {
226         struct alarm_base *base = &alarm_bases[alarm->type];
227         return ktime_sub(alarm->node.expires, base->get_ktime());
228 }
229 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
230 
231 #ifdef CONFIG_RTC_CLASS
232 /**
233  * alarmtimer_suspend - Suspend time callback
234  * @dev: unused
235  *
236  * When we are going into suspend, we look through the bases
237  * to see which is the soonest timer to expire. We then
238  * set an rtc timer to fire that far into the future, which
239  * will wake us from suspend.
240  */
241 static int alarmtimer_suspend(struct device *dev)
242 {
243         ktime_t min, now, expires;
244         int i, ret, type;
245         struct rtc_device *rtc;
246         unsigned long flags;
247         struct rtc_time tm;
248 
249         spin_lock_irqsave(&freezer_delta_lock, flags);
250         min = freezer_delta;
251         expires = freezer_expires;
252         type = freezer_alarmtype;
253         freezer_delta = 0;
254         spin_unlock_irqrestore(&freezer_delta_lock, flags);
255 
256         rtc = alarmtimer_get_rtcdev();
257         /* If we have no rtcdev, just return */
258         if (!rtc)
259                 return 0;
260 
261         /* Find the soonest timer to expire*/
262         for (i = 0; i < ALARM_NUMTYPE; i++) {
263                 struct alarm_base *base = &alarm_bases[i];
264                 struct timerqueue_node *next;
265                 ktime_t delta;
266 
267                 spin_lock_irqsave(&base->lock, flags);
268                 next = timerqueue_getnext(&base->timerqueue);
269                 spin_unlock_irqrestore(&base->lock, flags);
270                 if (!next)
271                         continue;
272                 delta = ktime_sub(next->expires, base->get_ktime());
273                 if (!min || (delta < min)) {
274                         expires = next->expires;
275                         min = delta;
276                         type = i;
277                 }
278         }
279         if (min == 0)
280                 return 0;
281 
282         if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
283                 pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
284                 return -EBUSY;
285         }
286 
287         trace_alarmtimer_suspend(expires, type);
288 
289         /* Setup an rtc timer to fire that far in the future */
290         rtc_timer_cancel(rtc, &rtctimer);
291         rtc_read_time(rtc, &tm);
292         now = rtc_tm_to_ktime(tm);
293 
294         /*
295          * If the RTC alarm timer only supports a limited time offset, set the
296          * alarm time to the maximum supported value.
297          * The system may wake up earlier (possibly much earlier) than expected
298          * when the alarmtimer runs. This is the best the kernel can do if
299          * the alarmtimer exceeds the time that the rtc device can be programmed
300          * for.
301          */
302         min = rtc_bound_alarmtime(rtc, min);
303 
304         now = ktime_add(now, min);
305 
306         /* Set alarm, if in the past reject suspend briefly to handle */
307         ret = rtc_timer_start(rtc, &rtctimer, now, 0);
308         if (ret < 0)
309                 pm_wakeup_event(dev, MSEC_PER_SEC);
310         return ret;
311 }
312 
313 static int alarmtimer_resume(struct device *dev)
314 {
315         struct rtc_device *rtc;
316 
317         rtc = alarmtimer_get_rtcdev();
318         if (rtc)
319                 rtc_timer_cancel(rtc, &rtctimer);
320         return 0;
321 }
322 
323 #else
324 static int alarmtimer_suspend(struct device *dev)
325 {
326         return 0;
327 }
328 
