~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/time/clocksource.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0+
  2 /*
  3  * This file contains the functions which manage clocksource drivers.
  4  *
  5  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
  6  */
  7 
  8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9 
 10 #include <linux/device.h>
 11 #include <linux/clocksource.h>
 12 #include <linux/init.h>
 13 #include <linux/module.h>
 14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
 15 #include <linux/tick.h>
 16 #include <linux/kthread.h>
 17 #include <linux/prandom.h>
 18 #include <linux/cpu.h>
 19 
 20 #include "tick-internal.h"
 21 #include "timekeeping_internal.h"
 22 
 23 static noinline u64 cycles_to_nsec_safe(struct clocksource *cs, u64 start, u64 end)
 24 {
 25         u64 delta = clocksource_delta(end, start, cs->mask);
 26 
 27         if (likely(delta < cs->max_cycles))
 28                 return clocksource_cyc2ns(delta, cs->mult, cs->shift);
 29 
 30         return mul_u64_u32_shr(delta, cs->mult, cs->shift);
 31 }
 32 
 33 /**
 34  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
 35  * @mult:       pointer to mult variable
 36  * @shift:      pointer to shift variable
 37  * @from:       frequency to convert from
 38  * @to:         frequency to convert to
 39  * @maxsec:     guaranteed runtime conversion range in seconds
 40  *
 41  * The function evaluates the shift/mult pair for the scaled math
 42  * operations of clocksources and clockevents.
 43  *
 44  * @to and @from are frequency values in HZ. For clock sources @to is
 45  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
 46  * event @to is the counter frequency and @from is NSEC_PER_SEC.
 47  *
 48  * The @maxsec conversion range argument controls the time frame in
 49  * seconds which must be covered by the runtime conversion with the
 50  * calculated mult and shift factors. This guarantees that no 64bit
 51  * overflow happens when the input value of the conversion is
 52  * multiplied with the calculated mult factor. Larger ranges may
 53  * reduce the conversion accuracy by choosing smaller mult and shift
 54  * factors.
 55  */
 56 void
 57 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
 58 {
 59         u64 tmp;
 60         u32 sft, sftacc= 32;
 61 
 62         /*
 63          * Calculate the shift factor which is limiting the conversion
 64          * range:
 65          */
 66         tmp = ((u64)maxsec * from) >> 32;
 67         while (tmp) {
 68                 tmp >>=1;
 69                 sftacc--;
 70         }
 71 
 72         /*
 73          * Find the conversion shift/mult pair which has the best
 74          * accuracy and fits the maxsec conversion range:
 75          */
 76         for (sft = 32; sft > 0; sft--) {
 77                 tmp = (u64) to << sft;
 78                 tmp += from / 2;
 79                 do_div(tmp, from);
 80                 if ((tmp >> sftacc) == 0)
 81                         break;
 82         }
 83         *mult = tmp;
 84         *shift = sft;
 85 }
 86 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
 87 
 88 /*[Clocksource internal variables]---------
 89  * curr_clocksource:
 90  *      currently selected clocksource.
 91  * suspend_clocksource:
 92  *      used to calculate the suspend time.
 93  * clocksource_list:
 94  *      linked list with the registered clocksources
 95  * clocksource_mutex:
 96  *      protects manipulations to curr_clocksource and the clocksource_list
 97  * override_name:
 98  *      Name of the user-specified clocksource.
 99  */
100 static struct clocksource *curr_clocksource;
101 static struct clocksource *suspend_clocksource;
102 static LIST_HEAD(clocksource_list);
103 static DEFINE_MUTEX(clocksource_mutex);
104 static char override_name[CS_NAME_LEN];
105 static int finished_booting;
106 static u64 suspend_start;
107 
108 /*
109  * Interval: 0.5sec.
110  */
111 #define WATCHDOG_INTERVAL (HZ >> 1)
112 #define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ))
113 
114 /*
115  * Threshold: 0.0312s, when doubled: 0.0625s.
116  * Also a default for cs->uncertainty_margin when registering clocks.
117  */
118 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
119 
120 /*
121  * Maximum permissible delay between two readouts of the watchdog
122  * clocksource surrounding a read of the clocksource being validated.
123  * This delay could be due to SMIs, NMIs, or to VCPU preemptions.  Used as
124  * a lower bound for cs->uncertainty_margin values when registering clocks.
125  *
126  * The default of 500 parts per million is based on NTP's limits.
127  * If a clocksource is good enough for NTP, it is good enough for us!
128  */
129 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
130 #define MAX_SKEW_USEC   CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
131 #else
132 #define MAX_SKEW_USEC   (125 * WATCHDOG_INTERVAL / HZ)
133 #endif
134 
135 #define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
136 
137 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
138 static void clocksource_watchdog_work(struct work_struct *work);
139 static void clocksource_select(void);
140 
141 static LIST_HEAD(watchdog_list);
142 static struct clocksource *watchdog;
143 static struct timer_list watchdog_timer;
144 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
145 static DEFINE_SPINLOCK(watchdog_lock);
146 static int watchdog_running;
147 static atomic_t watchdog_reset_pending;
148 static int64_t watchdog_max_interval;
149 
150 static inline void clocksource_watchdog_lock(unsigned long *flags)
151 {
152         spin_lock_irqsave(&watchdog_lock, *flags);
153 }
154 
155 static inline void clocksource_watchdog_unlock(unsigned long *flags)
156 {
157         spin_unlock_irqrestore(&watchdog_lock, *flags);
158 }
159 
160 static int clocksource_watchdog_kthread(void *data);
161 static void __clocksource_change_rating(struct clocksource *cs, int rating);
162 
163 static void clocksource_watchdog_work(struct work_struct *work)
164 {
165         /*
166          * We cannot directly run clocksource_watchdog_kthread() here, because
167          * clocksource_select() calls timekeeping_notify() which uses
168          * stop_machine(). One cannot use stop_machine() from a workqueue() due
169          * lock inversions wrt CPU hotplug.
170          *
171          * Also, we only ever run this work once or twice during the lifetime
172          * of the kernel, so there is no point in creating a more permanent
173          * kthread for this.
174          *
175          * If kthread_run fails the next watchdog scan over the
176          * watchdog_list will find the unstable clock again.
