1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * High-resolution kernel timers 8 * 9 * In contrast to the low-resolution timeout API, aka timer wheel, 10 * hrtimers provide finer resolution and accuracy depending on system 11 * configuration and capabilities. 12 * 13 * Started by: Thomas Gleixner and Ingo Molnar 14 * 15 * Credits: 16 * Based on the original timer wheel code 17 * 18 * Help, testing, suggestions, bugfixes, improvements were 19 * provided by: 20 * 21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 22 * et. al. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/export.h> 27 #include <linux/percpu.h> 28 #include <linux/hrtimer.h> 29 #include <linux/notifier.h> 30 #include <linux/syscalls.h> 31 #include <linux/interrupt.h> 32 #include <linux/tick.h> 33 #include <linux/err.h> 34 #include <linux/debugobjects.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/debug.h> 41 #include <linux/sched/isolation.h> 42 #include <linux/timer.h> 43 #include <linux/freezer.h> 44 #include <linux/compat.h> 45 46 #include <linux/uaccess.h> 47 48 #include <trace/events/timer.h> 49 50 #include "tick-internal.h" 51 52 /* 53 * Masks for selecting the soft and hard context timers from 54 * cpu_base->active 55 */ 56 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 57 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 58 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 59 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 60 61 /* 62 * The timer bases: 63 * 64 * There are more clockids than hrtimer bases. Thus, we index 65 * into the timer bases by the hrtimer_base_type enum. When trying 66 * to reach a base using a clockid, hrtimer_clockid_to_base() 67 * is used to convert from clockid to the proper hrtimer_base_type. 68 */ 69 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 70 { 71 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 72 .clock_base = 73 { 74 { 75 .index = HRTIMER_BASE_MONOTONIC, 76 .clockid = CLOCK_MONOTONIC, 77 .get_time = &ktime_get, 78 }, 79 { 80 .index = HRTIMER_BASE_REALTIME, 81 .clockid = CLOCK_REALTIME, 82 .get_time = &ktime_get_real, 83 }, 84 { 85 .index = HRTIMER_BASE_BOOTTIME, 86 .clockid = CLOCK_BOOTTIME, 87 .get_time = &ktime_get_boottime, 88 }, 89 { 90 .index = HRTIMER_BASE_TAI, 91 .clockid = CLOCK_TAI, 92 .get_time = &ktime_get_clocktai, 93 }, 94 { 95 .index = HRTIMER_BASE_MONOTONIC_SOFT, 96 .clockid = CLOCK_MONOTONIC, 97 .get_time = &ktime_get, 98 }, 99 { 100 .index = HRTIMER_BASE_REALTIME_SOFT, 101 .clockid = CLOCK_REALTIME, 102 .get_time = &ktime_get_real, 103 }, 104 { 105 .index = HRTIMER_BASE_BOOTTIME_SOFT, 106 .clockid = CLOCK_BOOTTIME, 107 .get_time = &ktime_get_boottime, 108 }, 109 { 110 .index = HRTIMER_BASE_TAI_SOFT, 111 .clockid = CLOCK_TAI, 112 .get_time = &ktime_get_clocktai, 113 }, 114 } 115 }; 116 117 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 118 /* Make sure we catch unsupported clockids */ 119 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 120 121 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 122 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 123 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 124 [CLOCK_TAI] = HRTIMER_BASE_TAI, 125 }; 126 127 /* 128 * Functions and macros which are different for UP/SMP systems are kept in a 129 * single place 130 */ 131 #ifdef CONFIG_SMP 132 133 /* 134 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 135 * such that hrtimer_callback_running() can unconditionally dereference 136 * timer->base->cpu_base 137 */ 138 static struct hrtimer_cpu_base migration_cpu_base = { 139 .clock_base = { { 140 .cpu_base = &migration_cpu_base, 141 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, 142 &migration_cpu_base.lock), 143 }, }, 144 }; 145 146 #define migration_base migration_cpu_base.clock_base[0] 147 148 static inline bool is_migration_base(struct hrtimer_clock_base *base) 149 { 150 return base == &migration_base; 151 } 152 153 /* 154 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 155 * means that all timers which are tied to this base via timer->base are 156 * locked, and the base itself is locked too. 157 * 158 * So __run_timers/migrate_timers can safely modify all timers which could 159 * be found on the lists/queues. 160 * 161 * When the timer's base is locked, and the timer removed from list, it is 162 * possible to set timer->base = &migration_base and drop the lock: the timer 163 * remains locked. 164 */ 165 static 166 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 167 unsigned long *flags) 168 __acquires(&timer->base->lock) 169 { 170 struct hrtimer_clock_base *base; 171 172 for (;;) { 173 base = READ_ONCE(timer->base); 174 if (likely(base != &migration_base)) { 175 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 176 if (likely(base == timer->base)) 177 return base; 178 /* The timer has migrated to another CPU: */ 179 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 180 } 181 cpu_relax(); 182 } 183 } 184 185 /* 186 * We do not migrate the timer when it is expiring before the next 187 * event on the target cpu. When high resolution is enabled, we cannot 188 * reprogram the target cpu hardware and we would cause it to fire 189 * late. To keep it simple, we handle the high resolution enabled and 190 * disabled case similar. 191 * 192 * Called with cpu_base->lock of target cpu held. 193 */ 194 static int 195 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 196 { 197 ktime_t expires; 198 199 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 200 return expires < new_base->cpu_base->expires_next; 201 } 202 203 static inline 204 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 205 int pinned) 206 { 207 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 208 if (static_branch_likely(&timers_migration_enabled) && !pinned) 209 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 210 #endif 211 return base; 212 } 213 214 /* 215 * We switch the timer base to a power-optimized selected CPU target, 216 * if: 217 * - NO_HZ_COMMON is enabled 218 * - timer migration is enabled 219 * - the timer callback is not running 220 * - the timer is not the first expiring timer on the new target 221 * 222 * If one of the above requirements is not fulfilled we move the timer 223 * to the current CPU or leave it on the previously assigned CPU if 224 * the timer callback is currently running. 225 */ 226 static inline struct hrtimer_clock_base * 227 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 228 int pinned) 229 { 230 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 231 struct hrtimer_clock_base *new_base; 232 int basenum = base->index; 233 234 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 235 new_cpu_base = get_target_base(this_cpu_base, pinned); 236 again: 237 new_base = &new_cpu_base->clock_base[basenum]; 238 239 if (base != new_base) { 240 /* 241 * We are trying to move timer to new_base. 242 * However we can't change timer's base while it is running, 243 * so we keep it on the same CPU. No hassle vs. reprogramming 244 * the event source in the high resolution case. The softirq 245 * code will take care of this when the timer function has 246 * completed. There is no conflict as we hold the lock until 247 * the timer is enqueued. 248 */ 249 if (unlikely(hrtimer_callback_running(timer))) 250 return base; 251 252 /* See the comment in lock_hrtimer_base() */ 253 WRITE_ONCE(timer->base, &migration_base); 254 raw_spin_unlock(&base->cpu_base->lock); 255 raw_spin_lock(&new_base->cpu_base->lock); 256 257 if (new_cpu_base != this_cpu_base && 258 hrtimer_check_target(timer, new_base)) { 259 raw_spin_unlock(&new_base->cpu_base->lock); 260 raw_spin_lock(&base->cpu_base->lock); 261 new_cpu_base = this_cpu_base; 262 WRITE_ONCE(timer->base, base); 263 goto again; 264 } 265 WRITE_ONCE(timer->base, new_base); 266 } else { 267 if (new_cpu_base != this_cpu_base && 268 hrtimer_check_target(timer, new_base)) { 269 new_cpu_base = this_cpu_base; 270 goto again; 271 } 272 } 273 return new_base; 274 } 275 276 #else /* CONFIG_SMP */ 277 278 static inline bool is_migration_base(struct hrtimer_clock_base *base) 279 { 280 return false; 281 } 282 283 static inline struct hrtimer_clock_base * 284 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 285 __acquires(&timer->base->cpu_base->lock) 286 { 287 struct hrtimer_clock_base *base = timer->base; 288 289 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 290 291 return base; 292 } 293 294 # define switch_hrtimer_base(t, b, p) (b) 295 296 #endif /* !CONFIG_SMP */ 297 298 /* 299 * Functions for the union type storage format of ktime_t which are 300 * too large for inlining: 301 */ 302 #if BITS_PER_LONG < 64 303 /* 304 * Divide a ktime value by a nanosecond value 305 */ 306 s64 __ktime_divns(const ktime_t kt, s64 div) 307 { 308 int sft = 0; 309 s64 dclc; 310 u64 tmp; 311 312 dclc = ktime_to_ns(kt); 313 tmp = dclc < 0 ? -dclc : dclc; 314 315 /* Make sure the divisor is less than 2^32: */ 316 while (div >> 32) { 317 sft++; 318 div >>= 1; 319 } 320 tmp >>= sft; 321 do_div(tmp, (u32) div); 322 return dclc < 0 ? -tmp : tmp; 323 } 324 EXPORT_SYMBOL_GPL(__ktime_divns); 