~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/time/hrtimer.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
  6  *
  7  *  High-resolution kernel timers
  8  *
  9  *  In contrast to the low-resolution timeout API, aka timer wheel,
 10  *  hrtimers provide finer resolution and accuracy depending on system
 11  *  configuration and capabilities.
 12  *
 13  *  Started by: Thomas Gleixner and Ingo Molnar
 14  *
 15  *  Credits:
 16  *      Based on the original timer wheel code
 17  *
 18  *      Help, testing, suggestions, bugfixes, improvements were
 19  *      provided by:
 20  *
 21  *      George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 22  *      et. al.
 23  */
 24 
 25 #include <linux/cpu.h>
 26 #include <linux/export.h>
 27 #include <linux/percpu.h>
 28 #include <linux/hrtimer.h>
 29 #include <linux/notifier.h>
 30 #include <linux/syscalls.h>
 31 #include <linux/interrupt.h>
 32 #include <linux/tick.h>
 33 #include <linux/err.h>
 34 #include <linux/debugobjects.h>
 35 #include <linux/sched/signal.h>
 36 #include <linux/sched/sysctl.h>
 37 #include <linux/sched/rt.h>
 38 #include <linux/sched/deadline.h>
 39 #include <linux/sched/nohz.h>
 40 #include <linux/sched/debug.h>
 41 #include <linux/sched/isolation.h>
 42 #include <linux/timer.h>
 43 #include <linux/freezer.h>
 44 #include <linux/compat.h>
 45 
 46 #include <linux/uaccess.h>
 47 
 48 #include <trace/events/timer.h>
 49 
 50 #include "tick-internal.h"
 51 
 52 /*
 53  * Masks for selecting the soft and hard context timers from
 54  * cpu_base->active
 55  */
 56 #define MASK_SHIFT              (HRTIMER_BASE_MONOTONIC_SOFT)
 57 #define HRTIMER_ACTIVE_HARD     ((1U << MASK_SHIFT) - 1)
 58 #define HRTIMER_ACTIVE_SOFT     (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
 59 #define HRTIMER_ACTIVE_ALL      (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
 60 
 61 /*
 62  * The timer bases:
 63  *
 64  * There are more clockids than hrtimer bases. Thus, we index
 65  * into the timer bases by the hrtimer_base_type enum. When trying
 66  * to reach a base using a clockid, hrtimer_clockid_to_base()
 67  * is used to convert from clockid to the proper hrtimer_base_type.
 68  */
 69 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
 70 {
 71         .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
 72         .clock_base =
 73         {
 74                 {
 75                         .index = HRTIMER_BASE_MONOTONIC,
 76                         .clockid = CLOCK_MONOTONIC,
 77                         .get_time = &ktime_get,
 78                 },
 79                 {
 80                         .index = HRTIMER_BASE_REALTIME,
 81                         .clockid = CLOCK_REALTIME,
 82                         .get_time = &ktime_get_real,
 83                 },
 84                 {
 85                         .index = HRTIMER_BASE_BOOTTIME,
 86                         .clockid = CLOCK_BOOTTIME,
 87                         .get_time = &ktime_get_boottime,
 88                 },
 89                 {
 90                         .index = HRTIMER_BASE_TAI,
 91                         .clockid = CLOCK_TAI,
 92                         .get_time = &ktime_get_clocktai,
 93                 },
 94                 {
 95                         .index = HRTIMER_BASE_MONOTONIC_SOFT,
 96                         .clockid = CLOCK_MONOTONIC,
 97                         .get_time = &ktime_get,
 98                 },
 99                 {
100                         .index = HRTIMER_BASE_REALTIME_SOFT,
101                         .clockid = CLOCK_REALTIME,
102                         .get_time = &ktime_get_real,
103                 },
104                 {
105                         .index = HRTIMER_BASE_BOOTTIME_SOFT,
106                         .clockid = CLOCK_BOOTTIME,
107                         .get_time = &ktime_get_boottime,
108                 },
109                 {
110                         .index = HRTIMER_BASE_TAI_SOFT,
111                         .clockid = CLOCK_TAI,
112                         .get_time = &ktime_get_clocktai,
113                 },
114         }
115 };
116 
117 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
118         /* Make sure we catch unsupported clockids */
119         [0 ... MAX_CLOCKS - 1]  = HRTIMER_MAX_CLOCK_BASES,
120 
121         [CLOCK_REALTIME]        = HRTIMER_BASE_REALTIME,
122         [CLOCK_MONOTONIC]       = HRTIMER_BASE_MONOTONIC,
123         [CLOCK_BOOTTIME]        = HRTIMER_BASE_BOOTTIME,
124         [CLOCK_TAI]             = HRTIMER_BASE_TAI,
125 };
126 
127 /*
128  * Functions and macros which are different for UP/SMP systems are kept in a
129  * single place
130  */
131 #ifdef CONFIG_SMP
132 
133 /*
134  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
135  * such that hrtimer_callback_running() can unconditionally dereference
136  * timer->base->cpu_base
137  */
138 static struct hrtimer_cpu_base migration_cpu_base = {
139         .clock_base = { {
140                 .cpu_base = &migration_cpu_base,
141                 .seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
142                                                      &migration_cpu_base.lock),
143         }, },
144 };
145 
146 #define migration_base  migration_cpu_base.clock_base[0]
147 
148 static inline bool is_migration_base(struct hrtimer_clock_base *base)
149 {
150         return base == &migration_base;
151 }
152 
153 /*
154  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
155  * means that all timers which are tied to this base via timer->base are
156  * locked, and the base itself is locked too.
157  *
158  * So __run_timers/migrate_timers can safely modify all timers which could
159  * be found on the lists/queues.
160  *
161  * When the timer's base is locked, and the timer removed from list, it is
162  * possible to set timer->base = &migration_base and drop the lock: the timer
163  * remains locked.
164  */
165 static
166 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
167                                              unsigned long *flags)
168         __acquires(&timer->base->lock)
169 {
170         struct hrtimer_clock_base *base;
171 
172         for (;;) {
173                 base = READ_ONCE(timer->base);
174                 if (likely(base != &migration_base)) {
175                         raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
176                         if (likely(base == timer->base))
177                                 return base;
178                         /* The timer has migrated to another CPU: */
179                         raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
180                 }
181                 cpu_relax();
182         }
183 }
184 
185 /*
186  * We do not migrate the timer when it is expiring before the next
187  * event on the target cpu. When high resolution is enabled, we cannot
188  * reprogram the target cpu hardware and we would cause it to fire
189  * late. To keep it simple, we handle the high resolution enabled and
190  * disabled case similar.
191  *
192  * Called with cpu_base->lock of target cpu held.
193  */
194 static int
195 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
196 {
197         ktime_t expires;
198 
199         expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
200         return expires < new_base->cpu_base->expires_next;
201 }
202 
203 static inline
204 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
205                                          int pinned)
206 {
207 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
208         if (static_branch_likely(&timers_migration_enabled) && !pinned)
209                 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
210 #endif
211         return base;
212 }
213 
214 /*
215  * We switch the timer base to a power-optimized selected CPU target,
216  * if:
217  *      - NO_HZ_COMMON is enabled
218  *      - timer migration is enabled
219  *      - the timer callback is not running
220  *      - the timer is not the first expiring timer on the new target
221  *
222  * If one of the above requirements is not fulfilled we move the timer
223  * to the current CPU or leave it on the previously assigned CPU if
224  * the timer callback is currently running.
225  */
226 static inline struct hrtimer_clock_base *
227 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
228                     int pinned)
229 {
230         struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
231         struct hrtimer_clock_base *new_base;
232         int basenum = base->index;
233 
234         this_cpu_base = this_cpu_ptr(&hrtimer_bases);
235         new_cpu_base = get_target_base(this_cpu_base, pinned);
236 again:
237         new_base = &new_cpu_base->clock_base[basenum];
238 
239         if (base != new_base) {
240                 /*
241                  * We are trying to move timer to new_base.
242                  * However we can't change timer's base while it is running,
243                  * so we keep it on the same CPU. No hassle vs. reprogramming
244                  * the event source in the high resolution case. The softirq
245                  * code will take care of this when the timer function has
246                  * completed. There is no conflict as we hold the lock until
247                  * the timer is enqueued.