177          */
178         kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
179 }
180 
181 static void __clocksource_unstable(struct clocksource *cs)
182 {
183         cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
184         cs->flags |= CLOCK_SOURCE_UNSTABLE;
185 
186         /*
187          * If the clocksource is registered clocksource_watchdog_kthread() will
188          * re-rate and re-select.
189          */
190         if (list_empty(&cs->list)) {
191                 cs->rating = 0;
192                 return;
193         }
194 
195         if (cs->mark_unstable)
196                 cs->mark_unstable(cs);
197 
198         /* kick clocksource_watchdog_kthread() */
199         if (finished_booting)
200                 schedule_work(&watchdog_work);
201 }
202 
203 /**
204  * clocksource_mark_unstable - mark clocksource unstable via watchdog
205  * @cs:         clocksource to be marked unstable
206  *
207  * This function is called by the x86 TSC code to mark clocksources as unstable;
208  * it defers demotion and re-selection to a kthread.
209  */
210 void clocksource_mark_unstable(struct clocksource *cs)
211 {
212         unsigned long flags;
213 
214         spin_lock_irqsave(&watchdog_lock, flags);
215         if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
216                 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
217                         list_add(&cs->wd_list, &watchdog_list);
218                 __clocksource_unstable(cs);
219         }
220         spin_unlock_irqrestore(&watchdog_lock, flags);
221 }
222 
223 static int verify_n_cpus = 8;
224 module_param(verify_n_cpus, int, 0644);
225 
226 enum wd_read_status {
227         WD_READ_SUCCESS,
228         WD_READ_UNSTABLE,
229         WD_READ_SKIP
230 };
231 
232 static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
233 {
234         unsigned int nretries, max_retries;
235         int64_t wd_delay, wd_seq_delay;
236         u64 wd_end, wd_end2;
237 
238         max_retries = clocksource_get_max_watchdog_retry();
239         for (nretries = 0; nretries <= max_retries; nretries++) {
240                 local_irq_disable();
241                 *wdnow = watchdog->read(watchdog);
242                 *csnow = cs->read(cs);
243                 wd_end = watchdog->read(watchdog);
244                 wd_end2 = watchdog->read(watchdog);
245                 local_irq_enable();
246 
247                 wd_delay = cycles_to_nsec_safe(watchdog, *wdnow, wd_end);
248                 if (wd_delay <= WATCHDOG_MAX_SKEW) {
249                         if (nretries > 1 && nretries >= max_retries) {
250                                 pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
251                                         smp_processor_id(), watchdog->name, nretries);
252                         }
253                         return WD_READ_SUCCESS;
254                 }
255 
256                 /*
257                  * Now compute delay in consecutive watchdog read to see if
258                  * there is too much external interferences that cause
259                  * significant delay in reading both clocksource and watchdog.
260                  *
261                  * If consecutive WD read-back delay > WATCHDOG_MAX_SKEW/2,
262                  * report system busy, reinit the watchdog and skip the current
263                  * watchdog test.
264                  */
265                 wd_seq_delay = cycles_to_nsec_safe(watchdog, wd_end, wd_end2);
266                 if (wd_seq_delay > WATCHDOG_MAX_SKEW/2)
267                         goto skip_test;
268         }
269 
270         pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n",
271                 smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name);
272         return WD_READ_UNSTABLE;
273 
274 skip_test:
275         pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
276                 smp_processor_id(), watchdog->name, wd_seq_delay);
277         pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
278                 cs->name, wd_delay);
279         return WD_READ_SKIP;
280 }
281 
282 static u64 csnow_mid;
283 static cpumask_t cpus_ahead;
284 static cpumask_t cpus_behind;
285 static cpumask_t cpus_chosen;
286 
287 static void clocksource_verify_choose_cpus(void)
288 {
289         int cpu, i, n = verify_n_cpus;
290 
291         if (n < 0) {
292                 /* Check all of the CPUs. */
293                 cpumask_copy(&cpus_chosen, cpu_online_mask);
294                 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
295                 return;
296         }
297 
298         /* If no checking desired, or no other CPU to check, leave. */
299         cpumask_clear(&cpus_chosen);
300         if (n == 0 || num_online_cpus() <= 1)
301                 return;
302 
303         /* Make sure to select at least one CPU other than the current CPU. */
304         cpu = cpumask_first(cpu_online_mask);
305         if (cpu == smp_processor_id())
306                 cpu = cpumask_next(cpu, cpu_online_mask);
307         if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
308                 return;
309         cpumask_set_cpu(cpu, &cpus_chosen);
310 
311         /* Force a sane value for the boot parameter. */
312         if (n > nr_cpu_ids)
313                 n = nr_cpu_ids;
314 
315         /*
316          * Randomly select the specified number of CPUs.  If the same
317          * CPU is selected multiple times, that CPU is checked only once,
318          * and no replacement CPU is selected.  This gracefully handles
319          * situations where verify_n_cpus is greater than the number of
320          * CPUs that are currently online.