325 #endif /* BITS_PER_LONG >= 64 */ 326 327 /* 328 * Add two ktime values and do a safety check for overflow: 329 */ 330 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 331 { 332 ktime_t res = ktime_add_unsafe(lhs, rhs); 333 334 /* 335 * We use KTIME_SEC_MAX here, the maximum timeout which we can 336 * return to user space in a timespec: 337 */ 338 if (res < 0 || res < lhs || res < rhs) 339 res = ktime_set(KTIME_SEC_MAX, 0); 340 341 return res; 342 } 343 344 EXPORT_SYMBOL_GPL(ktime_add_safe); 345 346 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 347 348 static const struct debug_obj_descr hrtimer_debug_descr; 349 350 static void *hrtimer_debug_hint(void *addr) 351 { 352 return ((struct hrtimer *) addr)->function; 353 } 354 355 /* 356 * fixup_init is called when: 357 * - an active object is initialized 358 */ 359 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 360 { 361 struct hrtimer *timer = addr; 362 363 switch (state) { 364 case ODEBUG_STATE_ACTIVE: 365 hrtimer_cancel(timer); 366 debug_object_init(timer, &hrtimer_debug_descr); 367 return true; 368 default: 369 return false; 370 } 371 } 372 373 /* 374 * fixup_activate is called when: 375 * - an active object is activated 376 * - an unknown non-static object is activated 377 */ 378 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 379 { 380 switch (state) { 381 case ODEBUG_STATE_ACTIVE: 382 WARN_ON(1); 383 fallthrough; 384 default: 385 return false; 386 } 387 } 388 389 /* 390 * fixup_free is called when: 391 * - an active object is freed 392 */ 393 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 394 { 395 struct hrtimer *timer = addr; 396 397 switch (state) { 398 case ODEBUG_STATE_ACTIVE: 399 hrtimer_cancel(timer); 400 debug_object_free(timer, &hrtimer_debug_descr); 401 return true; 402 default: 403 return false; 404 } 405 } 406 407 static const struct debug_obj_descr hrtimer_debug_descr = { 408 .name = "hrtimer", 409 .debug_hint = hrtimer_debug_hint, 410 .fixup_init = hrtimer_fixup_init, 411 .fixup_activate = hrtimer_fixup_activate, 412 .fixup_free = hrtimer_fixup_free, 413 }; 414 415 static inline void debug_hrtimer_init(struct hrtimer *timer) 416 { 417 debug_object_init(timer, &hrtimer_debug_descr); 418 } 419 420 static inline void debug_hrtimer_activate(struct hrtimer *timer, 421 enum hrtimer_mode mode) 422 { 423 debug_object_activate(timer, &hrtimer_debug_descr); 424 } 425 426 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 427 { 428 debug_object_deactivate(timer, &hrtimer_debug_descr); 429 } 430 431 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 432 enum hrtimer_mode mode); 433 434 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 435 enum hrtimer_mode mode) 436 { 437 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 438 __hrtimer_init(timer, clock_id, mode); 439 } 440 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 441 442 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 443 clockid_t clock_id, enum hrtimer_mode mode); 444 445 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, 446 clockid_t clock_id, enum hrtimer_mode mode) 447 { 448 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr); 449 __hrtimer_init_sleeper(sl, clock_id, mode); 450 } 451 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack); 452 453 void destroy_hrtimer_on_stack(struct hrtimer *timer) 454 { 455 debug_object_free(timer, &hrtimer_debug_descr); 456 } 457 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 458 459 #else 460 461 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 462 static inline void debug_hrtimer_activate(struct hrtimer *timer, 463 enum hrtimer_mode mode) { } 464 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 465 #endif 466 467 static inline void 468 debug_init(struct hrtimer *timer, clockid_t clockid, 469 enum hrtimer_mode mode) 470 { 471 debug_hrtimer_init(timer); 472 trace_hrtimer_init(timer, clockid, mode); 473 } 474 475 static inline void debug_activate(struct hrtimer *timer, 476 enum hrtimer_mode mode) 477 { 478 debug_hrtimer_activate(timer, mode); 479 trace_hrtimer_start(timer, mode); 480 } 481 482 static inline void debug_deactivate(struct hrtimer *timer) 483 { 484 debug_hrtimer_deactivate(timer); 485 trace_hrtimer_cancel(timer); 486 } 487 488 static struct hrtimer_clock_base * 489 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 490 { 491 unsigned int idx; 492 493 if (!*active) 494 return NULL; 495 496 idx = __ffs(*active); 497 *active &= ~(1U << idx); 498 499 return &cpu_base->clock_base[idx]; 500 } 501 502 #define for_each_active_base(base, cpu_base, active) \ 503 while ((base = __next_base((cpu_base), &(active)))) 504 505 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 506 const struct hrtimer *exclude, 507 unsigned int active, 508 ktime_t expires_next) 509 { 510 struct hrtimer_clock_base *base; 511 ktime_t expires; 512 513 for_each_active_base(base, cpu_base, active) { 514 struct timerqueue_node *next; 515 struct hrtimer *timer; 516 517 next = timerqueue_getnext(&base->active); 518 timer = container_of(next, struct hrtimer, node); 519 if (timer == exclude) { 520 /* Get to the next timer in the queue. */ 521 next = timerqueue_iterate_next(next); 522 if (!next) 523 continue; 524 525 timer = container_of(next, struct hrtimer, node); 526 } 527 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 528 if (expires < expires_next) { 529 expires_next = expires; 530 531 /* Skip cpu_base update if a timer is being excluded. */ 532 if (exclude) 533 continue; 534 535 if (timer->is_soft) 536 cpu_base->softirq_next_timer = timer; 537 else 538 cpu_base->next_timer = timer; 539 } 540 } 541 /* 542 * clock_was_set() might have changed base->offset of any of 543 * the clock bases so the result might be negative. Fix it up 544 * to prevent a false positive in clockevents_program_event(). 545 */ 546 if (expires_next < 0) 547 expires_next = 0; 548 return expires_next; 549 } 550 551 /* 552 * Recomputes cpu_base::*next_timer and returns the earliest expires_next 553 * but does not set cpu_base::*expires_next, that is done by 554 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating 555 * cpu_base::*expires_next right away, reprogramming logic would no longer 556 * work. 557 * 558 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 559 * those timers will get run whenever the softirq gets handled, at the end of 560 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 561 * 562 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 563 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 564 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 565 * 566 * @active_mask must be one of: 567 * - HRTIMER_ACTIVE_ALL, 568 * - HRTIMER_ACTIVE_SOFT, or 569 * - HRTIMER_ACTIVE_HARD. 570 */ 571 static ktime_t 572 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 573 { 574 unsigned int active; 575 struct hrtimer *next_timer = NULL; 576 ktime_t expires_next = KTIME_MAX; 577 578 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 579 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 580 cpu_base->softirq_next_timer = NULL; 581 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 582 active, KTIME_MAX); 583 584 next_timer = cpu_base->softirq_next_timer; 585 } 586 587 if (active_mask & HRTIMER_ACTIVE_HARD) { 588 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 589 cpu_base->next_timer = next_timer; 590 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 591 expires_next); 592 } 593 594 return expires_next; 595 } 596 597 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base) 598 { 599 ktime_t expires_next, soft = KTIME_MAX; 600 601 /* 602 * If the soft interrupt has already been activated, ignore the 603 * soft bases. They will be handled in the already raised soft 604 * interrupt. 605 */ 606 if (!cpu_base->softirq_activated) { 607 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 608 /* 609 * Update the soft expiry time. clock_settime() might have 610 * affected it. 611 */ 612 cpu_base->softirq_expires_next = soft; 613 } 614 615 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD); 616 /* 617 * If a softirq timer is expiring first, update cpu_base->next_timer 618 * and program the hardware with the soft expiry time. 619 */ 620 if (expires_next > soft) { 621 cpu_base->next_timer = cpu_base->softirq_next_timer; 622 expires_next = soft; 623 } 624 625 return expires_next; 626 } 627 628 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 629 { 630 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 631 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 632 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 633 634 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 635 offs_real, offs_boot, offs_tai); 636 637 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 638 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 639 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 640 641 return now; 642 } 643 644 /* 645 * Is the high resolution mode active ? 