329 static int alarmtimer_resume(struct device *dev)
330 {
331         return 0;
332 }
333 #endif
334 
335 static void
336 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
337              enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
338 {
339         timerqueue_init(&alarm->node);
340         alarm->timer.function = alarmtimer_fired;
341         alarm->function = function;
342         alarm->type = type;
343         alarm->state = ALARMTIMER_STATE_INACTIVE;
344 }
345 
346 /**
347  * alarm_init - Initialize an alarm structure
348  * @alarm: ptr to alarm to be initialized
349  * @type: the type of the alarm
350  * @function: callback that is run when the alarm fires
351  */
352 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
353                 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
354 {
355         hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
356                      HRTIMER_MODE_ABS);
357         __alarm_init(alarm, type, function);
358 }
359 EXPORT_SYMBOL_GPL(alarm_init);
360 
361 /**
362  * alarm_start - Sets an absolute alarm to fire
363  * @alarm: ptr to alarm to set
364  * @start: time to run the alarm
365  */
366 void alarm_start(struct alarm *alarm, ktime_t start)
367 {
368         struct alarm_base *base = &alarm_bases[alarm->type];
369         unsigned long flags;
370 
371         spin_lock_irqsave(&base->lock, flags);
372         alarm->node.expires = start;
373         alarmtimer_enqueue(base, alarm);
374         hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
375         spin_unlock_irqrestore(&base->lock, flags);
376 
377         trace_alarmtimer_start(alarm, base->get_ktime());
378 }
379 EXPORT_SYMBOL_GPL(alarm_start);
380 
381 /**
382  * alarm_start_relative - Sets a relative alarm to fire
383  * @alarm: ptr to alarm to set
384  * @start: time relative to now to run the alarm
385  */
386 void alarm_start_relative(struct alarm *alarm, ktime_t start)
387 {
388         struct alarm_base *base = &alarm_bases[alarm->type];
389 
390         start = ktime_add_safe(start, base->get_ktime());
391         alarm_start(alarm, start);
392 }
393 EXPORT_SYMBOL_GPL(alarm_start_relative);
394 
395 void alarm_restart(struct alarm *alarm)
396 {
397         struct alarm_base *base = &alarm_bases[alarm->type];
398         unsigned long flags;
399 
400         spin_lock_irqsave(&base->lock, flags);
401         hrtimer_set_expires(&alarm->timer, alarm->node.expires);
402         hrtimer_restart(&alarm->timer);
403         alarmtimer_enqueue(base, alarm);
404         spin_unlock_irqrestore(&base->lock, flags);
405 }
406 EXPORT_SYMBOL_GPL(alarm_restart);
407 
408 /**
409  * alarm_try_to_cancel - Tries to cancel an alarm timer
410  * @alarm: ptr to alarm to be canceled
411  *
412  * Returns 1 if the timer was canceled, 0 if it was not running,
413  * and -1 if the callback was running
414  */
415 int alarm_try_to_cancel(struct alarm *alarm)
416 {
417         struct alarm_base *base = &alarm_bases[alarm->type];
418         unsigned long flags;
419         int ret;
420 
421         spin_lock_irqsave(&base->lock, flags);
422         ret = hrtimer_try_to_cancel(&alarm->timer);
423         if (ret >= 0)
424                 alarmtimer_dequeue(base, alarm);
425         spin_unlock_irqrestore(&base->lock, flags);
426 
427         trace_alarmtimer_cancel(alarm, base->get_ktime());
428         return ret;
429 }
430 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
431 
432 
433 /**
434  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
435  * @alarm: ptr to alarm to be canceled
436  *
437  * Returns 1 if the timer was canceled, 0 if it was not active.