321          */
322         for (i = 1; i < n; i++) {
323                 cpu = get_random_u32_below(nr_cpu_ids);
324                 cpu = cpumask_next(cpu - 1, cpu_online_mask);
325                 if (cpu >= nr_cpu_ids)
326                         cpu = cpumask_first(cpu_online_mask);
327                 if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
328                         cpumask_set_cpu(cpu, &cpus_chosen);
329         }
330 
331         /* Don't verify ourselves. */
332         cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
333 }
334 
335 static void clocksource_verify_one_cpu(void *csin)
336 {
337         struct clocksource *cs = (struct clocksource *)csin;
338 
339         csnow_mid = cs->read(cs);
340 }
341 
342 void clocksource_verify_percpu(struct clocksource *cs)
343 {
344         int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
345         u64 csnow_begin, csnow_end;
346         int cpu, testcpu;
347         s64 delta;
348 
349         if (verify_n_cpus == 0)
350                 return;
351         cpumask_clear(&cpus_ahead);
352         cpumask_clear(&cpus_behind);
353         cpus_read_lock();
354         preempt_disable();
355         clocksource_verify_choose_cpus();
356         if (cpumask_empty(&cpus_chosen)) {
357                 preempt_enable();
358                 cpus_read_unlock();
359                 pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
360                 return;
361         }
362         testcpu = smp_processor_id();
363         pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
364         for_each_cpu(cpu, &cpus_chosen) {
365                 if (cpu == testcpu)
366                         continue;
367                 csnow_begin = cs->read(cs);
368                 smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
369                 csnow_end = cs->read(cs);
370                 delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
371                 if (delta < 0)
372                         cpumask_set_cpu(cpu, &cpus_behind);
373                 delta = (csnow_end - csnow_mid) & cs->mask;
374                 if (delta < 0)
375                         cpumask_set_cpu(cpu, &cpus_ahead);
376                 cs_nsec = cycles_to_nsec_safe(cs, csnow_begin, csnow_end);
377                 if (cs_nsec > cs_nsec_max)
378                         cs_nsec_max = cs_nsec;
379                 if (cs_nsec < cs_nsec_min)
380                         cs_nsec_min = cs_nsec;
381         }
382         preempt_enable();
383         cpus_read_unlock();
384         if (!cpumask_empty(&cpus_ahead))
385                 pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
386                         cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
387         if (!cpumask_empty(&cpus_behind))
388                 pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
389                         cpumask_pr_args(&cpus_behind), testcpu, cs->name);
390         if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
391                 pr_warn("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
392                         testcpu, cs_nsec_min, cs_nsec_max, cs->name);
393 }
394 EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
395 
396 static inline void clocksource_reset_watchdog(void)
397 {
398         struct clocksource *cs;
399 
400         list_for_each_entry(cs, &watchdog_list, wd_list)
401                 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
402 }
403 
404 
405 static void clocksource_watchdog(struct timer_list *unused)
406 {
407         int64_t wd_nsec, cs_nsec, interval;
408         u64 csnow, wdnow, cslast, wdlast;
409         int next_cpu, reset_pending;
410         struct clocksource *cs;
411         enum wd_read_status read_ret;
412         unsigned long extra_wait = 0;
413         u32 md;
414 
415         spin_lock(&watchdog_lock);
416         if (!watchdog_running)
417                 goto out;
418 
419         reset_pending = atomic_read(&watchdog_reset_pending);
420 
421         list_for_each_entry(cs, &watchdog_list, wd_list) {
422 
423                 /* Clocksource already marked unstable? */
424                 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
425                         if (finished_booting)
426                                 schedule_work(&watchdog_work);
427                         continue;
428                 }
429 
430                 read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
431 
432                 if (read_ret == WD_READ_UNSTABLE) {
433                         /* Clock readout unreliable, so give it up. */
434                         __clocksource_unstable(cs);
435                         continue;
436                 }
437 
438                 /*
439                  * When WD_READ_SKIP is returned, it means the system is likely
440                  * under very heavy load, where the latency of reading
441                  * watchdog/clocksource is very big, and affect the accuracy of
442                  * watchdog check. So give system some space and suspend the
443                  * watchdog check for 5 minutes.
444                  */
445                 if (read_ret == WD_READ_SKIP) {
446                         /*
447                          * As the watchdog timer will be suspended, and
448                          * cs->last could keep unchanged for 5 minutes, reset
449                          * the counters.
450                          */
451                         clocksource_reset_watchdog();
452                         extra_wait = HZ * 300;
453                         break;
454                 }
455 
456                 /* Clocksource initialized ? */
457                 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
458                     atomic_read(&watchdog_reset_pending)) {
459                         cs->flags |= CLOCK_SOURCE_WATCHDOG;
460                         cs->wd_last = wdnow;
461                         cs->cs_last = csnow;
462                         continue;
463                 }
464 
465                 wd_nsec = cycles_to_nsec_safe(watchdog, cs->wd_last, wdnow);
466                 cs_nsec = cycles_to_nsec_safe(cs, cs->cs_last, csnow);
467                 wdlast = cs->wd_last; /* save these in case we print them */
468                 cslast = cs->cs_last;
469                 cs->cs_last = csnow;
470                 cs->wd_last = wdnow;
471 
472                 if (atomic_read(&watchdog_reset_pending))
473                         continue;
474 
475                 /*
476                  * The processing of timer softirqs can get delayed (usually
477                  * on account of ksoftirqd not getting to run in a timely
478                  * manner), which causes the watchdog interval to stretch.
479                  * Skew detection may fail for longer watchdog intervals
480                  * on account of fixed margins being used.
481                  * Some clocksources, e.g. acpi_pm, cannot tolerate
482                  * watchdog intervals longer than a few seconds.
483                  */
484                 interval = max(cs_nsec, wd_nsec);
485                 if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) {
486                         if (system_state > SYSTEM_SCHEDULING &&
487                             interval > 2 * watchdog_max_interval) {
488                                 watchdog_max_interval = interval;
489                                 pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n",
490                                         cs_nsec, wd_nsec);
491                         }
492                         watchdog_timer.expires = jiffies;
493                         continue;
494                 }
495 
496                 /* Check the deviation from the watchdog clocksource. */
497                 md = cs->uncertainty_margin + watchdog->uncertainty_margin;
498                 if (abs(cs_nsec - wd_nsec) > md) {
499                         s64 cs_wd_msec;
500                         s64 wd_msec;
501                         u32 wd_rem;
502 
503                         pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
504                                 smp_processor_id(), cs->name);
505                         pr_warn("                      '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
506                                 watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
507                         pr_warn("                      '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
508                                 cs->name, cs_nsec, csnow, cslast, cs->mask);
509                         cs_wd_msec = div_s64_rem(cs_nsec - wd_nsec, 1000 * 1000, &wd_rem);
510                         wd_msec = div_s64_rem(wd_nsec, 1000 * 1000, &wd_rem);
511                         pr_warn("                      Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n",
512                                 cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec);
513                         if (curr_clocksource == cs)
514                                 pr_warn("                      '%s' is current clocksource.\n", cs->name);
515                         else if (curr_clocksource)
516                                 pr_warn("                      '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
517                         else
518                                 pr_warn("                      No current clocksource.\n");
519                         __clocksource_unstable(cs);
520                         continue;
521                 }
522 
523                 if (cs == curr_clocksource && cs->tick_stable)
524                         cs->tick_stable(cs);
525 
526                 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
527                     (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
528                     (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
529                         /* Mark it valid for high-res. */
530                         cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
531 
532                         /*
533                          * clocksource_done_booting() will sort it if
534                          * finished_booting is not set yet.