646 */ 647 static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 648 { 649 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 650 cpu_base->hres_active : 0; 651 } 652 653 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base, 654 struct hrtimer *next_timer, 655 ktime_t expires_next) 656 { 657 cpu_base->expires_next = expires_next; 658 659 /* 660 * If hres is not active, hardware does not have to be 661 * reprogrammed yet. 662 * 663 * If a hang was detected in the last timer interrupt then we 664 * leave the hang delay active in the hardware. We want the 665 * system to make progress. That also prevents the following 666 * scenario: 667 * T1 expires 50ms from now 668 * T2 expires 5s from now 669 * 670 * T1 is removed, so this code is called and would reprogram 671 * the hardware to 5s from now. Any hrtimer_start after that 672 * will not reprogram the hardware due to hang_detected being 673 * set. So we'd effectively block all timers until the T2 event 674 * fires. 675 */ 676 if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 677 return; 678 679 tick_program_event(expires_next, 1); 680 } 681 682 /* 683 * Reprogram the event source with checking both queues for the 684 * next event 685 * Called with interrupts disabled and base->lock held 686 */ 687 static void 688 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 689 { 690 ktime_t expires_next; 691 692 expires_next = hrtimer_update_next_event(cpu_base); 693 694 if (skip_equal && expires_next == cpu_base->expires_next) 695 return; 696 697 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next); 698 } 699 700 /* High resolution timer related functions */ 701 #ifdef CONFIG_HIGH_RES_TIMERS 702 703 /* 704 * High resolution timer enabled ? 705 */ 706 static bool hrtimer_hres_enabled __read_mostly = true; 707 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 708 EXPORT_SYMBOL_GPL(hrtimer_resolution); 709 710 /* 711 * Enable / Disable high resolution mode 712 */ 713 static int __init setup_hrtimer_hres(char *str) 714 { 715 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 716 } 717 718 __setup("highres=", setup_hrtimer_hres); 719 720 /* 721 * hrtimer_high_res_enabled - query, if the highres mode is enabled 722 */ 723 static inline int hrtimer_is_hres_enabled(void) 724 { 725 return hrtimer_hres_enabled; 726 } 727 728 static void retrigger_next_event(void *arg); 729 730 /* 731 * Switch to high resolution mode 732 */ 733 static void hrtimer_switch_to_hres(void) 734 { 735 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 736 737 if (tick_init_highres()) { 738 pr_warn("Could not switch to high resolution mode on CPU %u\n", 739 base->cpu); 740 return; 741 } 742 base->hres_active = 1; 743 hrtimer_resolution = HIGH_RES_NSEC; 744 745 tick_setup_sched_timer(true); 746 /* "Retrigger" the interrupt to get things going */ 747 retrigger_next_event(NULL); 748 } 749 750 #else 751 752 static inline int hrtimer_is_hres_enabled(void) { return 0; } 753 static inline void hrtimer_switch_to_hres(void) { } 754 755 #endif /* CONFIG_HIGH_RES_TIMERS */ 756 /* 757 * Retrigger next event is called after clock was set with interrupts 758 * disabled through an SMP function call or directly from low level 759 * resume code. 760 * 761 * This is only invoked when: 762 * - CONFIG_HIGH_RES_TIMERS is enabled. 763 * - CONFIG_NOHZ_COMMON is enabled 764 * 765 * For the other cases this function is empty and because the call sites 766 * are optimized out it vanishes as well, i.e. no need for lots of 767 * #ifdeffery. 768 */ 769 static void retrigger_next_event(void *arg) 770 { 771 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 772 773 /* 774 * When high resolution mode or nohz is active, then the offsets of 775 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the 776 * next tick will take care of that. 777 * 778 * If high resolution mode is active then the next expiring timer 779 * must be reevaluated and the clock event device reprogrammed if 780 * necessary. 781 * 782 * In the NOHZ case the update of the offset and the reevaluation 783 * of the next expiring timer is enough. The return from the SMP 784 * function call will take care of the reprogramming in case the 785 * CPU was in a NOHZ idle sleep. 786 */ 787 if (!hrtimer_hres_active(base) && !tick_nohz_active) 788 return; 789 790 raw_spin_lock(&base->lock); 791 hrtimer_update_base(base); 792 if (hrtimer_hres_active(base)) 793 hrtimer_force_reprogram(base, 0); 794 else 795 hrtimer_update_next_event(base); 796 raw_spin_unlock(&base->lock); 797 } 798 799 /* 800 * When a timer is enqueued and expires earlier than the already enqueued 801 * timers, we have to check, whether it expires earlier than the timer for 802 * which the clock event device was armed. 803 * 804 * Called with interrupts disabled and base->cpu_base.lock held 805 */ 806 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 807 { 808 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 809 struct hrtimer_clock_base *base = timer->base; 810 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 811 812 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 813 814 /* 815 * CLOCK_REALTIME timer might be requested with an absolute 816 * expiry time which is less than base->offset. Set it to 0. 817 */ 818 if (expires < 0) 819 expires = 0; 820 821 if (timer->is_soft) { 822 /* 823 * soft hrtimer could be started on a remote CPU. In this 824 * case softirq_expires_next needs to be updated on the 825 * remote CPU. The soft hrtimer will not expire before the 826 * first hard hrtimer on the remote CPU - 827 * hrtimer_check_target() prevents this case. 828 */ 829 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 830 831 if (timer_cpu_base->softirq_activated) 832 return; 833 834 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 835 return; 836 837 timer_cpu_base->softirq_next_timer = timer; 838 timer_cpu_base->softirq_expires_next = expires; 839 840 if (!ktime_before(expires, timer_cpu_base->expires_next) || 841 !reprogram) 842 return; 843 } 844 845 /* 846 * If the timer is not on the current cpu, we cannot reprogram 847 * the other cpus clock event device. 848 */ 849 if (base->cpu_base != cpu_base) 850 return; 851 852 if (expires >= cpu_base->expires_next) 853 return; 854 855 /* 856 * If the hrtimer interrupt is running, then it will reevaluate the 857 * clock bases and reprogram the clock event device. 858 */ 859 if (cpu_base->in_hrtirq) 860 return; 861 862 cpu_base->next_timer = timer; 863 864 __hrtimer_reprogram(cpu_base, timer, expires); 865 } 866 867 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base, 868 unsigned int active) 869 { 870 struct hrtimer_clock_base *base; 871 unsigned int seq; 872 ktime_t expires; 873 874 /* 875 * Update the base offsets unconditionally so the following 876 * checks whether the SMP function call is required works. 877 * 878 * The update is safe even when the remote CPU is in the hrtimer 879 * interrupt or the hrtimer soft interrupt and expiring affected 880 * bases. Either it will see the update before handling a base or 881 * it will see it when it finishes the processing and reevaluates 882 * the next expiring timer. 883 */ 884 seq = cpu_base->clock_was_set_seq; 885 hrtimer_update_base(cpu_base); 886 887 /* 888 * If the sequence did not change over the update then the 889 * remote CPU already handled it. 890 */ 891 if (seq == cpu_base->clock_was_set_seq) 892 return false; 893 894 /* 895 * If the remote CPU is currently handling an hrtimer interrupt, it 896 * will reevaluate the first expiring timer of all clock bases 897 * before reprogramming. Nothing to do here. 898 */ 899 if (cpu_base->in_hrtirq) 900 return false; 901 902 /* 903 * Walk the affected clock bases and check whether the first expiring 904 * timer in a clock base is moving ahead of the first expiring timer of 905 * @cpu_base. If so, the IPI must be invoked because per CPU clock 906 * event devices cannot be remotely reprogrammed. 907 */ 908 active &= cpu_base->active_bases; 909 910 for_each_active_base(base, cpu_base, active) { 911 struct timerqueue_node *next; 912 913 next = timerqueue_getnext(&base->active); 914 expires = ktime_sub(next->expires, base->offset); 915 if (expires < cpu_base->expires_next) 916 return true; 917 918 /* Extra check for softirq clock bases */ 919 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT) 920 continue; 921 if (cpu_base->softirq_activated) 922 continue; 923 if (expires < cpu_base->softirq_expires_next) 924 return true; 925 } 926 return false; 927 } 928 929 /* 930 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and 931 * CLOCK_BOOTTIME (for late sleep time injection). 932 * 933 * This requires to update the offsets for these clocks 934 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this 935 * also requires to eventually reprogram the per CPU clock event devices 936 * when the change moves an affected timer ahead of the first expiring 937 * timer on that CPU. Obviously remote per CPU clock event devices cannot 938 * be reprogrammed. The other reason why an IPI has to be sent is when the 939 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets 940 * in the tick, which obviously might be stopped, so this has to bring out 941 * the remote CPU which might sleep in idle to get this sorted. 