438  */
439 int alarm_cancel(struct alarm *alarm)
440 {
441         for (;;) {
442                 int ret = alarm_try_to_cancel(alarm);
443                 if (ret >= 0)
444                         return ret;
445                 hrtimer_cancel_wait_running(&alarm->timer);
446         }
447 }
448 EXPORT_SYMBOL_GPL(alarm_cancel);
449 
450 
451 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
452 {
453         u64 overrun = 1;
454         ktime_t delta;
455 
456         delta = ktime_sub(now, alarm->node.expires);
457 
458         if (delta < 0)
459                 return 0;
460 
461         if (unlikely(delta >= interval)) {
462                 s64 incr = ktime_to_ns(interval);
463 
464                 overrun = ktime_divns(delta, incr);
465 
466                 alarm->node.expires = ktime_add_ns(alarm->node.expires,
467                                                         incr*overrun);
468 
469                 if (alarm->node.expires > now)
470                         return overrun;
471                 /*
472                  * This (and the ktime_add() below) is the
473                  * correction for exact:
474                  */
475                 overrun++;
476         }
477 
478         alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
479         return overrun;
480 }
481 EXPORT_SYMBOL_GPL(alarm_forward);
482 
483 static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle)
484 {
485         struct alarm_base *base = &alarm_bases[alarm->type];
486         ktime_t now = base->get_ktime();
487 
488         if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) {
489                 /*
490                  * Same issue as with posix_timer_fn(). Timers which are
491                  * periodic but the signal is ignored can starve the system
492                  * with a very small interval. The real fix which was
493                  * promised in the context of posix_timer_fn() never
494                  * materialized, but someone should really work on it.
495                  *
496                  * To prevent DOS fake @now to be 1 jiffie out which keeps
497                  * the overrun accounting correct but creates an
498                  * inconsistency vs. timer_gettime(2).
499                  */
500                 ktime_t kj = NSEC_PER_SEC / HZ;
501 
502                 if (interval < kj)
503                         now = ktime_add(now, kj);
504         }
505 
506         return alarm_forward(alarm, now, interval);
507 }
508 
509 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
510 {
511         return __alarm_forward_now(alarm, interval, false);
512 }
513 EXPORT_SYMBOL_GPL(alarm_forward_now);
514 
515 #ifdef CONFIG_POSIX_TIMERS
516 
517 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
518 {
519         struct alarm_base *base;
520         unsigned long flags;
521         ktime_t delta;
522 
523         switch(type) {
524         case ALARM_REALTIME:
525                 base = &alarm_bases[ALARM_REALTIME];
526                 type = ALARM_REALTIME_FREEZER;
527                 break;
528         case ALARM_BOOTTIME:
529                 base = &alarm_bases[ALARM_BOOTTIME];
530                 type = ALARM_BOOTTIME_FREEZER;
531                 break;
532         default:
533                 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
534                 return;
535         }
536 
537         delta = ktime_sub(absexp, base->get_ktime());
538 
539         spin_lock_irqsave(&freezer_delta_lock, flags);
540         if (!freezer_delta || (delta < freezer_delta)) {
541                 freezer_delta = delta;
542                 freezer_expires = absexp;
543                 freezer_alarmtype = type;
544         }
545         spin_unlock_irqrestore(&freezer_delta_lock, flags);
546 }
547 
548 /**
549  * clock2alarm - helper that converts from clockid to alarmtypes
550  * @clockid: clockid.
551  */
552 static enum alarmtimer_type clock2alarm(clockid_t clockid)
553 {
554         if (clockid == CLOCK_REALTIME_ALARM)
555                 return ALARM_REALTIME;
556         if (clockid == CLOCK_BOOTTIME_ALARM)
557                 return ALARM_BOOTTIME;
558         return -1;
559 }
560 
561 /**
562  * alarm_handle_timer - Callback for posix timers
563  * @alarm: alarm that fired
564  * @now: time at the timer expiration
565  *
566  * Posix timer callback for expired alarm timers.
567  *
568  * Return: whether the timer is to be restarted
569  */
570 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
571                                                         ktime_t now)
572 {
573         struct k_itimer *ptr = container_of(alarm, struct k_itimer,
574                                             it.alarm.alarmtimer);
575         enum alarmtimer_restart result = ALARMTIMER_NORESTART;
576         unsigned long flags;
577         int si_private = 0;
578 
579         spin_lock_irqsave(&ptr->it_lock, flags);
580 
581         ptr->it_active = 0;
582         if (ptr->it_interval)
583                 si_private = ++ptr->it_requeue_pending;
584 
585         if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
586                 /*
587                  * Handle ignored signals and rearm the timer. This will go
588                  * away once we handle ignored signals proper. Ensure that
589                  * small intervals cannot starve the system.