535                          */
536                         if (!finished_booting)
537                                 continue;
538 
539                         /*
540                          * If this is not the current clocksource let
541                          * the watchdog thread reselect it. Due to the
542                          * change to high res this clocksource might
543                          * be preferred now. If it is the current
544                          * clocksource let the tick code know about
545                          * that change.
546                          */
547                         if (cs != curr_clocksource) {
548                                 cs->flags |= CLOCK_SOURCE_RESELECT;
549                                 schedule_work(&watchdog_work);
550                         } else {
551                                 tick_clock_notify();
552                         }
553                 }
554         }
555 
556         /*
557          * We only clear the watchdog_reset_pending, when we did a
558          * full cycle through all clocksources.
559          */
560         if (reset_pending)
561                 atomic_dec(&watchdog_reset_pending);
562 
563         /*
564          * Cycle through CPUs to check if the CPUs stay synchronized
565          * to each other.
566          */
567         next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
568         if (next_cpu >= nr_cpu_ids)
569                 next_cpu = cpumask_first(cpu_online_mask);
570 
571         /*
572          * Arm timer if not already pending: could race with concurrent
573          * pair clocksource_stop_watchdog() clocksource_start_watchdog().
574          */
575         if (!timer_pending(&watchdog_timer)) {
576                 watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait;
577                 add_timer_on(&watchdog_timer, next_cpu);
578         }
579 out:
580         spin_unlock(&watchdog_lock);
581 }
582 
583 static inline void clocksource_start_watchdog(void)
584 {
585         if (watchdog_running || !watchdog || list_empty(&watchdog_list))
586                 return;
587         timer_setup(&watchdog_timer, clocksource_watchdog, 0);
588         watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
589         add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
590         watchdog_running = 1;
591 }
592 
593 static inline void clocksource_stop_watchdog(void)
594 {
595         if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
596                 return;
597         del_timer(&watchdog_timer);
598         watchdog_running = 0;
599 }
600 
601 static void clocksource_resume_watchdog(void)
602 {
603         atomic_inc(&watchdog_reset_pending);
604 }
605 
606 static void clocksource_enqueue_watchdog(struct clocksource *cs)
607 {
608         INIT_LIST_HEAD(&cs->wd_list);
609 
610         if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
611                 /* cs is a clocksource to be watched. */
612                 list_add(&cs->wd_list, &watchdog_list);
613                 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
614         } else {
615                 /* cs is a watchdog. */
616                 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
617                         cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
618         }
619 }
620 
621 static void clocksource_select_watchdog(bool fallback)
622 {
623         struct clocksource *cs, *old_wd;
624         unsigned long flags;
625 
626         spin_lock_irqsave(&watchdog_lock, flags);
627         /* save current watchdog */
628         old_wd = watchdog;
629         if (fallback)
630                 watchdog = NULL;
631 
632         list_for_each_entry(cs, &clocksource_list, list) {
633                 /* cs is a clocksource to be watched. */
634                 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
635                         continue;
636 
637                 /* Skip current if we were requested for a fallback. */
638                 if (fallback && cs == old_wd)
639                         continue;
640 
641                 /* Pick the best watchdog. */
642                 if (!watchdog || cs->rating > watchdog->rating)
643                         watchdog = cs;
644         }
645         /* If we failed to find a fallback restore the old one. */
646         if (!watchdog)
647                 watchdog = old_wd;
648 
649         /* If we changed the watchdog we need to reset cycles. */
650         if (watchdog != old_wd)
651                 clocksource_reset_watchdog();
652 
653         /* Check if the watchdog timer needs to be started. */
654         clocksource_start_watchdog();
655         spin_unlock_irqrestore(&watchdog_lock, flags);
656 }
657 
658 static void clocksource_dequeue_watchdog(struct clocksource *cs)
659 {
660         if (cs != watchdog) {
661                 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
662                         /* cs is a watched clocksource. */
663                         list_del_init(&cs->wd_list);
664                         /* Check if the watchdog timer needs to be stopped. */
665                         clocksource_stop_watchdog();
666                 }
667         }
668 }
669 
670 static int __clocksource_watchdog_kthread(void)
671 {
672         struct clocksource *cs, *tmp;
673         unsigned long flags;
674         int select = 0;
675 
676         /* Do any required per-CPU skew verification. */
677         if (curr_clocksource &&
678             curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
679             curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
680                 clocksource_verify_percpu(curr_clocksource);
681 
682         spin_lock_irqsave(&watchdog_lock, flags);
683         list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
684                 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
685                         list_del_init(&cs->wd_list);
686                         __clocksource_change_rating(cs, 0);
687                         select = 1;
688                 }
689                 if (cs->flags & CLOCK_SOURCE_RESELECT) {
690                         cs->flags &= ~CLOCK_SOURCE_RESELECT;
691                         select = 1;
692                 }
693         }
694         /* Check if the watchdog timer needs to be stopped. */
695         clocksource_stop_watchdog();
696         spin_unlock_irqrestore(&watchdog_lock, flags);
697 
698         return select;
699 }
700 
701 static int clocksource_watchdog_kthread(void *data)
702 {
703         mutex_lock(&clocksource_mutex);
704         if (__clocksource_watchdog_kthread())
705                 clocksource_select();
706         mutex_unlock(&clocksource_mutex);
707         return 0;
708 }
709 
710 static bool clocksource_is_watchdog(struct clocksource *cs)
711 {
712         return cs == watchdog;
713 }
714 
715 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
716 
717 static void clocksource_enqueue_watchdog(struct clocksource *cs)
718 {
719         if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
720                 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
721 }
722 
723 static void clocksource_select_watchdog(bool fallback) { }
724 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
725 static inline void clocksource_resume_watchdog(void) { }
726 static inline int __clocksource_watchdog_kthread(void) { return 0; }
727 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
728 void clocksource_mark_unstable(struct clocksource *cs) { }
729 
730 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
731 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
732 
733 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
734 
735 static bool clocksource_is_suspend(struct clocksource *cs)
736 {
737         return cs == suspend_clocksource;
738 }
739 
740 static void __clocksource_suspend_select(struct clocksource *cs)
741 {
742         /*
743          * Skip the clocksource which will be stopped in suspend state.
744          */
745         if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
746                 return;
747 
748         /*
749          * The nonstop clocksource can be selected as the suspend clocksource to
750          * calculate the suspend time, so it should not supply suspend/resume
751          * interfaces to suspend the nonstop clocksource when system suspends.