942 */ 943 void clock_was_set(unsigned int bases) 944 { 945 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases); 946 cpumask_var_t mask; 947 int cpu; 948 949 if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active) 950 goto out_timerfd; 951 952 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 953 on_each_cpu(retrigger_next_event, NULL, 1); 954 goto out_timerfd; 955 } 956 957 /* Avoid interrupting CPUs if possible */ 958 cpus_read_lock(); 959 for_each_online_cpu(cpu) { 960 unsigned long flags; 961 962 cpu_base = &per_cpu(hrtimer_bases, cpu); 963 raw_spin_lock_irqsave(&cpu_base->lock, flags); 964 965 if (update_needs_ipi(cpu_base, bases)) 966 cpumask_set_cpu(cpu, mask); 967 968 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 969 } 970 971 preempt_disable(); 972 smp_call_function_many(mask, retrigger_next_event, NULL, 1); 973 preempt_enable(); 974 cpus_read_unlock(); 975 free_cpumask_var(mask); 976 977 out_timerfd: 978 timerfd_clock_was_set(); 979 } 980 981 static void clock_was_set_work(struct work_struct *work) 982 { 983 clock_was_set(CLOCK_SET_WALL); 984 } 985 986 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 987 988 /* 989 * Called from timekeeping code to reprogram the hrtimer interrupt device 990 * on all cpus and to notify timerfd. 991 */ 992 void clock_was_set_delayed(void) 993 { 994 schedule_work(&hrtimer_work); 995 } 996 997 /* 998 * Called during resume either directly from via timekeeping_resume() 999 * or in the case of s2idle from tick_unfreeze() to ensure that the 1000 * hrtimers are up to date. 1001 */ 1002 void hrtimers_resume_local(void) 1003 { 1004 lockdep_assert_irqs_disabled(); 1005 /* Retrigger on the local CPU */ 1006 retrigger_next_event(NULL); 1007 } 1008 1009 /* 1010 * Counterpart to lock_hrtimer_base above: 1011 */ 1012 static inline 1013 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 1014 __releases(&timer->base->cpu_base->lock) 1015 { 1016 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 1017 } 1018 1019 /** 1020 * hrtimer_forward() - forward the timer expiry 1021 * @timer: hrtimer to forward 1022 * @now: forward past this time 1023 * @interval: the interval to forward 1024 * 1025 * Forward the timer expiry so it will expire in the future. 1026 * 1027 * .. note:: 1028 * This only updates the timer expiry value and does not requeue the timer. 1029 * 1030 * There is also a variant of the function hrtimer_forward_now(). 1031 * 1032 * Context: Can be safely called from the callback function of @timer. If called 1033 * from other contexts @timer must neither be enqueued nor running the 1034 * callback and the caller needs to take care of serialization. 1035 * 1036 * Return: The number of overruns are returned. 1037 */ 1038 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 1039 { 1040 u64 orun = 1; 1041 ktime_t delta; 1042 1043 delta = ktime_sub(now, hrtimer_get_expires(timer)); 1044 1045 if (delta < 0) 1046 return 0; 1047 1048 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 1049 return 0; 1050 1051 if (interval < hrtimer_resolution) 1052 interval = hrtimer_resolution; 1053 1054 if (unlikely(delta >= interval)) { 1055 s64 incr = ktime_to_ns(interval); 1056 1057 orun = ktime_divns(delta, incr); 1058 hrtimer_add_expires_ns(timer, incr * orun); 1059 if (hrtimer_get_expires_tv64(timer) > now) 1060 return orun; 1061 /* 1062 * This (and the ktime_add() below) is the 1063 * correction for exact: 1064 */ 1065 orun++; 1066 } 1067 hrtimer_add_expires(timer, interval); 1068 1069 return orun; 1070 } 1071 EXPORT_SYMBOL_GPL(hrtimer_forward); 1072 1073 /* 1074 * enqueue_hrtimer - internal function to (re)start a timer 1075 * 1076 * The timer is inserted in expiry order. Insertion into the 1077 * red black tree is O(log(n)). Must hold the base lock. 1078 * 1079 * Returns 1 when the new timer is the leftmost timer in the tree. 1080 */ 1081 static int enqueue_hrtimer(struct hrtimer *timer, 1082 struct hrtimer_clock_base *base, 1083 enum hrtimer_mode mode) 1084 { 1085 debug_activate(timer, mode); 1086 WARN_ON_ONCE(!base->cpu_base->online); 1087 1088 base->cpu_base->active_bases |= 1 << base->index; 1089 1090 /* Pairs with the lockless read in hrtimer_is_queued() */ 1091 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); 1092 1093 return timerqueue_add(&base->active, &timer->node); 1094 } 1095 1096 /* 1097 * __remove_hrtimer - internal function to remove a timer 1098 * 1099 * Caller must hold the base lock. 1100 * 1101 * High resolution timer mode reprograms the clock event device when the 1102 * timer is the one which expires next. The caller can disable this by setting 1103 * reprogram to zero. This is useful, when the context does a reprogramming 1104 * anyway (e.g. timer interrupt) 1105 */ 1106 static void __remove_hrtimer(struct hrtimer *timer, 1107 struct hrtimer_clock_base *base, 1108 u8 newstate, int reprogram) 1109 { 1110 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 1111 u8 state = timer->state; 1112 1113 /* Pairs with the lockless read in hrtimer_is_queued() */ 1114 WRITE_ONCE(timer->state, newstate); 1115 if (!(state & HRTIMER_STATE_ENQUEUED)) 1116 return; 1117 1118 if (!timerqueue_del(&base->active, &timer->node)) 1119 cpu_base->active_bases &= ~(1 << base->index); 1120 1121 /* 1122 * Note: If reprogram is false we do not update 1123 * cpu_base->next_timer. This happens when we remove the first 1124 * timer on a remote cpu. No harm as we never dereference 1125 * cpu_base->next_timer. So the worst thing what can happen is 1126 * an superfluous call to hrtimer_force_reprogram() on the 1127 * remote cpu later on if the same timer gets enqueued again. 1128 */ 1129 if (reprogram && timer == cpu_base->next_timer) 1130 hrtimer_force_reprogram(cpu_base, 1); 1131 } 1132 1133 /* 1134 * remove hrtimer, called with base lock held 1135 */ 1136 static inline int 1137 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, 1138 bool restart, bool keep_local) 1139 { 1140 u8 state = timer->state; 1141 1142 if (state & HRTIMER_STATE_ENQUEUED) { 1143 bool reprogram; 1144 1145 /* 1146 * Remove the timer and force reprogramming when high 1147 * resolution mode is active and the timer is on the current 1148 * CPU. If we remove a timer on another CPU, reprogramming is 1149 * skipped. The interrupt event on this CPU is fired and 1150 * reprogramming happens in the interrupt handler. This is a 1151 * rare case and less expensive than a smp call. 1152 */ 1153 debug_deactivate(timer); 1154 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1155 1156 /* 1157 * If the timer is not restarted then reprogramming is 1158 * required if the timer is local. If it is local and about 1159 * to be restarted, avoid programming it twice (on removal 1160 * and a moment later when it's requeued). 1161 */ 1162 if (!restart) 1163 state = HRTIMER_STATE_INACTIVE; 1164 else 1165 reprogram &= !keep_local; 1166 1167 __remove_hrtimer(timer, base, state, reprogram); 1168 return 1; 1169 } 1170 return 0; 1171 } 1172 1173 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1174 const enum hrtimer_mode mode) 1175 { 1176 #ifdef CONFIG_TIME_LOW_RES 1177 /* 1178 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1179 * granular time values. For relative timers we add hrtimer_resolution 1180 * (i.e. one jiffie) to prevent short timeouts. 1181 */ 1182 timer->is_rel = mode & HRTIMER_MODE_REL; 1183 if (timer->is_rel) 1184 tim = ktime_add_safe(tim, hrtimer_resolution); 1185 #endif 1186 return tim; 1187 } 1188 1189 static void 1190 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1191 { 1192 ktime_t expires; 1193 1194 /* 1195 * Find the next SOFT expiration. 1196 */ 1197 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1198 1199 /* 1200 * reprogramming needs to be triggered, even if the next soft 1201 * hrtimer expires at the same time than the next hard 1202 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1203 */ 1204 if (expires == KTIME_MAX) 1205 return; 1206 1207 /* 1208 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1209 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1210 */ 1211 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1212 } 1213 1214 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1215 u64 delta_ns, const enum hrtimer_mode mode, 1216 struct hrtimer_clock_base *base) 1217 { 1218 struct hrtimer_clock_base *new_base; 1219 bool force_local, first; 1220 1221 /* 1222 * If the timer is on the local cpu base and is the first expiring 1223 * timer then this might end up reprogramming the hardware twice 1224 * (on removal and on enqueue). To avoid that by prevent the 1225 * reprogram on removal, keep the timer local to the current CPU 1226 * and enforce reprogramming after it is queued no matter whether 1227 * it is the new first expiring timer again or not. 1228 */ 1229 force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1230 force_local &= base->cpu_base->next_timer == timer; 1231 1232 /* 1233 * Remove an active timer from the queue. In case it is not queued 1234 * on the current CPU, make sure that remove_hrtimer() updates the 1235 * remote data correctly. 