590                  */
591                 ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true);
592                 ++ptr->it_requeue_pending;
593                 ptr->it_active = 1;
594                 result = ALARMTIMER_RESTART;
595         }
596         spin_unlock_irqrestore(&ptr->it_lock, flags);
597 
598         return result;
599 }
600 
601 /**
602  * alarm_timer_rearm - Posix timer callback for rearming timer
603  * @timr:       Pointer to the posixtimer data struct
604  */
605 static void alarm_timer_rearm(struct k_itimer *timr)
606 {
607         struct alarm *alarm = &timr->it.alarm.alarmtimer;
608 
609         timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
610         alarm_start(alarm, alarm->node.expires);
611 }
612 
613 /**
614  * alarm_timer_forward - Posix timer callback for forwarding timer
615  * @timr:       Pointer to the posixtimer data struct
616  * @now:        Current time to forward the timer against
617  */
618 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
619 {
620         struct alarm *alarm = &timr->it.alarm.alarmtimer;
621 
622         return alarm_forward(alarm, timr->it_interval, now);
623 }
624 
625 /**
626  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
627  * @timr:       Pointer to the posixtimer data struct
628  * @now:        Current time to calculate against
629  */
630 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
631 {
632         struct alarm *alarm = &timr->it.alarm.alarmtimer;
633 
634         return ktime_sub(alarm->node.expires, now);
635 }
636 
637 /**
638  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
639  * @timr:       Pointer to the posixtimer data struct
640  */
641 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
642 {
643         return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
644 }
645 
646 /**
647  * alarm_timer_wait_running - Posix timer callback to wait for a timer
648  * @timr:       Pointer to the posixtimer data struct
649  *
650  * Called from the core code when timer cancel detected that the callback
651  * is running. @timr is unlocked and rcu read lock is held to prevent it
652  * from being freed.
653  */
654 static void alarm_timer_wait_running(struct k_itimer *timr)
655 {
656         hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
657 }
658 
659 /**
660  * alarm_timer_arm - Posix timer callback to arm a timer
661  * @timr:       Pointer to the posixtimer data struct
662  * @expires:    The new expiry time
663  * @absolute:   Expiry value is absolute time
664  * @sigev_none: Posix timer does not deliver signals
665  */
666 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
667                             bool absolute, bool sigev_none)
668 {
669         struct alarm *alarm = &timr->it.alarm.alarmtimer;
670         struct alarm_base *base = &alarm_bases[alarm->type];
671 
672         if (!absolute)
673                 expires = ktime_add_safe(expires, base->get_ktime());
674         if (sigev_none)
675                 alarm->node.expires = expires;
676         else
677                 alarm_start(&timr->it.alarm.alarmtimer, expires);
678 }
679 
680 /**
681  * alarm_clock_getres - posix getres interface
682  * @which_clock: clockid
683  * @tp: timespec to fill
684  *
685  * Returns the granularity of underlying alarm base clock
686  */
687 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
688 {
689         if (!alarmtimer_get_rtcdev())
690                 return -EINVAL;
691 
692         tp->tv_sec = 0;
693         tp->tv_nsec = hrtimer_resolution;
694         return 0;
695 }
696 
697 /**
698  * alarm_clock_get_timespec - posix clock_get_timespec interface
699  * @which_clock: clockid
700  * @tp: timespec to fill.
701  *
702  * Provides the underlying alarm base time in a tasks time namespace.
703  */
704 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
705 {
706         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
707 
708         if (!alarmtimer_get_rtcdev())
709                 return -EINVAL;
710 
711         base->get_timespec(tp);
712 
713         return 0;
714 }
715 
716 /**
717  * alarm_clock_get_ktime - posix clock_get_ktime interface
718  * @which_clock: clockid
719  *
720  * Provides the underlying alarm base time in the root namespace.