752          */
753         if (cs->suspend || cs->resume) {
754                 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
755                         cs->name);
756         }
757 
758         /* Pick the best rating. */
759         if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
760                 suspend_clocksource = cs;
761 }
762 
763 /**
764  * clocksource_suspend_select - Select the best clocksource for suspend timing
765  * @fallback:   if select a fallback clocksource
766  */
767 static void clocksource_suspend_select(bool fallback)
768 {
769         struct clocksource *cs, *old_suspend;
770 
771         old_suspend = suspend_clocksource;
772         if (fallback)
773                 suspend_clocksource = NULL;
774 
775         list_for_each_entry(cs, &clocksource_list, list) {
776                 /* Skip current if we were requested for a fallback. */
777                 if (fallback && cs == old_suspend)
778                         continue;
779 
780                 __clocksource_suspend_select(cs);
781         }
782 }
783 
784 /**
785  * clocksource_start_suspend_timing - Start measuring the suspend timing
786  * @cs:                 current clocksource from timekeeping
787  * @start_cycles:       current cycles from timekeeping
788  *
789  * This function will save the start cycle values of suspend timer to calculate
790  * the suspend time when resuming system.
791  *
792  * This function is called late in the suspend process from timekeeping_suspend(),
793  * that means processes are frozen, non-boot cpus and interrupts are disabled
794  * now. It is therefore possible to start the suspend timer without taking the
795  * clocksource mutex.
796  */
797 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
798 {
799         if (!suspend_clocksource)
800                 return;
801 
802         /*
803          * If current clocksource is the suspend timer, we should use the
804          * tkr_mono.cycle_last value as suspend_start to avoid same reading
805          * from suspend timer.
806          */
807         if (clocksource_is_suspend(cs)) {
808                 suspend_start = start_cycles;
809                 return;
810         }
811 
812         if (suspend_clocksource->enable &&
813             suspend_clocksource->enable(suspend_clocksource)) {
814                 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
815                 return;
816         }
817 
818         suspend_start = suspend_clocksource->read(suspend_clocksource);
819 }
820 
821 /**
822  * clocksource_stop_suspend_timing - Stop measuring the suspend timing
823  * @cs:         current clocksource from timekeeping
824  * @cycle_now:  current cycles from timekeeping
825  *
826  * This function will calculate the suspend time from suspend timer.
827  *
828  * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
829  *
830  * This function is called early in the resume process from timekeeping_resume(),
831  * that means there is only one cpu, no processes are running and the interrupts
832  * are disabled. It is therefore possible to stop the suspend timer without
833  * taking the clocksource mutex.
834  */
835 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
836 {
837         u64 now, nsec = 0;
838 
839         if (!suspend_clocksource)
840                 return 0;
841 
842         /*
843          * If current clocksource is the suspend timer, we should use the
844          * tkr_mono.cycle_last value from timekeeping as current cycle to
845          * avoid same reading from suspend timer.
846          */
847         if (clocksource_is_suspend(cs))
848                 now = cycle_now;
849         else
850                 now = suspend_clocksource->read(suspend_clocksource);
851 
852         if (now > suspend_start)
853                 nsec = cycles_to_nsec_safe(suspend_clocksource, suspend_start, now);
854 
855         /*
856          * Disable the suspend timer to save power if current clocksource is
857          * not the suspend timer.
858          */
859         if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
860                 suspend_clocksource->disable(suspend_clocksource);
861 
862         return nsec;
863 }
864 
865 /**
866  * clocksource_suspend - suspend the clocksource(s)
867  */
868 void clocksource_suspend(void)
869 {
870         struct clocksource *cs;
871 
872         list_for_each_entry_reverse(cs, &clocksource_list, list)
873                 if (cs->suspend)
874                         cs->suspend(cs);
875 }
876 
877 /**
878  * clocksource_resume - resume the clocksource(s)
879  */
880 void clocksource_resume(void)
881 {
882         struct clocksource *cs;
883 
884         list_for_each_entry(cs, &clocksource_list, list)
885                 if (cs->resume)
886                         cs->resume(cs);
887 
888         clocksource_resume_watchdog();
889 }
890 
891 /**
892  * clocksource_touch_watchdog - Update watchdog
893  *
894  * Update the watchdog after exception contexts such as kgdb so as not
895  * to incorrectly trip the watchdog. This might fail when the kernel
896  * was stopped in code which holds watchdog_lock.
897  */
898 void clocksource_touch_watchdog(void)
899 {
900         clocksource_resume_watchdog();
901 }
902 
903 /**
904  * clocksource_max_adjustment- Returns max adjustment amount
905  * @cs:         Pointer to clocksource
906  *
907  */
908 static u32 clocksource_max_adjustment(struct clocksource *cs)
909 {
910         u64 ret;
911         /*
912          * We won't try to correct for more than 11% adjustments (110,000 ppm),
913          */
914         ret = (u64)cs->mult * 11;
915         do_div(ret,100);
916         return (u32)ret;
917 }
918 
919 /**
920  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
921  * @mult:       cycle to nanosecond multiplier
922  * @shift:      cycle to nanosecond divisor (power of two)
923  * @maxadj:     maximum adjustment value to mult (~11%)
924  * @mask:       bitmask for two's complement subtraction of non 64 bit counters
925  * @max_cyc:    maximum cycle value before potential overflow (does not include
926  *              any safety margin)
927  *
928  * NOTE: This function includes a safety margin of 50%, in other words, we
929  * return half the number of nanoseconds the hardware counter can technically
930  * cover. This is done so that we can potentially detect problems caused by
931  * delayed timers or bad hardware, which might result in time intervals that
932  * are larger than what the math used can handle without overflows.
933  */
934 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
935 {
936         u64 max_nsecs, max_cycles;
937 
938         /*
939          * Calculate the maximum number of cycles that we can pass to the
940          * cyc2ns() function without overflowing a 64-bit result.
941          */
942         max_cycles = ULLONG_MAX;
943         do_div(max_cycles, mult+maxadj);
944 
945         /*
946          * The actual maximum number of cycles we can defer the clocksource is
947          * determined by the minimum of max_cycles and mask.