248                  */
249                 if (unlikely(hrtimer_callback_running(timer)))
250                         return base;
251 
252                 /* See the comment in lock_hrtimer_base() */
253                 WRITE_ONCE(timer->base, &migration_base);
254                 raw_spin_unlock(&base->cpu_base->lock);
255                 raw_spin_lock(&new_base->cpu_base->lock);
256 
257                 if (new_cpu_base != this_cpu_base &&
258                     hrtimer_check_target(timer, new_base)) {
259                         raw_spin_unlock(&new_base->cpu_base->lock);
260                         raw_spin_lock(&base->cpu_base->lock);
261                         new_cpu_base = this_cpu_base;
262                         WRITE_ONCE(timer->base, base);
263                         goto again;
264                 }
265                 WRITE_ONCE(timer->base, new_base);
266         } else {
267                 if (new_cpu_base != this_cpu_base &&
268                     hrtimer_check_target(timer, new_base)) {
269                         new_cpu_base = this_cpu_base;
270                         goto again;
271                 }
272         }
273         return new_base;
274 }
275 
276 #else /* CONFIG_SMP */
277 
278 static inline bool is_migration_base(struct hrtimer_clock_base *base)
279 {
280         return false;
281 }
282 
283 static inline struct hrtimer_clock_base *
284 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
285         __acquires(&timer->base->cpu_base->lock)
286 {
287         struct hrtimer_clock_base *base = timer->base;
288 
289         raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
290 
291         return base;
292 }
293 
294 # define switch_hrtimer_base(t, b, p)   (b)
295 
296 #endif  /* !CONFIG_SMP */
297 
298 /*
299  * Functions for the union type storage format of ktime_t which are
300  * too large for inlining:
301  */
302 #if BITS_PER_LONG < 64
303 /*
304  * Divide a ktime value by a nanosecond value
305  */
306 s64 __ktime_divns(const ktime_t kt, s64 div)
307 {
308         int sft = 0;
309         s64 dclc;
310         u64 tmp;
311 
312         dclc = ktime_to_ns(kt);
313         tmp = dclc < 0 ? -dclc : dclc;
314 
315         /* Make sure the divisor is less than 2^32: */
316         while (div >> 32) {
317                 sft++;
318                 div >>= 1;
319         }
320         tmp >>= sft;
321         do_div(tmp, (u32) div);
322         return dclc < 0 ? -tmp : tmp;
323 }
324 EXPORT_SYMBOL_GPL(__ktime_divns);
325 #endif /* BITS_PER_LONG >= 64 */
326 
327 /*
328  * Add two ktime values and do a safety check for overflow:
329  */
330 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
331 {
332         ktime_t res = ktime_add_unsafe(lhs, rhs);
333 
334         /*
335          * We use KTIME_SEC_MAX here, the maximum timeout which we can
336          * return to user space in a timespec:
337          */
338         if (res < 0 || res < lhs || res < rhs)
339                 res = ktime_set(KTIME_SEC_MAX, 0);
340 
341         return res;
342 }
343 
344 EXPORT_SYMBOL_GPL(ktime_add_safe);
345 
346 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
347 
348 static const struct debug_obj_descr hrtimer_debug_descr;
349 
350 static void *hrtimer_debug_hint(void *addr)
351 {
352         return ((struct hrtimer *) addr)->function;
353 }
354 
355 /*
356  * fixup_init is called when:
357  * - an active object is initialized
358  */
359 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
360 {
361         struct hrtimer *timer = addr;
362 
363         switch (state) {
364         case ODEBUG_STATE_ACTIVE:
365                 hrtimer_cancel(timer);
366                 debug_object_init(timer, &hrtimer_debug_descr);
367                 return true;
368         default:
369                 return false;
370         }
371 }
372 
373 /*
374  * fixup_activate is called when:
375  * - an active object is activated
376  * - an unknown non-static object is activated
377  */
378 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
379 {
380         switch (state) {
381         case ODEBUG_STATE_ACTIVE:
382                 WARN_ON(1);
383                 fallthrough;
384         default:
385                 return false;
386         }
387 }
388 
389 /*
390  * fixup_free is called when:
391  * - an active object is freed
392  */
393 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
394 {
395         struct hrtimer *timer = addr;
396 
397         switch (state) {
398         case ODEBUG_STATE_ACTIVE:
399                 hrtimer_cancel(timer);
400                 debug_object_free(timer, &hrtimer_debug_descr);
401                 return true;
402         default:
403                 return false;
404         }
405 }
406 
407 static const struct debug_obj_descr hrtimer_debug_descr = {
408         .name           = "hrtimer",
409         .debug_hint     = hrtimer_debug_hint,
410         .fixup_init     = hrtimer_fixup_init,
411         .fixup_activate = hrtimer_fixup_activate,
412         .fixup_free     = hrtimer_fixup_free,
413 };
414 
415 static inline void debug_hrtimer_init(struct hrtimer *timer)
416 {
417         debug_object_init(timer, &hrtimer_debug_descr);
418 }
419 
420 static inline void debug_hrtimer_activate(struct hrtimer *timer,
421                                           enum hrtimer_mode mode)
422 {
423         debug_object_activate(timer, &hrtimer_debug_descr);
424 }
425 
426 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
427 {
428         debug_object_deactivate(timer, &hrtimer_debug_descr);
429 }
430 
431 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
432                            enum hrtimer_mode mode);
433 
434 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
435                            enum hrtimer_mode mode)
436 {
437         debug_object_init_on_stack(timer, &hrtimer_debug_descr);
438         __hrtimer_init(timer, clock_id, mode);
439 }
440 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
441 
442 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
443                                    clockid_t clock_id, enum hrtimer_mode mode);
444 
445 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
446                                    clockid_t clock_id, enum hrtimer_mode mode)
447 {
448         debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
449         __hrtimer_init_sleeper(sl, clock_id, mode);
450 }
451 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
452 
453 void destroy_hrtimer_on_stack(struct hrtimer *timer)
454 {
455         debug_object_free(timer, &hrtimer_debug_descr);
456 }
457 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
458 
459 #else
460 
461 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
462 static inline void debug_hrtimer_activate(struct hrtimer *timer,
463                                           enum hrtimer_mode mode) { }
464 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
465 #endif
466 
467 static inline void
468 debug_init(struct hrtimer *timer, clockid_t clockid,
469            enum hrtimer_mode mode)
470 {
471         debug_hrtimer_init(timer);
472         trace_hrtimer_init(timer, clockid, mode);
473 }
474 
475 static inline void debug_activate(struct hrtimer *timer,
476                                   enum hrtimer_mode mode)
477 {
478         debug_hrtimer_activate(timer, mode);
479         trace_hrtimer_start(timer, mode);
480 }
481 
482 static inline void debug_deactivate(struct hrtimer *timer)
483 {
484         debug_hrtimer_deactivate(timer);
485         trace_hrtimer_cancel(timer);
486 }
487 
488 static struct hrtimer_clock_base *
489 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
490 {
491         unsigned int idx;
492 
493         if (!*active)
494                 return NULL;
495 
496         idx = __ffs(*active);
497         *active &= ~(1U << idx);
498 
499         return &cpu_base->clock_base[idx];
500 }
501 
502 #define for_each_active_base(base, cpu_base, active)    \
503         while ((base = __next_base((cpu_base), &(active))))
504 
505 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
506                                          const struct hrtimer *exclude,
507                                          unsigned int active,
508                                          ktime_t expires_next)
509 {
510         struct hrtimer_clock_base *base;
511         ktime_t expires;
512 
513         for_each_active_base(base, cpu_base, active) {
514                 struct timerqueue_node *next;
515                 struct hrtimer *timer;
516 
517                 next = timerqueue_getnext(&base->active);
518                 timer = container_of(next, struct hrtimer, node);
519                 if (timer == exclude) {
520                         /* Get to the next timer in the queue. */
521                         next = timerqueue_iterate_next(next);
522                         if (!next)
523                                 continue;
524 
525                         timer = container_of(next, struct hrtimer, node);
526                 }
527                 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
528                 if (expires < expires_next) {
529                         expires_next = expires;
530 
531                         /* Skip cpu_base update if a timer is being excluded. */
532                         if (exclude)
533                                 continue;
534 
535                         if (timer->is_soft)
536                                 cpu_base->softirq_next_timer = timer;
537                         else
538                                 cpu_base->next_timer = timer;
539                 }
540         }
541         /*
542          * clock_was_set() might have changed base->offset of any of
543          * the clock bases so the result might be negative. Fix it up
544          * to prevent a false positive in clockevents_program_event().
545          */
546         if (expires_next < 0)
547                 expires_next = 0;
548         return expires_next;
549 }
550 
551 /*
552  * Recomputes cpu_base::*next_timer and returns the earliest expires_next
553  * but does not set cpu_base::*expires_next, that is done by
554  * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
555  * cpu_base::*expires_next right away, reprogramming logic would no longer
556  * work.
557  *
558  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
559  * those timers will get run whenever the softirq gets handled, at the end of
560  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
561  *
562  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
563  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
564  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
565  *
566  * @active_mask must be one of:
567  *  - HRTIMER_ACTIVE_ALL,
568  *  - HRTIMER_ACTIVE_SOFT, or
569  *  - HRTIMER_ACTIVE_HARD.
570  */
571 static ktime_t
572 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
573 {
574         unsigned int active;
575         struct hrtimer *next_timer = NULL;
576         ktime_t expires_next = KTIME_MAX;
577 
578         if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
579                 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
580                 cpu_base->softirq_next_timer = NULL;
581                 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
582                                                          active, KTIME_MAX);
583 
584                 next_timer = cpu_base->softirq_next_timer;
585         }
586 
587         if (active_mask & HRTIMER_ACTIVE_HARD) {
588                 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
589                 cpu_base->next_timer = next_timer;
590                 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
591                                                          expires_next);
592         }
593 
594         return expires_next;
595 }
596 
597 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
598 {
599         ktime_t expires_next, soft = KTIME_MAX;
600 
601         /*
602          * If the soft interrupt has already been activated, ignore the
603          * soft bases. They will be handled in the already raised soft
604          * interrupt.
605          */
606         if (!cpu_base->softirq_activated) {
607                 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
608                 /*
609                  * Update the soft expiry time. clock_settime() might have
610                  * affected it.