721  */
722 static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
723 {
724         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
725 
726         if (!alarmtimer_get_rtcdev())
727                 return -EINVAL;
728 
729         return base->get_ktime();
730 }
731 
732 /**
733  * alarm_timer_create - posix timer_create interface
734  * @new_timer: k_itimer pointer to manage
735  *
736  * Initializes the k_itimer structure.
737  */
738 static int alarm_timer_create(struct k_itimer *new_timer)
739 {
740         enum  alarmtimer_type type;
741 
742         if (!alarmtimer_get_rtcdev())
743                 return -EOPNOTSUPP;
744 
745         if (!capable(CAP_WAKE_ALARM))
746                 return -EPERM;
747 
748         type = clock2alarm(new_timer->it_clock);
749         alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
750         return 0;
751 }
752 
753 /**
754  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
755  * @alarm: ptr to alarm that fired
756  * @now: time at the timer expiration
757  *
758  * Wakes up the task that set the alarmtimer
759  *
760  * Return: ALARMTIMER_NORESTART
761  */
762 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
763                                                                 ktime_t now)
764 {
765         struct task_struct *task = alarm->data;
766 
767         alarm->data = NULL;
768         if (task)
769                 wake_up_process(task);
770         return ALARMTIMER_NORESTART;
771 }
772 
773 /**
774  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
775  * @alarm: ptr to alarmtimer
776  * @absexp: absolute expiration time
777  * @type: alarm type (BOOTTIME/REALTIME).
778  *
779  * Sets the alarm timer and sleeps until it is fired or interrupted.
780  */
781 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
782                                 enum alarmtimer_type type)
783 {
784         struct restart_block *restart;
785         alarm->data = (void *)current;
786         do {
787                 set_current_state(TASK_INTERRUPTIBLE);
788                 alarm_start(alarm, absexp);
789                 if (likely(alarm->data))
790                         schedule();
791 
792                 alarm_cancel(alarm);
793         } while (alarm->data && !signal_pending(current));
794 
795         __set_current_state(TASK_RUNNING);
796 
797         destroy_hrtimer_on_stack(&alarm->timer);
798 
799         if (!alarm->data)
800                 return 0;
801 
802         if (freezing(current))
803                 alarmtimer_freezerset(absexp, type);
804         restart = &current->restart_block;
805         if (restart->nanosleep.type != TT_NONE) {
806                 struct timespec64 rmt;
807                 ktime_t rem;
808 
809                 rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
810 
811                 if (rem <= 0)
812                         return 0;
813                 rmt = ktime_to_timespec64(rem);
814 
815                 return nanosleep_copyout(restart, &rmt);
816         }
817         return -ERESTART_RESTARTBLOCK;
818 }
819 
820 static void
821 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
822                     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
823 {
824         hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
825                               HRTIMER_MODE_ABS);
826         __alarm_init(alarm, type, function);
827 }
828 
829 /**
830  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
831  * @restart: ptr to restart block
832  *
833  * Handles restarted clock_nanosleep calls
834  */
835 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
836 {
837         enum  alarmtimer_type type = restart->nanosleep.clockid;
838         ktime_t exp = restart->nanosleep.expires;
839         struct alarm alarm;
840 
841         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
842 
843         return alarmtimer_do_nsleep(&alarm, exp, type);
844 }
845 
846 /**
847  * alarm_timer_nsleep - alarmtimer nanosleep
848  * @which_clock: clockid
849  * @flags: determines abstime or relative
850  * @tsreq: requested sleep time (abs or rel)
851  *
852  * Handles clock_nanosleep calls against _ALARM clockids
853  */
854 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
855                               const struct timespec64 *tsreq)