948          * Note: Here we subtract the maxadj to make sure we don't sleep for
949          * too long if there's a large negative adjustment.
950          */
951         max_cycles = min(max_cycles, mask);
952         max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
953 
954         /* return the max_cycles value as well if requested */
955         if (max_cyc)
956                 *max_cyc = max_cycles;
957 
958         /* Return 50% of the actual maximum, so we can detect bad values */
959         max_nsecs >>= 1;
960 
961         return max_nsecs;
962 }
963 
964 /**
965  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
966  * @cs:         Pointer to clocksource to be updated
967  *
968  */
969 static inline void clocksource_update_max_deferment(struct clocksource *cs)
970 {
971         cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
972                                                 cs->maxadj, cs->mask,
973                                                 &cs->max_cycles);
974 }
975 
976 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
977 {
978         struct clocksource *cs;
979 
980         if (!finished_booting || list_empty(&clocksource_list))
981                 return NULL;
982 
983         /*
984          * We pick the clocksource with the highest rating. If oneshot
985          * mode is active, we pick the highres valid clocksource with
986          * the best rating.
987          */
988         list_for_each_entry(cs, &clocksource_list, list) {
989                 if (skipcur && cs == curr_clocksource)
990                         continue;
991                 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
992                         continue;
993                 return cs;
994         }
995         return NULL;
996 }
997 
998 static void __clocksource_select(bool skipcur)
999 {
1000         bool oneshot = tick_oneshot_mode_active();
1001         struct clocksource *best, *cs;
1002 
1003         /* Find the best suitable clocksource */
1004         best = clocksource_find_best(oneshot, skipcur);
1005         if (!best)
1006                 return;
1007 
1008         if (!strlen(override_name))
1009                 goto found;
1010 
1011         /* Check for the override clocksource. */
1012         list_for_each_entry(cs, &clocksource_list, list) {
1013                 if (skipcur && cs == curr_clocksource)
1014                         continue;
1015                 if (strcmp(cs->name, override_name) != 0)
1016                         continue;
1017                 /*
1018                  * Check to make sure we don't switch to a non-highres
1019                  * capable clocksource if the tick code is in oneshot
1020                  * mode (highres or nohz)
1021                  */
1022                 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
1023                         /* Override clocksource cannot be used. */
1024                         if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
1025                                 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
1026                                         cs->name);
1027                                 override_name[0] = 0;
1028                         } else {
1029                                 /*
1030                                  * The override cannot be currently verified.
1031                                  * Deferring to let the watchdog check.
1032                                  */
1033                                 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
1034                                         cs->name);
1035                         }
1036                 } else
1037                         /* Override clocksource can be used. */
1038                         best = cs;
1039                 break;
1040         }
1041 
1042 found:
1043         if (curr_clocksource != best && !timekeeping_notify(best)) {
1044                 pr_info("Switched to clocksource %s\n", best->name);
1045                 curr_clocksource = best;
1046         }
1047 }
1048 
1049 /**
1050  * clocksource_select - Select the best clocksource available
1051  *
1052  * Private function. Must hold clocksource_mutex when called.
1053  *
1054  * Select the clocksource with the best rating, or the clocksource,
1055  * which is selected by userspace override.
1056  */
1057 static void clocksource_select(void)
1058 {
1059         __clocksource_select(false);
1060 }
1061 
1062 static void clocksource_select_fallback(void)
1063 {
1064         __clocksource_select(true);
1065 }
1066 
1067 /*
1068  * clocksource_done_booting - Called near the end of core bootup
1069  *
1070  * Hack to avoid lots of clocksource churn at boot time.
1071  * We use fs_initcall because we want this to start before
1072  * device_initcall but after subsys_initcall.
1073  */
1074 static int __init clocksource_done_booting(void)
1075 {
1076         mutex_lock(&clocksource_mutex);
1077         curr_clocksource = clocksource_default_clock();
1078         finished_booting = 1;
1079         /*
1080          * Run the watchdog first to eliminate unstable clock sources
1081          */
1082         __clocksource_watchdog_kthread();
1083         clocksource_select();
1084         mutex_unlock(&clocksource_mutex);
1085         return 0;
1086 }
1087 fs_initcall(clocksource_done_booting);
1088 
1089 /*
1090  * Enqueue the clocksource sorted by rating
1091  */
1092 static void clocksource_enqueue(struct clocksource *cs)
1093 {
1094         struct list_head *entry = &clocksource_list;
1095         struct clocksource *tmp;
1096 
1097         list_for_each_entry(tmp, &clocksource_list, list) {
1098                 /* Keep track of the place, where to insert */
1099                 if (tmp->rating < cs->rating)
1100                         break;
1101                 entry = &tmp->list;
1102         }
1103         list_add(&cs->list, entry);
1104 }
1105 
1106 /**
1107  * __clocksource_update_freq_scale - Used update clocksource with new freq
1108  * @cs:         clocksource to be registered
1109  * @scale:      Scale factor multiplied against freq to get clocksource hz
1110  * @freq:       clocksource frequency (cycles per second) divided by scale
1111  *
1112  * This should only be called from the clocksource->enable() method.
1113  *
1114  * This *SHOULD NOT* be called directly! Please use the
1115  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1116  * functions.
1117  */
1118 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1119 {
1120         u64 sec;
1121 
1122         /*
1123          * Default clocksources are *special* and self-define their mult/shift.
1124          * But, you're not special, so you should specify a freq value.
1125          */
1126         if (freq) {
1127                 /*
1128                  * Calc the maximum number of seconds which we can run before
1129                  * wrapping around. For clocksources which have a mask > 32-bit
1130                  * we need to limit the max sleep time to have a good
1131                  * conversion precision. 10 minutes is still a reasonable
1132                  * amount. That results in a shift value of 24 for a
1133                  * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1134                  * ~ 0.06ppm granularity for NTP.
1135                  */
1136                 sec = cs->mask;
1137                 do_div(sec, freq);
1138                 do_div(sec, scale);
1139                 if (!sec)
1140                         sec = 1;
1141                 else if (sec > 600 && cs->mask > UINT_MAX)
1142                         sec = 600;
1143 
1144                 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1145                                        NSEC_PER_SEC / scale, sec * scale);
1146         }
1147 
1148         /*
1149          * If the uncertainty margin is not specified, calculate it.
