~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/time/ntp.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * NTP state machine interfaces and logic.
  4  *
  5  * This code was mainly moved from kernel/timer.c and kernel/time.c
  6  * Please see those files for relevant copyright info and historical
  7  * changelogs.
  8  */
  9 #include <linux/capability.h>
 10 #include <linux/clocksource.h>
 11 #include <linux/workqueue.h>
 12 #include <linux/hrtimer.h>
 13 #include <linux/jiffies.h>
 14 #include <linux/math64.h>
 15 #include <linux/timex.h>
 16 #include <linux/time.h>
 17 #include <linux/mm.h>
 18 #include <linux/module.h>
 19 #include <linux/rtc.h>
 20 #include <linux/audit.h>
 21 
 22 #include "ntp_internal.h"
 23 #include "timekeeping_internal.h"
 24 
 25 
 26 /*
 27  * NTP timekeeping variables:
 28  *
 29  * Note: All of the NTP state is protected by the timekeeping locks.
 30  */
 31 
 32 
 33 /* USER_HZ period (usecs): */
 34 unsigned long                   tick_usec = USER_TICK_USEC;
 35 
 36 /* SHIFTED_HZ period (nsecs): */
 37 unsigned long                   tick_nsec;
 38 
 39 static u64                      tick_length;
 40 static u64                      tick_length_base;
 41 
 42 #define SECS_PER_DAY            86400
 43 #define MAX_TICKADJ             500LL           /* usecs */
 44 #define MAX_TICKADJ_SCALED \
 45         (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
 46 #define MAX_TAI_OFFSET          100000
 47 
 48 /*
 49  * phase-lock loop variables
 50  */
 51 
 52 /*
 53  * clock synchronization status
 54  *
 55  * (TIME_ERROR prevents overwriting the CMOS clock)
 56  */
 57 static int                      time_state = TIME_OK;
 58 
 59 /* clock status bits:                                                   */
 60 static int                      time_status = STA_UNSYNC;
 61 
 62 /* time adjustment (nsecs):                                             */
 63 static s64                      time_offset;
 64 
 65 /* pll time constant:                                                   */
 66 static long                     time_constant = 2;
 67 
 68 /* maximum error (usecs):                                               */
 69 static long                     time_maxerror = NTP_PHASE_LIMIT;
 70 
 71 /* estimated error (usecs):                                             */
 72 static long                     time_esterror = NTP_PHASE_LIMIT;
 73 
 74 /* frequency offset (scaled nsecs/secs):                                */
 75 static s64                      time_freq;
 76 
 77 /* time at last adjustment (secs):                                      */
 78 static time64_t         time_reftime;
 79 
 80 static long                     time_adjust;
 81 
 82 /* constant (boot-param configurable) NTP tick adjustment (upscaled)    */
 83 static s64                      ntp_tick_adj;
 84 
 85 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
 86 static time64_t                 ntp_next_leap_sec = TIME64_MAX;
 87 
 88 #ifdef CONFIG_NTP_PPS
 89 
 90 /*
 91  * The following variables are used when a pulse-per-second (PPS) signal
 92  * is available. They establish the engineering parameters of the clock
 93  * discipline loop when controlled by the PPS signal.
 94  */
 95 #define PPS_VALID       10      /* PPS signal watchdog max (s) */
 96 #define PPS_POPCORN     4       /* popcorn spike threshold (shift) */
 97 #define PPS_INTMIN      2       /* min freq interval (s) (shift) */
 98 #define PPS_INTMAX      8       /* max freq interval (s) (shift) */
 99 #define PPS_INTCOUNT    4       /* number of consecutive good intervals to
100                                    increase pps_shift or consecutive bad
101                                    intervals to decrease it */
102 #define PPS_MAXWANDER   100000  /* max PPS freq wander (ns/s) */
103 
104 static int pps_valid;           /* signal watchdog counter */
105 static long pps_tf[3];          /* phase median filter */
106 static long pps_jitter;         /* current jitter (ns) */
107 static struct timespec64 pps_fbase; /* beginning of the last freq interval */
108 static int pps_shift;           /* current interval duration (s) (shift) */
109 static int pps_intcnt;          /* interval counter */
110 static s64 pps_freq;            /* frequency offset (scaled ns/s) */
111 static long pps_stabil;         /* current stability (scaled ns/s) */
112 
113 /*
114  * PPS signal quality monitors
115  */
116 static long pps_calcnt;         /* calibration intervals */
117 static long pps_jitcnt;         /* jitter limit exceeded */
118 static long pps_stbcnt;         /* stability limit exceeded */
119 static long pps_errcnt;         /* calibration errors */
120 
121 
122 /* PPS kernel consumer compensates the whole phase error immediately.