611                  */
612                 cpu_base->softirq_expires_next = soft;
613         }
614 
615         expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
616         /*
617          * If a softirq timer is expiring first, update cpu_base->next_timer
618          * and program the hardware with the soft expiry time.
619          */
620         if (expires_next > soft) {
621                 cpu_base->next_timer = cpu_base->softirq_next_timer;
622                 expires_next = soft;
623         }
624 
625         return expires_next;
626 }
627 
628 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
629 {
630         ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
631         ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
632         ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
633 
634         ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
635                                             offs_real, offs_boot, offs_tai);
636 
637         base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
638         base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
639         base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
640 
641         return now;
642 }
643 
644 /*
645  * Is the high resolution mode active ?
646  */
647 static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
648 {
649         return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
650                 cpu_base->hres_active : 0;
651 }
652 
653 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
654                                 struct hrtimer *next_timer,
655                                 ktime_t expires_next)
656 {
657         cpu_base->expires_next = expires_next;
658 
659         /*
660          * If hres is not active, hardware does not have to be
661          * reprogrammed yet.
662          *
663          * If a hang was detected in the last timer interrupt then we
664          * leave the hang delay active in the hardware. We want the
665          * system to make progress. That also prevents the following
666          * scenario:
667          * T1 expires 50ms from now
668          * T2 expires 5s from now
669          *
670          * T1 is removed, so this code is called and would reprogram
671          * the hardware to 5s from now. Any hrtimer_start after that
672          * will not reprogram the hardware due to hang_detected being
673          * set. So we'd effectively block all timers until the T2 event
674          * fires.
675          */
676         if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
677                 return;
678 
679         tick_program_event(expires_next, 1);
680 }
681 
682 /*
683  * Reprogram the event source with checking both queues for the
684  * next event
685  * Called with interrupts disabled and base->lock held
686  */
687 static void
688 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
689 {
690         ktime_t expires_next;
691 
692         expires_next = hrtimer_update_next_event(cpu_base);
693 
694         if (skip_equal && expires_next == cpu_base->expires_next)
695                 return;
696 
697         __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
698 }
699 
700 /* High resolution timer related functions */
701 #ifdef CONFIG_HIGH_RES_TIMERS
702 
703 /*
704  * High resolution timer enabled ?
705  */
706 static bool hrtimer_hres_enabled __read_mostly  = true;
707 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
708 EXPORT_SYMBOL_GPL(hrtimer_resolution);
709 
710 /*
711  * Enable / Disable high resolution mode
712  */
713 static int __init setup_hrtimer_hres(char *str)
714 {
715         return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
716 }
717 
718 __setup("highres=", setup_hrtimer_hres);
719 
720 /*
721  * hrtimer_high_res_enabled - query, if the highres mode is enabled
722  */
723 static inline int hrtimer_is_hres_enabled(void)
724 {
725         return hrtimer_hres_enabled;
726 }
727 
728 static void retrigger_next_event(void *arg);
729 
730 /*
731  * Switch to high resolution mode
732  */
733 static void hrtimer_switch_to_hres(void)
734 {
735         struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
736 
737         if (tick_init_highres()) {
738                 pr_warn("Could not switch to high resolution mode on CPU %u\n",
739                         base->cpu);
740                 return;
741         }
742         base->hres_active = 1;
743         hrtimer_resolution = HIGH_RES_NSEC;
744 
745         tick_setup_sched_timer(true);
746         /* "Retrigger" the interrupt to get things going */
747         retrigger_next_event(NULL);
748 }
749 
750 #else
751 
752 static inline int hrtimer_is_hres_enabled(void) { return 0; }
753 static inline void hrtimer_switch_to_hres(void) { }
754 
755 #endif /* CONFIG_HIGH_RES_TIMERS */
756 /*
757  * Retrigger next event is called after clock was set with interrupts
758  * disabled through an SMP function call or directly from low level
759  * resume code.
760  *
761  * This is only invoked when:
762  *      - CONFIG_HIGH_RES_TIMERS is enabled.
763  *      - CONFIG_NOHZ_COMMON is enabled
764  *
765  * For the other cases this function is empty and because the call sites
766  * are optimized out it vanishes as well, i.e. no need for lots of
767  * #ifdeffery.
768  */
769 static void retrigger_next_event(void *arg)
770 {
771         struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
772 
773         /*
774          * When high resolution mode or nohz is active, then the offsets of
775          * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
776          * next tick will take care of that.
777          *
778          * If high resolution mode is active then the next expiring timer
779          * must be reevaluated and the clock event device reprogrammed if
780          * necessary.
781          *
782          * In the NOHZ case the update of the offset and the reevaluation
783          * of the next expiring timer is enough. The return from the SMP
784          * function call will take care of the reprogramming in case the
785          * CPU was in a NOHZ idle sleep.
786          */
787         if (!hrtimer_hres_active(base) && !tick_nohz_active)
788                 return;
789 
790         raw_spin_lock(&base->lock);
791         hrtimer_update_base(base);
792         if (hrtimer_hres_active(base))
793                 hrtimer_force_reprogram(base, 0);
794         else
795                 hrtimer_update_next_event(base);
796         raw_spin_unlock(&base->lock);
797 }
798 
799 /*
800  * When a timer is enqueued and expires earlier than the already enqueued
801  * timers, we have to check, whether it expires earlier than the timer for
802  * which the clock event device was armed.
803  *
804  * Called with interrupts disabled and base->cpu_base.lock held
805  */
806 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
807 {
808         struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
809         struct hrtimer_clock_base *base = timer->base;
810         ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
811 
812         WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
813 
814         /*
815          * CLOCK_REALTIME timer might be requested with an absolute
816          * expiry time which is less than base->offset. Set it to 0.
817          */
818         if (expires < 0)
819                 expires = 0;
820 
821         if (timer->is_soft) {
822                 /*
823                  * soft hrtimer could be started on a remote CPU. In this
824                  * case softirq_expires_next needs to be updated on the
825                  * remote CPU. The soft hrtimer will not expire before the
826                  * first hard hrtimer on the remote CPU -
827                  * hrtimer_check_target() prevents this case.
828                  */
829                 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
830 
831                 if (timer_cpu_base->softirq_activated)
832                         return;
833 
834                 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
835                         return;
836 
837                 timer_cpu_base->softirq_next_timer = timer;
838                 timer_cpu_base->softirq_expires_next = expires;
839 
840                 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
841                     !reprogram)
842                         return;
843         }
844 
845         /*
846          * If the timer is not on the current cpu, we cannot reprogram
847          * the other cpus clock event device.
848          */
849         if (base->cpu_base != cpu_base)
850                 return;
851 
852         if (expires >= cpu_base->expires_next)
853                 return;
854 
855         /*
856          * If the hrtimer interrupt is running, then it will reevaluate the
857          * clock bases and reprogram the clock event device.
858          */
859         if (cpu_base->in_hrtirq)
860                 return;
861 
862         cpu_base->next_timer = timer;
863 
864         __hrtimer_reprogram(cpu_base, timer, expires);
865 }
866 
867 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
868                              unsigned int active)
869 {
870         struct hrtimer_clock_base *base;
871         unsigned int seq;
872         ktime_t expires;
873 
874         /*
875          * Update the base offsets unconditionally so the following
876          * checks whether the SMP function call is required works.
877          *
878          * The update is safe even when the remote CPU is in the hrtimer
879          * interrupt or the hrtimer soft interrupt and expiring affected
880          * bases. Either it will see the update before handling a base or
881          * it will see it when it finishes the processing and reevaluates
882          * the next expiring timer.
883          */
884         seq = cpu_base->clock_was_set_seq;
885         hrtimer_update_base(cpu_base);
886 
887         /*
888          * If the sequence did not change over the update then the
889          * remote CPU already handled it.
890          */
891         if (seq == cpu_base->clock_was_set_seq)
892                 return false;
893 
894         /*
895          * If the remote CPU is currently handling an hrtimer interrupt, it
896          * will reevaluate the first expiring timer of all clock bases
897          * before reprogramming. Nothing to do here.
898          */
899         if (cpu_base->in_hrtirq)
900                 return false;
901 
902         /*
903          * Walk the affected clock bases and check whether the first expiring
904          * timer in a clock base is moving ahead of the first expiring timer of
905          * @cpu_base. If so, the IPI must be invoked because per CPU clock
906          * event devices cannot be remotely reprogrammed.
907          */
908         active &= cpu_base->active_bases;
909 
910         for_each_active_base(base, cpu_base, active) {
911                 struct timerqueue_node *next;
912 
913                 next = timerqueue_getnext(&base->active);
914                 expires = ktime_sub(next->expires, base->offset);
915                 if (expires < cpu_base->expires_next)
916                         return true;
917 
918                 /* Extra check for softirq clock bases */
919                 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
920                         continue;
921                 if (cpu_base->softirq_activated)
922                         continue;
923                 if (expires < cpu_base->softirq_expires_next)
924                         return true;
925         }
926         return false;
927 }
928 
929 /*
930  * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
931  * CLOCK_BOOTTIME (for late sleep time injection).