1236 * 1237 * If it's on the current CPU and the first expiring timer, then 1238 * skip reprogramming, keep the timer local and enforce 1239 * reprogramming later if it was the first expiring timer. This 1240 * avoids programming the underlying clock event twice (once at 1241 * removal and once after enqueue). 1242 */ 1243 remove_hrtimer(timer, base, true, force_local); 1244 1245 if (mode & HRTIMER_MODE_REL) 1246 tim = ktime_add_safe(tim, base->get_time()); 1247 1248 tim = hrtimer_update_lowres(timer, tim, mode); 1249 1250 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1251 1252 /* Switch the timer base, if necessary: */ 1253 if (!force_local) { 1254 new_base = switch_hrtimer_base(timer, base, 1255 mode & HRTIMER_MODE_PINNED); 1256 } else { 1257 new_base = base; 1258 } 1259 1260 first = enqueue_hrtimer(timer, new_base, mode); 1261 if (!force_local) 1262 return first; 1263 1264 /* 1265 * Timer was forced to stay on the current CPU to avoid 1266 * reprogramming on removal and enqueue. Force reprogram the 1267 * hardware by evaluating the new first expiring timer. 1268 */ 1269 hrtimer_force_reprogram(new_base->cpu_base, 1); 1270 return 0; 1271 } 1272 1273 /** 1274 * hrtimer_start_range_ns - (re)start an hrtimer 1275 * @timer: the timer to be added 1276 * @tim: expiry time 1277 * @delta_ns: "slack" range for the timer 1278 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1279 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1280 * softirq based mode is considered for debug purpose only! 1281 */ 1282 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1283 u64 delta_ns, const enum hrtimer_mode mode) 1284 { 1285 struct hrtimer_clock_base *base; 1286 unsigned long flags; 1287 1288 if (WARN_ON_ONCE(!timer->function)) 1289 return; 1290 /* 1291 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1292 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard 1293 * expiry mode because unmarked timers are moved to softirq expiry. 1294 */ 1295 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1296 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1297 else 1298 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); 1299 1300 base = lock_hrtimer_base(timer, &flags); 1301 1302 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1303 hrtimer_reprogram(timer, true); 1304 1305 unlock_hrtimer_base(timer, &flags); 1306 } 1307 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1308 1309 /** 1310 * hrtimer_try_to_cancel - try to deactivate a timer 1311 * @timer: hrtimer to stop 1312 * 1313 * Returns: 1314 * 1315 * * 0 when the timer was not active 1316 * * 1 when the timer was active 1317 * * -1 when the timer is currently executing the callback function and 1318 * cannot be stopped 1319 */ 1320 int hrtimer_try_to_cancel(struct hrtimer *timer) 1321 { 1322 struct hrtimer_clock_base *base; 1323 unsigned long flags; 1324 int ret = -1; 1325 1326 /* 1327 * Check lockless first. If the timer is not active (neither 1328 * enqueued nor running the callback, nothing to do here. The 1329 * base lock does not serialize against a concurrent enqueue, 1330 * so we can avoid taking it. 1331 */ 1332 if (!hrtimer_active(timer)) 1333 return 0; 1334 1335 base = lock_hrtimer_base(timer, &flags); 1336 1337 if (!hrtimer_callback_running(timer)) 1338 ret = remove_hrtimer(timer, base, false, false); 1339 1340 unlock_hrtimer_base(timer, &flags); 1341 1342 return ret; 1343 1344 } 1345 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1346 1347 #ifdef CONFIG_PREEMPT_RT 1348 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) 1349 { 1350 spin_lock_init(&base->softirq_expiry_lock); 1351 } 1352 1353 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) 1354 { 1355 spin_lock(&base->softirq_expiry_lock); 1356 } 1357 1358 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) 1359 { 1360 spin_unlock(&base->softirq_expiry_lock); 1361 } 1362 1363 /* 1364 * The counterpart to hrtimer_cancel_wait_running(). 1365 * 1366 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for 1367 * the timer callback to finish. Drop expiry_lock and reacquire it. That 1368 * allows the waiter to acquire the lock and make progress. 1369 */ 1370 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, 1371 unsigned long flags) 1372 { 1373 if (atomic_read(&cpu_base->timer_waiters)) { 1374 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1375 spin_unlock(&cpu_base->softirq_expiry_lock); 1376 spin_lock(&cpu_base->softirq_expiry_lock); 1377 raw_spin_lock_irq(&cpu_base->lock); 1378 } 1379 } 1380 1381 /* 1382 * This function is called on PREEMPT_RT kernels when the fast path 1383 * deletion of a timer failed because the timer callback function was 1384 * running. 1385 * 1386 * This prevents priority inversion: if the soft irq thread is preempted 1387 * in the middle of a timer callback, then calling del_timer_sync() can 1388 * lead to two issues: 1389 * 1390 * - If the caller is on a remote CPU then it has to spin wait for the timer 1391 * handler to complete. This can result in unbound priority inversion. 1392 * 1393 * - If the caller originates from the task which preempted the timer 1394 * handler on the same CPU, then spin waiting for the timer handler to 1395 * complete is never going to end. 1396 */ 1397 void hrtimer_cancel_wait_running(const struct hrtimer *timer) 1398 { 1399 /* Lockless read. Prevent the compiler from reloading it below */ 1400 struct hrtimer_clock_base *base = READ_ONCE(timer->base); 1401 1402 /* 1403 * Just relax if the timer expires in hard interrupt context or if 1404 * it is currently on the migration base. 1405 */ 1406 if (!timer->is_soft || is_migration_base(base)) { 1407 cpu_relax(); 1408 return; 1409 } 1410 1411 /* 1412 * Mark the base as contended and grab the expiry lock, which is 1413 * held by the softirq across the timer callback. Drop the lock 1414 * immediately so the softirq can expire the next timer. In theory 1415 * the timer could already be running again, but that's more than 1416 * unlikely and just causes another wait loop. 1417 */ 1418 atomic_inc(&base->cpu_base->timer_waiters); 1419 spin_lock_bh(&base->cpu_base->softirq_expiry_lock); 1420 atomic_dec(&base->cpu_base->timer_waiters); 1421 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); 1422 } 1423 #else 1424 static inline void 1425 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } 1426 static inline void 1427 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } 1428 static inline void 1429 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } 1430 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, 1431 unsigned long flags) { } 1432 #endif 1433 1434 /** 1435 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1436 * @timer: the timer to be cancelled 1437 * 1438 * Returns: 1439 * 0 when the timer was not active 1440 * 1 when the timer was active 1441 */ 1442 int hrtimer_cancel(struct hrtimer *timer) 1443 { 1444 int ret; 1445 1446 do { 1447 ret = hrtimer_try_to_cancel(timer); 1448 1449 if (ret < 0) 1450 hrtimer_cancel_wait_running(timer); 1451 } while (ret < 0); 1452 return ret; 1453 } 1454 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1455 1456 /** 1457 * __hrtimer_get_remaining - get remaining time for the timer 1458 * @timer: the timer to read 1459 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1460 */ 1461 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1462 { 1463 unsigned long flags; 1464 ktime_t rem; 1465 1466 lock_hrtimer_base(timer, &flags); 1467 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1468 rem = hrtimer_expires_remaining_adjusted(timer); 1469 else 1470 rem = hrtimer_expires_remaining(timer); 1471 unlock_hrtimer_base(timer, &flags); 1472 1473 return rem; 1474 } 1475 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1476 1477 #ifdef CONFIG_NO_HZ_COMMON 1478 /** 1479 * hrtimer_get_next_event - get the time until next expiry event 1480 * 1481 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1482 */ 1483 u64 hrtimer_get_next_event(void) 1484 { 1485 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1486 u64 expires = KTIME_MAX; 1487 unsigned long flags; 1488 1489 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1490 1491 if (!hrtimer_hres_active(cpu_base)) 1492 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1493 1494 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1495 1496 return expires; 1497 } 1498 1499 /** 1500 * hrtimer_next_event_without - time until next expiry event w/o one timer 1501 * @exclude: timer to exclude 1502 * 1503 * Returns the next expiry time over all timers except for the @exclude one or 1504 * KTIME_MAX if none of them is pending. 