123  * Otherwise, reduce the offset by a fixed factor times the time constant.
124  */
125 static inline s64 ntp_offset_chunk(s64 offset)
126 {
127         if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
128                 return offset;
129         else
130                 return shift_right(offset, SHIFT_PLL + time_constant);
131 }
132 
133 static inline void pps_reset_freq_interval(void)
134 {
135         /* the PPS calibration interval may end
136            surprisingly early */
137         pps_shift = PPS_INTMIN;
138         pps_intcnt = 0;
139 }
140 
141 /**
142  * pps_clear - Clears the PPS state variables
143  */
144 static inline void pps_clear(void)
145 {
146         pps_reset_freq_interval();
147         pps_tf[0] = 0;
148         pps_tf[1] = 0;
149         pps_tf[2] = 0;
150         pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
151         pps_freq = 0;
152 }
153 
154 /* Decrease pps_valid to indicate that another second has passed since
155  * the last PPS signal. When it reaches 0, indicate that PPS signal is
156  * missing.
157  */
158 static inline void pps_dec_valid(void)
159 {
160         if (pps_valid > 0)
161                 pps_valid--;
162         else {
163                 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
164                                  STA_PPSWANDER | STA_PPSERROR);
165                 pps_clear();
166         }
167 }
168 
169 static inline void pps_set_freq(s64 freq)
170 {
171         pps_freq = freq;
172 }
173 
174 static inline int is_error_status(int status)
175 {
176         return (status & (STA_UNSYNC|STA_CLOCKERR))
177                 /* PPS signal lost when either PPS time or
178                  * PPS frequency synchronization requested
179                  */
180                 || ((status & (STA_PPSFREQ|STA_PPSTIME))
181                         && !(status & STA_PPSSIGNAL))
182                 /* PPS jitter exceeded when
183                  * PPS time synchronization requested */
184                 || ((status & (STA_PPSTIME|STA_PPSJITTER))
185                         == (STA_PPSTIME|STA_PPSJITTER))
186                 /* PPS wander exceeded or calibration error when
187                  * PPS frequency synchronization requested
188                  */
189                 || ((status & STA_PPSFREQ)
190                         && (status & (STA_PPSWANDER|STA_PPSERROR)));
191 }
192 
193 static inline void pps_fill_timex(struct __kernel_timex *txc)
194 {
195         txc->ppsfreq       = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
196                                          PPM_SCALE_INV, NTP_SCALE_SHIFT);
197         txc->jitter        = pps_jitter;
198         if (!(time_status & STA_NANO))
199                 txc->jitter = pps_jitter / NSEC_PER_USEC;
200         txc->shift         = pps_shift;
201         txc->stabil        = pps_stabil;
202         txc->jitcnt        = pps_jitcnt;
203         txc->calcnt        = pps_calcnt;
204         txc->errcnt        = pps_errcnt;
205         txc->stbcnt        = pps_stbcnt;
206 }
207 
208 #else /* !CONFIG_NTP_PPS */
209 
210 static inline s64 ntp_offset_chunk(s64 offset)
211 {
212         return shift_right(offset, SHIFT_PLL + time_constant);
213 }
214 
215 static inline void pps_reset_freq_interval(void) {}
216 static inline void pps_clear(void) {}
217 static inline void pps_dec_valid(void) {}
218 static inline void pps_set_freq(s64 freq) {}
219 
220 static inline int is_error_status(int status)
221 {
222         return status & (STA_UNSYNC|STA_CLOCKERR);
223 }
224 
225 static inline void pps_fill_timex(struct __kernel_timex *txc)
226 {
227         /* PPS is not implemented, so these are zero */
228         txc->ppsfreq       = 0;
229         txc->jitter        = 0;
230         txc->shift         = 0;
231         txc->stabil        = 0;
232         txc->jitcnt        = 0;
233         txc->calcnt        = 0;
234         txc->errcnt        = 0;
235         txc->stbcnt        = 0;
236 }
237 
238 #endif /* CONFIG_NTP_PPS */
239 
240 
241 /**
242  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
243  *
244  */
245 static inline int ntp_synced(void)
246 {
247         return !(time_status & STA_UNSYNC);
248 }
249 
250 
251 /*
252  * NTP methods:
253  */
254 
255 /*
256  * Update (tick_length, tick_length_base, tick_nsec), based
257  * on (tick_usec, ntp_tick_adj, time_freq):
258  */
259 static void ntp_update_frequency(void)
260 {
261         u64 second_length;
262         u64 new_base;
263 
264         second_length            = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
265                                                 << NTP_SCALE_SHIFT;