932  *
933  * This requires to update the offsets for these clocks
934  * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
935  * also requires to eventually reprogram the per CPU clock event devices
936  * when the change moves an affected timer ahead of the first expiring
937  * timer on that CPU. Obviously remote per CPU clock event devices cannot
938  * be reprogrammed. The other reason why an IPI has to be sent is when the
939  * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
940  * in the tick, which obviously might be stopped, so this has to bring out
941  * the remote CPU which might sleep in idle to get this sorted.
942  */
943 void clock_was_set(unsigned int bases)
944 {
945         struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
946         cpumask_var_t mask;
947         int cpu;
948 
949         if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active)
950                 goto out_timerfd;
951 
952         if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
953                 on_each_cpu(retrigger_next_event, NULL, 1);
954                 goto out_timerfd;
955         }
956 
957         /* Avoid interrupting CPUs if possible */
958         cpus_read_lock();
959         for_each_online_cpu(cpu) {
960                 unsigned long flags;
961 
962                 cpu_base = &per_cpu(hrtimer_bases, cpu);
963                 raw_spin_lock_irqsave(&cpu_base->lock, flags);
964 
965                 if (update_needs_ipi(cpu_base, bases))
966                         cpumask_set_cpu(cpu, mask);
967 
968                 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
969         }
970 
971         preempt_disable();
972         smp_call_function_many(mask, retrigger_next_event, NULL, 1);
973         preempt_enable();
974         cpus_read_unlock();
975         free_cpumask_var(mask);
976 
977 out_timerfd:
978         timerfd_clock_was_set();
979 }
980 
981 static void clock_was_set_work(struct work_struct *work)
982 {
983         clock_was_set(CLOCK_SET_WALL);
984 }
985 
986 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
987 
988 /*
989  * Called from timekeeping code to reprogram the hrtimer interrupt device
990  * on all cpus and to notify timerfd.
991  */
992 void clock_was_set_delayed(void)
993 {
994         schedule_work(&hrtimer_work);
995 }
996 
997 /*
998  * Called during resume either directly from via timekeeping_resume()
999  * or in the case of s2idle from tick_unfreeze() to ensure that the
1000  * hrtimers are up to date.
1001  */
1002 void hrtimers_resume_local(void)
1003 {
1004         lockdep_assert_irqs_disabled();
1005         /* Retrigger on the local CPU */
1006         retrigger_next_event(NULL);
1007 }
1008 
1009 /*
1010  * Counterpart to lock_hrtimer_base above:
1011  */
1012 static inline
1013 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1014         __releases(&timer->base->cpu_base->lock)
1015 {
1016         raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1017 }
1018 
1019 /**
1020  * hrtimer_forward() - forward the timer expiry
1021  * @timer:      hrtimer to forward
1022  * @now:        forward past this time
1023  * @interval:   the interval to forward
1024  *
1025  * Forward the timer expiry so it will expire in the future.
1026  *
1027  * .. note::
1028  *  This only updates the timer expiry value and does not requeue the timer.
1029  *
1030  * There is also a variant of the function hrtimer_forward_now().
1031  *
1032  * Context: Can be safely called from the callback function of @timer. If called
1033  *          from other contexts @timer must neither be enqueued nor running the
1034  *          callback and the caller needs to take care of serialization.
1035  *
1036  * Return: The number of overruns are returned.
1037  */
1038 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1039 {
1040         u64 orun = 1;
1041         ktime_t delta;
1042 
1043         delta = ktime_sub(now, hrtimer_get_expires(timer));
1044 
1045         if (delta < 0)
1046                 return 0;
1047 
1048         if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1049                 return 0;
1050 
1051         if (interval < hrtimer_resolution)
1052                 interval = hrtimer_resolution;
1053 
1054         if (unlikely(delta >= interval)) {
1055                 s64 incr = ktime_to_ns(interval);
1056 
1057                 orun = ktime_divns(delta, incr);
1058                 hrtimer_add_expires_ns(timer, incr * orun);
1059                 if (hrtimer_get_expires_tv64(timer) > now)
1060                         return orun;
1061                 /*
1062                  * This (and the ktime_add() below) is the
1063                  * correction for exact:
1064                  */
1065                 orun++;
1066         }
1067         hrtimer_add_expires(timer, interval);
1068 
1069         return orun;
1070 }
1071 EXPORT_SYMBOL_GPL(hrtimer_forward);
1072 
1073 /*
1074  * enqueue_hrtimer - internal function to (re)start a timer
1075  *
1076  * The timer is inserted in expiry order. Insertion into the
1077  * red black tree is O(log(n)). Must hold the base lock.
1078  *
1079  * Returns 1 when the new timer is the leftmost timer in the tree.
1080  */
1081 static int enqueue_hrtimer(struct hrtimer *timer,
1082                            struct hrtimer_clock_base *base,
1083                            enum hrtimer_mode mode)
1084 {
1085         debug_activate(timer, mode);
1086         WARN_ON_ONCE(!base->cpu_base->online);
1087 
1088         base->cpu_base->active_bases |= 1 << base->index;
1089 
1090         /* Pairs with the lockless read in hrtimer_is_queued() */
1091         WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1092 
1093         return timerqueue_add(&base->active, &timer->node);
1094 }
1095 
1096 /*
1097  * __remove_hrtimer - internal function to remove a timer
1098  *
1099  * Caller must hold the base lock.
1100  *
1101  * High resolution timer mode reprograms the clock event device when the
1102  * timer is the one which expires next. The caller can disable this by setting
1103  * reprogram to zero. This is useful, when the context does a reprogramming
1104  * anyway (e.g. timer interrupt)
1105  */
1106 static void __remove_hrtimer(struct hrtimer *timer,
1107                              struct hrtimer_clock_base *base,
1108                              u8 newstate, int reprogram)
1109 {
1110         struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1111         u8 state = timer->state;
1112 
1113         /* Pairs with the lockless read in hrtimer_is_queued() */
1114         WRITE_ONCE(timer->state, newstate);
1115         if (!(state & HRTIMER_STATE_ENQUEUED))
1116                 return;
1117 
1118         if (!timerqueue_del(&base->active, &timer->node))
1119                 cpu_base->active_bases &= ~(1 << base->index);
1120 
1121         /*
1122          * Note: If reprogram is false we do not update
1123          * cpu_base->next_timer. This happens when we remove the first
1124          * timer on a remote cpu. No harm as we never dereference
1125          * cpu_base->next_timer. So the worst thing what can happen is
1126          * an superfluous call to hrtimer_force_reprogram() on the
1127          * remote cpu later on if the same timer gets enqueued again.
1128          */
1129         if (reprogram && timer == cpu_base->next_timer)
1130                 hrtimer_force_reprogram(cpu_base, 1);
1131 }
1132 
1133 /*
1134  * remove hrtimer, called with base lock held
1135  */
1136 static inline int
1137 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1138                bool restart, bool keep_local)
1139 {
1140         u8 state = timer->state;
1141 
1142         if (state & HRTIMER_STATE_ENQUEUED) {
1143                 bool reprogram;
1144 
1145                 /*
1146                  * Remove the timer and force reprogramming when high
1147                  * resolution mode is active and the timer is on the current
1148                  * CPU. If we remove a timer on another CPU, reprogramming is
1149                  * skipped. The interrupt event on this CPU is fired and
1150                  * reprogramming happens in the interrupt handler. This is a
1151                  * rare case and less expensive than a smp call.
1152                  */
1153                 debug_deactivate(timer);
1154                 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1155 
1156                 /*
1157                  * If the timer is not restarted then reprogramming is
1158                  * required if the timer is local. If it is local and about
1159                  * to be restarted, avoid programming it twice (on removal
1160                  * and a moment later when it's requeued).
1161                  */
1162                 if (!restart)
1163                         state = HRTIMER_STATE_INACTIVE;
1164                 else
1165                         reprogram &= !keep_local;
1166 
1167                 __remove_hrtimer(timer, base, state, reprogram);
1168                 return 1;
1169         }
1170         return 0;
1171 }
1172 
1173 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1174                                             const enum hrtimer_mode mode)
1175 {
1176 #ifdef CONFIG_TIME_LOW_RES
1177         /*
1178          * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1179          * granular time values. For relative timers we add hrtimer_resolution
1180          * (i.e. one jiffie) to prevent short timeouts.
1181          */
1182         timer->is_rel = mode & HRTIMER_MODE_REL;
1183         if (timer->is_rel)
1184                 tim = ktime_add_safe(tim, hrtimer_resolution);
1185 #endif
1186         return tim;
1187 }
1188 
1189 static void
1190 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1191 {
1192         ktime_t expires;
1193 
1194         /*
1195          * Find the next SOFT expiration.
1196          */
1197         expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1198 
1199         /*
1200          * reprogramming needs to be triggered, even if the next soft
1201          * hrtimer expires at the same time than the next hard
1202          * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1203          */
1204         if (expires == KTIME_MAX)
1205                 return;
1206 
1207         /*
1208          * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1209          * cpu_base->*expires_next is only set by hrtimer_reprogram()
1210          */
1211         hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1212 }
1213 
1214 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1215                                     u64 delta_ns, const enum hrtimer_mode mode,
1216                                     struct hrtimer_clock_base *base)
1217 {
1218         struct hrtimer_clock_base *new_base;
1219         bool force_local, first;
1220 
1221         /*
1222          * If the timer is on the local cpu base and is the first expiring
1223          * timer then this might end up reprogramming the hardware twice
1224          * (on removal and on enqueue). To avoid that by prevent the
1225          * reprogram on removal, keep the timer local to the current CPU
1226          * and enforce reprogramming after it is queued no matter whether
1227          * it is the new first expiring timer again or not.