1505 */ 1506 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1507 { 1508 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1509 u64 expires = KTIME_MAX; 1510 unsigned long flags; 1511 1512 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1513 1514 if (hrtimer_hres_active(cpu_base)) { 1515 unsigned int active; 1516 1517 if (!cpu_base->softirq_activated) { 1518 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1519 expires = __hrtimer_next_event_base(cpu_base, exclude, 1520 active, KTIME_MAX); 1521 } 1522 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1523 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1524 expires); 1525 } 1526 1527 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1528 1529 return expires; 1530 } 1531 #endif 1532 1533 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1534 { 1535 if (likely(clock_id < MAX_CLOCKS)) { 1536 int base = hrtimer_clock_to_base_table[clock_id]; 1537 1538 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1539 return base; 1540 } 1541 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1542 return HRTIMER_BASE_MONOTONIC; 1543 } 1544 1545 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1546 enum hrtimer_mode mode) 1547 { 1548 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1549 struct hrtimer_cpu_base *cpu_base; 1550 int base; 1551 1552 /* 1553 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 1554 * marked for hard interrupt expiry mode are moved into soft 1555 * interrupt context for latency reasons and because the callbacks 1556 * can invoke functions which might sleep on RT, e.g. spin_lock(). 1557 */ 1558 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) 1559 softtimer = true; 1560 1561 memset(timer, 0, sizeof(struct hrtimer)); 1562 1563 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1564 1565 /* 1566 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1567 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1568 * ensure POSIX compliance. 1569 */ 1570 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1571 clock_id = CLOCK_MONOTONIC; 1572 1573 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1574 base += hrtimer_clockid_to_base(clock_id); 1575 timer->is_soft = softtimer; 1576 timer->is_hard = !!(mode & HRTIMER_MODE_HARD); 1577 timer->base = &cpu_base->clock_base[base]; 1578 timerqueue_init(&timer->node); 1579 } 1580 1581 /** 1582 * hrtimer_init - initialize a timer to the given clock 1583 * @timer: the timer to be initialized 1584 * @clock_id: the clock to be used 1585 * @mode: The modes which are relevant for initialization: 1586 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1587 * HRTIMER_MODE_REL_SOFT 1588 * 1589 * The PINNED variants of the above can be handed in, 1590 * but the PINNED bit is ignored as pinning happens 1591 * when the hrtimer is started 1592 */ 1593 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1594 enum hrtimer_mode mode) 1595 { 1596 debug_init(timer, clock_id, mode); 1597 __hrtimer_init(timer, clock_id, mode); 1598 } 1599 EXPORT_SYMBOL_GPL(hrtimer_init); 1600 1601 /* 1602 * A timer is active, when it is enqueued into the rbtree or the 1603 * callback function is running or it's in the state of being migrated 1604 * to another cpu. 1605 * 1606 * It is important for this function to not return a false negative. 1607 */ 1608 bool hrtimer_active(const struct hrtimer *timer) 1609 { 1610 struct hrtimer_clock_base *base; 1611 unsigned int seq; 1612 1613 do { 1614 base = READ_ONCE(timer->base); 1615 seq = raw_read_seqcount_begin(&base->seq); 1616 1617 if (timer->state != HRTIMER_STATE_INACTIVE || 1618 base->running == timer) 1619 return true; 1620 1621 } while (read_seqcount_retry(&base->seq, seq) || 1622 base != READ_ONCE(timer->base)); 1623 1624 return false; 1625 } 1626 EXPORT_SYMBOL_GPL(hrtimer_active); 1627 1628 /* 1629 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1630 * distinct sections: 1631 * 1632 * - queued: the timer is queued 1633 * - callback: the timer is being ran 1634 * - post: the timer is inactive or (re)queued 1635 * 1636 * On the read side we ensure we observe timer->state and cpu_base->running 1637 * from the same section, if anything changed while we looked at it, we retry. 1638 * This includes timer->base changing because sequence numbers alone are 1639 * insufficient for that. 1640 * 1641 * The sequence numbers are required because otherwise we could still observe 1642 * a false negative if the read side got smeared over multiple consecutive 1643 * __run_hrtimer() invocations. 1644 */ 1645 1646 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1647 struct hrtimer_clock_base *base, 1648 struct hrtimer *timer, ktime_t *now, 1649 unsigned long flags) __must_hold(&cpu_base->lock) 1650 { 1651 enum hrtimer_restart (*fn)(struct hrtimer *); 1652 bool expires_in_hardirq; 1653 int restart; 1654 1655 lockdep_assert_held(&cpu_base->lock); 1656 1657 debug_deactivate(timer); 1658 base->running = timer; 1659 1660 /* 1661 * Separate the ->running assignment from the ->state assignment. 1662 * 1663 * As with a regular write barrier, this ensures the read side in 1664 * hrtimer_active() cannot observe base->running == NULL && 1665 * timer->state == INACTIVE. 1666 */ 1667 raw_write_seqcount_barrier(&base->seq); 1668 1669 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1670 fn = timer->function; 1671 1672 /* 1673 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1674 * timer is restarted with a period then it becomes an absolute 1675 * timer. If its not restarted it does not matter. 1676 */ 1677 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1678 timer->is_rel = false; 1679 1680 /* 1681 * The timer is marked as running in the CPU base, so it is 1682 * protected against migration to a different CPU even if the lock 1683 * is dropped. 1684 */ 1685 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1686 trace_hrtimer_expire_entry(timer, now); 1687 expires_in_hardirq = lockdep_hrtimer_enter(timer); 1688 1689 restart = fn(timer); 1690 1691 lockdep_hrtimer_exit(expires_in_hardirq); 1692 trace_hrtimer_expire_exit(timer); 1693 raw_spin_lock_irq(&cpu_base->lock); 1694 1695 /* 1696 * Note: We clear the running state after enqueue_hrtimer and 1697 * we do not reprogram the event hardware. Happens either in 1698 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1699 * 1700 * Note: Because we dropped the cpu_base->lock above, 1701 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1702 * for us already. 1703 */ 1704 if (restart != HRTIMER_NORESTART && 1705 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1706 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1707 1708 /* 1709 * Separate the ->running assignment from the ->state assignment. 1710 * 1711 * As with a regular write barrier, this ensures the read side in 1712 * hrtimer_active() cannot observe base->running.timer == NULL && 1713 * timer->state == INACTIVE. 1714 */ 1715 raw_write_seqcount_barrier(&base->seq); 1716 1717 WARN_ON_ONCE(base->running != timer); 1718 base->running = NULL; 1719 } 1720 1721 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1722 unsigned long flags, unsigned int active_mask) 1723 { 1724 struct hrtimer_clock_base *base; 1725 unsigned int active = cpu_base->active_bases & active_mask; 1726 1727 for_each_active_base(base, cpu_base, active) { 1728 struct timerqueue_node *node; 1729 ktime_t basenow; 1730 1731 basenow = ktime_add(now, base->offset); 1732 1733 while ((node = timerqueue_getnext(&base->active))) { 1734 struct hrtimer *timer; 1735 1736 timer = container_of(node, struct hrtimer, node); 1737 1738 /* 1739 * The immediate goal for using the softexpires is 1740 * minimizing wakeups, not running timers at the 1741 * earliest interrupt after their soft expiration. 1742 * This allows us to avoid using a Priority Search 1743 * Tree, which can answer a stabbing query for 1744 * overlapping intervals and instead use the simple 1745 * BST we already have. 1746 * We don't add extra wakeups by delaying timers that 1747 * are right-of a not yet expired timer, because that 1748 * timer will have to trigger a wakeup anyway. 1749 */ 1750 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1751 break; 1752 1753 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1754 if (active_mask == HRTIMER_ACTIVE_SOFT) 1755 hrtimer_sync_wait_running(cpu_base, flags); 1756 } 1757 } 1758 } 1759 1760 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1761 { 1762 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1763 unsigned long flags; 1764 ktime_t now; 1765 1766 hrtimer_cpu_base_lock_expiry(cpu_base); 1767 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1768 1769 now = hrtimer_update_base(cpu_base); 1770 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1771 1772 cpu_base->softirq_activated = 0; 1773 hrtimer_update_softirq_timer(cpu_base, true); 1774 1775 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1776 hrtimer_cpu_base_unlock_expiry(cpu_base); 1777 } 1778 1779 #ifdef CONFIG_HIGH_RES_TIMERS 1780 1781 /* 1782 * High resolution timer interrupt 1783 * Called with interrupts disabled 1784 */ 1785 void hrtimer_interrupt(struct clock_event_device *dev) 1786 { 1787 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1788 ktime_t expires_next, now, entry_time, delta; 1789 unsigned long flags; 1790 int retries = 0; 1791 1792 BUG_ON(!cpu_base->hres_active); 1793 cpu_base->nr_events++; 1794 dev->next_event = KTIME_MAX; 1795 1796 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1797 entry_time = now = hrtimer_update_base(cpu_base); 1798 retry: 1799 cpu_base->in_hrtirq = 1; 1800 /* 1801 * We set expires_next to KTIME_MAX here with cpu_base->lock 