266 
267         second_length           += ntp_tick_adj;
268         second_length           += time_freq;
269 
270         tick_nsec                = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
271         new_base                 = div_u64(second_length, NTP_INTERVAL_FREQ);
272 
273         /*
274          * Don't wait for the next second_overflow, apply
275          * the change to the tick length immediately:
276          */
277         tick_length             += new_base - tick_length_base;
278         tick_length_base         = new_base;
279 }
280 
281 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
282 {
283         time_status &= ~STA_MODE;
284 
285         if (secs < MINSEC)
286                 return 0;
287 
288         if (!(time_status & STA_FLL) && (secs <= MAXSEC))
289                 return 0;
290 
291         time_status |= STA_MODE;
292 
293         return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
294 }
295 
296 static void ntp_update_offset(long offset)
297 {
298         s64 freq_adj;
299         s64 offset64;
300         long secs;
301 
302         if (!(time_status & STA_PLL))
303                 return;
304 
305         if (!(time_status & STA_NANO)) {
306                 /* Make sure the multiplication below won't overflow */
307                 offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
308                 offset *= NSEC_PER_USEC;
309         }
310 
311         /*
312          * Scale the phase adjustment and
313          * clamp to the operating range.
314          */
315         offset = clamp(offset, -MAXPHASE, MAXPHASE);
316 
317         /*
318          * Select how the frequency is to be controlled
319          * and in which mode (PLL or FLL).
320          */
321         secs = (long)(__ktime_get_real_seconds() - time_reftime);
322         if (unlikely(time_status & STA_FREQHOLD))
323                 secs = 0;
324 
325         time_reftime = __ktime_get_real_seconds();
326 
327         offset64    = offset;
328         freq_adj    = ntp_update_offset_fll(offset64, secs);
329 
330         /*
331          * Clamp update interval to reduce PLL gain with low
332          * sampling rate (e.g. intermittent network connection)
333          * to avoid instability.
334          */
335         if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
336                 secs = 1 << (SHIFT_PLL + 1 + time_constant);
337 
338         freq_adj    += (offset64 * secs) <<
339                         (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
340 
341         freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
342 
343         time_freq   = max(freq_adj, -MAXFREQ_SCALED);
344 
345         time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
346 }
347 
348 /**
349  * ntp_clear - Clears the NTP state variables
350  */
351 void ntp_clear(void)
352 {
353         time_adjust     = 0;            /* stop active adjtime() */
354         time_status     |= STA_UNSYNC;
355         time_maxerror   = NTP_PHASE_LIMIT;
356         time_esterror   = NTP_PHASE_LIMIT;
357 
358         ntp_update_frequency();
359 
360         tick_length     = tick_length_base;
361         time_offset     = 0;
362 
363         ntp_next_leap_sec = TIME64_MAX;
364         /* Clear PPS state variables */
365         pps_clear();
366 }
367 
368 
369 u64 ntp_tick_length(void)
370 {
371         return tick_length;
372 }
373 
374 /**
375  * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
376  *
377  * Provides the time of the next leapsecond against CLOCK_REALTIME in
378  * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
379  */
380 ktime_t ntp_get_next_leap(void)
381 {
382         ktime_t ret;
383 
384         if ((time_state == TIME_INS) && (time_status & STA_INS))
385                 return ktime_set(ntp_next_leap_sec, 0);
386         ret = KTIME_MAX;
387         return ret;
388 }
389 
390 /*
391  * this routine handles the overflow of the microsecond field
392  *
393  * The tricky bits of code to handle the accurate clock support
394  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
395  * They were originally developed for SUN and DEC kernels.
396  * All the kudos should go to Dave for this stuff.
397  *
398  * Also handles leap second processing, and returns leap offset
399  */
400 int second_overflow(time64_t secs)
401 {
402         s64 delta;
403         int leap = 0;
404         s32 rem;
405 
406         /*
407          * Leap second processing. If in leap-insert state at the end of the
408          * day, the system clock is set back one second; if in leap-delete
409          * state, the system clock is set ahead one second.