1228          */
1229         force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1230         force_local &= base->cpu_base->next_timer == timer;
1231 
1232         /*
1233          * Remove an active timer from the queue. In case it is not queued
1234          * on the current CPU, make sure that remove_hrtimer() updates the
1235          * remote data correctly.
1236          *
1237          * If it's on the current CPU and the first expiring timer, then
1238          * skip reprogramming, keep the timer local and enforce
1239          * reprogramming later if it was the first expiring timer.  This
1240          * avoids programming the underlying clock event twice (once at
1241          * removal and once after enqueue).
1242          */
1243         remove_hrtimer(timer, base, true, force_local);
1244 
1245         if (mode & HRTIMER_MODE_REL)
1246                 tim = ktime_add_safe(tim, base->get_time());
1247 
1248         tim = hrtimer_update_lowres(timer, tim, mode);
1249 
1250         hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1251 
1252         /* Switch the timer base, if necessary: */
1253         if (!force_local) {
1254                 new_base = switch_hrtimer_base(timer, base,
1255                                                mode & HRTIMER_MODE_PINNED);
1256         } else {
1257                 new_base = base;
1258         }
1259 
1260         first = enqueue_hrtimer(timer, new_base, mode);
1261         if (!force_local)
1262                 return first;
1263 
1264         /*
1265          * Timer was forced to stay on the current CPU to avoid
1266          * reprogramming on removal and enqueue. Force reprogram the
1267          * hardware by evaluating the new first expiring timer.
1268          */
1269         hrtimer_force_reprogram(new_base->cpu_base, 1);
1270         return 0;
1271 }
1272 
1273 /**
1274  * hrtimer_start_range_ns - (re)start an hrtimer
1275  * @timer:      the timer to be added
1276  * @tim:        expiry time
1277  * @delta_ns:   "slack" range for the timer
1278  * @mode:       timer mode: absolute (HRTIMER_MODE_ABS) or
1279  *              relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1280  *              softirq based mode is considered for debug purpose only!
1281  */
1282 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1283                             u64 delta_ns, const enum hrtimer_mode mode)
1284 {
1285         struct hrtimer_clock_base *base;
1286         unsigned long flags;
1287 
1288         if (WARN_ON_ONCE(!timer->function))
1289                 return;
1290         /*
1291          * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1292          * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1293          * expiry mode because unmarked timers are moved to softirq expiry.
1294          */
1295         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1296                 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1297         else
1298                 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1299 
1300         base = lock_hrtimer_base(timer, &flags);
1301 
1302         if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1303                 hrtimer_reprogram(timer, true);
1304 
1305         unlock_hrtimer_base(timer, &flags);
1306 }
1307 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1308 
1309 /**
1310  * hrtimer_try_to_cancel - try to deactivate a timer
1311  * @timer:      hrtimer to stop
1312  *
1313  * Returns:
1314  *
1315  *  *  0 when the timer was not active
1316  *  *  1 when the timer was active
1317  *  * -1 when the timer is currently executing the callback function and
1318  *    cannot be stopped
1319  */
1320 int hrtimer_try_to_cancel(struct hrtimer *timer)
1321 {
1322         struct hrtimer_clock_base *base;
1323         unsigned long flags;
1324         int ret = -1;
1325 
1326         /*
1327          * Check lockless first. If the timer is not active (neither
1328          * enqueued nor running the callback, nothing to do here.  The
1329          * base lock does not serialize against a concurrent enqueue,
1330          * so we can avoid taking it.
1331          */
1332         if (!hrtimer_active(timer))
1333                 return 0;
1334 
1335         base = lock_hrtimer_base(timer, &flags);
1336 
1337         if (!hrtimer_callback_running(timer))
1338                 ret = remove_hrtimer(timer, base, false, false);
1339 
1340         unlock_hrtimer_base(timer, &flags);
1341 
1342         return ret;
1343 
1344 }
1345 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1346 
1347 #ifdef CONFIG_PREEMPT_RT
1348 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1349 {
1350         spin_lock_init(&base->softirq_expiry_lock);
1351 }
1352 
1353 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1354 {
1355         spin_lock(&base->softirq_expiry_lock);
1356 }
1357 
1358 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1359 {
1360         spin_unlock(&base->softirq_expiry_lock);
1361 }
1362 
1363 /*
1364  * The counterpart to hrtimer_cancel_wait_running().
1365  *
1366  * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1367  * the timer callback to finish. Drop expiry_lock and reacquire it. That
1368  * allows the waiter to acquire the lock and make progress.
1369  */
1370 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1371                                       unsigned long flags)
1372 {
1373         if (atomic_read(&cpu_base->timer_waiters)) {
1374                 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1375                 spin_unlock(&cpu_base->softirq_expiry_lock);
1376                 spin_lock(&cpu_base->softirq_expiry_lock);
1377                 raw_spin_lock_irq(&cpu_base->lock);
1378         }
1379 }
1380 
1381 /*
1382  * This function is called on PREEMPT_RT kernels when the fast path
1383  * deletion of a timer failed because the timer callback function was
1384  * running.
1385  *
1386  * This prevents priority inversion: if the soft irq thread is preempted
1387  * in the middle of a timer callback, then calling del_timer_sync() can
1388  * lead to two issues:
1389  *
1390  *  - If the caller is on a remote CPU then it has to spin wait for the timer
1391  *    handler to complete. This can result in unbound priority inversion.
1392  *
1393  *  - If the caller originates from the task which preempted the timer
1394  *    handler on the same CPU, then spin waiting for the timer handler to
1395  *    complete is never going to end.
1396  */
1397 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1398 {
1399         /* Lockless read. Prevent the compiler from reloading it below */
1400         struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1401 
1402         /*
1403          * Just relax if the timer expires in hard interrupt context or if
1404          * it is currently on the migration base.
1405          */
1406         if (!timer->is_soft || is_migration_base(base)) {
1407                 cpu_relax();
1408                 return;
1409         }
1410 
1411         /*
1412          * Mark the base as contended and grab the expiry lock, which is
1413          * held by the softirq across the timer callback. Drop the lock
1414          * immediately so the softirq can expire the next timer. In theory
1415          * the timer could already be running again, but that's more than
1416          * unlikely and just causes another wait loop.
1417          */
1418         atomic_inc(&base->cpu_base->timer_waiters);
1419         spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1420         atomic_dec(&base->cpu_base->timer_waiters);
1421         spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1422 }
1423 #else
1424 static inline void
1425 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1426 static inline void
1427 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1428 static inline void
1429 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1430 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1431                                              unsigned long flags) { }
1432 #endif
1433 
1434 /**
1435  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1436  * @timer:      the timer to be cancelled
1437  *
1438  * Returns:
1439  *  0 when the timer was not active
1440  *  1 when the timer was active
1441  */
1442 int hrtimer_cancel(struct hrtimer *timer)
1443 {
1444         int ret;
1445 
1446         do {
1447                 ret = hrtimer_try_to_cancel(timer);
1448 
1449                 if (ret < 0)
1450                         hrtimer_cancel_wait_running(timer);
1451         } while (ret < 0);
1452         return ret;
1453 }
1454 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1455 
1456 /**
1457  * __hrtimer_get_remaining - get remaining time for the timer
1458  * @timer:      the timer to read
1459  * @adjust:     adjust relative timers when CONFIG_TIME_LOW_RES=y
1460  */
1461 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1462 {
1463         unsigned long flags;
1464         ktime_t rem;
1465 
1466         lock_hrtimer_base(timer, &flags);
1467         if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1468                 rem = hrtimer_expires_remaining_adjusted(timer);
1469         else
1470                 rem = hrtimer_expires_remaining(timer);
1471         unlock_hrtimer_base(timer, &flags);
1472 
1473         return rem;
1474 }
1475 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1476 
1477 #ifdef CONFIG_NO_HZ_COMMON
1478 /**
1479  * hrtimer_get_next_event - get the time until next expiry event
1480  *
1481  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1482  */
1483 u64 hrtimer_get_next_event(void)
1484 {
1485         struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1486         u64 expires = KTIME_MAX;
1487         unsigned long flags;
1488 
1489         raw_spin_lock_irqsave(&cpu_base->lock, flags);
1490 
1491         if (!hrtimer_hres_active(cpu_base))
1492                 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1493 
1494         raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1495 
1496         return expires;
1497 }
1498 
1499 /**
1500  * hrtimer_next_event_without - time until next expiry event w/o one timer
1501  * @exclude:    timer to exclude
1502  *
1503  * Returns the next expiry time over all timers except for the @exclude one or
1504  * KTIME_MAX if none of them is pending.