1150          * If both scale and freq are non-zero, calculate the clock
1151          * period, but bound below at 2*WATCHDOG_MAX_SKEW.  However,
1152          * if either of scale or freq is zero, be very conservative and
1153          * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1154          * uncertainty margin.  Allow stupidly small uncertainty margins
1155          * to be specified by the caller for testing purposes, but warn
1156          * to discourage production use of this capability.
1157          */
1158         if (scale && freq && !cs->uncertainty_margin) {
1159                 cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1160                 if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1161                         cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1162         } else if (!cs->uncertainty_margin) {
1163                 cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1164         }
1165         WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1166 
1167         /*
1168          * Ensure clocksources that have large 'mult' values don't overflow
1169          * when adjusted.
1170          */
1171         cs->maxadj = clocksource_max_adjustment(cs);
1172         while (freq && ((cs->mult + cs->maxadj < cs->mult)
1173                 || (cs->mult - cs->maxadj > cs->mult))) {
1174                 cs->mult >>= 1;
1175                 cs->shift--;
1176                 cs->maxadj = clocksource_max_adjustment(cs);
1177         }
1178 
1179         /*
1180          * Only warn for *special* clocksources that self-define
1181          * their mult/shift values and don't specify a freq.
1182          */
1183         WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1184                 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1185                 cs->name);
1186 
1187         clocksource_update_max_deferment(cs);
1188 
1189         pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1190                 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1191 }
1192 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1193 
1194 /**
1195  * __clocksource_register_scale - Used to install new clocksources
1196  * @cs:         clocksource to be registered
1197  * @scale:      Scale factor multiplied against freq to get clocksource hz
1198  * @freq:       clocksource frequency (cycles per second) divided by scale
1199  *
1200  * Returns -EBUSY if registration fails, zero otherwise.
1201  *
1202  * This *SHOULD NOT* be called directly! Please use the
1203  * clocksource_register_hz() or clocksource_register_khz helper functions.
1204  */
1205 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1206 {
1207         unsigned long flags;
1208 
1209         clocksource_arch_init(cs);
1210 
1211         if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1212                 cs->id = CSID_GENERIC;
1213         if (cs->vdso_clock_mode < 0 ||
1214             cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1215                 pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1216                         cs->name, cs->vdso_clock_mode);
1217                 cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1218         }
1219 
1220         /* Initialize mult/shift and max_idle_ns */
1221         __clocksource_update_freq_scale(cs, scale, freq);
1222 
1223         /* Add clocksource to the clocksource list */
1224         mutex_lock(&clocksource_mutex);
1225 
1226         clocksource_watchdog_lock(&flags);
1227         clocksource_enqueue(cs);
1228         clocksource_enqueue_watchdog(cs);
1229         clocksource_watchdog_unlock(&flags);
1230 
1231         clocksource_select();
1232         clocksource_select_watchdog(false);
1233         __clocksource_suspend_select(cs);
1234         mutex_unlock(&clocksource_mutex);
1235         return 0;
1236 }
1237 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1238 
1239 static void __clocksource_change_rating(struct clocksource *cs, int rating)
1240 {
1241         list_del(&cs->list);
1242         cs->rating = rating;
1243         clocksource_enqueue(cs);
1244 }
1245 
1246 /**
1247  * clocksource_change_rating - Change the rating of a registered clocksource
1248  * @cs:         clocksource to be changed
1249  * @rating:     new rating
1250  */
1251 void clocksource_change_rating(struct clocksource *cs, int rating)
1252 {
1253         unsigned long flags;
1254 
1255         mutex_lock(&clocksource_mutex);
1256         clocksource_watchdog_lock(&flags);
1257         __clocksource_change_rating(cs, rating);
1258         clocksource_watchdog_unlock(&flags);
1259 
1260         clocksource_select();
1261         clocksource_select_watchdog(false);
1262         clocksource_suspend_select(false);
1263         mutex_unlock(&clocksource_mutex);
1264 }
1265 EXPORT_SYMBOL(clocksource_change_rating);
1266 
1267 /*
1268  * Unbind clocksource @cs. Called with clocksource_mutex held
1269  */
1270 static int clocksource_unbind(struct clocksource *cs)
1271 {
1272         unsigned long flags;
1273 
1274         if (clocksource_is_watchdog(cs)) {
1275                 /* Select and try to install a replacement watchdog. */
1276                 clocksource_select_watchdog(true);
1277                 if (clocksource_is_watchdog(cs))
1278                         return -EBUSY;
1279         }
1280 
1281         if (cs == curr_clocksource) {
1282                 /* Select and try to install a replacement clock source */
1283                 clocksource_select_fallback();
1284                 if (curr_clocksource == cs)
1285                         return -EBUSY;
1286         }
1287 
1288         if (clocksource_is_suspend(cs)) {
1289                 /*
1290                  * Select and try to install a replacement suspend clocksource.
1291                  * If no replacement suspend clocksource, we will just let the
1292                  * clocksource go and have no suspend clocksource.
1293                  */
1294                 clocksource_suspend_select(true);
1295         }
1296 
1297         clocksource_watchdog_lock(&flags);
1298         clocksource_dequeue_watchdog(cs);
1299         list_del_init(&cs->list);
1300         clocksource_watchdog_unlock(&flags);
1301 
1302         return 0;
1303 }
1304 
1305 /**
1306  * clocksource_unregister - remove a registered clocksource
1307  * @cs: clocksource to be unregistered
1308  */
1309 int clocksource_unregister(struct clocksource *cs)
1310 {
1311         int ret = 0;
1312 
1313         mutex_lock(&clocksource_mutex);
1314         if (!list_empty(&cs->list))
1315                 ret = clocksource_unbind(cs);
1316         mutex_unlock(&clocksource_mutex);
1317         return ret;
1318 }
1319 EXPORT_SYMBOL(clocksource_unregister);
1320 
1321 #ifdef CONFIG_SYSFS
1322 /**
1323  * current_clocksource_show - sysfs interface for current clocksource
1324  * @dev:        unused
1325  * @attr:       unused
1326  * @buf:        char buffer to be filled with clocksource list
1327  *
1328  * Provides sysfs interface for listing current clocksource.