410          */
411         switch (time_state) {
412         case TIME_OK:
413                 if (time_status & STA_INS) {
414                         time_state = TIME_INS;
415                         div_s64_rem(secs, SECS_PER_DAY, &rem);
416                         ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
417                 } else if (time_status & STA_DEL) {
418                         time_state = TIME_DEL;
419                         div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
420                         ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
421                 }
422                 break;
423         case TIME_INS:
424                 if (!(time_status & STA_INS)) {
425                         ntp_next_leap_sec = TIME64_MAX;
426                         time_state = TIME_OK;
427                 } else if (secs == ntp_next_leap_sec) {
428                         leap = -1;
429                         time_state = TIME_OOP;
430                         printk(KERN_NOTICE
431                                 "Clock: inserting leap second 23:59:60 UTC\n");
432                 }
433                 break;
434         case TIME_DEL:
435                 if (!(time_status & STA_DEL)) {
436                         ntp_next_leap_sec = TIME64_MAX;
437                         time_state = TIME_OK;
438                 } else if (secs == ntp_next_leap_sec) {
439                         leap = 1;
440                         ntp_next_leap_sec = TIME64_MAX;
441                         time_state = TIME_WAIT;
442                         printk(KERN_NOTICE
443                                 "Clock: deleting leap second 23:59:59 UTC\n");
444                 }
445                 break;
446         case TIME_OOP:
447                 ntp_next_leap_sec = TIME64_MAX;
448                 time_state = TIME_WAIT;
449                 break;
450         case TIME_WAIT:
451                 if (!(time_status & (STA_INS | STA_DEL)))
452                         time_state = TIME_OK;
453                 break;
454         }
455 
456 
457         /* Bump the maxerror field */
458         time_maxerror += MAXFREQ / NSEC_PER_USEC;
459         if (time_maxerror > NTP_PHASE_LIMIT) {
460                 time_maxerror = NTP_PHASE_LIMIT;
461                 time_status |= STA_UNSYNC;
462         }
463 
464         /* Compute the phase adjustment for the next second */
465         tick_length      = tick_length_base;
466 
467         delta            = ntp_offset_chunk(time_offset);
468         time_offset     -= delta;
469         tick_length     += delta;
470 
471         /* Check PPS signal */
472         pps_dec_valid();
473 
474         if (!time_adjust)
475                 goto out;
476 
477         if (time_adjust > MAX_TICKADJ) {
478                 time_adjust -= MAX_TICKADJ;
479                 tick_length += MAX_TICKADJ_SCALED;
480                 goto out;
481         }
482 
483         if (time_adjust < -MAX_TICKADJ) {
484                 time_adjust += MAX_TICKADJ;
485                 tick_length -= MAX_TICKADJ_SCALED;
486                 goto out;
487         }
488 
489         tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
490                                                          << NTP_SCALE_SHIFT;
491         time_adjust = 0;
492 
493 out:
494         return leap;
495 }
496 
497 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
498 static void sync_hw_clock(struct work_struct *work);
499 static DECLARE_WORK(sync_work, sync_hw_clock);
500 static struct hrtimer sync_hrtimer;
501 #define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC)
502 
503 static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
504 {
505         queue_work(system_freezable_power_efficient_wq, &sync_work);
506 
507         return HRTIMER_NORESTART;
508 }
509 
510 static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
511 {
512         ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
513 
514         if (retry)
515                 exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec);
516         else
517                 exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
518 
519         hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
520 }
521 
522 /*
523  * Check whether @now is correct versus the required time to update the RTC
524  * and calculate the value which needs to be written to the RTC so that the
525  * next seconds increment of the RTC after the write is aligned with the next
526  * seconds increment of clock REALTIME.
527  *
528  * tsched     t1 write(t2.tv_sec - 1sec))       t2 RTC increments seconds
529  *
530  * t2.tv_nsec == 0
531  * tsched = t2 - set_offset_nsec
532  * newval = t2 - NSEC_PER_SEC
533  *
534  * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
535  *
536  * As the execution of this code is not guaranteed to happen exactly at
537  * tsched this allows it to happen within a fuzzy region:
538  *
539  *      abs(now - tsched) < FUZZ
540  *
541  * If @now is not inside the allowed window the function returns false.