1802 * held to prevent that a timer is enqueued in our queue via 1803 * the migration code. This does not affect enqueueing of 1804 * timers which run their callback and need to be requeued on 1805 * this CPU. 1806 */ 1807 cpu_base->expires_next = KTIME_MAX; 1808 1809 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1810 cpu_base->softirq_expires_next = KTIME_MAX; 1811 cpu_base->softirq_activated = 1; 1812 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1813 } 1814 1815 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1816 1817 /* Reevaluate the clock bases for the [soft] next expiry */ 1818 expires_next = hrtimer_update_next_event(cpu_base); 1819 /* 1820 * Store the new expiry value so the migration code can verify 1821 * against it. 1822 */ 1823 cpu_base->expires_next = expires_next; 1824 cpu_base->in_hrtirq = 0; 1825 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1826 1827 /* Reprogramming necessary ? */ 1828 if (!tick_program_event(expires_next, 0)) { 1829 cpu_base->hang_detected = 0; 1830 return; 1831 } 1832 1833 /* 1834 * The next timer was already expired due to: 1835 * - tracing 1836 * - long lasting callbacks 1837 * - being scheduled away when running in a VM 1838 * 1839 * We need to prevent that we loop forever in the hrtimer 1840 * interrupt routine. We give it 3 attempts to avoid 1841 * overreacting on some spurious event. 1842 * 1843 * Acquire base lock for updating the offsets and retrieving 1844 * the current time. 1845 */ 1846 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1847 now = hrtimer_update_base(cpu_base); 1848 cpu_base->nr_retries++; 1849 if (++retries < 3) 1850 goto retry; 1851 /* 1852 * Give the system a chance to do something else than looping 1853 * here. We stored the entry time, so we know exactly how long 1854 * we spent here. We schedule the next event this amount of 1855 * time away. 1856 */ 1857 cpu_base->nr_hangs++; 1858 cpu_base->hang_detected = 1; 1859 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1860 1861 delta = ktime_sub(now, entry_time); 1862 if ((unsigned int)delta > cpu_base->max_hang_time) 1863 cpu_base->max_hang_time = (unsigned int) delta; 1864 /* 1865 * Limit it to a sensible value as we enforce a longer 1866 * delay. Give the CPU at least 100ms to catch up. 1867 */ 1868 if (delta > 100 * NSEC_PER_MSEC) 1869 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1870 else 1871 expires_next = ktime_add(now, delta); 1872 tick_program_event(expires_next, 1); 1873 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1874 } 1875 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1876 1877 /* 1878 * Called from run_local_timers in hardirq context every jiffy 1879 */ 1880 void hrtimer_run_queues(void) 1881 { 1882 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1883 unsigned long flags; 1884 ktime_t now; 1885 1886 if (hrtimer_hres_active(cpu_base)) 1887 return; 1888 1889 /* 1890 * This _is_ ugly: We have to check periodically, whether we 1891 * can switch to highres and / or nohz mode. The clocksource 1892 * switch happens with xtime_lock held. Notification from 1893 * there only sets the check bit in the tick_oneshot code, 1894 * otherwise we might deadlock vs. xtime_lock. 1895 */ 1896 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1897 hrtimer_switch_to_hres(); 1898 return; 1899 } 1900 1901 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1902 now = hrtimer_update_base(cpu_base); 1903 1904 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1905 cpu_base->softirq_expires_next = KTIME_MAX; 1906 cpu_base->softirq_activated = 1; 1907 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1908 } 1909 1910 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1911 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1912 } 1913 1914 /* 1915 * Sleep related functions: 1916 */ 1917 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1918 { 1919 struct hrtimer_sleeper *t = 1920 container_of(timer, struct hrtimer_sleeper, timer); 1921 struct task_struct *task = t->task; 1922 1923 t->task = NULL; 1924 if (task) 1925 wake_up_process(task); 1926 1927 return HRTIMER_NORESTART; 1928 } 1929 1930 /** 1931 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer 1932 * @sl: sleeper to be started 1933 * @mode: timer mode abs/rel 1934 * 1935 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers 1936 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) 1937 */ 1938 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, 1939 enum hrtimer_mode mode) 1940 { 1941 /* 1942 * Make the enqueue delivery mode check work on RT. If the sleeper 1943 * was initialized for hard interrupt delivery, force the mode bit. 1944 * This is a special case for hrtimer_sleepers because 1945 * hrtimer_init_sleeper() determines the delivery mode on RT so the 1946 * fiddling with this decision is avoided at the call sites. 1947 */ 1948 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) 1949 mode |= HRTIMER_MODE_HARD; 1950 1951 hrtimer_start_expires(&sl->timer, mode); 1952 } 1953 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); 1954 1955 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 1956 clockid_t clock_id, enum hrtimer_mode mode) 1957 { 1958 /* 1959 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 1960 * marked for hard interrupt expiry mode are moved into soft 1961 * interrupt context either for latency reasons or because the 1962 * hrtimer callback takes regular spinlocks or invokes other 1963 * functions which are not suitable for hard interrupt context on 1964 * PREEMPT_RT. 1965 * 1966 * The hrtimer_sleeper callback is RT compatible in hard interrupt 1967 * context, but there is a latency concern: Untrusted userspace can 1968 * spawn many threads which arm timers for the same expiry time on 1969 * the same CPU. That causes a latency spike due to the wakeup of 1970 * a gazillion threads. 1971 * 1972 * OTOH, privileged real-time user space applications rely on the 1973 * low latency of hard interrupt wakeups. If the current task is in 1974 * a real-time scheduling class, mark the mode for hard interrupt 1975 * expiry. 1976 */ 1977 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 1978 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT)) 1979 mode |= HRTIMER_MODE_HARD; 1980 } 1981 1982 __hrtimer_init(&sl->timer, clock_id, mode); 1983 sl->timer.function = hrtimer_wakeup; 1984 sl->task = current; 1985 } 1986 1987 /** 1988 * hrtimer_init_sleeper - initialize sleeper to the given clock 1989 * @sl: sleeper to be initialized 1990 * @clock_id: the clock to be used 1991 * @mode: timer mode abs/rel 1992 */ 1993 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, 1994 enum hrtimer_mode mode) 1995 { 1996 debug_init(&sl->timer, clock_id, mode); 1997 __hrtimer_init_sleeper(sl, clock_id, mode); 1998 1999 } 2000 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 2001 2002 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 2003 { 2004 switch(restart->nanosleep.type) { 2005 #ifdef CONFIG_COMPAT_32BIT_TIME 2006 case TT_COMPAT: 2007 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 2008 return -EFAULT; 2009 break; 2010 #endif 2011 case TT_NATIVE: 2012 if (put_timespec64(ts, restart->nanosleep.rmtp)) 2013 return -EFAULT; 2014 break; 2015 default: 2016 BUG(); 2017 } 2018 return -ERESTART_RESTARTBLOCK; 2019 } 2020 2021 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 2022 { 2023 struct restart_block *restart; 2024 2025 do { 2026 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2027 hrtimer_sleeper_start_expires(t, mode); 2028 2029 if (likely(t->task)) 2030 schedule(); 2031 2032 hrtimer_cancel(&t->timer); 2033 mode = HRTIMER_MODE_ABS; 2034 2035 } while (t->task && !signal_pending(current)); 2036 2037 __set_current_state(TASK_RUNNING); 2038 2039 if (!t->task) 2040 return 0; 2041 2042 restart = ¤t->restart_block; 2043 if (restart->nanosleep.type != TT_NONE) { 2044 ktime_t rem = hrtimer_expires_remaining(&t->timer); 2045 struct timespec64 rmt; 2046 2047 if (rem <= 0) 2048 return 0; 2049 rmt = ktime_to_timespec64(rem); 2050 2051 return nanosleep_copyout(restart, &rmt); 2052 } 2053 return -ERESTART_RESTARTBLOCK; 2054 } 2055 2056 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 2057 { 2058 struct hrtimer_sleeper t; 2059 int ret; 2060 2061 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid, 2062 HRTIMER_MODE_ABS); 2063 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 2064 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 2065 destroy_hrtimer_on_stack(&t.timer); 2066 return ret; 2067 } 2068 2069 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, 2070 const clockid_t clockid) 2071 { 2072 struct restart_block *restart; 2073 struct hrtimer_sleeper t; 2074 int ret = 0; 2075 u64 slack; 2076 2077 slack = current->timer_slack_ns; 2078 if (rt_task(current)) 2079 slack = 0; 2080 2081 hrtimer_init_sleeper_on_stack(&t, clockid, mode); 2082 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack); 2083 ret = do_nanosleep(&t, mode); 2084 if (ret != -ERESTART_RESTARTBLOCK) 2085 goto out; 2086 2087 /* Absolute timers do not update the rmtp value and restart: */ 2088 if (mode == HRTIMER_MODE_ABS) { 