1329  */
1330 static ssize_t current_clocksource_show(struct device *dev,
1331                                         struct device_attribute *attr,
1332                                         char *buf)
1333 {
1334         ssize_t count = 0;
1335 
1336         mutex_lock(&clocksource_mutex);
1337         count = sysfs_emit(buf, "%s\n", curr_clocksource->name);
1338         mutex_unlock(&clocksource_mutex);
1339 
1340         return count;
1341 }
1342 
1343 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1344 {
1345         size_t ret = cnt;
1346 
1347         /* strings from sysfs write are not 0 terminated! */
1348         if (!cnt || cnt >= CS_NAME_LEN)
1349                 return -EINVAL;
1350 
1351         /* strip of \n: */
1352         if (buf[cnt-1] == '\n')
1353                 cnt--;
1354         if (cnt > 0)
1355                 memcpy(dst, buf, cnt);
1356         dst[cnt] = 0;
1357         return ret;
1358 }
1359 
1360 /**
1361  * current_clocksource_store - interface for manually overriding clocksource
1362  * @dev:        unused
1363  * @attr:       unused
1364  * @buf:        name of override clocksource
1365  * @count:      length of buffer
1366  *
1367  * Takes input from sysfs interface for manually overriding the default
1368  * clocksource selection.
1369  */
1370 static ssize_t current_clocksource_store(struct device *dev,
1371                                          struct device_attribute *attr,
1372                                          const char *buf, size_t count)
1373 {
1374         ssize_t ret;
1375 
1376         mutex_lock(&clocksource_mutex);
1377 
1378         ret = sysfs_get_uname(buf, override_name, count);
1379         if (ret >= 0)
1380                 clocksource_select();
1381 
1382         mutex_unlock(&clocksource_mutex);
1383 
1384         return ret;
1385 }
1386 static DEVICE_ATTR_RW(current_clocksource);
1387 
1388 /**
1389  * unbind_clocksource_store - interface for manually unbinding clocksource
1390  * @dev:        unused
1391  * @attr:       unused
1392  * @buf:        unused
1393  * @count:      length of buffer
1394  *
1395  * Takes input from sysfs interface for manually unbinding a clocksource.
1396  */
1397 static ssize_t unbind_clocksource_store(struct device *dev,
1398                                         struct device_attribute *attr,
1399                                         const char *buf, size_t count)
1400 {
1401         struct clocksource *cs;
1402         char name[CS_NAME_LEN];
1403         ssize_t ret;
1404 
1405         ret = sysfs_get_uname(buf, name, count);
1406         if (ret < 0)
1407                 return ret;
1408 
1409         ret = -ENODEV;
1410         mutex_lock(&clocksource_mutex);
1411         list_for_each_entry(cs, &clocksource_list, list) {
1412                 if (strcmp(cs->name, name))
1413                         continue;
1414                 ret = clocksource_unbind(cs);
1415                 break;
1416         }
1417         mutex_unlock(&clocksource_mutex);
1418 
1419         return ret ? ret : count;
1420 }
1421 static DEVICE_ATTR_WO(unbind_clocksource);
1422 
1423 /**
1424  * available_clocksource_show - sysfs interface for listing clocksource
1425  * @dev:        unused
1426  * @attr:       unused
1427  * @buf:        char buffer to be filled with clocksource list
1428  *
1429  * Provides sysfs interface for listing registered clocksources
1430  */
1431 static ssize_t available_clocksource_show(struct device *dev,
1432                                           struct device_attribute *attr,
1433                                           char *buf)
1434 {
1435         struct clocksource *src;
1436         ssize_t count = 0;
1437 
1438         mutex_lock(&clocksource_mutex);
1439         list_for_each_entry(src, &clocksource_list, list) {
1440                 /*
1441                  * Don't show non-HRES clocksource if the tick code is
1442                  * in one shot mode (highres=on or nohz=on)
1443                  */
1444                 if (!tick_oneshot_mode_active() ||
1445                     (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1446                         count += snprintf(buf + count,
1447                                   max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1448                                   "%s ", src->name);
1449         }
1450         mutex_unlock(&clocksource_mutex);
1451 
1452         count += snprintf(buf + count,
1453                           max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1454 
1455         return count;
1456 }
1457 static DEVICE_ATTR_RO(available_clocksource);
1458 
1459 static struct attribute *clocksource_attrs[] = {
1460         &dev_attr_current_clocksource.attr,
1461         &dev_attr_unbind_clocksource.attr,
1462         &dev_attr_available_clocksource.attr,
1463         NULL
1464 };
1465 ATTRIBUTE_GROUPS(clocksource);
1466 
1467 static const struct bus_type clocksource_subsys = {
1468         .name = "clocksource",
1469         .dev_name = "clocksource",
1470 };
1471 
1472 static struct device device_clocksource = {
1473         .id     = 0,
1474         .bus    = &clocksource_subsys,
1475         .groups = clocksource_groups,
1476 };
1477 
1478 static int __init init_clocksource_sysfs(void)
1479 {
1480         int error = subsys_system_register(&clocksource_subsys, NULL);
1481 
1482         if (!error)
1483                 error = device_register(&device_clocksource);
1484 
1485         return error;
1486 }
1487 
1488 device_initcall(init_clocksource_sysfs);
1489 #endif /* CONFIG_SYSFS */
1490 
1491 /**
1492  * boot_override_clocksource - boot clock override
1493  * @str:        override name
1494  *
1495  * Takes a clocksource= boot argument and uses it
1496  * as the clocksource override name.
1497  */
1498 static int __init boot_override_clocksource(char* str)
1499 {
1500         mutex_lock(&clocksource_mutex);
1501         if (str)
1502                 strscpy(override_name, str, sizeof(override_name));
1503         mutex_unlock(&clocksource_mutex);
1504         return 1;
1505 }
1506 
1507 __setup("clocksource=", boot_override_clocksource);
1508 
1509 /**
1510  * boot_override_clock - Compatibility layer for deprecated boot option
1511  * @str:        override name
1512  *
1513  * DEPRECATED! Takes a clock= boot argument and uses it
1514  * as the clocksource override name
1515  */
1516 static int __init boot_override_clock(char* str)
1517 {
1518         if (!strcmp(str, "pmtmr")) {
1519                 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1520                 return boot_override_clocksource("acpi_pm");
1521         }
1522         pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1523         return boot_override_clocksource(str);
1524 }
1525 
1526 __setup("clock=", boot_override_clock);
1527 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php