542  */
543 static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec,
544                                   struct timespec64 *to_set,
545                                   const struct timespec64 *now)
546 {
547         /* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */
548         const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
549         struct timespec64 delay = {.tv_sec = -1,
550                                    .tv_nsec = set_offset_nsec};
551 
552         *to_set = timespec64_add(*now, delay);
553 
554         if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
555                 to_set->tv_nsec = 0;
556                 return true;
557         }
558 
559         if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
560                 to_set->tv_sec++;
561                 to_set->tv_nsec = 0;
562                 return true;
563         }
564         return false;
565 }
566 
567 #ifdef CONFIG_GENERIC_CMOS_UPDATE
568 int __weak update_persistent_clock64(struct timespec64 now64)
569 {
570         return -ENODEV;
571 }
572 #else
573 static inline int update_persistent_clock64(struct timespec64 now64)
574 {
575         return -ENODEV;
576 }
577 #endif
578 
579 #ifdef CONFIG_RTC_SYSTOHC
580 /* Save NTP synchronized time to the RTC */
581 static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
582 {
583         struct rtc_device *rtc;
584         struct rtc_time tm;
585         int err = -ENODEV;
586 
587         rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
588         if (!rtc)
589                 return -ENODEV;
590 
591         if (!rtc->ops || !rtc->ops->set_time)
592                 goto out_close;
593 
594         /* First call might not have the correct offset */
595         if (*offset_nsec == rtc->set_offset_nsec) {
596                 rtc_time64_to_tm(to_set->tv_sec, &tm);
597                 err = rtc_set_time(rtc, &tm);
598         } else {
599                 /* Store the update offset and let the caller try again */
600                 *offset_nsec = rtc->set_offset_nsec;
601                 err = -EAGAIN;
602         }
603 out_close:
604         rtc_class_close(rtc);
605         return err;
606 }
607 #else
608 static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
609 {
610         return -ENODEV;
611 }
612 #endif
613 
614 /*
615  * If we have an externally synchronized Linux clock, then update RTC clock
616  * accordingly every ~11 minutes. Generally RTCs can only store second
617  * precision, but many RTCs will adjust the phase of their second tick to
618  * match the moment of update. This infrastructure arranges to call to the RTC
619  * set at the correct moment to phase synchronize the RTC second tick over
620  * with the kernel clock.
621  */
622 static void sync_hw_clock(struct work_struct *work)
623 {
624         /*
625          * The default synchronization offset is 500ms for the deprecated
626          * update_persistent_clock64() under the assumption that it uses
627          * the infamous CMOS clock (MC146818).
628          */
629         static unsigned long offset_nsec = NSEC_PER_SEC / 2;
630         struct timespec64 now, to_set;
631         int res = -EAGAIN;
632 
633         /*
634          * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
635          * managed to schedule the work between the timer firing and the
636          * work being able to rearm the timer. Wait for the timer to expire.
637          */
638         if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
639                 return;
640 
641         ktime_get_real_ts64(&now);
642         /* If @now is not in the allowed window, try again */
643         if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now))
644                 goto rearm;
645 
646         /* Take timezone adjusted RTCs into account */
647         if (persistent_clock_is_local)
648                 to_set.tv_sec -= (sys_tz.tz_minuteswest * 60);
649 
650         /* Try the legacy RTC first. */
651         res = update_persistent_clock64(to_set);
652         if (res != -ENODEV)
653                 goto rearm;
654 
655         /* Try the RTC class */
656         res = update_rtc(&to_set, &offset_nsec);
657         if (res == -ENODEV)
658                 return;
659 rearm:
660         sched_sync_hw_clock(offset_nsec, res != 0);
661 }
662 
663 void ntp_notify_cmos_timer(void)
664 {
665         /*
666          * When the work is currently executed but has not yet the timer
667          * rearmed this queues the work immediately again. No big issue,
668          * just a pointless work scheduled.
669          */
670         if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
671                 queue_work(system_freezable_power_efficient_wq, &sync_work);
672 }
673 
674 static void __init ntp_init_cmos_sync(void)
675 {
676         hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
677         sync_hrtimer.function = sync_timer_callback;
678 }
679 #else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
680 static inline void __init ntp_init_cmos_sync(void) { }
681 #endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
682 
683 /*
684  * Propagate a new txc->status value into the NTP state:
685  */
686 static inline void process_adj_status(const struct __kernel_timex *txc)
687 {
688         if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
689                 time_state = TIME_OK;
690                 time_status = STA_UNSYNC;
691                 ntp_next_leap_sec = TIME64_MAX;
692                 /* restart PPS frequency calibration */
693                 pps_reset_freq_interval();
694         }
695 
696         /*
697          * If we turn on PLL adjustments then reset the
698          * reference time to current time.