856 {
857         enum  alarmtimer_type type = clock2alarm(which_clock);
858         struct restart_block *restart = &current->restart_block;
859         struct alarm alarm;
860         ktime_t exp;
861         int ret;
862 
863         if (!alarmtimer_get_rtcdev())
864                 return -EOPNOTSUPP;
865 
866         if (flags & ~TIMER_ABSTIME)
867                 return -EINVAL;
868 
869         if (!capable(CAP_WAKE_ALARM))
870                 return -EPERM;
871 
872         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
873 
874         exp = timespec64_to_ktime(*tsreq);
875         /* Convert (if necessary) to absolute time */
876         if (flags != TIMER_ABSTIME) {
877                 ktime_t now = alarm_bases[type].get_ktime();
878 
879                 exp = ktime_add_safe(now, exp);
880         } else {
881                 exp = timens_ktime_to_host(which_clock, exp);
882         }
883 
884         ret = alarmtimer_do_nsleep(&alarm, exp, type);
885         if (ret != -ERESTART_RESTARTBLOCK)
886                 return ret;
887 
888         /* abs timers don't set remaining time or restart */
889         if (flags == TIMER_ABSTIME)
890                 return -ERESTARTNOHAND;
891 
892         restart->nanosleep.clockid = type;
893         restart->nanosleep.expires = exp;
894         set_restart_fn(restart, alarm_timer_nsleep_restart);
895         return ret;
896 }
897 
898 const struct k_clock alarm_clock = {
899         .clock_getres           = alarm_clock_getres,
900         .clock_get_ktime        = alarm_clock_get_ktime,
901         .clock_get_timespec     = alarm_clock_get_timespec,
902         .timer_create           = alarm_timer_create,
903         .timer_set              = common_timer_set,
904         .timer_del              = common_timer_del,
905         .timer_get              = common_timer_get,
906         .timer_arm              = alarm_timer_arm,
907         .timer_rearm            = alarm_timer_rearm,
908         .timer_forward          = alarm_timer_forward,
909         .timer_remaining        = alarm_timer_remaining,
910         .timer_try_to_cancel    = alarm_timer_try_to_cancel,
911         .timer_wait_running     = alarm_timer_wait_running,
912         .nsleep                 = alarm_timer_nsleep,
913 };
914 #endif /* CONFIG_POSIX_TIMERS */
915 
916 
917 /* Suspend hook structures */
918 static const struct dev_pm_ops alarmtimer_pm_ops = {
919         .suspend = alarmtimer_suspend,
920         .resume = alarmtimer_resume,
921 };
922 
923 static struct platform_driver alarmtimer_driver = {
924         .driver = {
925                 .name = "alarmtimer",
926                 .pm = &alarmtimer_pm_ops,
927         }
928 };
929 
930 static void get_boottime_timespec(struct timespec64 *tp)
931 {
932         ktime_get_boottime_ts64(tp);
933         timens_add_boottime(tp);
934 }
935 
936 /**
937  * alarmtimer_init - Initialize alarm timer code
938  *
939  * This function initializes the alarm bases and registers
940  * the posix clock ids.
941  */
942 static int __init alarmtimer_init(void)
943 {
944         int error;
945         int i;
946 
947         alarmtimer_rtc_timer_init();
948 
949         /* Initialize alarm bases */
950         alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
951         alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
952         alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
953         alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
954         alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
955         alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
956         for (i = 0; i < ALARM_NUMTYPE; i++) {
957                 timerqueue_init_head(&alarm_bases[i].timerqueue);
958                 spin_lock_init(&alarm_bases[i].lock);
959         }
960 
961         error = alarmtimer_rtc_interface_setup();
962         if (error)
963                 return error;
964 
965         error = platform_driver_register(&alarmtimer_driver);
966         if (error)
967                 goto out_if;
968 
969         return 0;
970 out_if:
971         alarmtimer_rtc_interface_remove();
972         return error;
973 }
974 device_initcall(alarmtimer_init);
975 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php