1505  */
1506 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1507 {
1508         struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1509         u64 expires = KTIME_MAX;
1510         unsigned long flags;
1511 
1512         raw_spin_lock_irqsave(&cpu_base->lock, flags);
1513 
1514         if (hrtimer_hres_active(cpu_base)) {
1515                 unsigned int active;
1516 
1517                 if (!cpu_base->softirq_activated) {
1518                         active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1519                         expires = __hrtimer_next_event_base(cpu_base, exclude,
1520                                                             active, KTIME_MAX);
1521                 }
1522                 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1523                 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1524                                                     expires);
1525         }
1526 
1527         raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1528 
1529         return expires;
1530 }
1531 #endif
1532 
1533 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1534 {
1535         if (likely(clock_id < MAX_CLOCKS)) {
1536                 int base = hrtimer_clock_to_base_table[clock_id];
1537 
1538                 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1539                         return base;
1540         }
1541         WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1542         return HRTIMER_BASE_MONOTONIC;
1543 }
1544 
1545 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1546                            enum hrtimer_mode mode)
1547 {
1548         bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1549         struct hrtimer_cpu_base *cpu_base;
1550         int base;
1551 
1552         /*
1553          * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1554          * marked for hard interrupt expiry mode are moved into soft
1555          * interrupt context for latency reasons and because the callbacks
1556          * can invoke functions which might sleep on RT, e.g. spin_lock().
1557          */
1558         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1559                 softtimer = true;
1560 
1561         memset(timer, 0, sizeof(struct hrtimer));
1562 
1563         cpu_base = raw_cpu_ptr(&hrtimer_bases);
1564 
1565         /*
1566          * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1567          * clock modifications, so they needs to become CLOCK_MONOTONIC to
1568          * ensure POSIX compliance.
1569          */
1570         if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1571                 clock_id = CLOCK_MONOTONIC;
1572 
1573         base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1574         base += hrtimer_clockid_to_base(clock_id);
1575         timer->is_soft = softtimer;
1576         timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1577         timer->base = &cpu_base->clock_base[base];
1578         timerqueue_init(&timer->node);
1579 }
1580 
1581 /**
1582  * hrtimer_init - initialize a timer to the given clock
1583  * @timer:      the timer to be initialized
1584  * @clock_id:   the clock to be used
1585  * @mode:       The modes which are relevant for initialization:
1586  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1587  *              HRTIMER_MODE_REL_SOFT
1588  *
1589  *              The PINNED variants of the above can be handed in,
1590  *              but the PINNED bit is ignored as pinning happens
1591  *              when the hrtimer is started
1592  */
1593 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1594                   enum hrtimer_mode mode)
1595 {
1596         debug_init(timer, clock_id, mode);
1597         __hrtimer_init(timer, clock_id, mode);
1598 }
1599 EXPORT_SYMBOL_GPL(hrtimer_init);
1600 
1601 /*
1602  * A timer is active, when it is enqueued into the rbtree or the
1603  * callback function is running or it's in the state of being migrated
1604  * to another cpu.
1605  *
1606  * It is important for this function to not return a false negative.
1607  */
1608 bool hrtimer_active(const struct hrtimer *timer)
1609 {
1610         struct hrtimer_clock_base *base;
1611         unsigned int seq;
1612 
1613         do {
1614                 base = READ_ONCE(timer->base);
1615                 seq = raw_read_seqcount_begin(&base->seq);
1616 
1617                 if (timer->state != HRTIMER_STATE_INACTIVE ||
1618                     base->running == timer)
1619                         return true;
1620 
1621         } while (read_seqcount_retry(&base->seq, seq) ||
1622                  base != READ_ONCE(timer->base));
1623 
1624         return false;
1625 }
1626 EXPORT_SYMBOL_GPL(hrtimer_active);
1627 
1628 /*
1629  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1630  * distinct sections:
1631  *
1632  *  - queued:   the timer is queued
1633  *  - callback: the timer is being ran
1634  *  - post:     the timer is inactive or (re)queued
1635  *
1636  * On the read side we ensure we observe timer->state and cpu_base->running
1637  * from the same section, if anything changed while we looked at it, we retry.
1638  * This includes timer->base changing because sequence numbers alone are
1639  * insufficient for that.
1640  *
1641  * The sequence numbers are required because otherwise we could still observe
1642  * a false negative if the read side got smeared over multiple consecutive
1643  * __run_hrtimer() invocations.
1644  */
1645 
1646 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1647                           struct hrtimer_clock_base *base,
1648                           struct hrtimer *timer, ktime_t *now,
1649                           unsigned long flags) __must_hold(&cpu_base->lock)
1650 {
1651         enum hrtimer_restart (*fn)(struct hrtimer *);
1652         bool expires_in_hardirq;
1653         int restart;
1654 
1655         lockdep_assert_held(&cpu_base->lock);
1656 
1657         debug_deactivate(timer);
1658         base->running = timer;
1659 
1660         /*
1661          * Separate the ->running assignment from the ->state assignment.
1662          *
1663          * As with a regular write barrier, this ensures the read side in
1664          * hrtimer_active() cannot observe base->running == NULL &&
1665          * timer->state == INACTIVE.
1666          */
1667         raw_write_seqcount_barrier(&base->seq);
1668 
1669         __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1670         fn = timer->function;
1671 
1672         /*
1673          * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1674          * timer is restarted with a period then it becomes an absolute
1675          * timer. If its not restarted it does not matter.
1676          */
1677         if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1678                 timer->is_rel = false;
1679 
1680         /*
1681          * The timer is marked as running in the CPU base, so it is
1682          * protected against migration to a different CPU even if the lock
1683          * is dropped.
1684          */
1685         raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1686         trace_hrtimer_expire_entry(timer, now);
1687         expires_in_hardirq = lockdep_hrtimer_enter(timer);
1688 
1689         restart = fn(timer);
1690 
1691         lockdep_hrtimer_exit(expires_in_hardirq);
1692         trace_hrtimer_expire_exit(timer);
1693         raw_spin_lock_irq(&cpu_base->lock);
1694 
1695         /*
1696          * Note: We clear the running state after enqueue_hrtimer and
1697          * we do not reprogram the event hardware. Happens either in
1698          * hrtimer_start_range_ns() or in hrtimer_interrupt()
1699          *
1700          * Note: Because we dropped the cpu_base->lock above,
1701          * hrtimer_start_range_ns() can have popped in and enqueued the timer
1702          * for us already.
1703          */
1704         if (restart != HRTIMER_NORESTART &&
1705             !(timer->state & HRTIMER_STATE_ENQUEUED))
1706                 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1707 
1708         /*
1709          * Separate the ->running assignment from the ->state assignment.
1710          *
1711          * As with a regular write barrier, this ensures the read side in
1712          * hrtimer_active() cannot observe base->running.timer == NULL &&
1713          * timer->state == INACTIVE.
1714          */
1715         raw_write_seqcount_barrier(&base->seq);
1716 
1717         WARN_ON_ONCE(base->running != timer);
1718         base->running = NULL;
1719 }
1720 
1721 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1722                                  unsigned long flags, unsigned int active_mask)
1723 {
1724         struct hrtimer_clock_base *base;
1725         unsigned int active = cpu_base->active_bases & active_mask;
1726 
1727         for_each_active_base(base, cpu_base, active) {
1728                 struct timerqueue_node *node;
1729                 ktime_t basenow;
1730 
1731                 basenow = ktime_add(now, base->offset);
1732 
1733                 while ((node = timerqueue_getnext(&base->active))) {
1734                         struct hrtimer *timer;
1735 
1736                         timer = container_of(node, struct hrtimer, node);
1737 
1738                         /*
1739                          * The immediate goal for using the softexpires is
1740                          * minimizing wakeups, not running timers at the
1741                          * earliest interrupt after their soft expiration.
1742                          * This allows us to avoid using a Priority Search
1743                          * Tree, which can answer a stabbing query for
1744                          * overlapping intervals and instead use the simple
1745                          * BST we already have.
1746                          * We don't add extra wakeups by delaying timers that
1747                          * are right-of a not yet expired timer, because that
1748                          * timer will have to trigger a wakeup anyway.
1749                          */
1750                         if (basenow < hrtimer_get_softexpires_tv64(timer))
1751                                 break;
1752 
1753                         __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1754                         if (active_mask == HRTIMER_ACTIVE_SOFT)
1755                                 hrtimer_sync_wait_running(cpu_base, flags);
1756                 }
1757         }
1758 }
1759 
1760 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1761 {
1762         struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1763         unsigned long flags;
1764         ktime_t now;
1765 
1766         hrtimer_cpu_base_lock_expiry(cpu_base);
1767         raw_spin_lock_irqsave(&cpu_base->lock, flags);
1768 
1769         now = hrtimer_update_base(cpu_base);
1770         __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1771 
1772         cpu_base->softirq_activated = 0;
1773         hrtimer_update_softirq_timer(cpu_base, true);
1774 
1775         raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1776         hrtimer_cpu_base_unlock_expiry(cpu_base);
1777 }
1778 
1779 #ifdef CONFIG_HIGH_RES_TIMERS
1780 
1781 /*
1782  * High resolution timer interrupt
1783  * Called with interrupts disabled
1784  */
1785 void hrtimer_interrupt(struct clock_event_device *dev)
1786 {
1787         struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1788         ktime_t expires_next, now, entry_time, delta;
1789         unsigned long flags;
1790         int retries = 0;
1791 
1792         BUG_ON(!cpu_base->hres_active);
1793         cpu_base->nr_events++;
1794         dev->next_event = KTIME_MAX;
1795 
1796         raw_spin_lock_irqsave(&cpu_base->lock, flags);
1797         entry_time = now = hrtimer_update_base(cpu_base);
1798 retry:
1799         cpu_base->in_hrtirq = 1;
1800         /*
1801          * We set expires_next to KTIME_MAX here with cpu_base->lock
1802          * held to prevent that a timer is enqueued in our queue via
1803          * the migration code. This does not affect enqueueing of
1804          * timers which run their callback and need to be requeued on
1805          * this CPU.