699          */
700         if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
701                 time_reftime = __ktime_get_real_seconds();
702 
703         /* only set allowed bits */
704         time_status &= STA_RONLY;
705         time_status |= txc->status & ~STA_RONLY;
706 }
707 
708 
709 static inline void process_adjtimex_modes(const struct __kernel_timex *txc,
710                                           s32 *time_tai)
711 {
712         if (txc->modes & ADJ_STATUS)
713                 process_adj_status(txc);
714 
715         if (txc->modes & ADJ_NANO)
716                 time_status |= STA_NANO;
717 
718         if (txc->modes & ADJ_MICRO)
719                 time_status &= ~STA_NANO;
720 
721         if (txc->modes & ADJ_FREQUENCY) {
722                 time_freq = txc->freq * PPM_SCALE;
723                 time_freq = min(time_freq, MAXFREQ_SCALED);
724                 time_freq = max(time_freq, -MAXFREQ_SCALED);
725                 /* update pps_freq */
726                 pps_set_freq(time_freq);
727         }
728 
729         if (txc->modes & ADJ_MAXERROR)
730                 time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT);
731 
732         if (txc->modes & ADJ_ESTERROR)
733                 time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT);
734 
735         if (txc->modes & ADJ_TIMECONST) {
736                 time_constant = clamp(txc->constant, 0, MAXTC);
737                 if (!(time_status & STA_NANO))
738                         time_constant += 4;
739                 time_constant = clamp(time_constant, 0, MAXTC);
740         }
741 
742         if (txc->modes & ADJ_TAI &&
743                         txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
744                 *time_tai = txc->constant;
745 
746         if (txc->modes & ADJ_OFFSET)
747                 ntp_update_offset(txc->offset);
748 
749         if (txc->modes & ADJ_TICK)
750                 tick_usec = txc->tick;
751 
752         if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
753                 ntp_update_frequency();
754 }
755 
756 
757 /*
758  * adjtimex mainly allows reading (and writing, if superuser) of
759  * kernel time-keeping variables. used by xntpd.
760  */
761 int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
762                   s32 *time_tai, struct audit_ntp_data *ad)
763 {
764         int result;
765 
766         if (txc->modes & ADJ_ADJTIME) {
767                 long save_adjust = time_adjust;
768 
769                 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
770                         /* adjtime() is independent from ntp_adjtime() */
771                         time_adjust = txc->offset;
772                         ntp_update_frequency();
773 
774                         audit_ntp_set_old(ad, AUDIT_NTP_ADJUST, save_adjust);
775                         audit_ntp_set_new(ad, AUDIT_NTP_ADJUST, time_adjust);
776                 }
777                 txc->offset = save_adjust;
778         } else {
779                 /* If there are input parameters, then process them: */
780                 if (txc->modes) {
781                         audit_ntp_set_old(ad, AUDIT_NTP_OFFSET, time_offset);
782                         audit_ntp_set_old(ad, AUDIT_NTP_FREQ,   time_freq);
783                         audit_ntp_set_old(ad, AUDIT_NTP_STATUS, time_status);
784                         audit_ntp_set_old(ad, AUDIT_NTP_TAI,    *time_tai);
785                         audit_ntp_set_old(ad, AUDIT_NTP_TICK,   tick_usec);
786 
787                         process_adjtimex_modes(txc, time_tai);
788 
789                         audit_ntp_set_new(ad, AUDIT_NTP_OFFSET, time_offset);
790                         audit_ntp_set_new(ad, AUDIT_NTP_FREQ,   time_freq);
791                         audit_ntp_set_new(ad, AUDIT_NTP_STATUS, time_status);
792                         audit_ntp_set_new(ad, AUDIT_NTP_TAI,    *time_tai);
793                         audit_ntp_set_new(ad, AUDIT_NTP_TICK,   tick_usec);
794                 }
795 
796                 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
797                                   NTP_SCALE_SHIFT);
798                 if (!(time_status & STA_NANO))
799                         txc->offset = (u32)txc->offset / NSEC_PER_USEC;
800         }
801 
802         result = time_state;    /* mostly `TIME_OK' */
803         /* check for errors */
804         if (is_error_status(time_status))
805                 result = TIME_ERROR;
806 
807         txc->freq          = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
808                                          PPM_SCALE_INV, NTP_SCALE_SHIFT);
809         txc->maxerror      = time_maxerror;
810         txc->esterror      = time_esterror;
811         txc->status        = time_status;
812         txc->constant      = time_constant;
813         txc->precision     = 1;