2089 ret = -ERESTARTNOHAND; 2090 goto out; 2091 } 2092 2093 restart = ¤t->restart_block; 2094 restart->nanosleep.clockid = t.timer.base->clockid; 2095 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 2096 set_restart_fn(restart, hrtimer_nanosleep_restart); 2097 out: 2098 destroy_hrtimer_on_stack(&t.timer); 2099 return ret; 2100 } 2101 2102 #ifdef CONFIG_64BIT 2103 2104 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 2105 struct __kernel_timespec __user *, rmtp) 2106 { 2107 struct timespec64 tu; 2108 2109 if (get_timespec64(&tu, rqtp)) 2110 return -EFAULT; 2111 2112 if (!timespec64_valid(&tu)) 2113 return -EINVAL; 2114 2115 current->restart_block.fn = do_no_restart_syscall; 2116 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 2117 current->restart_block.nanosleep.rmtp = rmtp; 2118 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2119 CLOCK_MONOTONIC); 2120 } 2121 2122 #endif 2123 2124 #ifdef CONFIG_COMPAT_32BIT_TIME 2125 2126 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, 2127 struct old_timespec32 __user *, rmtp) 2128 { 2129 struct timespec64 tu; 2130 2131 if (get_old_timespec32(&tu, rqtp)) 2132 return -EFAULT; 2133 2134 if (!timespec64_valid(&tu)) 2135 return -EINVAL; 2136 2137 current->restart_block.fn = do_no_restart_syscall; 2138 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 2139 current->restart_block.nanosleep.compat_rmtp = rmtp; 2140 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2141 CLOCK_MONOTONIC); 2142 } 2143 #endif 2144 2145 /* 2146 * Functions related to boot-time initialization: 2147 */ 2148 int hrtimers_prepare_cpu(unsigned int cpu) 2149 { 2150 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 2151 int i; 2152 2153 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2154 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; 2155 2156 clock_b->cpu_base = cpu_base; 2157 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); 2158 timerqueue_init_head(&clock_b->active); 2159 } 2160 2161 cpu_base->cpu = cpu; 2162 cpu_base->active_bases = 0; 2163 cpu_base->hres_active = 0; 2164 cpu_base->hang_detected = 0; 2165 cpu_base->next_timer = NULL; 2166 cpu_base->softirq_next_timer = NULL; 2167 cpu_base->expires_next = KTIME_MAX; 2168 cpu_base->softirq_expires_next = KTIME_MAX; 2169 cpu_base->online = 1; 2170 hrtimer_cpu_base_init_expiry_lock(cpu_base); 2171 return 0; 2172 } 2173 2174 #ifdef CONFIG_HOTPLUG_CPU 2175 2176 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 2177 struct hrtimer_clock_base *new_base) 2178 { 2179 struct hrtimer *timer; 2180 struct timerqueue_node *node; 2181 2182 while ((node = timerqueue_getnext(&old_base->active))) { 2183 timer = container_of(node, struct hrtimer, node); 2184 BUG_ON(hrtimer_callback_running(timer)); 2185 debug_deactivate(timer); 2186 2187 /* 2188 * Mark it as ENQUEUED not INACTIVE otherwise the 2189 * timer could be seen as !active and just vanish away 2190 * under us on another CPU 2191 */ 2192 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 2193 timer->base = new_base; 2194 /* 2195 * Enqueue the timers on the new cpu. This does not 2196 * reprogram the event device in case the timer 2197 * expires before the earliest on this CPU, but we run 2198 * hrtimer_interrupt after we migrated everything to 2199 * sort out already expired timers and reprogram the 2200 * event device. 2201 */ 2202 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 2203 } 2204 } 2205 2206 int hrtimers_cpu_dying(unsigned int dying_cpu) 2207 { 2208 int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER)); 2209 struct hrtimer_cpu_base *old_base, *new_base; 2210 2211 old_base = this_cpu_ptr(&hrtimer_bases); 2212 new_base = &per_cpu(hrtimer_bases, ncpu); 2213 2214 /* 2215 * The caller is globally serialized and nobody else 2216 * takes two locks at once, deadlock is not possible. 2217 */ 2218 raw_spin_lock(&old_base->lock); 2219 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING); 2220 2221 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2222 migrate_hrtimer_list(&old_base->clock_base[i], 2223 &new_base->clock_base[i]); 2224 } 2225 2226 /* 2227 * The migration might have changed the first expiring softirq 2228 * timer on this CPU. Update it. 2229 */ 2230 __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT); 2231 /* Tell the other CPU to retrigger the next event */ 2232 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0); 2233 2234 raw_spin_unlock(&new_base->lock); 2235 old_base->online = 0; 2236 raw_spin_unlock(&old_base->lock); 2237 2238 return 0; 2239 } 2240 2241 #endif /* CONFIG_HOTPLUG_CPU */ 2242 2243 void __init hrtimers_init(void) 2244 { 2245 hrtimers_prepare_cpu(smp_processor_id()); 2246 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 2247 } 2248 2249 /** 2250 * schedule_hrtimeout_range_clock - sleep until timeout 2251 * @expires: timeout value (ktime_t) 2252 * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks 2253 * @mode: timer mode 2254 * @clock_id: timer clock to be used 2255 */ 2256 int __sched 2257 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 2258 const enum hrtimer_mode mode, clockid_t clock_id) 2259 { 2260 struct hrtimer_sleeper t; 2261 2262 /* 2263 * Optimize when a zero timeout value is given. It does not 2264 * matter whether this is an absolute or a relative time. 2265 */ 2266 if (expires && *expires == 0) { 2267 __set_current_state(TASK_RUNNING); 2268 return 0; 2269 } 2270 2271 /* 2272 * A NULL parameter means "infinite" 2273 */ 2274 if (!expires) { 2275 schedule(); 2276 return -EINTR; 2277 } 2278 2279 /* 2280 * Override any slack passed by the user if under 2281 * rt contraints. 2282 */ 2283 if (rt_task(current)) 2284 delta = 0; 2285 2286 hrtimer_init_sleeper_on_stack(&t, clock_id, mode); 2287 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 2288 hrtimer_sleeper_start_expires(&t, mode); 2289 2290 if (likely(t.task)) 2291 schedule(); 2292 2293 hrtimer_cancel(&t.timer); 2294 destroy_hrtimer_on_stack(&t.timer); 2295 2296 __set_current_state(TASK_RUNNING); 2297 2298 return !t.task ? 0 : -EINTR; 2299 } 2300 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock); 2301 2302 /** 2303 * schedule_hrtimeout_range - sleep until timeout 2304 * @expires: timeout value (ktime_t) 2305 * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks 2306 * @mode: timer mode 2307 * 2308 * Make the current task sleep until the given expiry time has 2309 * elapsed. The routine will return immediately unless 2310 * the current task state has been set (see set_current_state()). 2311 * 2312 * The @delta argument gives the kernel the freedom to schedule the 2313 * actual wakeup to a time that is both power and performance friendly 2314 * for regular (non RT/DL) tasks. 2315 * The kernel give the normal best effort behavior for "@expires+@delta", 2316 * but may decide to fire the timer earlier, but no earlier than @expires. 2317 * 2318 * You can set the task state as follows - 2319 * 2320 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2321 * pass before the routine returns unless the current task is explicitly 2322 * woken up, (e.g. by wake_up_process()). 2323 * 2324 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2325 * delivered to the current task or the current task is explicitly woken 2326 * up. 2327 * 2328 * The current task state is guaranteed to be TASK_RUNNING when this 2329 * routine returns. 2330 * 2331 * Returns 0 when the timer has expired. If the task was woken before the 2332 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2333 * by an explicit wakeup, it returns -EINTR. 2334 */ 2335 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 2336 const enum hrtimer_mode mode) 2337 { 2338 return schedule_hrtimeout_range_clock(expires, delta, mode, 2339 CLOCK_MONOTONIC); 2340 } 2341 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 2342 2343 /** 2344 * schedule_hrtimeout - sleep until timeout 2345 * @expires: timeout value (ktime_t) 2346 * @mode: timer mode 2347 * 2348 * Make the current task sleep until the given expiry time has 2349 * elapsed. The routine will return immediately unless 2350 * the current task state has been set (see set_current_state()). 2351 * 2352 * You can set the task state as follows - 2353 * 2354 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2355 * pass before the routine returns unless the current task is explicitly 2356 * woken up, (e.g. by wake_up_process()). 2357 * 2358 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2359 * delivered to the current task or the current task is explicitly woken 2360 * up. 2361 * 2362 * The current task state is guaranteed to be TASK_RUNNING when this 2363 * routine returns. 2364 * 2365 * Returns 0 when the timer has expired. If the task was woken before the 2366 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2367 * by an explicit wakeup, it returns -EINTR. 2368 */ 2369 int __sched schedule_hrtimeout(ktime_t *expires, 2370 const enum hrtimer_mode mode) 2371 { 2372 return schedule_hrtimeout_range(expires, 0, mode); 2373 } 2374 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 2375
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.