1806          */
1807         cpu_base->expires_next = KTIME_MAX;
1808 
1809         if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1810                 cpu_base->softirq_expires_next = KTIME_MAX;
1811                 cpu_base->softirq_activated = 1;
1812                 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1813         }
1814 
1815         __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1816 
1817         /* Reevaluate the clock bases for the [soft] next expiry */
1818         expires_next = hrtimer_update_next_event(cpu_base);
1819         /*
1820          * Store the new expiry value so the migration code can verify
1821          * against it.
1822          */
1823         cpu_base->expires_next = expires_next;
1824         cpu_base->in_hrtirq = 0;
1825         raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1826 
1827         /* Reprogramming necessary ? */
1828         if (!tick_program_event(expires_next, 0)) {
1829                 cpu_base->hang_detected = 0;
1830                 return;
1831         }
1832 
1833         /*
1834          * The next timer was already expired due to:
1835          * - tracing
1836          * - long lasting callbacks
1837          * - being scheduled away when running in a VM
1838          *
1839          * We need to prevent that we loop forever in the hrtimer
1840          * interrupt routine. We give it 3 attempts to avoid
1841          * overreacting on some spurious event.
1842          *
1843          * Acquire base lock for updating the offsets and retrieving
1844          * the current time.
1845          */
1846         raw_spin_lock_irqsave(&cpu_base->lock, flags);
1847         now = hrtimer_update_base(cpu_base);
1848         cpu_base->nr_retries++;
1849         if (++retries < 3)
1850                 goto retry;
1851         /*
1852          * Give the system a chance to do something else than looping
1853          * here. We stored the entry time, so we know exactly how long
1854          * we spent here. We schedule the next event this amount of
1855          * time away.
1856          */
1857         cpu_base->nr_hangs++;
1858         cpu_base->hang_detected = 1;
1859         raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1860 
1861         delta = ktime_sub(now, entry_time);
1862         if ((unsigned int)delta > cpu_base->max_hang_time)
1863                 cpu_base->max_hang_time = (unsigned int) delta;
1864         /*
1865          * Limit it to a sensible value as we enforce a longer
1866          * delay. Give the CPU at least 100ms to catch up.
1867          */
1868         if (delta > 100 * NSEC_PER_MSEC)
1869                 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1870         else
1871                 expires_next = ktime_add(now, delta);
1872         tick_program_event(expires_next, 1);
1873         pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1874 }
1875 #endif /* !CONFIG_HIGH_RES_TIMERS */
1876 
1877 /*
1878  * Called from run_local_timers in hardirq context every jiffy
1879  */
1880 void hrtimer_run_queues(void)
1881 {
1882         struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1883         unsigned long flags;
1884         ktime_t now;
1885 
1886         if (hrtimer_hres_active(cpu_base))
1887                 return;
1888 
1889         /*
1890          * This _is_ ugly: We have to check periodically, whether we
1891          * can switch to highres and / or nohz mode. The clocksource
1892          * switch happens with xtime_lock held. Notification from
1893          * there only sets the check bit in the tick_oneshot code,
1894          * otherwise we might deadlock vs. xtime_lock.
1895          */
1896         if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1897                 hrtimer_switch_to_hres();
1898                 return;
1899         }
1900 
1901         raw_spin_lock_irqsave(&cpu_base->lock, flags);
1902         now = hrtimer_update_base(cpu_base);
1903 
1904         if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1905                 cpu_base->softirq_expires_next = KTIME_MAX;
1906                 cpu_base->softirq_activated = 1;
1907                 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1908         }
1909 
1910         __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1911         raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1912 }
1913 
1914 /*
1915  * Sleep related functions:
1916  */
1917 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1918 {
1919         struct hrtimer_sleeper *t =
1920                 container_of(timer, struct hrtimer_sleeper, timer);
1921         struct task_struct *task = t->task;
1922 
1923         t->task = NULL;
1924         if (task)
1925                 wake_up_process(task);
1926 
1927         return HRTIMER_NORESTART;
1928 }
1929 
1930 /**
1931  * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1932  * @sl:         sleeper to be started
1933  * @mode:       timer mode abs/rel
1934  *
1935  * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1936  * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1937  */
1938 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1939                                    enum hrtimer_mode mode)
1940 {
1941         /*
1942          * Make the enqueue delivery mode check work on RT. If the sleeper
1943          * was initialized for hard interrupt delivery, force the mode bit.
1944          * This is a special case for hrtimer_sleepers because
1945          * hrtimer_init_sleeper() determines the delivery mode on RT so the
1946          * fiddling with this decision is avoided at the call sites.
1947          */
1948         if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1949                 mode |= HRTIMER_MODE_HARD;
1950 
1951         hrtimer_start_expires(&sl->timer, mode);
1952 }
1953 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1954 
1955 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1956                                    clockid_t clock_id, enum hrtimer_mode mode)
1957 {
1958         /*
1959          * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1960          * marked for hard interrupt expiry mode are moved into soft
1961          * interrupt context either for latency reasons or because the
1962          * hrtimer callback takes regular spinlocks or invokes other
1963          * functions which are not suitable for hard interrupt context on
1964          * PREEMPT_RT.
1965          *
1966          * The hrtimer_sleeper callback is RT compatible in hard interrupt
1967          * context, but there is a latency concern: Untrusted userspace can
1968          * spawn many threads which arm timers for the same expiry time on
1969          * the same CPU. That causes a latency spike due to the wakeup of
1970          * a gazillion threads.
1971          *
1972          * OTOH, privileged real-time user space applications rely on the
1973          * low latency of hard interrupt wakeups. If the current task is in
1974          * a real-time scheduling class, mark the mode for hard interrupt
1975          * expiry.
1976          */
1977         if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1978                 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1979                         mode |= HRTIMER_MODE_HARD;
1980         }
1981 
1982         __hrtimer_init(&sl->timer, clock_id, mode);
1983         sl->timer.function = hrtimer_wakeup;
1984         sl->task = current;
1985 }
1986 
1987 /**
1988  * hrtimer_init_sleeper - initialize sleeper to the given clock
1989  * @sl:         sleeper to be initialized
1990  * @clock_id:   the clock to be used
1991  * @mode:       timer mode abs/rel
1992  */
1993 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1994                           enum hrtimer_mode mode)
1995 {
1996         debug_init(&sl->timer, clock_id, mode);
1997         __hrtimer_init_sleeper(sl, clock_id, mode);
1998 
1999 }
2000 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
2001 
2002 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2003 {
2004         switch(restart->nanosleep.type) {
2005 #ifdef CONFIG_COMPAT_32BIT_TIME
2006         case TT_COMPAT:
2007                 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2008                         return -EFAULT;
2009                 break;
2010 #endif
2011         case TT_NATIVE:
2012                 if (put_timespec64(ts, restart->nanosleep.rmtp))
2013                         return -EFAULT;
2014                 break;
2015         default:
2016                 BUG();
2017         }
2018         return -ERESTART_RESTARTBLOCK;
2019 }
2020 
2021 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2022 {
2023         struct restart_block *restart;
2024 
2025         do {
2026                 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2027                 hrtimer_sleeper_start_expires(t, mode);
2028 
2029                 if (likely(t->task))
2030                         schedule();
2031 
2032                 hrtimer_cancel(&t->timer);
2033                 mode = HRTIMER_MODE_ABS;
2034 
2035         } while (t->task && !signal_pending(current));
2036 
2037         __set_current_state(TASK_RUNNING);
2038 
2039         if (!t->task)
2040                 return 0;
2041 
2042         restart = &current->restart_block;
2043         if (restart->nanosleep.type != TT_NONE) {
2044                 ktime_t rem = hrtimer_expires_remaining(&t->timer);
2045                 struct timespec64 rmt;
2046 
2047                 if (rem <= 0)
2048                         return 0;
2049                 rmt = ktime_to_timespec64(rem);
2050 
2051                 return nanosleep_copyout(restart, &rmt);
2052         }
2053         return -ERESTART_RESTARTBLOCK;
2054 }
2055 
2056 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2057 {
2058         struct hrtimer_sleeper t;
2059         int ret;
2060 
2061         hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
2062                                       HRTIMER_MODE_ABS);
2063         hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2064         ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
2065         destroy_hrtimer_on_stack(&t.timer);
2066         return ret;
2067 }
2068 
2069 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2070                        const clockid_t clockid)
2071 {
2072         struct restart_block *restart;
2073         struct hrtimer_sleeper t;
2074         int ret = 0;
2075         u64 slack;
2076 
2077         slack = current->timer_slack_ns;
2078         if (rt_task(current))
2079                 slack = 0;
2080 
2081         hrtimer_init_sleeper_on_stack(&t, clockid, mode);
2082         hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
2083         ret = do_nanosleep(&t, mode);
2084         if (ret != -ERESTART_RESTARTBLOCK)
2085                 goto out;
2086 
2087         /* Absolute timers do not update the rmtp value and restart: */