814         txc->tolerance     = MAXFREQ_SCALED / PPM_SCALE;
815         txc->tick          = tick_usec;
816         txc->tai           = *time_tai;
817 
818         /* fill PPS status fields */
819         pps_fill_timex(txc);
820 
821         txc->time.tv_sec = ts->tv_sec;
822         txc->time.tv_usec = ts->tv_nsec;
823         if (!(time_status & STA_NANO))
824                 txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
825 
826         /* Handle leapsec adjustments */
827         if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
828                 if ((time_state == TIME_INS) && (time_status & STA_INS)) {
829                         result = TIME_OOP;
830                         txc->tai++;
831                         txc->time.tv_sec--;
832                 }
833                 if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
834                         result = TIME_WAIT;
835                         txc->tai--;
836                         txc->time.tv_sec++;
837                 }
838                 if ((time_state == TIME_OOP) &&
839                                         (ts->tv_sec == ntp_next_leap_sec)) {
840                         result = TIME_WAIT;
841                 }
842         }
843 
844         return result;
845 }
846 
847 #ifdef  CONFIG_NTP_PPS
848 
849 /* actually struct pps_normtime is good old struct timespec, but it is
850  * semantically different (and it is the reason why it was invented):
851  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
852  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
853 struct pps_normtime {
854         s64             sec;    /* seconds */
855         long            nsec;   /* nanoseconds */
856 };
857 
858 /* normalize the timestamp so that nsec is in the
859    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
860 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
861 {
862         struct pps_normtime norm = {
863                 .sec = ts.tv_sec,
864                 .nsec = ts.tv_nsec
865         };
866 
867         if (norm.nsec > (NSEC_PER_SEC >> 1)) {
868                 norm.nsec -= NSEC_PER_SEC;
869                 norm.sec++;
870         }
871 
872         return norm;
873 }
874 
875 /* get current phase correction and jitter */
876 static inline long pps_phase_filter_get(long *jitter)
877 {
878         *jitter = pps_tf[0] - pps_tf[1];
879         if (*jitter < 0)
880                 *jitter = -*jitter;
881 
882         /* TODO: test various filters */
883         return pps_tf[0];
884 }
885 
886 /* add the sample to the phase filter */
887 static inline void pps_phase_filter_add(long err)
888 {
889         pps_tf[2] = pps_tf[1];
890         pps_tf[1] = pps_tf[0];
891         pps_tf[0] = err;
892 }
893 
894 /* decrease frequency calibration interval length.
895  * It is halved after four consecutive unstable intervals.
896  */
897 static inline void pps_dec_freq_interval(void)
898 {
899         if (--pps_intcnt <= -PPS_INTCOUNT) {
900                 pps_intcnt = -PPS_INTCOUNT;
901                 if (pps_shift > PPS_INTMIN) {
902                         pps_shift--;
903                         pps_intcnt = 0;
904                 }
905         }
906 }
907 
908 /* increase frequency calibration interval length.
909  * It is doubled after four consecutive stable intervals.
910  */
911 static inline void pps_inc_freq_interval(void)
912 {
913         if (++pps_intcnt >= PPS_INTCOUNT) {
914                 pps_intcnt = PPS_INTCOUNT;
915                 if (pps_shift < PPS_INTMAX) {
916                         pps_shift++;
917                         pps_intcnt = 0;
918                 }
919         }
920 }
921 
922 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
923  * timestamps
924  *
925  * At the end of the calibration interval the difference between the
926  * first and last MONOTONIC_RAW clock timestamps divided by the length
927  * of the interval becomes the frequency update. If the interval was
928  * too long, the data are discarded.
929  * Returns the difference between old and new frequency values.
930  */
931 static long hardpps_update_freq(struct pps_normtime freq_norm)
932 {
933         long delta, delta_mod;
934         s64 ftemp;
935 
936         /* check if the frequency interval was too long */
937         if (freq_norm.sec > (2 << pps_shift)) {
938                 time_status |= STA_PPSERROR;
939                 pps_errcnt++;
940                 pps_dec_freq_interval();
941                 printk_deferred(KERN_ERR
942                         "hardpps: PPSERROR: interval too long - %lld s\n",
943                         freq_norm.sec);
944                 return 0;
945         }
946 
947         /* here the raw frequency offset and wander (stability) is
948          * calculated. If the wander is less than the wander threshold
949          * the interval is increased; otherwise it is decreased.
950          */
951         ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
952                         freq_norm.sec);
953         delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
954         pps_freq = ftemp;
955         if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
956                 printk_deferred(KERN_WARNING
957                                 "hardpps: PPSWANDER: change=%ld\n", delta);
958                 time_status |= STA_PPSWANDER;
959                 pps_stbcnt++;
960                 pps_dec_freq_interval();
961         } else {        /* good sample */
962                 pps_inc_freq_interval();
963         }
964 
965         /* the stability metric is calculated as the average of recent
966          * frequency changes, but is used only for performance
967          * monitoring
968          */
969         delta_mod = delta;
970         if (delta_mod < 0)
971                 delta_mod = -delta_mod;
972         pps_stabil += (div_s64(((s64)delta_mod) <<
973                                 (NTP_SCALE_SHIFT - SHIFT_USEC),
974                                 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
975 
976         /* if enabled, the system clock frequency is updated */
977         if ((time_status & STA_PPSFREQ) != 0 &&
978             (time_status & STA_FREQHOLD) == 0) {
979                 time_freq = pps_freq;
980                 ntp_update_frequency();
981         }
982 
983         return delta;
984 }
985 
986 /* correct REALTIME clock phase error against PPS signal */
987 static void hardpps_update_phase(long error)
988 {
989         long correction = -error;
990         long jitter;
991 
992         /* add the sample to the median filter */
993         pps_phase_filter_add(correction);
994         correction = pps_phase_filter_get(&jitter);
995 
996         /* Nominal jitter is due to PPS signal noise. If it exceeds the
997          * threshold, the sample is discarded; otherwise, if so enabled,
998          * the time offset is updated.
999          */
1000         if (jitter > (pps_jitter << PPS_POPCORN)) {
1001                 printk_deferred(KERN_WARNING
1002                                 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
1003                                 jitter, (pps_jitter << PPS_POPCORN));
1004                 time_status |= STA_PPSJITTER;
1005                 pps_jitcnt++;
1006         } else if (time_status & STA_PPSTIME) {
1007                 /* correct the time using the phase offset */
1008                 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
1009                                 NTP_INTERVAL_FREQ);
1010                 /* cancel running adjtime() */
1011                 time_adjust = 0;
1012         }
1013         /* update jitter */
1014         pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
1015 }
1016 
1017 /*
1018  * __hardpps() - discipline CPU clock oscillator to external PPS signal
1019  *
1020  * This routine is called at each PPS signal arrival in order to
1021  * discipline the CPU clock oscillator to the PPS signal. It takes two
1022  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
1023  * is used to correct clock phase error and the latter is used to
1024  * correct the frequency.
1025  *
1026  * This code is based on David Mills's reference nanokernel
1027  * implementation. It was mostly rewritten but keeps the same idea.
1028  */
1029 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
1030 {
1031         struct pps_normtime pts_norm, freq_norm;
1032 
1033         pts_norm = pps_normalize_ts(*phase_ts);
1034 
1035         /* clear the error bits, they will be set again if needed */
1036         time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1037 
1038         /* indicate signal presence */
1039         time_status |= STA_PPSSIGNAL;
1040         pps_valid = PPS_VALID;
1041 
1042         /* when called for the first time,
1043          * just start the frequency interval */
1044         if (unlikely(pps_fbase.tv_sec == 0)) {
1045                 pps_fbase = *raw_ts;
1046                 return;
1047         }
1048 
1049         /* ok, now we have a base for frequency calculation */
1050         freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
1051 
1052         /* check that the signal is in the range
1053          * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
1054         if ((freq_norm.sec == 0) ||
1055                         (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1056                         (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1057                 time_status |= STA_PPSJITTER;
1058                 /* restart the frequency calibration interval */
1059                 pps_fbase = *raw_ts;
1060                 printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1061                 return;
1062         }
1063 
1064         /* signal is ok */
1065 
1066         /* check if the current frequency interval is finished */
1067         if (freq_norm.sec >= (1 << pps_shift)) {
1068                 pps_calcnt++;
1069                 /* restart the frequency calibration interval */
1070                 pps_fbase = *raw_ts;
1071                 hardpps_update_freq(freq_norm);
1072         }
1073 
1074         hardpps_update_phase(pts_norm.nsec);
1075 
1076 }
1077 #endif  /* CONFIG_NTP_PPS */
1078 
1079 static int __init ntp_tick_adj_setup(char *str)
1080 {
1081         int rc = kstrtos64(str, 0, &ntp_tick_adj);
1082         if (rc)
1083                 return rc;
1084 
1085         ntp_tick_adj <<= NTP_SCALE_SHIFT;
1086         return 1;
1087 }
1088 
1089 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1090 
1091 void __init ntp_init(void)
1092 {
1093         ntp_clear();
1094         ntp_init_cmos_sync();
1095 }
1096 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php