2088         if (mode == HRTIMER_MODE_ABS) {
2089                 ret = -ERESTARTNOHAND;
2090                 goto out;
2091         }
2092 
2093         restart = &current->restart_block;
2094         restart->nanosleep.clockid = t.timer.base->clockid;
2095         restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2096         set_restart_fn(restart, hrtimer_nanosleep_restart);
2097 out:
2098         destroy_hrtimer_on_stack(&t.timer);
2099         return ret;
2100 }
2101 
2102 #ifdef CONFIG_64BIT
2103 
2104 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2105                 struct __kernel_timespec __user *, rmtp)
2106 {
2107         struct timespec64 tu;
2108 
2109         if (get_timespec64(&tu, rqtp))
2110                 return -EFAULT;
2111 
2112         if (!timespec64_valid(&tu))
2113                 return -EINVAL;
2114 
2115         current->restart_block.fn = do_no_restart_syscall;
2116         current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2117         current->restart_block.nanosleep.rmtp = rmtp;
2118         return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2119                                  CLOCK_MONOTONIC);
2120 }
2121 
2122 #endif
2123 
2124 #ifdef CONFIG_COMPAT_32BIT_TIME
2125 
2126 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2127                        struct old_timespec32 __user *, rmtp)
2128 {
2129         struct timespec64 tu;
2130 
2131         if (get_old_timespec32(&tu, rqtp))
2132                 return -EFAULT;
2133 
2134         if (!timespec64_valid(&tu))
2135                 return -EINVAL;
2136 
2137         current->restart_block.fn = do_no_restart_syscall;
2138         current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2139         current->restart_block.nanosleep.compat_rmtp = rmtp;
2140         return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2141                                  CLOCK_MONOTONIC);
2142 }
2143 #endif
2144 
2145 /*
2146  * Functions related to boot-time initialization:
2147  */
2148 int hrtimers_prepare_cpu(unsigned int cpu)
2149 {
2150         struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2151         int i;
2152 
2153         for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2154                 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2155 
2156                 clock_b->cpu_base = cpu_base;
2157                 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2158                 timerqueue_init_head(&clock_b->active);
2159         }
2160 
2161         cpu_base->cpu = cpu;
2162         cpu_base->active_bases = 0;
2163         cpu_base->hres_active = 0;
2164         cpu_base->hang_detected = 0;
2165         cpu_base->next_timer = NULL;
2166         cpu_base->softirq_next_timer = NULL;
2167         cpu_base->expires_next = KTIME_MAX;
2168         cpu_base->softirq_expires_next = KTIME_MAX;
2169         cpu_base->online = 1;
2170         hrtimer_cpu_base_init_expiry_lock(cpu_base);
2171         return 0;
2172 }
2173 
2174 #ifdef CONFIG_HOTPLUG_CPU
2175 
2176 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2177                                 struct hrtimer_clock_base *new_base)
2178 {
2179         struct hrtimer *timer;
2180         struct timerqueue_node *node;
2181 
2182         while ((node = timerqueue_getnext(&old_base->active))) {
2183                 timer = container_of(node, struct hrtimer, node);
2184                 BUG_ON(hrtimer_callback_running(timer));
2185                 debug_deactivate(timer);
2186 
2187                 /*
2188                  * Mark it as ENQUEUED not INACTIVE otherwise the
2189                  * timer could be seen as !active and just vanish away
2190                  * under us on another CPU
2191                  */
2192                 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2193                 timer->base = new_base;
2194                 /*
2195                  * Enqueue the timers on the new cpu. This does not
2196                  * reprogram the event device in case the timer
2197                  * expires before the earliest on this CPU, but we run
2198                  * hrtimer_interrupt after we migrated everything to
2199                  * sort out already expired timers and reprogram the
2200                  * event device.
2201                  */
2202                 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2203         }
2204 }
2205 
2206 int hrtimers_cpu_dying(unsigned int dying_cpu)
2207 {
2208         int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
2209         struct hrtimer_cpu_base *old_base, *new_base;
2210 
2211         old_base = this_cpu_ptr(&hrtimer_bases);
2212         new_base = &per_cpu(hrtimer_bases, ncpu);
2213 
2214         /*
2215          * The caller is globally serialized and nobody else
2216          * takes two locks at once, deadlock is not possible.
2217          */
2218         raw_spin_lock(&old_base->lock);
2219         raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2220 
2221         for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2222                 migrate_hrtimer_list(&old_base->clock_base[i],
2223                                      &new_base->clock_base[i]);
2224         }
2225 
2226         /*
2227          * The migration might have changed the first expiring softirq
2228          * timer on this CPU. Update it.
2229          */
2230         __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
2231         /* Tell the other CPU to retrigger the next event */
2232         smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2233 
2234         raw_spin_unlock(&new_base->lock);
2235         old_base->online = 0;
2236         raw_spin_unlock(&old_base->lock);
2237 
2238         return 0;
2239 }
2240 
2241 #endif /* CONFIG_HOTPLUG_CPU */
2242 
2243 void __init hrtimers_init(void)
2244 {
2245         hrtimers_prepare_cpu(smp_processor_id());
2246         open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2247 }
2248 
2249 /**
2250  * schedule_hrtimeout_range_clock - sleep until timeout
2251  * @expires:    timeout value (ktime_t)
2252  * @delta:      slack in expires timeout (ktime_t) for SCHED_OTHER tasks
2253  * @mode:       timer mode
2254  * @clock_id:   timer clock to be used
2255  */
2256 int __sched
2257 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2258                                const enum hrtimer_mode mode, clockid_t clock_id)
2259 {
2260         struct hrtimer_sleeper t;
2261 
2262         /*
2263          * Optimize when a zero timeout value is given. It does not
2264          * matter whether this is an absolute or a relative time.
2265          */
2266         if (expires && *expires == 0) {
2267                 __set_current_state(TASK_RUNNING);
2268                 return 0;
2269         }
2270 
2271         /*
2272          * A NULL parameter means "infinite"
2273          */
2274         if (!expires) {
2275                 schedule();
2276                 return -EINTR;
2277         }
2278 
2279         /*
2280          * Override any slack passed by the user if under
2281          * rt contraints.
2282          */
2283         if (rt_task(current))
2284                 delta = 0;
2285 
2286         hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2287         hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2288         hrtimer_sleeper_start_expires(&t, mode);
2289 
2290         if (likely(t.task))
2291                 schedule();
2292 
2293         hrtimer_cancel(&t.timer);
2294         destroy_hrtimer_on_stack(&t.timer);
2295 
2296         __set_current_state(TASK_RUNNING);
2297 
2298         return !t.task ? 0 : -EINTR;
2299 }
2300 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
2301 
2302 /**
2303  * schedule_hrtimeout_range - sleep until timeout
2304  * @expires:    timeout value (ktime_t)
2305  * @delta:      slack in expires timeout (ktime_t) for SCHED_OTHER tasks
2306  * @mode:       timer mode
2307  *
2308  * Make the current task sleep until the given expiry time has
2309  * elapsed. The routine will return immediately unless
2310  * the current task state has been set (see set_current_state()).
2311  *
2312  * The @delta argument gives the kernel the freedom to schedule the
2313  * actual wakeup to a time that is both power and performance friendly
2314  * for regular (non RT/DL) tasks.
2315  * The kernel give the normal best effort behavior for "@expires+@delta",
2316  * but may decide to fire the timer earlier, but no earlier than @expires.
2317  *
2318  * You can set the task state as follows -
2319  *
2320  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2321  * pass before the routine returns unless the current task is explicitly
2322  * woken up, (e.g. by wake_up_process()).
2323  *
2324  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2325  * delivered to the current task or the current task is explicitly woken
2326  * up.
2327  *
2328  * The current task state is guaranteed to be TASK_RUNNING when this
2329  * routine returns.
2330  *
2331  * Returns 0 when the timer has expired. If the task was woken before the
2332  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2333  * by an explicit wakeup, it returns -EINTR.
2334  */
2335 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2336                                      const enum hrtimer_mode mode)
2337 {
2338         return schedule_hrtimeout_range_clock(expires, delta, mode,
2339                                               CLOCK_MONOTONIC);
2340 }
2341 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2342 
2343 /**
2344  * schedule_hrtimeout - sleep until timeout
2345  * @expires:    timeout value (ktime_t)
2346  * @mode:       timer mode
2347  *
2348  * Make the current task sleep until the given expiry time has
2349  * elapsed. The routine will return immediately unless
2350  * the current task state has been set (see set_current_state()).
2351  *
2352  * You can set the task state as follows -
2353  *
2354  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2355  * pass before the routine returns unless the current task is explicitly
2356  * woken up, (e.g. by wake_up_process()).
2357  *
2358  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2359  * delivered to the current task or the current task is explicitly woken
2360  * up.
2361  *
2362  * The current task state is guaranteed to be TASK_RUNNING when this
2363  * routine returns.
2364  *
2365  * Returns 0 when the timer has expired. If the task was woken before the
2366  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2367  * by an explicit wakeup, it returns -EINTR.
2368  */
2369 int __sched schedule_hrtimeout(ktime_t *expires,
2370                                const enum hrtimer_mode mode)
2371 {
2372         return schedule_hrtimeout_range(expires, 0, mode);
2373 }
2374 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2375 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php